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Abstract

We consider the question of estimating multi-dimensional Gaussian mixtures (GM) with com-
pactly supported or subgaussian mixing distributions. Minimax estimation rate for this class (under
Hellinger, TV and KL divergences) is a long-standing open question, even in one dimension. In
this paper we characterize this rate (for all constant dimensions) in terms of the metric entropy of
the class. Such characterizations originate from seminal works of Le Cam (1973); Birgé (1983);
Haussler and Opper (1997); Yang and Barron (1999). However, for GMs a key ingredient missing
from earlier work (and widely sought-after) is a comparison result showing that the KL and the
squared Hellinger distance are within a constant multiple of each other uniformly over the class.
Our main technical contribution is in showing this fact, from which we derive entropy character-
ization for estimation rate under Hellinger and KL. Interestingly, the sequential (online learning)
estimation rate is characterized by the global entropy, while the single-step (batch) rate corresponds
to local entropy, paralleling a similar result for the Gaussian sequence model recently discovered
by Neykov (2022) and Mourtada (2023). Additionally, since Hellinger is a proper metric, our com-
parison shows that GMs under KL satisfy the triangle inequality within multiplicative constants,
implying that proper and improper estimation rates coincide.

Keywords: KL divergence, Hellinger distances, Gaussian mixtures, estimation rates

1. Introduction

Gaussian mixtures are among the most popular and useful classes of distributions for modeling real
data with heterogeneity. Specifically, each d-dimensional mixing distribution w induces a Gaussian
mixture fr, which is the convolution of 7 with the d-dimensional standard Gaussian distribution
N (0, 1), namely

R DR R CEPL )

1

d
V2r
There is a vast literature in statistics and machine learning on various aspects of mixture models

such as parameter estimation and clustering. In this paper we focus on learning the mixture model
in the sense of density estimation. To this end, it is necessary to impose tail conditions on the mixing
distribution. Specifically, we consider two classes of Gaussian mixtures classes, wherein the mixing
distribution is either compactly supported or subgaussian.

where (2) = exp (—||z]|3/2) is the standard normal density.
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To measure the density estimation error, it is common to use f-divergences, notably, Kullback-
Leibler (KL) divergence KL(f||g) = [ flog g, the squared Hellinger distance H2(f, g) = [(v/f—

/9)?, and the total variation distance TV(f, g) = % J'If — g|- In this paper, we are chiefly con-
cerned with mainly focus on the estimation rates under the KL.-divergence and the squared Hellinger
distance, as opposed to the L5 distance due to its lack of operational meaning.'

Estimating Gaussian mixture densities is a classical topic in nonparametric statistics. Under the
squared Hellinger loss, the minimax lower bound Q((logn)?/n) was proved in Kim (2014); Kim
and Guntuboyina (2022) the lower bound for subgaussian mixing distributions. On the constructive
side, nonparametric maximum likelihood estimator (NPMLE) and sieve MLE have been analyzed in
van de Geer (1993); Wong and Shen (1995); van de Geer (1996); Genovese and Wasserman (2000);
Ghosal and van der Vaart (2001, 2007); Zhang (2009). In particular, the NPMLE, which offers a
practical algorithm for properly learning the mixture model, is shown to achieve a near-parametric
rate of O((logn)?/n) for the subgaussian case Zhang (2009), which is subsequently generalized
to O(logd+1 n/n) in d dimensions Saha and Guntuboyina (2020). Similar results for compactly
supported mixing distribution are also obtained in (Polyanskiy and Wu, 2021, Theorem 20) Despite
these advances, determining the optimal rate remains a long-standing open question even in one
dimension.

Departing from maximum likelihood, there is a long line of work that aims at characterizing den-
sity estimation rates in terms of metric entropy of the class. These general entropic upper bounds
originate from the seminal work of Le Cam (1973); Birgé (1983); Birgé (1986) for the Hellinger
loss, Yatracos (1985) for the TV loss, and Yang and Barron (1999) for the KL loss. (We refer to
in (Polyanskiy and Wu, 2022+, Chapter 33) for a detailed exposition on these results.) On the other
hand, entropic lower bounds for KL and Hellinger losses were established for both the batch Haus-
sler and Opper (1997) and sequential estimation Yang and Barron (1999). However, these entropy-
based upper and lower bounds in general do not match unless extra conditions are imposed on the
behavior on the model class (those conditions are satisfied, most notably, for the Holder density
class on [0, 1]%). Notably, a simple condition that ensures a sharp entropic determination of the
minimax rate is the comparability of the Hellinger and KL divergence, namely, for any density f
and g in the model class:

KL(fllg) < H*(f.9) (1)

where =< denotes equality within constant multiplicative factors. Note that the one-sided inequality
KL(f|lg) > H?(f,g) is always true cf. e.g. (Polyanskiy and Wu, 2022+, Eq. (7.30)). As such,
whenever KL is dominated by H?, the sharp minimax rate is determined by the local Hellinger
entropy of the model class.

