
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

An algebraic algorithm for breaking NTRU with

multiple keys

Shi Bai1*, Hansraj Jangir1*, Tran Ngo1* and William Youmans1*

1Department of Mathematics and Statistics, Florida Atlantic University,
Boca Raton, Florida, United States.

*Corresponding author(s). E-mail(s): shih.bai@gmail.com;
hjangir2020@fau.edu; ngotbtran@gmail.com; youmansw@fau.edu;

Abstract

We describe a heuristic polynomial-time algorithm for breaking the NTRU prob-
lem with multiple keys when given a sufficient number of ring samples. Following
the linearization approach of the Arora-Ge algorithm (ICALP ’11), our algorithm
constructs a system of linear equations using the public keys. Our main contribu-
tion is a kernel reduction technique that extracts the secret vector from a linear
space of rank n, where n is the degree of the ring in which NTRU is defined.
Compared to the algorithm of Kim-Lee (Designs, Codes and Cryptography, ’23),
our algorithm does not require prior knowledge of the Hamming weight of the
secret keys. Our algorithm is based on some plausible heuristics. We demonstrate
experiments and show that the algorithm works quite well in practice, with close
to cryptographic parameters.

Keywords: Lattice-based cryptography, cryptanalysis, NTRU problem with multiple
keys, linearization.

1 Introduction

Lattices have attracted substantial research attention due to their capacity to cre-
ate efficient cryptographic schemes that are believed to be resistant to quantum
adversaries. Fundamental average-case computational problems in lattice-based cryp-
tography include the Short Integer Solution problem (SIS) [3, 30], the Learning With
Errors problem (LWE) [36, 37] and the NTRU problem [19, 20].

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

The NTRU cryptosystem [19, 20], originally proposed by Hoffstein, Pipher and Sil-
verman in 1996, and the corresponding NTRU problem have formed the basis of many
cryptosystems in recent years. Let R = Z[x]/ïp(x)ð be a quotient ring where p(x) has
degree n. The NTRU problem states that it is difficult to compute a short vector in
the R-module {(x,y) ∈ R2 | hx−y = 0 (mod q)} given the promise that a short solu-
tion (g, f) exists. Usually, the polynomials g, f are the secret keys of the system. There
has been much follow-up research on the analysis, design, and implementation of the
variant NTRU problems [5, 8–10, 12, 13, 15, 21, 22, 27, 28, 40]. Notably, the assumed
hardness of the NTRU problem underlies the security of Falcon [35], a selected algo-
rithm in the NIST post-quantum cryptography standardization process; NTRU [11], a
Round 3 finalist; and NTRU Prime [9, 10], an alternate Round 3 candidate. It is there-
fore evident that NTRU is an attractive foundation for cryptosystems which plays an
important role in constructing post-quantum schemes.

1.1 Prior and related work

Following the groundbreaking work of [19, 20], the NTRU assumption has been used
extensively in cryptography. The NTRU cryptosystem remained unbroken after more
than two decades of cryptanalysis. Lattice reduction and meet-in-the-middle are the
two popular methods in evaluating the security of NTRU-based schemes in practice.

Coppersmith and Shamir [14] noticed that recovering a short enough vector in
some lattice defined by the public key h is sufficient to break the NTRU cryptosystem.
Asymptotically, this requires a strong lattice reduction such as the Block Korkine-
Zolotarev (BKZ) reduction [18, 38] with large blocksize. In practice, parameters have
been updated to reflect recent advances in lattice reduction algorithms [24]. Odlyzko
described a meet-in-the-middle algorithm in [23] by partially enumerating the candi-
date polynomials for f and g. In practice, the best algorithm for solving the NTRU
problem is the combination of these two ideas, e.g., the so-called hybrid lattice and
meet-in-the-middle approach of Howgrave-Graham [25].

It has been realized that overstretched (e.g., when the modulus q is large) NTRU
variants can be much easier to solve, by exploiting the subfield structure [5, 12].
It has been shown that the resulting complexity improvement does not require any
algebraic structure [28], but it is due to the existence of a dense sublattice. A recent
work of Ducas and Wessel van Woerden [15] shows that the critical point of being
“overstretched” is about q = n2.484+o(1). It is noted that these works do not break
NTRU encryption in general as q is often chosen to be smaller.

On the provable side, there is evidence that the NTRU problem cannot be too
easy to solve. Stehlé and Steinfeld [40] have shown that, when the support of f,g are
sufficiently large, the distribution of h = f/g (mod q) can be statistically close to the
uniform distribution over the invertible elements in the ring. Recently, Pellet-Mary
and Stehlé [34] demonstrated an efficient reduction from the worst-case approximate
shortest vector problem over ideal lattices to the average-case of some variant NTRU
problem.

Various approaches have been explored to extend the NTRU assumption. One line
of research focuses on the NTRU problem with multiple keys [1, 2, 31, 33, 39]. More
precisely, multiple samples of the form hi = fi/g (mod q) are given, with a fixed

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

denominator polynomial g. The problem asks to recover the secret g (or fi). This is
referred to as the “NTRU Learning Problem” in the work [33, Definition 4.4.4] and
has also been discussed online in [32]. Nitaj [31] has considered a special case where
two samples h1,h2 are given where ∥f1− f2∥ is small. In such cases, they showed that
the secret vector can be embedded as the shortest vector in some lattice, though it
is not clear whether a stronger lattice reduction is needed for actually recovering the
secret. Singh and Padhye [39] further generalized this idea and applied it to the NTRU
problem with n public keys.

Recently, Kim and Lee [27] described an interesting subfield algorithm for the
NTRU problem with multiple keys. They showed that, for ternary secrets, under the
assumption that the Hamming weight of the keys fi are fixed and known, there exists
a polynomial-time algorithm solving the NTRU problem with multiple keys. For the
ring Z[x]/ïxn − 1ð, their algorithm recovers the coefficient vector of gḡ in the real
subfield and then leverages the Gentry-Szydlo algorithm for extracting the solution g.

1.2 Contribution

We describe a polynomial-time algorithm for solving the multiple-key NTRU prob-
lem given sufficiently many samples, without assuming any prior knowledge of the
Hamming weight of the secret. Our algorithm leverages the linearization technique of
Arora and Ge [7]. Our main contribution is a kernel reduction (or subspace reduction)
algorithm that extracts the target secret from a linear space of rank n.

It is known that the LWE problem (with small errors) is prone to an algebraic
attack such as the Arora-Ge method [7]. It is folklore that the multiple-key NTRU
problem can be rephrased as an LWE-like problem, expressed as hig−fi = 0 (mod q).
Thus, it appears plausible to use the Arora-Ge method to break the multiple-key
NTRU problem. This observation has already been discussed in [27]. However, there
is a known obstacle in using such a method for NTRU [26]. To see the issue, consider
the ring R = Z[x]/ïxn−1ð with binary polynomials fi. Notice that the rotations of the
secret polynomials (fi·xk,g·xk) also satisfy the public key equation hi(g·xk)−fi·xk = 0
(mod q) since fi · xk is again binary. Therefore, the kernel of the linearized system
will contain (the linearized version of) these vectors. Indeed, it can be shown that
the kernel of the linearized version has rank n given sufficiently many samples, hence
recovering the actual secret is non-trivial.

We circumvent this issue by using a so-called kernel reduction (or subspace reduc-
tion) technique. The main idea is to pin down a particular rotation of the secret
vector g based on its runs of zero coefficients, progressively reducing the dimension
of the subspace where the (linearized) secret vector lives and eventually extracting
the secret. Together with the Arora-Ge [7] algorithm, this gives a polynomial-time
algorithm for solving the NTRU problem with multiple keys. Our algorithm does not
require any knowledge of the Hamming weight of fi and only requires that g has at
least one zero coefficient, which is almost always satisfied in practical schemes. The
Arora-Ge step works better when the support of fi is small (e.g., binary or ternary),
but a larger support is possible if more samples are given. The algorithm does not
require any specific distribution on fi. Furthermore, the algorithm does not restrict g

3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

to be binary or ternary in general, as long as its support is small. All of these require-
ments are commonly satisfied in practical systems, as long as the number of samples
given is sufficient. The algorithm is also applicable to common rings as discussed in
Section 5. As an example, when fi is binary (resp. ternary), a number of O(n) (resp.
O(n2)) samples hi = fi/g (mod q) is sufficient to recover the secret polynomial g, up
to multiplication by some xj , in polynomial time using the Arora-Ge algorithm. The
algorithm is provable based on some plausible heuristics.

In Section 6, we demonstrate with concrete experiments that the algorithm almost
always works in practice, for close to cryptographic-size parameters.

1.3 Comparison and discussion

Our work focuses on the NTRU problem given multiple samples sharing a common
secret denominator g. This is the same problem discussed in [27, 32]. Kim and Lee [27]
described an algorithm for solving this problem when the secrets fi’s are ternary/bi-
nary and have known Hamming weight (such information, for example, can be obtained
via a side channel). By comparison, we describe a polynomial-time algorithm for
solving this problem, without any knowledge of the Hamming weight of the secrets fi.

In a nutshell, both algorithms use linear algebra to recover some information about
the secret. Consider the ring R = Z[x]/ïxn − 1ð where n is a prime. The algorithm of
Kim and Lee recovers gḡ by looking at equations of the form hih̄igḡ = fif̄i (mod q)
where ḡ := g(1/x). The values of fif̄i are known if the Hamming weights of fi are
given. Then the secret g can be recovered from gḡ by invoking the Gentry-Szydlo
algorithm [17]. By comparison, our algorithm follows the linearization approach of
Arora-Ge [7]. We propose a kernel reduction method (described in Section 4.4) to
recover g · xk from a linear space of rank n. Our algorithm has the main advantage
that it does not require the Hamming weight of fi to be given in prior. Furthermore,
our algorithm recovers the secret g (up to a rotation) directly, thus it does not require
the Gentry-Szydlo step whose implementation is non-trivial. By comparison, the algo-
rithm [27] requires the Gentry-Szydlo step to complete, e.g., they write “we emphasize
that the GS algorithm is necessary for solving NTRU with multiple keys”. Both algo-
rithms run in polynomial time in n and the bit size of the input. The algorithm of Kim
and Lee [27] has the advantage of requiring fewer samples than ours when the secrets
fi are ternary. For example, when the secrets fi are ternary and sampled from the ring
R = Z[x]/ïxn − 1ð, our algorithm needs O(n2) ring samples hi while their algorithm
only uses O(n) ring samples. When the secrets fi are binary, both algorithms need
O(n) ring samples.

Furthermore, our algorithm does not rely on any ring structure and hence works for
most rings including the original NTRU rings Z[x]/ïxn ± 1ð and NTRU Prime [9, 10]
rings Z[x]/ïxp−x− 1ð. In fact, the obstacle mentioned in Section 1.2 does not always
occur in all of these rings, thus the original Arora-Ge [7] method may already work. By
comparison, the method of [27] is presented for the ring Z[x]/ïxn− 1ð and Z[x]/ïxp−
x− 1ð, but should also work for any ring that admits a suitable conjugate of x.

As our method is based on Arora-Ge [7]’s linearization technique, which aims to
solve a polynomial system, it is natural to ask whether a Gröbner basis method works
instead. Albrecht, Cid, Faugère and Perret [4] considered such an approach for the

4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

case of LWE and show that the number of required samples could indeed be reduced.
We leave this question for future work.

2 Preliminaries

2.1 Notation

We denote by log the base 2 logarithm. For prime q g 2 we write the integers mod q
as Zq. For n g 1 we define [n] as the set {0, . . . , n− 1}.

We represent vectors and matrices with bold lowercase and uppercase letters
respectively. A column vector a of length n is written (a1, . . . , an)

T and we write
A = [a1, . . . ,an] for the matrix whose n columns are given by the ai’s. We use | to
represent horizontal concatenation. We write span(B) for the span of a set of vectors
B and ker(A) for the right kernel of a matrix A.

Let R = Z[x]/Φ for some polynomial Φ of degree n. For q ∈ Z we write Rq for
Zq[x]/Φ and R×q for the multiplicative subgroup of Rq. An element f of R will be

written as f =
∑n−1

i=0 fix
i. Define ϕ(f) = (f0, . . . , fn−1)

T to be the coefficient vector of
f. If it is clear from the context we will identify f with its coefficient vector. We say f

has ternary coefficients if all fi ∈ {−1, 0, 1}, and binary coefficients if all fi ∈ {0, 1}.
We write hw(f) for the Hamming weight of f, i.e. the number of non-zero coefficients,
and Constant(f) for the constant term of f.

Given a support set S and a distribution D over S, we denote by s← D the process
of sampling s ∈ S from the distribution D. With s ← U(S) we denote sampling s
according to the uniform distribution over S.

For n g 1 and r > 0, we let Vn(r) denote the volume of the n-dimensional ball
of radius r. We also let vn denote the volume of an n-dimensional unit ball where

vn = Ãn/2/Γ(1 + n/2) ≈
(

2πe
n

)n/2
/
√
nÃ.

2.2 Lattices

A lattice L is an additive discrete subgroup of Rm. It can be represented as the set
of all integer linear combinations of n linearly independent basis vectors {b1, . . . ,bn}.
Let B = [b1, . . . ,bn] ∈ R

m×n be the matrix whose columns are given by the bi. The
lattice L generated by B is defined as L(B) = {Bx | x ∈ Z

n} and we call B a basis
for L. We say L has full rank if m = n.

The Euclidean norm of a shortest non-zero vector in L is denoted by ¼1(L) which
is called the minimum of the lattice L. The analysis of lattice algorithms often relies
on heuristic assumptions such as the so-called Gaussian Heuristic (GH). Let S be a
measurable set in the span of L. The Gaussian Heuristic states that the number of
lattice points in S is |L ∩ S| ≈ Vol(S)/Vol(L). When S is an n-dimensional ball of
radius r, the latter quantity is about (vn · rn)/Vol(L). Taking vn · rn ≈ Vol(L), we see
that ¼1(L) is about GH(L) := v

−1/n
n · Vol(L)1/n ≈

√

n/(2Ãe) · Vol(L)1/n. In practice
we assume that GH(L) is a decent approximation for ¼1(L). Let B be a basis for L.
We define the root Hermite factor of the basis B as ¶(B) = (∥b1∥/Vol(L)1/n)1/n. We
say an algorithm admits a root Hermite factor of ¶ if any input basis can reach the

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

target root Hermite factor ¶ after being processed by the algorithm. A larger root
Hermite factor is preferred from the cryptanalysis point of view.

2.3 Multiple-key NTRU problem

We review the definition of the NTRU problem and the variant multiple-key NTRU
problem.
Definition 1 (NTRUΦ,q,B instance). Let q g 2 be an integer, B f √q be a positive
real number, and R = Z[x]/Φ. An element h ∈ Rq is called an NTRUΦ,q,B instance if
there exist (f, g) ∈ Rq ×R×q such that h = f/g (mod q) and ∥f∥∞, ∥g∥∞ f B.
Definition 2 (NTRUΦ,q,B,D search and decision problem). Let q,B,R be as defined
in Definition 1. Let D be a distribution over NTRUΦ,q,B instances. The search
NTRUΦ,q,B,D problem asks, given an h sampled from D, to compute (f, g) ∈ Rq ×R×q
such that h = f/g (mod q) and ∥f∥∞, ∥g∥∞ f B. The decisional dNTRUΦ,q,B,D

problem asks to distinguish between samples from D and from U(Rq).
Now we define the multiple-key NTRU (or m-NTRU for short) problem which

involves several ring samples hi.
Definition 3 (m-NTRUE

Φ,q,B instance). Let q g 2 be an integer, B f √q be a positive
real number, and R = Z[x]/Φ. Let E be a finite subset of Z containing 0 such that
|E| > 1. Let m be a positive integer. A set of polynomials {hi}1fifm with hi ∈ Rq is
called a m-NTRUE

Φ,q,B instance if there exist polynomials fi ∈ Rq with support E and
g ∈ R×q such that hi = fi/g (mod q) and ∥g∥∞ f B, ∀i f m.

Note this problem is defined with a shared polynomial g over all the m samples.
Definition 4 (m-NTRUE

Φ,q,B,D search and decision problem). Let q,B,R,E,m be as

defined in Definition 3. Let D be a distribution over m-NTRUE
Φ,q,B instances. The

search m-NTRUE
Φ,q,B,D problem asks, given a set of polynomials {hi}1fifm sampled

from D, to compute polynomials fi ∈ Rq with support E and g ∈ R×q such that

hi = fi/g (mod q) and ∥g∥∞ f B. The decisional m-dNTRUE
Φ,q,B,D problem asks to

distinguish between samples from D and from U(Rm
q).

Such variant NTRU problems have been studied before [1, 2, 31, 33, 39]. The
complexity of our algorithm is dominated by the size of the support of the polynomials
fi, so its cardinality should be small for a polynomial running-time.

In practical schemes, the coefficients of both g and f are usually ternary (E =
{−1, 0, 1}) or binary (E = {0, 1}). Therefore in this work we will assume the cardinality
of E is a small constant. In general, our results place no restrictions on the size B
(except for certain rings, which can be seen in Theorem 1) because our algorithm only
requires that g has at least one zero coefficient. We will also assume the fi and g are
independently generated. Lastly, we will omit B and D from the notation if they are
clear from the context.

3 Algorithms for NTRU with multiple keys

We review known and folklore algorithms for solving the multiple-key NTRU problem.

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

3.1 Lattice reduction

One standard method to evaluate the security of the NTRU problem is lattice reduc-
tion on NTRU lattices [14]. Given a NTRU public key h, one can form the NTRU
lattice defined by Λq(h) := {(x,y) ∈ R2 | hx − y = 0 (mod q)}. The coefficient vec-
tor of (g, f) is usually a shorter vector compared to the Gaussian heuristic. A basis of
Λq(h) is:

[

I 0

H qI

]

,

where H is the multiplication matrix associated to h, e.g.,

H = [ϕ(h), ϕ(h · x), . . . , ϕ(h · xn−1)].

Here, the i-th column of H is the coefficient vector of h · xi−1.
This can be extended to the multiple-key NTRU problem, where the coefficient

vector of (g, f1, . . . , fm) is a short vector in the lattice

Λq(h1, . . . ,hn) :=











I 0

H1 qI
...