Indeed, this entropy-based approach has been successfully taken in Doss et al. (2020) to deter-
mine the sharp rate for the special case of finite-component Gaussian mixtures in general dimen-
sions. Specifically, for the class of k-component GMs, (Doss et al., 2020, Theorem 4.2) shows
that

KL(frll fn) =t H*(fr: fn): 2)

1. Indeed, for densities supported on the entire real line, it is possible that two densities are arbitrarily close in Lo
distance but separated by a large T'V distance and hence easily distinguishable. In fact, for the entire class of Gaus-
sian mixtures, Kim (2014) showed ignoring the mixture structure and simply applying the kernel density estimator
designed for analytic densities Ibragimov (2001) achieves the optimal rate in Ls. On the other hand, consistent es-
timation of Gaussian mixtures in more meaningful loss function such as T'V is impossible unless tail conditions on
the mixing distribution are imposed.
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where 7 and 7 are k-atomic distributions supported on a Euclidean ball of bounded radius in R? and
=} hides constants depending only on k. The proof of this result is based on the method of moments
which shows both distances are proportional to the Euclidean distance between the moment tensors
of mixing distributions up to degree 2k — 1. The crucial part of (2) is that it does not depend on
the ambient dimension d. As such, this allows the optimal squared Hellinger rate to be determined
by the local entropy, which, in turn, can be tightly estimated via the low rank of the moment tensor,
leading to the sharp rate of @k(%) that holds even in high dimensions. On the other hand, (2) is
not fully dimension-free in that the proportionality constant therein is in fact exponential in k, the
number of components, a limitation of the moment-based approach. As such, it is unclear whether
(2) continues to hold for continuous GMs even in one dimension.

We review related results on upper-bounding the KL divergence by Hellinger distance. (Birgé
and Massart, 1998, Lemma 5) shows that D1, (fllg) < H?(f,g) if esssup j—’; < o0. This results
was further generalized to a-generalized Hellinger divergence in (Sason and Verdd, 2016, Theorem
9). However, ratios between two Gaussian mixture densities are not bounded. (Wong and Shen,
1995, Theorem 5) points out that if ff/gzexp(l/é) fot1/g°% < oo for some § > 0, then we have

Dy < H?log(1/H?). This method was extended by Haussler and Opper (1997) and we also use
it in our Theorem 3. Note, however, that this method is unable to produce a linear upper bound:
Drr(fllg) < H?(f,g). Yet another result follows by choosing 7 = 1/2 and 7 = 1 in (Griinwald
and Mehta, 2020, Lemma 13), which proves D1 < ¢, H?(f,g) with ¢, = ”—Jg? provided that
f,g € F and F satisfies the so-called (u, c)-witness condition, i.e. [ flog(f/9)1/g<exp(u) =
c- [ flog(f/g). However, Gaussian mixtures again do not satisfy this condition. In particular, the
left side of the above inequality can even be negative in some cases.’

In this paper we resolve the question of KL to Hellinger comparison and show that with a

constant factor that depends (at most linearly) on the dimension, by proving that

KL(fx| fn) =<d H*(fr: fn): 3)

where 7 and 7 are arbitrary distributions supported on a bounded ball in R%; furthermore, this result
can be made dimension-free with an extra logarithmic factor. In addition, we show that (3) holds
for (1 — €)-subgaussian mixing distributions but fails for (1 + €)-subgaussian distributions. Curi-
ously, our method does not rely on comparing moments of mixing measures, the prevailing method
for analyzing statistical distances between mixture distributions (cf. e.g. Wu and Yang (2020a,b);
Bandeira et al. (2020); Fan et al. (2021); Doss et al. (2020); Chen and Niles-Weed (2021)).

The new comparison result has various statistical consequences, of which we report here one
(see Corollary 11). To estimate the GM density with compactly supported or (1 — €)-subgaussian
mixing distributions based on an iid sample of size n, the minimax proper or improper density
estimation risks under KL divergence or squared Hellinger distance are tightly characterized by the
local Hellinger entropy of the density class, thereby reducing the question of optimal rates to that of
computing the local entropy. Furthermore, the minimax risks in the sequential version (as opposed
to the batch setting above) of this problem are tightly characterized by the global Hellinger entropy
of the class. A similar phenomenon of local-vs-global entropy has been observed in a pair of recent
works on Gaussian sequence model: Neykov (2022) showed that batch risk is controlled by the
local entropy and Mourtada Mourtada (2023) showed that sequential risk is controlled by the global
entropy.

2

2. To see this, consider f = N(0,1) and g = N(—6,1) with 6 > 0. Then [ flog(f/9)1s/g<expu) = & —
\/%6 exp(—u?/2). Hence for any choice of u, there always exists a & close to zero such that this integral is negative.
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Notation Let Bo(r) = {x cR?: [|x]|2 < r} denote the Euclidean ball of radius r centered at
0. Denote by supp(7) the support of a probability measure . We say a distribution 7 on R? is
K -subgaussian if for X ~ m,

t2

P X2 > 1] < exp (—2K2

), Vit > 0.

Organization The rest of the paper is organized as follows. Section 2 states our main results by
providing upper bounds on KL divergence according to squared Hellinger for Gaussian mixtures.
To illustrate the main ideas, the proof for one dimension is provide in Section 3 as a warm-up. The
dimension-free bound for Gaussian mixtures where mixing distribution is compactly supported is
provided in Section 4. Finally, the proof of Corollary 11, showing that the estimation rates are tightly
characterized by Hellinger entropies, is given in Section 5. Proofs of other results are deferred to
appendices.