. . .

Hm qI











.

This lattice has rank (m + 1)n and determinant qmn. Concrete security can be
estimated using standard methods such as [6, 16].

Consider a simple example where (g, f1, . . . , fm) are sampled uniformly with binary
coefficients in the ring Z[x]/ïxn − 1ð. Its expected Euclidean norm is

√

n(m+ 1)/2.
Using the estimate for solving the unique SVP by Gama and Nguyen [16, Section 3.3],
we compute the ratio of the Gaussian heuristic estimate with the secret vector length,
which is µ ≈ qm/(m+1).

Note that one can also drop samples by using any k f m polynomials instead of
m. Thus without loss of generality we can think of m as varying from 1 to its upper
bound. Heuristically one can recover the secret as soon as µ ≈ ¶(m+1)n where ¶ is the
root Hermite factor of the algorithm used. As n is usually large, it is often preferred
to have a smaller lattice rank in the lattice reduction (for the root Hermite factor to
be large). This means the optimal m is usually small in such lattice attacks (for the
multiple-key NTRU problem). To see this, we take n = 256, q = 769 and compute the
blocksize (of a BKZ-type algorithm) required as a function of m f 256 – the number
of samples given – using the method from [6]. The required blocksizes are plotted in
Figure 1. It can be seen that, for such parameters, a smaller number of samples is
preferred, e.g., it actually degenerates to the original NTRU case with just one ring
sample.

Nitaj [31] has considered a special case where two samples hi = fi/g are given and
satisfies a norm condition ∥f1− f2∥ < min(∥f1∥, ∥f2∥). In such cases, they showed that
one can form a lattice containing a shortest vector (g, f1 − f2). Then by using lattice
reduction one can recover the secret. It is likely that a strong lattice reduction such as

7

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

20 40 60 80 100 120 140 160 180 200 220 240

1

2

·104

Samples m

B
lo
ck
si
z
e
s

Blocksize

Fig. 1: Blocksize required as a function of number of samples
used. Parameters: n = 256, q = 769 and binary secrets.

BKZ is needed to recover the secret, similar to the above example. It is also mentioned
that the norm condition is only satisfied in rare cases.

3.2 Linearization

It is folklore [27] that the multiple-key NTRU problem can be rephrased as an LWE-
like problem and is therefore prone to an algebraic attack such as Arora-Ge [7]. Let
R = Z[x]/ïxn − 1ð and assume fi ∈ R have ternary support. For any j ∈ [n] we have

fi,j(fi,j − 1)(fi,j + 1) = f3
i,j − fi,j = 0

where fi =
∑n−1

j=0 fi,jx
j . As hig− fi = 0 (mod q) we can rewrite this as

∏

b∈{−1,0,1}

(Constant(x−j · hig)− b) = 0 (1)

for any j ∈ [n]. We use Fi,j(z) to represent this equation with g replaced by some
unknown z ∈ Rq where we identify z with its coefficients in Z

n
q . Then {Fi,j(z)}i,j is a

polynomial system with a promised solution g. Notice that Fi,j(z) is a cubic multivari-
ate polynomial in terms of the unknown coefficients of z, and using the linearization
technique [7] we can write it as a system of linear equations in O(n3) variables, assign-
ing a variable to each unique monomial. Thus we expect O(n2) public keys hi to
determine the solution, as each key generates n equations by rotations x−k.

This idea stems from the Arora-Ge and Gröbner basis methods for binary (or small
error) LWE [4, 7]. For example, one can write hig− fi = 0 (mod q) and rephrase this
as an LWE instance b = As + e (mod q) with b = 0. However, there is a known
obstacle [26] in using such a method for the case of NTRU in several popular rings.
Note that, for R as defined above, the rotations of the secret polynomials (fi ·xk,g ·xk)
also satisfy the public key equation hi(g · xk)− fi · xk = 0 (mod q) and fi · xk is again
ternary. Therefore, all coefficient vectors of the form g · xk for all k ∈ [n] together

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

with their linear combinations are in the kernel of the linearized system. Given an
invertible g, these vectors are linearly independent and hence span a subspace of rank
at least n. Computing the kernel of the linearized system will produce a basis which
spans this subspace, but not necessarily disclosing the exact g ·xk (since the basis will

contain vectors of the form {∑n−1
i=0 zi(g ·xi)} for zi ∈ Z, represented in their linearized

vectors). Thus it is not immediately clear whether a shortest vector can be recovered
from the kernel efficiently [26].
Remark 1. It is plausible to use a lattice reduction algorithm on a lattice defined
from the kernel basis to recover the secret. The lattice on the kernel of the linearized
system has determinant qτ(n)−n and rank Ä(n), where Ä(n) is defined in Section 4.2.
Using the approach from [16], we see that the root Hermite factor required is asymp-
totically q1/τ(n). This is quite small as Ä(n) is quadratic or cubic in n for common
parameters. In comparison to the standard NTRU lattice, the required root Hermite
factor is asymptotically q1/O(n).

3.3 Kim-Lee algorithm

Kim and Lee [27] described two algorithms for breaking NTRU encryption given mul-
tiple keys, which run in polynomial time in n and log q. Their algorithms require the
Hamming weight of the keys fi to be fixed and known, and needs n samples hi.

Their first algorithm considers the ring R = Z[x]/ïxn−1ð as in the original NTRU
proposal [19, 20] and exploits the existence of a maximal real subfield. We assume
n is a prime which is the most common case for such rings. This algorithm starts
by considering hih̄igḡ = fif̄i (mod q). The main observation is that, when fi’s have
ternary coefficients and hw(fi) = W is given, the constant term of fif̄i is precisely W .
Therefore, one gets one linear equation with respect to the unknown variables in gḡ

from a single ring sample. Collecting n such ring samples is sufficient to recover gḡ.
Recovering the actual g ·xk for some k then requires the Gentry-Szydlo algorithm [17]
which, while being polynomial time, is non-trivial to implement in practice. This
algorithm can also be applied to the case where the secrets fi are binary. In such cases,
the algorithm still requires n ring samples. This approach is versatile, and could be
adapted to other rings that admit a suitable conjugate of x.

Their second algorithm focuses on a variant of the Streamlined NTRUPrime [9, 10]
problem in the ring R = Z[x]/ïxp−x−1ð, where p is prime. As this ring has no proper
subfield the first algorithm does not apply. Interestingly, they observed that they can
multiply a row vector (1, . . . , 1) to both sides of the equation hig = fi (mod q). On
the right-hand side, the inner product of the vector (1, . . . , 1) with the coefficients
of fi reveals the number of coefficients which are 1, subtracted by the number of
coefficients which are −1. For the left-hand side, they observe that the matrix formed
by (1, . . . , 1) · ϕ(hi) across several i is heuristically non-singular. Thus one can use
linear algebra to obtain g directly when O(n) public keys hi are given. This algorithm
requires knowing the number of coefficients that are 1 and −1. They also commented
that this method cannot be applied to the original NTRU encryption with multiple
keys since the matrix obtained (as described above) will be singular.

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

4 Solving multiple-key NTRU with kernel reduction

In this section we describe how to leverage the Arora-Ge algorithm to solve NTRU
with multiple keys in the ring Z[x]/Φ for Φ ∈ {xn+1, xn−1} using our kernel reduction
algorithm. We discuss application to other rings in Section 5.

We first give our main results in Section 4.1 and consider the linearization proce-
dure in Section 4.2. Then we analyze the kernel of the linearized system in Section 4.3
based on some heuristic assumptions. Finally, we describe our kernel reduction
algorithm in Section 4.4 and prove its correctness.

4.1 Main results

Theorem 1 (Under Heuristics 1, 2, 3). Let n and q be positive integers with q > 3
a prime. Let Φ ∈ {xn + 1, xn − 1}. Let E be a finite subset of Z containing 0 where
d = |E| is constant. Let {hi}i∈[m] be an m-NTRUE

Φ,q instance with m = O(nd−1)
such that hi = fi/g (mod q) and at least one coefficient of g is zero. For either of the
following cases:
1. n is prime, or
2. n is composite, and the entries of g are sampled uniformly from a constant size

support (e.g. g is binary or ternary),
there is a heuristic algorithm that recovers g · xk for some k ∈ [n] in time polynomial
in n and the bit length of q with probability 1− o(1).

Observe that when n is a prime, the theorem does not place any restriction on the
size and distribution of g. However, when n is a composite, the theorem requires g to
be sampled uniformly from some small support due to some probabilistic argument
used in Lemma 6 and Heuristic 3. In most NTRU schemes the secrets have tiny support
such as binary and ternary, which is covered by Theorem 1.

4.2 Linearization

We consider the polynomial system given for the ternary case in Equation (1). Let
{hi}i∈[m] be a m-NTRUE

Φ,q instance for Φ ∈ {xn + 1, xn − 1} and define R = Z[x]/Φ.