2. Main Results

Before discussing their statistical consequences, we first state the main comparison results that
control the KL divergence between Gaussian mixtures using their Hellinger distance.
For compactly supported mixing distributions, our main result is as follows:

Theorem 1 Let 7 and 1 be supported on Bo(M) in R? where M > 2. Then
KL(fxlfo) < 5154(M? V d)H*(fx, f)-

In Section 3 we provide a proof of Theorem 1 in one dimension. The proof of general cases is
included in Appendix A.

Remark 2 The bound in Theorem 1 is tight up to constant factors depending on the dimension d. To

see this, consider m = 6y where u = (M,0,0,---,0) and n = §_y. Then we have fr = N (u,I)
2

and f, = N(—u,I). A direct computation shows that KL(f| f,) = M = 2M?2, while

H2(fr, fy) =2 — 2exp (—MTQ) <2

Complementing Theorem 1, we also have the following dimension-free upper bound at the price
of a mere logarithmic factor. This theorem is a direct corollary of (Wong and Shen, 1995, Theroem
5), if we notice that fr, f, satisfy their condition | fo) fae Ir(fx/fn) < exp(4M?) < oo for any
m,n supported on Bz (M ). For completeness, we include a proof in Section 4:

Theorem 3 Let 7 and 1) be supported on By(M) in RY where M > 1. Then

1
KL(frllfn) < 200M>H?(fr, fy) + 16H?(fr, fy)log —5——.
H (fﬂv fn)
Next we consider the class of subgaussian mixing distributions. We discover a dichotomy de-
pending on the subgaussian constant K: When K < 1, the KL divergence is indeed proportional to
the squared Hellinger distance. When K > 1, such upper bound does not exist.
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Theorem 4 Let 7,1 be two d-dimensional K -subgaussian distributions where K < 1. Then

KL(fx | f,) < 1660056 ( 5V 8d3> H?(fr, fn)-

1
(1-K)
Theorem 5 Fix K > 1. For any C > 0, there exists a 1-dimensional K -subgaussian distribution
7 such that

KL(fx[|N(0,1)) > C - H?(fx,N(0,1)).

Remark 6 Notice that this phenomenon of dichotomy of K > 1 and K < 1 for Gaussian mixtures
with K-subgaussian mixing distribution was also observed in Block et al. (2022). Therein, it is
shown that the convergence rate of smoothed n-point empirical distribution to the smoothed popu-
lation distribution under Wasserstein distance is O(1/\/n) for K < 1, and w(1/+/n) for K > 1.

We further have the following dimension-free upper bound that holds for all K > 0.

Theorem 7 Let 7w and n be K -subgaussian distributions on R, Then

KL(fx| fy) < (10240K* + 652) H?(fx, f) logHg(;lf).
™ Jn

The results presented so far are structural results on the information geometry of Gaussian mix-
ture, whose proof are included in Appendix A-D. Next we discuss their statistical consequences. We
start with the definition of covering/local covering number and minimax risks of density estimation.

Definition 8 (Covering Number and Local Covering Number) Let P be a set of distributions
over some measurable space X. The Hellinger covering number of P is

NH(P,ﬁ) émlH{N : 3@17"' 7Qn € A(X)a sup lnf H(P>Q’L) < 6}1
pep l<isN

where A(X') denotes the collection of all probability distributions on X. The local Hellinger cov-
ering number of P is

MOC7H(P7€) £ sup NH(BH(P777) mP>77/2)7
PePmn>e

where By (P, n) is the Hellinger ball of radius 1 centered at P.

We further define the minimax risks for proper and improper density estimation as well as the
minimax risk in a sequential setting.

Definition 9 (Proper and Improper Density Estimation Minimax Risk) For a given class P of
distributions over X, we define the improper minimax risk Ry ,,, Rk 1, n, and the proper minimax
risk Ry, with sample size n as follows: for d € {H? KL}, we define

Rin(P) £ infsupEy; [d(ﬁ fn)} ’
fn fEP
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and also®

RicLa(P) 2 inf supE; [KL(f[1.)]
fn€P fEP

where fn() = fn(, X1, ...,Xy) is a density estimator based on X1, . .., X, drawn iid from P.

Definition 10 (Sequential Density Estimation Minimax Risk (Improper)) For a given class P
of distributions over X, the sequential minimax risks Cpp2 ,, and Ckr, p, are defined as: for d €
{H? KL},

N
Cyn(P)= inf sup Y E[d(f, fi(1X1, -, Xi-1))]
froe fn FEP IS

where ft : X1 — A(X) denotes the density estimator at time t based on observations X1, - - , X¢_1.

We refer to Definitions 9 and 10 as the batch and online settings, respectively. The following
corollary shows that the minimax density estimation risks in these settings can be characterized by
the local and global Hellinger entropy up to constant factors. Furthermore, we show that proper and
improper density estimation rates coincide. As explained earlier this is well-known for Hellinger
loss but far from clear for KL loss which does not satisfy triangle inequality. In fact, the celebrated
Yang-Baron construction Yang and Barron (1999) produces an improper density estimate. Nev-
ertheless, we show that for Gaussian mixture class there is no gain in stepping outside the model
class.