Let Coeffj(z) = zj be the function which extracts the coefficient of xj for some z ∈ Rq

and j ∈ [n]. We view the coefficients of z as unknowns z0, . . . , zn−1, so Coeffj(z)
returns an element in Zq[z0, . . . , zn−1]. Consider the polynomial system given by

Fi,j(z) =
∏

b∈E

(Coeffj(hiz)− b) (2)

for i ∈ [m]. Fi,j(z) is a multivariate polynomial in Zq[z0, . . . , zn−1] of degree d = |E|.
By treating each distinct monomial as a new variable, we can view this as a linear
equation in approximately nd variables in Zq. Following [7] we refer to this process as
“linearization”, and we will denote the linearization of Fi,j by Li,j .

We use Ä(n,E) to denote the number of unique monomials occuring in the poly-
nomials {Fi,j(z)}i,j . This gives the number of variables in the linearized system. Note
that as we assume the support E contains 0 and |E| > 1, Fi,j(z) will only have

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

monomials of degree in {1, . . . , d}. Therefore we have

Ä(n,E) f
d
∑

k=1

(

n+ k − 1

k

)

.

For convenience, we will use the shortcut notation Ä(n) in place of Ä(n,E) when the
support E is clear in the context. Note that it has order O(nd) when d is a constant.

4.2.1 Ordering

Due to the nature of our algorithm, it will be important to fix a particular ordering
on the monomials of Fi,j(z) and thus on the variables occuring in its linearization
Li,j(z). As noted above, Fi,j(z) contains monomials of degree in {1, . . . , d}. Therefore
it is always possible to order the monomials in the following way:
1. Order all monomials of degree d > 1 according to the lexicographical ordering.
2. Order all monomials of degree d = 1 according to the lexicographical ordering.
3. Monomials of degree d > 1 have higher orders than monomials of degree d = 1.

In the case of binary and ternary supports E = {0, 1} and E = {−1, 0, 1} this order-
ing coincides with the standard graded lexicographical ordering. In general it can be
different, and can be described as a lexicographical ordering on higher degree terms
followed by a lexicographical ordering on degree 1 terms.
Example 1. Take n = 2 and E = {0, 1, 2}. Let {hi}i∈[m] be an m-NTRUE

Φ,q instance.
The polynomials Fi,j(z) given by Equation (2) have degree 3 and two variables. The
monomials of Fi,j(z) can be ordered as:

z30 > z20z1 > z20 > z0z
2
1 > z0z1 > z31 > z21 > z0 > z1.

Define zi1,i2,i3 := zi1zi2zi3 for i1, i2, i3 ∈ [n]. Then this monomial ordering induces the
following ordering on the linearized variables of Li,j:

z0,0,0 > z0,0,1 > z0,0 > z0,1,1 > z0,1 > z1,1,1 > z1,1 > z0 > z1.

Abusing notation, we will sometimes use Li,j(z) to denote the coefficient vector of
the linearization of Fi,j under this monomial order. This is interpreted as a row vector.

4.2.2 Linearized vectors

After fixing the order, we set up some notations for easier exposition. Given some
y =

∑n−1
i=0 yix

i ∈ Rq we define the following column vector, which orders the products
of coefficients of y using the above ordering:

φ(y) := (y(0) | · · · | y(n−1) | y0, . . . , yn−1)T ,

where the row vector y(i) is defined as y(i) := (ydi , y
d−1
i yi+1, . . .), which is lexicograph-

ically ordered. Note that the subvector y(i) collects all the monomials that contain
the variable yi and hence the following subvectors y(j) for j g i + 1 do not contain

11

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

the variable yi anymore. The length of the vector φ(y) is Ä(n). We also define Ni as
the length of the subvector y(i). Note that in the ternary case we have Ni =

(

n−i+1
2

)

,
and in the binary case we have Ni = n− i.

We will refer to φ(y) as the “linearized vector” of y. We are mostly interested in
applying φ(·) on vectors of the form g · xk.

Let Hi denote the multiplication matrix associated to hi. That is, Hi =
[ϕ(hi), ϕ(hi · x), . . . , ϕ(hi · xn−1)]. Denote by [H′i − Hi] the block matrix whose j-
th row corresponds to the coefficients of the linearized polynomials Li,j(z) under our
monomial ordering for i ∈ [m]. Now denote by A the block matrix constructed by
concatenating the blocks corresponding to all m ring samples:

A =











A1

A2

...
Am











=











H′1 −H1

H′2 −H2

...
...

H′m −Hm











. (3)

Note that A is formed in a row-wise way, and has mn rows and Ä(n) columns.

4.3 Kernel

We are interested in understanding the right kernel of A constructed in Equation (3).
We know the kernel contains φ(g · xk) for k ∈ [n]. This is because each g · xk is a
solution for each Fi,j(z), so they must have corresponding linearized vectors in ker(A).
We now wish to know when the φ(g · xk) generate ker(A).

4.3.1 Lower bound on the kernel

First, we show that the kernel rank must be at least n.
Lemma 2. Let g ∈ R×q . The linearized vectors {φ(g · xk)}k∈[n] are linearly indepen-
dent. In other words, the linearized system A as in Equation (3) has a right kernel of
rank at least n.

Proof. Consider the multiplication matrix G = [ϕ(g), ϕ(g · x), . . . , ϕ(g · xn−1)]
associated to g. As g is invertible so is G, hence G has full rank. Now we define

B = [φ(g), φ(g · x), . . . , φ(g · xn−1)],

whose columns are the linearized vectors of g · xk. Note B contains G as an n × n
submatrix in the last n rows, so B has rank n as well. It follows that the vectors
φ(g · xk) are all linearly independent, and B is a basis for a dimension n subspace of
ker(A).

We will show in Section 4.3.3 that the linearized vectors φ(g · xk) generate all of
ker(A) with non-negligible probability for a suitably large number of samples m. The
proof proceeds analogously to [4, 7]. However, [4, 7] considered the case of LWE where
the input samples are genuinely uniform and their linearized vectors are mutually
independent by definition of LWE. In our case, the linearized row vectors in Ai are

12

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

formed from a fixed hi and thus cannot be independent in theory. To circumvent this
we made several heuristic assumptions that we summarize in Section 4.3.2.

4.3.2 Heuristic assumptions

First, we will assume that the coefficients of each hi are uniform in Z
n
q . Note that the

randomness of the public keys hi is induced from the distribution of the private keys
fi and g.
Heuristic 1. For any i ∈ [m], the coefficients of hi are uniformly distributed in Z

n
q .

We will use this heuristic to justify that the rows of the multiplication matrix cor-
responding to hi are uniform. In theory, this heuristic cannot be true for practical
parameters. For example, the distribution of hi cannot be statistically indistinguish-
able from uniform [40] given a small support on fi and g. However, the notion of
statistical indistinguishability is perhaps overwhelming from a cryptanalysis point of
view.

Furthermore, we will assume that the linearized row vectors within each block
matrix Ai behave like independent vectors.
Heuristic 2. For any fixed i, the linearized vectors Li,j are mutually independent
between distinct j’s.

In practice, these assumptions seem mild. Our experiments support that (see
Section 6) using just m ≈ Ä(n)/n (close to the theoretical minimum required) number
of samples hi is almost always sufficient.

4.3.3 Upper bound on the kernel

We will need the following lemma on the zeros of a multivariate polynomial, due to
Schwartz and Zippel.
Lemma 3 (Schwartz-Zippel). Let P ∈ K[z1, . . . , zn] be a non-zero polynomial of total
degree d g 0 over an integral domain K. Let X be a finite subset of K. Then

Pr
x←U(Xn)

[P (x) = 0] f d

|X| .

Theorem 4 (Under heuristics 1, 2). Let {hi}i∈[m] be an m-NTRUE
Φ,q instance where

ϕ, q, E are as defined in Theorem 1. Let d = |E|. The resulting linearized system A

as in Equation (3) has a right kernel with rank n with probability at least 1 − dmn ·
qτ(n)−mn.

Proof. By Lemma 2, the matrix B = [φ(g), φ(g · x), . . . , φ(g · xn−1)] is a basis for
a dimension n subspace S of ker(A). We now lower bound the probability that S is
exactly ker(A). The proof is similar to [4, 7].

Fix some s ∈ Z
τ(n)
q \ S. We will view Li,j(s) as a polynomial in the coefficients of

hi. In other words, we view it as some polynomial Pi,j(z1, . . . , zn) where Pi,j(ϕ(hi)) =
Li,j(s). We first fix i and j. By Heuristic 1 we can apply Lemma 3 to find

Pr
hi←U(Rq)

[Li,j(s) = 0] = Pr
φ(hi)←U(Zn

q)
[Pi,j(ϕ(hi)) = 0] f d

q
.

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Note that the mutual independence of the fi and g implies the hi are mutually
independent as well. Then by Heuristic 2 it follows that

Pr
hi←U(Rq)

[Li,j(s) = 0, ∀i ∈ [m], ∀j ∈ [n]] f
(

d

q

)mn

.

By a union bound, the probability that the linearized system has some solution s ∈
Z
τ(n)
q \ S is less than (d/q)mnqτ(n) = dmnqτ(n)−mn.