Corollary 11 Let Py (M) and Py (K) denote the collection of d-dimensional Gaussian mix-
tures where the mixing distribution is supported on Ba(M) and K-subgaussian, respectively, i.e.,
Peom (M) = {m* N(0, Ig)[supp(m) C Ba(M)},
Psup(K) = {7« N(0, I)|r is K-subgaussian}.

Then for any compact (under Hellinger) subset P where P C Peom (M) or P C Pgsup(K) with
K < 1, we have the following characterization on the proper or improper minimax risk:

Rig2 (P) = Ricin(P) = Ricn(P) = inf & + 108 Nige 1 (P, ),
and also for sequential minimax risk:
Chz.n(P) < Crra(P) < EEE ne? + log N (P, e).
Here =< hides constants that may depend on M, K, or d but not on n.

As we mentioned previously, a recent pair of works Neykov (2022); Mourtada (2023) estab-
lished the same phenomenon: the sequential rate is given by global entropy, while the batch rate is
given by the local entropy, though, their work is for a very different setting of a Gaussian sequence
model.

Apart from the KL divergence and Hellinger distance, we also obtained comparison results for
other distances between distributions, e.g. x?-divergence, TV and L, distances. See Appendix E.

We close this section with a list of related open problems.

3. Since Hellinger distance is a valid metric, for proper and improper density estimation, the minimax squared Hellinger
risks coincide within a factor of four, as any estimator can be made proper by its Hellinger projection on the model
class.
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. Fully dimension-free comparison: Currently our upper bound on KL/y2 according to Hellinger
is depending on the dimension of the distributions, can we remove this dependence on the di-
mension? Suppose 7 and 7 are two d-dimensional distributions supported on Bo (M), is there

a constant Cxr,(M), Cy, (M) such that

KL(fﬂ”fn) < Ckr(M) - HQ(fm fn)a

which would have the best of both worlds of (2) and (3). Note that from Theorem 4.2 in Doss
et al. (2020) we can obtain the following dimension-free bound

KL(fx || fa) S ¥ H(fr, f)

for some constant C, if we assume 7 and 7 are k-atomic distributions. But this bound de-
pending exponentially on the number of components.

. Minimax rate for estimating Gaussian mixtures: Find the sharp rate of

RHQ,n(Pcom(M)) =inf  sup Ef[H2(fn;f)]
fn fE€Pcom (M)

Thanks to the comparison inequality in Theorem 1, Corollary 11 reduces this problem to com-
puting the local Hellinger entropy of the mixture class Peom, (M ). The best known estimates
for this in one dimension are

o c 3/2
log(l/e) 5 1Og-/\/loc,H(P00m(M)’ E) ’S (]olglgo(gl(/l/)e)) '

Here the lower bound is from Theorem 1.3 in Kim (2014), which shows that Rp2, =
Q (logn/n); the upper bound is from Nie and Wu (2021) by constructing a covering of the
truncated moment space of the mixing distributions. The upper bound leads to an upper bound
O ((log n/loglogn)'® /n) on the minimax risk, improving the O((log n)?/n) result of Kim
(2014).

. Linear comparison between TV and Hellinger: It is well-known that H?> < TV < H in
general. Can we show that TV =< H for Gaussian mixtures? Specifically, for any two 7 and
n supported on [—M, M|, can we show that there exists some constant C' = C'(M) such that

TV(fm fn) 2 C- H(fﬂa fn)

We notice that it is impossible to lower bound the Lo-distance || f— f, ||2 linearly in H( fx, f,,),
because Kim (2014) showed that for subgaussian mixing distributions, the minimax squared
Ly risk for estimating the mixture density is at most O(y/log n/n) and the squared Hellinger
risk is at least 2(logn/n). Thus the best comparison between Lo and H will involve log
factors. Similarly, the best known comparisons for L2 and TV, which we derive in Section E,
also involve log-factors. It is an open problem to find tight log-factors in these comparisons
of Ly, H and TV.
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3. Proof of Theorem 1 in one dimension

In this section, we provide a proof of Theorem KL < H? for one-dimensional Gaussian mixtures
where the mixing distribution is compactly supported. Similar proof techniques can also be applied
in multiple dimensions; see Appendix A for the proof of Theorem 1 in general dimensions.

Theorem 12 (One-dimensional version of Theorem 1) Let 7 and n be supported on Ba(M) in
R where M > 2. Then
KL(fx[lfy) < 1563M>H?(fr, fy).

For simplicity we abbreviate fr(-) and f,(-) as p(-), ¢(-). Then we have

2
oo (o9}
p(z) . px) 2 p(x)
KLl = [ o) B 0" D, 200 = [ ato)- 1) dr
o0 q(z) = q(z) —0 q(x)
We first state several lemmas. The first is a straightforward computation.

Lemma 13 Let p = w « N(0, 1) where supp(n) C [—M, M]. Then we have Yy > r > x > M,

(y = M)* — (r— M)
2

p@hm( )<mm<pw»

The following result bounds the grownth of the “score function” in the Gaussian mixture model.
Lemma 14 Let p = 7« N'(0,1) where supp(w) C [—M, M]. Then
|[Viogp(r)| < 3|r|+4M, VreR.

Proof By (Polyanskiy and Wu, 2016, Proposition 2), we have for all r € R, |V logp(r)| < 3|r| +
4|E[X]|, where X ~ 7. Since 7 is on [— M, M], we have |[E[X]| < M. [ |

Lemma 15 Forevery 0 <t < exp (8M2) with M > 1, we have

2
tlogt —t+1 < 9M? (\/£—1) .

Proof We define

(1) 2 tlogt —t+1
AL
Then we have ¢'(t) = %. The numerator h(t) = t — 1 — \/tlogt within satisfies that
h'(t)=1- l%/f - % = W > 0. Hence for 0 < t < 1 we have h(t) < h(1) = 0 and for
t > 1 we have h(t) > h(1) = 0. Therefore, we have ¢'(t) = % > 0 for all ¢ > 0, which
indicates that g is non-decreasing on ¢t > 0. Hence for 0 < ¢t < exp (8M 2) and M > 1, we have
5 exp(8M?) - 8M? 8M? )
g(t) < glexp(8M7)) < = < 9M”,

(Vexp(8M?2) —1)2 (1 —exp(—4M?))?

8
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which indicates that
) 2
tlogt —t +1 < 9M (\/i—1)

Proof [Proof of Theorem 12] It is easy to see that for every x € [—2M, 2M], we have
1 1
\V2r Nz

Let r be the smallest positive number (possibly infinite) such that log % > 8M?, then we have r >

exp (—8M?) < p(z),q(z) <

2M. Without loss of generality we assume r < oo. (Otherwise f *p(z)log % —p(z)+q(x)dx =

0 and there is nothing to prove.) Since log E ; is a continuous function, we have log 2 Erg = 8M?2.
According to Lemma 13, we have for every x > r,

p) = plrjexp <_ B M)2> . q(@) < q(r)exp <_ (z = M)* — (r = M>2>

2 2

and according to Lemma 14 we have

‘10 p(x)’ . '10 p<r>‘

®q(@)| = [ )
Therefore, we obtain that
/oo p(z)log M —p(x) + q(z)dr < /OO p(z) log M + q(x)dx

q() q(x)

< p(r) exp (“‘2MV> /:O(E;M2 4 (2 — r)(3z + 3r + 8M)) exp <—(9”_2M)2> dx

+q(r) exp (W) /TOO exp <—(‘7C_2M)2) dz

6 6r+8M  8M? r 36M2 r
Sp()'<(r—M)3+(rj—M)2 T_M>+Tq_(])\4§T_MP(r)+TCI_(])W

T
+/ (3|t| + 4M)dt = 8M?* 4 (x — r)(3z + 3r + 8M), Vz >r >0.

T

37M?
<
< P

where the last inequality uses the fact M > 1 and log Z (Tg = 8M? > 0 hence p(r) > q(r).
Moreover, according to Lemma 14 we also notice that for 0 < x < r we have ‘V log 2 p(z)

q(x)
62 + 8M < 67 + 8M. Hence noticing that log Z () — g7/2 and also r > 2M, we have for every

q(r) —
M2
r— +M<m<r

<

plz) M?
o 2 - g

and also p(z) > p(r) according to Lemma 13. Therefore, noticing M > 1, we have

2
’ q(x) p(r)M? 1\ p(r)M?
H(p.q) > / L, pl) ( o —1> doz <1— €M2/2> > 2o i

r+M

log - (67 + 8M) > M?

9
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Since r > 2M, we obtain that

/OO p(z)log Zg; — p(x) + q(z)dx < TTTH?(p, q).

Similarly, if we let s to be the largest negative number (possibly negative infinite) such that log % >

8M?, then we will also have

/S p(z)log zgg —p(a) + q(z)dx < TTTH?(p, q).

Next we consider those s < x < r. For those x we have log p(z) < 8M?2. Hence according to

q(x)
Lemma 15, we have

p(x) log];(x) _z(x) +1<9M? < o) _ 1>2-

q(x) ()  q(=) q(x)
Therefore,
[ s [ (B2 )

2

,

< 9M2/ q(z) - p@) 1) dz <9IM2H?(p,q).
s q(z)

Overall, we have shown that

KL(pllq) < (7774 777+ 9M?)H?(p, q) < 1563M>H*(p, q),

which finishes the proof of Theorem 12. |

4. Proof of Theorem 3

First of all, we notice that (Haussler and Opper, 1997, Lemma 5) shows that for any §, A > 1 such
that
0 <0 <exp(—1/2) and loglog(1/d)/log(1/d) < (A—1)/2, 4)

and any probability measures P, Q,S and Q' = (1 — §)Q + 4S, we have

n _ 2log(1/9) . o 40log(1/9) a1 (dP)*
KL(EIQ) < T2 )+ s + 577 /. e )
Let A = 3, then as long as 0 < § < 1/2, (4) holds. Choose, P = fr and S = Q = f;;, we get
2log(1/0) .o 461log(1/9) fr(x)?
KL(fz[lfy) < WH (frs fn) + =02 0 i fy(x)? dx (6)

10
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Notice that the last term is an f-divergence with f = 3, which is a convex function, hence
3