Let d be a constant and d < q. The probability in Theorem 4 is asymptotically
almost sure whenm = c·Ä(n)/n for some small constant c ≈ 1+1/Θ(log n). In practice,
the number of samples m can be set to be precisely +Ä(n)/n,. Indeed, experimental
results of Section 6 show that all instances succeeded with m = +Ä(n)/n,, so it seems
likely that the slightly larger m predicted is just an artifact of the proof. The following
informal argument seems to indicate just this, and has the additional benefit of treating
A as a block matrix, simplifying the proof. However, this requires that we assume the
(linearized) blocks Ai are uniformly random and mutually independent, a stronger
assumption than the one used in the above proof.

We use the same notation as in the proof of Theorem 4. First recall that each
block Ai = [H′i − Hi] of A corresponding to a sample hi must have rank n. As
S ¦ ker(A) ¦ ker(Ai) we can write ker(Ai) = S·Ki for some Ki with S ∩Ki = {0}.
Since ker(Ai) has dimension Ä(n)−n we have dim(Ki) = Ä(n)−2n. Let X = Z

τ(n)
q \S.

Then

Pr
v←U(X)

[Aiv = 0] =
|Ki \ {0}|
|X| =

qτ(n)−2n − 1

qτ(n) − qn
.

Assuming Ai are uniformly random and independent, the events {A1v =
0}, . . . , {Amv = 0} are mutually independent as well, so Pr[Av = 0] =

∏m
i=1 Pr[Aiv =

0]. By a union bound, the final probability is bounded above by

(

qτ(n)−2n − 1
)m

(

qτ(n) − qn
)m−1 f

(

qτ(n)−2n − 1
)m

q2n(m−1)
(

qτ(n)−2n − 1
)m−1 f qτ(n)−2mn,

which is q−τ(n) when m = Ä(n)/n. This indicates that +Ä(n)/n, samples are enough
for the procedure to succeed with high probability, which further supports our
experimental findings in Section 6.

We also note that Albrecht, Cid, Faugère and Perret have shown a direct proof
(see [4, Theorem 8]) of the linear independence of the linearized system for the case
of LWE, using the determinant of some Macaulay matrix. Such an argument requires
a larger q which is not applicable to our parameters used in experiments.

4.4 Our kernel reduction algorithm

By Theorem 4 we know that, given sufficiently many ring samples, linearization will
produce a system A whose kernel has rank n with non-negligible probability and
contains the linearized vectors φ(g · xk) for k ∈ [n]. As we remarked earlier however,
extracting such a solution from the kernel of this linear system seems non-trivial.

14

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

We overcome this by iteratively reducing the kernel of A. Recall g is known to
have at least one zero coefficient. Since multiplication by xk in R corresponds to a
rotation of the coefficient vector up to sign, we also know that there must be a rotation
that places a zero coefficient at the 0-th term. This translates to a run of zeros at the
start of the corresponding linearized vector, and we can reduce the dimension of the
kernel by restricting it to only such solutions. However, there is a possible obstruction
in the case that n is not prime, hence the separation between prime and composite n
in Theorem 1.

4.4.1 Zero patterns

To discuss the possible obstruction to kernel reduction we introduce the following
terminology.
Definition 5 (Zero pattern). Let g ∈ Rq where Rq = Zq[X]/Φ with Φ ∈ {xn+1, xn−
1} and q is a prime. We say that g admits a zero pattern if there exists an integer
k with 1 < k < n such that g and g · xk have zero coefficients in exactly the same
locations.

It is clear that when n is a prime g can not admit a zero pattern unless it is the
zero element, since n has no proper divisor. We state this without proof in Lemma 5.
Lemma 5. When n is a prime, g does not admit a zero pattern.

However, when n is composite, some g may admit a zero pattern. We demonstrate
some examples below.
Example 2. Let R = Z[x]/ïx6 − 1ð. In this ring the polynomial g = x5 + x4 + x2 − x
admits a zero pattern since it has the same zero locations as g · x3 = x5− x4 + x2 + x.
Similarly, take R = Z[x]/ïx6+1ð and g = x5+x3+x. Then g and g ·x2 = x5+x3−x
have the same locations of zero coefficients.

Fortunately, we observe that the density of such bad g’s is negligible for most com-
mon parameters. More precisely, when n is not too small and g is sampled uniformly
from a support of small size then it will admit a zero pattern with low probability.
Lemma 6. Let n be a composite integer and R = Z[x]/Φ for Φ ∈ {xn + 1, xn − 1}.
Let G be the size of the support on each coefficient of g. Denote G as the set of all g’s
sampled with such bounded support (e.g., |G| = Gn) and let G0 ¦ G contain all those
g’s admitting a zero pattern. Then |G0|/|G| = o(1).

Proof. Let ϕ(g) denote the coefficient vector of g. If g admits a zero pattern then for
some non-trivial divisor d of n, g and g·xk have the same coefficients zero. This implies
ϕ(g) can be partitioned into n/k segments of length k, each segment having l zeros at
the same indices, for some 1 f l < k. We will refer to this as a (k, l)-zero pattern.

A vector of length k can have l entries zero in
(

k
l

)

unique ways. As all segments of

ϕ(g) must have the same indices zero, there are a total of
(

k
l

)

such (k, l)-zero patterns.
Each (k, l)-zero pattern fixes nl/k coefficients to be zero. As the remaining n − nl/k
entries must be non-zero there are at most

(

k
l

)

(G−1)n−nl/k possible g with a (k, l)-zero

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

pattern. Then the number of g ∈ G with any zero pattern is at most

∑

k|n
k ̸=1,n

k−1
∑

l=1

(

k

l

)

(G − 1)n−nl/k =
∑

k|n
k ̸=1,n

(

(G − 1)n

(

(

1 +
1

(G − 1)
n
k

)k

− 1

)

− 1

)

(4)

f no(1)(G − 1)n

(

(

1 +
1

(G − 1)2

)n/2

− 1

)

(5)

where Equation (4) follows from the binomial theorem. Equation (5) follows from the
observation that the term in the summation is maximized at k = n/2 and that the
number of divisors of n is in no(1)[? , Theorem 315].

Since G is a constant, we have that (G−1)
√

1 + 1/(G − 1)2 =
√
G2 − 2G + 2 = G−ϵ

for some positive constant ϵ < 1. We consider the density of such g over the support
of g which is less than

no(1) ((G − ϵ)/G)n = o(1).

Thus the density of g ∈ G admitting a zero pattern is o(1).

Note that, given an m-NTRUE
Φ,q,B instance where ∥g∥∞ f B for some constant

B, G can be set to 2B + 1.
For our purposes g is sampled from (a subset of) R×q rather than Rq, so Lemma 6

does not apply directly. As the proof of Lemma 6 follows from a combinatorial argu-
ment which does not account for the ring structure of Rq, it is not immediately clear
how to adapt it to R×q . For this reason, we make the following additional heuristic
assumption that the density result of Lemma 6 carries over to g ∈ G ∩R×q .
Heuristic 3. Let R,G,G0 be as in Lemma 6 and q be a prime. The density |G0 ∩
R×q |/|G ∩R×q | ≈ |G0|/|G| = o(1).

The high success rates of our experiments in Section 6 indicate that this should
be a mild assumption. Also, this assumption can be shown to be true in certain
cases. For example, when R = Z[x]/ïxn − 1ð and g is sampled from R×q with binary
support, it cannot have a zero pattern regardless of whether n is prime or composite.
This is because it will no longer be invertible, as its associated multiplication matrix
[ϕ(g), ϕ(g ·x), . . . , ϕ(g ·xn−1)] will not be invertible. Moreover, one may also prove this
for certain rings where one can lower bound the number of small invertible elements,
using methods such as [? ?]. We leave such discussions for future work.

In the end, if a given g admits a zero pattern a potential fix is to re-randomize g in
the hope that it will no longer have a zero pattern. This idea has been used in [?] in a
different context. For example, one can sample a small r and write hi(g+r)− fi = hir

(mod q). Instead of finding the kernel of the linearized system, now we look for the
pre-image of the linearized vector of hir. It is possible that g + r still has at least
one zero but no longer has a zero pattern, in which case Algorithm 1 will succeed.
One could also divide hi by a random invertible polynomial r and reconstruct our
polynomial system which will now have solutions gr ·xk, which may eliminate the zero
pattern. We leave the analysis of such re-randomization for future work.

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

4.4.2 The algorithm

With the following lemma we will be ready to state the kernel reduction algorithm for
all n.
Lemma 7. Let V = W1 ·W2 be a finite-dimensional vector space. If there exists W
such that W1 ¦W ¦ V and W ∩W2 = {0} then W = W1.

Proof. By Grassmann’s formula dim(W)+dim(W2) = dim(W+W2)+dim(W ∩W2) =
dim(W +W2). Observe that W +W2 ¦ V and dim(V) = dim(W1) + dim(W2). Then
dim(W1) f dim(W) f dim(W1) so W = W1.

Theorem 8 (UnderHeuristic 3). Let {hi}i∈[m] be an m-NTRUE
Φ,q instance satisfying

the assumptions of Theorem 1. On input the resulting linearized system A, Algorithm 1
outputs g · xk for some k ∈ [n] with probability 1− o(1), and runs in time polynomial
in n and the bit size of q.

Proof. Theorem 1 assumes that m = O(nd−1). Therefore, by Theorem 4, ker(A) has
rank n with probability 1− o(1). We will thus assume ker(A) has rank n.