Jra %dx is convex in (fr, f;,). Define the set &?(M) of Gaussian mixtures with mixing distri-

butions supported on the ball By (M ):

P (M) = {m = N(0,1q) : supp(m) C Ba(M)}

which is a convex set. Hence the maximum value of fRd E ;2 dx where fr, f, € Z(M) is attained
when fr, f, are both at the boundary of (M), i.e. Elu v with |Jul|e, [|[v]}2 < M and we have
f7r = 5 * N(0,14), f = 6y * N(0,1;). (This is because any f, € P(M) can be written as
I Ba u) f5,du.) Therefore, we have

f“(x)?)dx . . / (ﬁ exp (_ ||X+2UH§>>3

2 — 2
R fn(X) uwviulvlz<M JRd ( L exp (_HX+VII§)>
V2T 2

1 1
= sup / exp <— (XTX +6x'u—4x'v 4+ 3ulu— 2VTV)> dx
il [vl2<M /27" 2
1 3u — 2v||3
= sup ——exp (3lu—vlf3) - / exp <— %+ 3u VH2> dx
wv:flull,lvl2<M /27 R? 2

= sup exp (3llu — v|3) = exp (12M3).
wvi|[ull,[lvl2<M

Therefore, according to (6), we have for any ¢ € [0,1/2],

2log(1/9) 401og(1/9)

e H?(fr, fn) + e + exp(12M?)6.

KL(fxllfy) <
Choosing § = exp(—12M?)H?(f~, f,) € [0,1/2] and noticing that (1 — §)? > 1, we get

KL(fxll fn) < H*(fr, fn) + 96M>H?(fr, f,) + L6H?(fr, fy) log

b
H2(fr, fn)

1
H2(fr, fn)
< OTMPH?(fr, f1) + 16H?(fr, fy) log

This finishes the proof of Theorem 3.

5. Proof of Corollary 11

For convenience, denote by R 1?2, the minimax squared Hellinger risk for improper density estima-
tion, similar to R, ,,. First, notice that for P C Peom (M, d) or P C Peyp (K, d)

RH2 n(P) < RHQ n(P)y RKL,n(P) < RKL,n(P)a

) )

and also
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since H2(P, Q) < KL(P||Q) holds for all distributions P and Q. Moreover, according to Theorems
1 and 4, for P,Q € P, we have KL(P||Q) < H?(P, Q), which indicates that

Rgrn(P) < Rz n(P).
Therefore, we have
Rp2 n(P) S Ricrn(P) < Ricrn(P) S Ry (P).

Next, we notice that

Ry (P) = inf sup By [H(fo, £)]
In fEP

For one estimator f n» SUppose fn is the projection of fn into P under Hellinger distance (since P is
convex, such projection always exists). Then for every f € P, we have

H(fo, /) <H(f.f)+ H(f. f) <2H(f. f),

)
where the last inequality uses the fact that H ( f.f ) < H( f.f ) due to projection. Here f is a proper
estimator. Therefore, we have

. ; 1 ; 1-
Rype o(P) = inf sup By [H2(fu, )] = § inf sup By [H2(f, f)] = { Roge n(P).
fn fEP fnE€P fEP

Hence we have proved that
Rz, (P) S Ricrn(P) < Ricpn(P) € Rigz(P) S Rz n(P),

so we have 3 .
RHzm(P) = RKL’H(P) = RKL,n('P) = RHQ,n(P)-

Similarly, for sequential density estimation minimax risks, we can also show that
Ch2n(P) = Cxra(P) =X Crrn(P) = Cp2 (P),

where C'1,.,(P),C 12, (P) are the proper sequential density estimation minimax risks (where we
restrict fl, S fn to be in the class P in Definition 10. Therefore, to prove Corollary 11, we only
need to show:

1
Ry, < inf e+ = log Nioe, 11 (P, €),
’ e>0 n ’
Crin =< i1>1£ ne? + log Ng (P, e).
€

For the first inequality above, the upper bound part follows directly from the celebrated Le
Cam-Birgé construction Le Cam (1973); Birgé (1983); Birgé (1986). The lower bound follows
from applying Fano’s inequality to a local Hellinger ball and the fact that KL(P||Q) < H?(P, Q)
for P, Q € P; see Corollary 33.2 in Polyanskiy and Wu (2022+).

The second inequality (on Ck, ) follows directly from Lemma 6 and Lemma 7 in Haussler
and Opper (1997) after noticing that the coefficient b(€) in Lemma 7 of Haussler and Opper (1997)

satisfies that
KL(P|Q)

b(e) = sup { H2(P,Q)

:P,Q € P,H*(P,Q) < e} <1

12
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Appendix A. Proof of Theorem 1

Without loss of generality, we assume d < M 2 (otherwise we use Vid > M to replace M, and since
supp(7), supp(n) C Ba(M) C By(v/d), the results still hold). For simplicity we abbreviate f;(-)
and f,(-) as p(-), q(-). Then we can write

2
= x) lo p(x) X 2 — x) - ax) -
KL(plo) = [ peotos Z0ax, 1200) = [ o) ( e 1) o

Denoting by 2 the unit sphere in R?, each x in R can be written as x(r,w), with 7 = ||x|| and
w to be the vector parallel to x in 2.
To prove Theorem 1, we need the following lemmas.