Let B be any basis matrix for ker(A). By Lemma 2, ker(A) is generated by φ(g·xk)
for k ∈ [n]. Write y = g · xk for some k. We will view B as a block matrix where each
block corresponds to the subvector y(i) of φ(y):

B =
[

BT
0 ,B

T
1 · · · ,BT

n

]T
. (6)

For any i ∈ [n], the block Bi is the submatrix with Ni rows (where Ni is defined
in Subsubsection 4.2.2), and Bn is the final n × n submatrix. Note that we have
y(i) ∈ span(Bi) for i ∈ [n].

Recall that we require g to have at least one coefficient zero. Let I = {i1, . . . , ir} ¦
[n] be the indices such that gik = 0. Note that r = n − hw(g). It must hold that
Coeff0(g · x−ik) = 0 for each ik ∈ I. Let y = g · x−ik for some ik ∈ I. Then the first
block y(0) of the linearized vector φ(y) must be 0, i.e.

φ(y) = (0, . . . , 0 | y(1) | · · · | y(n−1), y0, . . . , yn−1)
T . (7)

Let X be a basis matrix for ker(B0) and set B′ = B · X, S = span(B′). Then
Equation (7) is equivalent to the observation that φ(g · x−ik) ∈ S ¦ ker(A). This
holds for all indices ik ∈ I, so

{φ(g · x−ik) | ik ∈ I} ¦ S ¦ ker(A).

Thus dim(S) g r. As S∩{φ(g·x−i) | i ̸∈ I} = ∅, by Lemma 7 we see that {φ(g·x−ik) |
ik ∈ I} must be a basis for S, so dim(S) = r. Thus we have reduced the dimension of
the space where we will search for a solution from n to r = n−hw(g), and will iterate
this procedure until the dimension is 1, if possible. In that case B′ is just φ(g · x−ik)
so we can recover the coefficients of g · x−ik from the last n entries of B′.

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

Algorithm 1 Extracting a solution g · xk by a kernel reduction algorithm.

Require: Linearized system A constructed from m samples hi = fi/g, d = |E| where
E is the support of fi.

Ensure: A solution g · xk for some k ∈ [n] or false if a solution can’t be found.
B← basis matrix for ker(A)
if rank(B) > n then ▷ Not enough samples.

return false
else if rank(B) = 0 then ▷ No solutions exist.

return false
else if rank(B) = 1 then ▷ There is a unique solution.

g̃←∑τ(n)
i=τ(n)−n bix

i where B = (b1, . . . , bτ(n))
T

return g̃

end if

J ← {0}
X← basis matrix for ker(BJ)
if rank(X) = 1 then

B′ = B ·X
g̃←∑τ(n)

i=τ(n)−n bix
i where B′ = (b1, . . . , bτ(n))

T

return g̃

end if

for i ∈ {1, . . . , n− 1} do
J ′ ← J ∪ {i}
X′ ← basis matrix for ker(BJ ′)
if rank(X′) = 0 then

continue

else if rank(X′) = 1 then

B′ = B ·X′
g̃←∑τ(n)

i=τ(n)−n bix
i where B′ = (b1, . . . , bτ(n))

T

return g̃

else if 1 < rank(X′) < rank(X) then
J ← J ′

X← X′

else if rank(X′) = rank(X) then ▷ There is a zero pattern.
return false

end if

end for

We now assume r > 1. For J = {j1, . . . , js} ¦ [n] we denote by BJ the matrix

BJ =
[

BT
j1 ,B

T
j2 , · · · ,B

T
js

]T
. (8)

18

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Let X be a basis matrix for ker(B{0,1}) and B′ = B ·X. By the same argument
used above we see that

{φ(g · x−ik) | {ik, ik + 1} ¦ I}

is a basis for S = span(B′). In other words, S is now spanned by the linearized vectors
corresponding to g · x−ik where g has two consecutive zero coefficients, at indices ik
and ik+1. If only one such vector exists then dim(S) = 1 and we are done. Otherwise,
three possibilities remain:

• If dim(S) = 0 then g does not have any two consecutive zero coefficients. In this
case, we update B{0,1} to B{0,2} and repeat the procedure. In other words, we
now test to see if g has two zero coefficients separated by one non-zero coefficient.

• If 1 < dim(S) < r then g does have some pairs of consecutive zero coefficients.
In this case we reduced the dimension, and can continue by updating B{0,1} to
B{0,1,2}.

• If dim(S) = r then every zero coefficient of g is followed by another, so g = 0
and we can abort the algorithm early.

We continue in this manner, removing a submatrix Bj if dim(S) = 0, and adding
an additional submatrix Bj+1 at every step. If dim(S) is unchanged at any step then
g has a zero pattern, and the algorithm can be aborted. This procedure is repeated
at most n− 1 times in the worst case scenario, when g has n− 1 zero coefficients.

Thanks to the ordering described in Section 4.2.1 this procedure converges on a
solution g ·xk that has all of its zero coefficients weighted towards the low order terms.
Such an ordering is unique if and only if g does not have a zero pattern, as discussed
in Section 4.4.1. By Lemma 5 if n is prime g will not have a zero pattern. Otherwise,
by Lemma 6 and Heuristic 3, g has a zero pattern with probability o(1). In either
case, the algorithm succeeds with probability 1− o(1).

In the end, the main computation in the algorithm is the kernel computation and
matrix multiplication, which take time polynomial in n and the bit size of q.

Proof of Theorem 1. This follows directly from Algorithm 1 on input the linearized
system described in Equation (3).

5 Application to NTRU variants

We have so far focused on NTRU with multiple keys over the rings Z[x]/ïxn±1ð, since
the kernel reduction algorithm is generally only required for these rings. In particular,
the original Arora-Ge method may already function in particular rings with specific
parameters without the need to invoke our kernel reduction procedure. To see this,
consider an example where R = Z[x]/ïxn +1ð and fi has binary support. The original
Arora-Ge method may already work in this case since the rotations fi ·xk are unlikely
to be binary anymore.

In this subsection, we summarize and clarify the applicability of the original Arora-
Ge method and our kernel reduction step to several popular NTRU variants. These
observations are also verified in experiments in Section 6.

19

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

• As discussed above, take R = Z[x]/ïxn + 1ð and fi with binary support. The
original Arora-Ge method may already work in this case.

• Take R = Z[x]/ïxn+1ð and consider fi with ternary support. The rotations fi ·xk

are again ternary. Thus the original Arora-Ge method may fail to work and our
kernel reduction step is needed.

• Take R = Z[x]/ïxn − 1ð and fi with binary (or ternary) support. The rotations
fi · xk are again binary (resp. ternary). Thus the kernel reduction step is needed.

• For the same reason, the original Arora-Ge method is likely to work for the NTRU
Prime [9, 10] ring Z[x]/ïxp−x−1ð and the NTTRU [29] ring Z[x]/ïxn−xn/2+1ð.

To extend the criterion to general rings, we consider the obstacle discussed in
Section 3.2. Assume our m-NTRU instance has support E. Then the non-uniqueness
of the solution is due to the existence of r such that fi ·r still has support E for i ∈ [m],
since then g·r is also a valid solution: hi(g·r)−(fi ·r) = 0 (mod q). On the other hand,
if there does not exist any such r then the linearized system will have any additional
solutions φ(g · r). In such cases, the original Arora-Ge method will already work.

When R = Z[x]/Φ for Φ ∈ {xn + 1, xn − 1} and fi have ternary coefficients then
we of course have the rotations r = xj for all j producing valid solutions, but there
may be other possibilities for r depending on the particular set {fi}i∈[m]. Theorem 4,
although stated in terms of the linearization, can also be interpreted as saying that
such “bad” r exists with low probability.

Finally, our work considers prime moduli q. The NTRU submission [11] is instan-
tiated over the ring Rq = Zq[x]/ïxn − 1ð and specifies a power of two q and prime
n. Our results don’t hold for this choice of parameters for a couple of reasons. First,
because Zq is not an integral domain Lemma 3 does not apply. Second, due to the
existence of zero divisors in Zq the premise of the kernel reduction method no longer
holds. It is noted in [11] that it is possible to use prime q to achieve better size vs.
security trade-offs at the cost of being slightly less efficient, and in this context our
attack does apply.

6 Implementation and experiments

In this section we report on our implementation and experiments for the algorithms
described in Theorem 1 and Algorithm 1. Our algorithm is implemented in C++

using the FLINT library [41] compiled with OpenMP support for computing the kernel
of a matrix over a finite field. The source code is available at https://github.com/
wjyoumans/arora-ge-ntru. These experiments are mostly run on systems with Intel

Xeon E5-2660 and AMD EPYC-75511 cores.

6.1 Zq[x]/ïx
n + 1ð and Zq[x]/ïx

n − 1ð

In the first set of experiments, we consider two cases where the underlying rings are
Zq[x]/ïxn + 1ð and Zq[x]/ïxn − 1ð respectively. In practice the exponent n is usually
taken to be a power-of-two or a prime in such rings, but for the purpose of verifying
our algorithm we considered more general n.

In the first experiment we focus on ring Rq = Zq[x]/ïxn−1ð where fi,g are sampled
uniformly with binary coefficients such that g contains at least one zero entry. The

20

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

dimension n ranges from 32 to 320 and we fix q = 769 in these experiments (thus the
ratio between q and n varies). For each dimension n, we generate g 16 instances of the
multiple key NTRU problem with different seeds, and for each instance we generate
exactly m = +Ä(n)/n, samples hi. The results are tabulated in Table 1. The first
column denotes the ring dimension. The second column “#samples m” denotes the
number of samples hi used. The third column Ä(n) follows the discussion in Section 4.2.
the dimensions of the linearized system. The fourth column reports the rank of the
kernel of this system (initial rank before kernel reduction). The fifth column denotes
the number of seeds/instances used. The sixth column denotes the number of succeeded
experiments, in terms of whether the actual secret g can be recovered. The last column
records the average running-time per instance (in seconds).

There are several observations. First, one can see that the rank of the kernel is
always equal to the degree n. This implies that the chosen m is sufficiently large.
Note that m is chosen to be precisely +Ä(n)/n, according to the discussion following
Theorem 4. Second, all experiments succeeded in recovering the actual secret g, which
shows the effectiveness of the kernel reduction algorithm described in Algorithm 1. As
the secrets have binary support, one needs m ≈ n/2 ring samples resulting in a matrix
with dimensions Ä(n) ≈ n2/2.

Dim n #samples m τ(n) initial kernel rank #trials #succ. ave. time (s)

32 18 560 32 64 64 0.093
48 26 1224 48 64 64 0.533
64 34 2144 64 64 64 1.846
80 42 3320 80 64 64 3.766
96 50 4752 96 64 64 12.27
128 66 8384 128 64 64 38.54
160 82 13040 160 64 64 111.5
192 98 18720 192 64 64 403.9
224 114 25424 224 32 32 617.0
256 130 33152 256 32 32 1785
288 146 41904 288 32 32 2299
320 154 46664 320 16 16 4696

Table 1: Experiments in Rq = Zq[x]/ïxn − 1ð where the secrets fi,g have binary
coefficients and q = 769.

In the second experiment, we considered the ring Rq = Zq[x]/ïxn + 1ð where fi,g
are sampled uniformly with ternary coefficients such that g contains at least one zero
entry. The dimension n ranges from 16 to 64 resulting in matrix dimension ranging
from 832 to 45824. We also fix q = 769. For each dimension n, we generate g 16
instances of the multiple key NTRU problem. The results are given in Table 2. The
columns follow similar notations. As the secrets fi are now ternary, Ä(n) ≈ n3/6 so one
needs m ≈ n2/6 ring samples. This is why the columns “#samples m” and “Ä(n)” are
larger than those in Table 1. We stop the experiments at n = 64, which correspond to
a matrix dimension of 45824.

In the third experiment, we considered both rings Zq[x]/ïxn ± 1ð but focus on
very small moduli q. This is motivated by the factor of q appearing in the probability

21

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

Dim n #samples m τ(n) initial kernel rank #trials #succ. ave. time (s)

16 52 832 16 64 64 0.145
24 110 2624 24 64 64 2.256
32 188 6016 32 64 64 13.26
40 288 11520 40 64 64 64.62
48 419 19648 48 32 32 262.6
56 552 30912 56 16 16 658.4
64 716 45824 64 16 16 3183

Table 2: Experiments in Rq = Zq[x]/ïxn+1ð where the secrets fi,g have ternary
coefficients and q = 769.

described in Theorem 4. More specifically, we choose q from 13, 19, 29, 31. We fix
n = 64 (or 32) for the ring Zq[x]/ïxn − 1ð (resp. Zq[x]/ïxn + 1ð), and take m = 34
(resp. 188). Note that these m are chosen to be +Ä(n)/n,. For each set of parameters,
we generate multiple instances as indicated by the column “# trials”. In the end, we
tabulate the number of succeeded experiments in the last column. One can see that
most of the experiments still succeeded even when the moduli are tiny. The only two
exceptions are q = 11 and q = 13 in the ring Zq[x]/ïxn−1ð where the linearized system
did not have sufficient rank (indicating more samples are needed). These moduli are
very small compared to what is used in practice.

Dim n q τ(n) #trials #succ.

64 11 2144 128 126
64 13 2144 64 60

Zq [x]/ïxn − 1ð 64 19 2144 64 63
Binary fi,g 64 29 2144 64 64

64 31 2144 64 64

32 11 6016 128 128
32 13 6016 64 64

Zq [x]/ïxn + 1ð 32 19 6016 64 64
Ternary fi,g 32 29 6016 64 64

32 31 6016 64 64

Table 3: Experiments in two rings Zq[x]/ïxn ± 1ð
with various small moduli q = 13, 19, 29, 31.

6.2 Zq[x]/ïx
p − x − 1ð and Zq[x]/ïx

n − xn/2 + 1ð

We consider some more experiments for the NTRU Prime [9, 10] ring of the form
Z[x]/ïxp − x − 1ð and the NTTRU [29] ring of the form Z[x]/ïxn − xn/2 + 1ð. As
discussed in Section 5, the original Arora-Ge method is likely to already work in such
rings and hence the kernel reduction algorithm is not needed. The main purpose of
these experiments is to verify the discussions made in Section 5 such that the initial
kernel (in these rings) is likely to be already have dimension 1.

22

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

In the fourth experiment of Table 4 we consider the ring Rq = Zq[x]/ïxp − x− 1ð.
In the fifth experiment of Table 5 we consider the ring Rq = Zq[x]/ïxn − xn/2 + 1ð.
In both experiments, fi,g are sampled uniformly with binary coefficients such that g
contains at least one zero entry. We also fix q = 769 in both experiments. In Table 4, we
choose prime dimensions p ranging from 37 to 131. In Table 5, we choose dimensions n
ranging from 32 to 128. For each dimension p, we generate 32 instances of the multiple
key NTRU problem with different seeds, and for each instance we generate exactly
m = +Ä(n)/n, samples hi. The results are tabulated in Table 4 and Table 5. The
columns have similar notations as the previous experiments.

One can see that in all instances ths linearized systems have an initial kernel of rank
1, which mean the original Arora-Ge method is already able to recover the solution.

Dim p #samples m τ(n) initial kernel rank #trials #succ. ave. time (s)

37 20 740 1 32 32 0.102
53 28 1484 1 32 32 0.631
67 35 2345 1 32 32 1.928
83 43 3569 1 32 32 3.900
97 50 4850 1 32 32 12.87
131 67 8777 1 32 32 40.35

Table 4: Experiments in Rq = Zq[x]/ïxp − x − 1ð where the secrets fi,g have
binary coefficients and q = 769. There is no need to perform the kernel
reduction step.

Dim p #samples m τ(n) initial kernel rank #trials #succ. ave. time (s)

32 18 560 1 32 32 0.103
48 26 1224 1 32 32 0.592
64 34 2144 1 32 32 1.577
80 42 3320 1 32 32 3.815
96 50 4752 1 32 32 12.34
128 66 8384 1 32 32 37.82

Table 5: Experiments in Rq = Zq[x]/ïxn−xn/2+1ð where the secrets fi,g have
binary coefficients and q = 769. There is no need to perform the kernel
reduction step.

Acknowledgements

The work of SB, HJ and TN is supported in part by the National Science Founda-
tion grant 2044855 & 2122229. The work of WY is generously sponsored by National
Security Agency grant H98230-22-1-0328.

The authors would like to thank Changmin Lee for helpful discussions about
the kernel reduction algorithm. We thank the anonymous reviewers for their care-
ful reading of our manuscript and insightful suggestions. The authors would also like

23

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

to acknowledge the use of the services provided by Research Computing at Florida
Atlantic University.

References

[1] Agrawal S (2019) Indistinguishability obfuscation without multilinear maps:
New methods for bootstrapping and instantiation. In: Ishai Y, Rijmen V (eds)
EUROCRYPT 2019, Part I, LNCS, vol 11476. Springer, Heidelberg, pp 191–225,
https://doi.org/10.1007/978-3-030-17653-2 7

[2] Agrawal S, Pellet-Mary A (2020) Indistinguishability obfuscation without maps:
Attacks and fixes for noisy linear FE. In: Canteaut A, Ishai Y (eds) EURO-
CRYPT 2020, Part I, LNCS, vol 12105. Springer, Heidelberg, pp 110–140,
https://doi.org/10.1007/978-3-030-45721-1 5

[3] Ajtai M (1996) Generating hard instances of lattice problems (extended abstract).
In: 28th ACM STOC. ACM Press, pp 99–108, https://doi.org/10.1145/237814.
237838

[4] Albrecht MR, Cid C, Faugère JC, et al (2015) Algebraic algorithms for lwe
problems. ACM Commun Comput Algebra 49(2):62. https://doi.org/10.1145/
2815111.2815158, URL https://doi.org/10.1145/2815111.2815158

[5] Albrecht MR, Bai S, Ducas L (2016) A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes.
In: Robshaw M, Katz J (eds) CRYPTO 2016, Part I, LNCS, vol 9814. Springer,
Heidelberg, pp 153–178, https://doi.org/10.1007/978-3-662-53018-4 6

[6] Albrecht MR, Göpfert F, Virdia F, et al (2017) Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi T, Peyrin T (eds) ASI-
ACRYPT 2017, Part I, LNCS, vol 10624. Springer, Heidelberg, pp 297–322,
https://doi.org/10.1007/978-3-319-70694-8 11