Lemma 16 Suppose p = m * N(0, I;), where supp(m) C Bo(M). Then for any w € S0, we have:
1. Vr' € [M,r], we have p(x(r',w)) > p(x(r,w)).

2. V' >r > M, we have p(x(r',w)) < p(x(r,w)) exp (_w>

Proof We can write

) = [

o(x(r',w) — u)m(u)du, p(x(r,w)) = / o(x(r,w) — u)r(u)du,
By (M)

By (M)

where we use () to denote the density distribution of 7 (which can be a generalized function), and
©(+) to denote the density distribution of A/(0, I;). To prove this lemma, we only need to verify the
following two inequalities:

1. For any V7' € [M,r] and any u € By(M), we have p(x(r',w) — u) > o(x(r,w) — u);

2. For any ¥/ > r > M and any u € By(M), we have p(x(r',w) —u) < o(x(r,w) —

u) exp (-M)
Without loss of generality, we assume w = (1,0,---,0). Then for any u = (uy,uz, - - - ,uq), we
have
1 )2 d 2
p(x(r,w) —u) = ——exp [ — (r —u1) 2+ Sl
V2r
1 I )2 d 2
p(x(r,w) —u) = —— exp [ — (' —w)® + i
V2 2

When M < ' < r,itiseasy to see that [r — uy| > |/ — uq| for any |uy| < M. The first inequality
is verified. As for the second inequality, since |ui| < M < r <7/, we have (r' —u1)? — (r—uy)? >
(r' — M)? — (r — M)?, which indicates that

d d
_(7“/_“1)2"‘21:2“%2 < _(T_U1)2+Zi:2“zz _ (r' = M)? — (r — M)

2 - 2 2

16
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Lemma 17 Suppose p = 7 * N(0, I;) where supp(w) C Ba(M). Then we have
|V log p(x)|]2 < 3||x|]2 + 4M, V¥x € R%
Proof According to Proposition 2 in Polyanskiy and Wu (2016), we have Vx € R<,
IVlog p(x)|l2 < 3[Ix[|2 + 4[|E[X][|2,
where X ~ 7. Since the support of 7 is a subset of Ba(M ), we have |E[X]||2 < M. [

Proof [Proof of Theorem 1] According to (7), we have

KL(?HQ):/Q/OOOTd_lp(X w))log EXE iid dw

- /Q/OOO pd-1 (p(x w))log zgg: Z;; —p(x(r,w)) + q(x(r,w))) drdw )

= f e (a6 1) o

For every w € (2, we define 7, as

ro & inf { log pqgg:::;; > 8M2} |

Notice that for any » < 2M and w € 2, we have

p(x(r,w)):/B(M)ﬂ(u)go(x(r,w),u)dug !

2V 27rd

= u X\r,w),u)au ! ex —M
ot = [ gt wan 2 e (R,

which indicates that )
plx(rw)) M2 _ o
q(x(r,w) 2

log

Hence for every w € , we all have r, > 2M. And if ,, # oo, we have that log 2 EXET“” gg 8M?2.

According to Lemma 16 and Lemma 17, we know that for every » > r,,, we all have

(T—M)2—(TW—M)2)
5 ;

p(x(r,w)) < plx(ry,w)) exp (—

p(x(r,w)) p(x(rv, w))
q(x(r,w)) q(x(ry,w))
< 8M? + (r — 1) (3r + 3ry, + 8M).

log < log + (r—7ry)(3r + 3r, +8M)

Therefore, we obtain that
[o¢]
i1 p(x(r,w))
r® p(x(r,w))log ———=dr
7 wtstrenon BEEES

< p(x(ry,w)) /00 7“‘1_1(8M2 + (r —ry)(3r 4+ 3ry, + 8M)) exp (—

(r—M)%— (r, — M)>?
5 )dr.
)]

17
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We adopt the changes of variables from r to ¢ = r — r,,, and obtain that

0 _ 2 _ _ 2
8M2/ 1 exp (— (r= M) (ro = M) >dr

> t+r, 1o
= 8M2rz_1/ exp ((d —1)log R e T M)t> dt
0 Tw 2
and
o] - M 2 o — M 2
/ r L (r — 1) (3r + 37, + 8M) exp <_(r ) 2(r ) > dr
a1 [ t+ 7y t2
= exp | (d —1)log —i—logt—i—log(3t—|—6rw—|—8M)—§ — (ry, — M)t ) dt.
0 Tw
1D
We first prove the upper bound (10). We define
t+r, 1
£ 2 (d=1)log " — ~(ry, = M),

Since . ,
d_1<d§M2:§'(2M)'(2M—M)Sim(m—M),

the first-order derivative of f satisfies that

d—1 1 d—1 1
"(t) = — —(ro — M) < — Z(ry — M) < >
fi(t) o 5(rw — M) < - (ro — M) <0, Yt>0
Therefore we have
t w 1
(d—1)log =1 — Z(r, — M)t = f(t) < f(0) =0, Vi>0.

Tw 2

This directly indicates the following upper bound on (10).