[7] Arora S, Ge R (2011) New algorithms for learning in presence of errors. In: Aceto
L, Henzinger M, Sgall J (eds) ICALP 2011, Part I, LNCS, vol 6755. Springer,
Heidelberg, pp 403–415, https://doi.org/10.1007/978-3-642-22006-7 34

[8] Bai S, Beard A, Johnson F, et al (2022) Fiat-shamir signatures based on module-
NTRU. In: Nguyen K, Yang G, Guo F, et al (eds) ACISP 22, LNCS, vol 13494.
Springer, Heidelberg, pp 289–308, https://doi.org/10.1007/978-3-031-22301-3 15

[9] Bernstein DJ, Chuengsatiansup C, Lange T, et al (2017) NTRU prime: Reduc-
ing attack surface at low cost. In: Adams C, Camenisch J (eds) SAC 2017,
LNCS, vol 10719. Springer, Heidelberg, pp 235–260, https://doi.org/10.1007/
978-3-319-72565-9 12

24

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

[10] Bernstein DJ, Brumley BB, Chen MS, et al (2020) NTRU Prime.
Tech. rep., National Institute of Standards and Technology, avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

[11] Chen C, Danba O, Hoffstein J, et al (2020) NTRU. Tech. rep., National Insti-
tute of Standards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

[12] Cheon JH, Jeong J, Lee C (2016) An algorithm for NTRU problems and crypt-
analysis of the GGH multilinear map without a low level encoding of zero.
Cryptology ePrint Archive, Report 2016/139, https://eprint.iacr.org/2016/139

[13] Cheon JH, Kim D, Kim T, et al (2019) A new trapdoor over module-NTRU
lattice and its application to ID-based encryption. Cryptology ePrint Archive,
Report 2019/1468, https://eprint.iacr.org/2019/1468

[14] Coppersmith D, Shamir A (1997) Lattice attacks on NTRU. In: Fumy W (ed)
EUROCRYPT’97, LNCS, vol 1233. Springer, Heidelberg, pp 52–61, https://doi.
org/10.1007/3-540-69053-0 5

[15] Ducas L, van Woerden WPJ (2021) NTRU fatigue: How stretched is over-
stretched? In: Tibouchi M, Wang H (eds) ASIACRYPT 2021, Part IV,
LNCS, vol 13093. Springer, Heidelberg, pp 3–32, https://doi.org/10.1007/
978-3-030-92068-5 1

[16] Gama N, Nguyen PQ (2008) Predicting lattice reduction. In: Smart NP (ed)
EUROCRYPT 2008, LNCS, vol 4965. Springer, Heidelberg, pp 31–51, https://
doi.org/10.1007/978-3-540-78967-3 3

[17] Gentry C, Szydlo M (2002) Cryptanalysis of the revised NTRU signature scheme.
In: Knudsen LR (ed) EUROCRYPT 2002, LNCS, vol 2332. Springer, Heidelberg,
pp 299–320, https://doi.org/10.1007/3-540-46035-7 20

[18] Hanrot G, Pujol X, Stehlé D (2011) Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway P (ed) CRYPTO 2011, LNCS, vol 6841.
Springer, Heidelberg, pp 447–464, https://doi.org/10.1007/978-3-642-22792-9 25

[19] Hoffstein J, Pipher J, Silverman JH (1996) NTRU: A new high speed public
key cryptosystem. draft from CRYPTO ’96 rump session, put online in 2016 at
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

[20] Hoffstein J, Pipher J, Silverman JH (1998) NTRU: A ring-based public key
cryptosystem. In: Buhler JP (ed) Algorithmic Number Theory. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 267–288

25

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

[21] Hoffstein J, Pipher J, Silverman JH (2001) NSS: An NTRU lattice-based signature
scheme. In: Pfitzmann B (ed) EUROCRYPT 2001, LNCS, vol 2045. Springer,
Heidelberg, pp 211–228, https://doi.org/10.1007/3-540-44987-6 14

[22] Hoffstein J, Howgrave-Graham N, Pipher J, et al (2003) NTRUSIGN: Digital
signatures using the NTRU lattice. In: Joye M (ed) CT-RSA 2003, LNCS, vol
2612. Springer, Heidelberg, pp 122–140, https://doi.org/10.1007/3-540-36563-X
9

[23] Hoffstein J, Silverman JH, Whyte W (2006) Meet-in-the-middle attack on an
ntru private key. Technical report, NTRU Cryptosystems, July 2006. Report #04,
available at http://www.ntru.com.

[24] Hoffstein J, Pipher J, Schanck JM, et al (2017) Choosing parameters for NTRU-
Encrypt. In: Handschuh H (ed) CT-RSA 2017, LNCS, vol 10159. Springer,
Heidelberg, pp 3–18, https://doi.org/10.1007/978-3-319-52153-4 1

[25] Howgrave-Graham N (2007) A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In: Menezes A (ed) CRYPTO 2007, LNCS, vol 4622.
Springer, Heidelberg, pp 150–169, https://doi.org/10.1007/978-3-540-74143-5 9

[26] Kim J, Lee C (2023) Personal communication.

[27] Kim J, Lee C (2023) A polynomial time algorithm for breaking NTRU encryp-
tion with multiple keys. Des Codes Cryptogr 91(8):2779–2789. https://doi.org/
10.1007/s10623-023-01233-5, URL https://doi.org/10.1007/s10623-023-01233-5

[28] Kirchner P, Fouque PA (2017) Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron JS, Nielsen JB (eds) EUROCRYPT 2017, Part I,
LNCS, vol 10210. Springer, Heidelberg, pp 3–26, https://doi.org/10.1007/
978-3-319-56620-7 1

[29] Lyubashevsky V, Seiler G (2019) NTTRU: Truly fast NTRU using
NTT. IACR TCHES 2019(3):180–201. https://doi.org/10.13154/tches.v2019.i3.
180-201, https://tches.iacr.org/index.php/TCHES/article/view/8293

[30] Micciancio D, Regev O (2004) Worst-case to average-case reductions based on
Gaussian measures. In: 45th FOCS. IEEE Computer Society Press, pp 372–381,
https://doi.org/10.1109/FOCS.2004.72

[31] Nitaj A (2014) Cryptanalysis of NTRU with two public keys. Int J
Netw Secur 16(2):112–117. URL http://ijns.jalaxy.com.tw/contents/ijns-v16-n2/
ijns-2014-v16-n2-p112-117.pdf

[32] Peikert C (2015) Multiple ntru public keys for the same pri-
vate key? URL https://crypto.stackexchange.com/questions/30893/
multiple-ntru-public-keys-for-the-same-private-key

26

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

[33] Peikert C (2016) A decade of lattice cryptography. Found Trends Theor Comput
Sci 10(4):283–424. https://doi.org/10.1561/0400000074, URL https://doi.org/10.
1561/0400000074

[34] Pellet-Mary A, Stehlé D (2021) On the hardness of the NTRU problem. In:
Tibouchi M, Wang H (eds) ASIACRYPT 2021, Part I, LNCS, vol 13090. Springer,
Heidelberg, pp 3–35, https://doi.org/10.1007/978-3-030-92062-3 1

[35] Prest T, Fouque PA, Hoffstein J, et al (2022) FALCON. Tech. rep., National Insti-
tute of Standards and Technology, available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

[36] Regev O (2005) On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow HN, Fagin R (eds) 37th ACM STOC. ACM Press, pp 84–93,
https://doi.org/10.1145/1060590.1060603

[37] Regev O (2006) Lattice-based cryptography (invited talk). In: Dwork C (ed)
CRYPTO 2006, LNCS, vol 4117. Springer, Heidelberg, pp 131–141, https://doi.
org/10.1007/11818175 8

[38] Schnorr C (1987) A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science 53(2-3):201–224

[39] Singh S, Padhye S (2017) Cryptanalysis of ntru with n public keys. In: 2017 ISEA
Asia Security and Privacy (ISEASP), pp 1–6, https://doi.org/10.1109/ISEASP.
2017.7976980

[40] Stehlé D, Steinfeld R (2011) Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson KG (ed) EUROCRYPT 2011, LNCS, vol 6632.
Springer, Heidelberg, pp 27–47, https://doi.org/10.1007/978-3-642-20465-4 4

[41] team TF (2023) FLINT: Fast Library for Number Theory. Version 2.9.0, https:
//flintlib.org

27

	Introduction
	Prior and related work
	Contribution
	Comparison and discussion

	Preliminaries
	Notation
	Lattices
	Multiple-key NTRU problem

	Algorithms for NTRU with multiple keys
	Lattice reduction
	Linearization
	Kim-Lee algorithm

	Solving multiple-key NTRU with kernel reduction
	Main results
	Linearization
	Ordering
	Linearized vectors

	Kernel
	Lower bound on the kernel
	Heuristic assumptions
	Upper bound on the kernel

	Our kernel reduction algorithm
	Zero patterns
	The algorithm

	Application to NTRU variants
	Implementation and experiments
	Zq[x]/xn + 1 and Zq[x]/xn - 1
	Zq[x]/xp - x - 1 and Zq[x]/xn - xn/2 + 1