1 o] i1 (7" o _7\{)2 o (Tw o .7\{)2 /oo t2 1
- _ < _. _Z _
T /Tw r exp< 5 dr < ; exp 5 2(7@ M)t ) dt
< —— Ty — —
< /0 exp ( 2(7" M )t) dt -

Next we prove the upper bound (11). We define

(12)

1
g(t) = logt +log(3t + 61y + 8M) — 2 (ry — M)L.

Then we have

() = 1 n 1 rw — M
T =y T 3t 6r,+8M 3
which has a single root ¢y on (0, c0), which is also the maximum of g(¢) for ¢ > 0. Further notice
1 1 - M 4 - M
0=yg'(to) = — + - < - :
to  3to+ 6ry, +8M 3 3to 3

18
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4 4
Hence we get tg < P < =, and

=|

12
810 + 6y + 8M < 7 + 6y + 8M < 61, + 20M < 32(r, — M).
This gives the following upper bound on ¢(¢) for ¢t > 0:
4 4
g(t) < g(tog) <logto(3ty + 67, +8M) — 3 < log 128 — 3

Combining this result with our upper bound on the function f, we get

t+r, 12
(d—1)log +logt+log(3t+6m+8M)—5—(rw—M)t
2 (r,— M)t 4 (ry,— M)t
= f(t t)——— —-—>—<logl128 — - — ————.

This directly indicates the following upper bound on (11).

o0
/ Td_l(’l“ — 7)) (3r + 3r, + 8M) exp <
Tw

~ 4 — M)t Ge—4/3
= 7ng_l/ P <103128 —3- (m6)> dt = 128791, ¢ "
0

(r— M) = (r —M)?) "

_ 200rgmt _ 21002
“ro—-M ~ r,—M

We combine these two upper bounds together. According to (9) we obtain that

(x(r,w)) J 212M32rd-1

[ et tog o < (),

Similarly, we can also obtain bound on froo rd-1

obtain that

q(x(r,w))dr: According to Lemma 16 we

= M (o = MY,

q(x(r,w)) < q(x(ry,w)) exp (— 5

According to (12) we have

/:o ri1q(x(r,w))dr < q(x(rw,w)) /: P4 exp (_

‘We further notice that

PLCCY)

q(x(ry, w))
which indicates that ¢(x(r,,,w)) < p(x(ry,w)). Therefore, since M > 1, we have

=8M? >0,

2M2frﬁ*1

/:O rd g (x(r,w))dr < mp(x(rw w)).
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Therefore, we have the following upper bound

/ /:o =1 (p(x(r,W)) log m — p(x(r,w)) + q(X(r,w))) drdw

<L el

2pd—1p, 2,.d—1
_/ (212 + 2)M=rg (x(rw,w))dw:/ 214M*rg p(x(rw,w))dw.
Q T — M Q

Next, according to Lemma 17, for Vw € Q and r € [0, 7] we have

p(x(r,w))

x| = IV 1oz pGx(rs )l + [V log a(x(r, )2

2
< 6r+8M < 6r, +8M < 8r, + 8M.

HVIog

Notice that we also have log % = 8M?. Hence for Vr,, — ﬁ <r<r,,

X)) e g |
a(x(r, @) > 8M (8r, + 8M) P

2
q(x(r,w)) 1 |
( p(x(r,w»‘l) >(a-1) =5

=8M?—-8>2,

which indicates that

We further notice that r,, > 2M > M andd — 1 < d < M?. Hence for Vr,, — ﬁ <r<ry,

d—1
1 d d—1
d=1 5 ,d=1 (1 _ S pd=1.(1 _ S pd=1 (1 _
o rw(rw + M) = e ro(ro+ 1)) = 2M*?

After noticing that p(x(r,w)) > p(x(ry,w)) according to Lemma 16, we obtain

/ )
Tw—

rdp(x(r,w)) - < a(x(r,w)) 1) dr

o p(x(r,w))
2
1 . min rd_l x(r.w)) - M _
Zm—i—M Py <r<n, p(x(r,w)) ( p(x(r,w)) 1)
rd=1p(x(ry,w
> o | (o) og B — gt ) + atx(r) )
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Therefore, according to (8), we have

2
H2(p,q):/g/0 rd_lp(x(r,w))( q(x(r,w))_1> drdw

p(x(r;w))

2
" d—1 q(x(r,w))
> /Q/m—miM rp(x(r,w)) < o) 1) drdw

L plx(r,)
> s o [ () 0 P )+ () )

Next we consider those x(r,w) with 0 < r < r,,. According to the definition of r,,, we know
that for any such r, we have
POe) o
q(x(r,w))

Hence from Lemma 15, we have for any w € Q and r € [0, 7],

2
plx(rw)) | plx(rw)  plx(r.w)) [ [olxtr)
dx(r.) ® gxlrw) axtrw)) M ( 1) /

which indicates that

=
X
S

L (p(x(’”’“’” log ET 2 — () + a(x(r w))) drd

<L e (G55

q
2
< 9M2/Q/0 wrd_lq(x(r,w))- Uggg:’c{ji) - 1) drdw

2
< 9M? /Q /OOO rilg(x(r,w)) - ( px(rw)) 1> drdw = 9M*H?(p, q).

Combine the above two cases, we obtain that

KL(pHQ)=/Q/OOOrd1 (p(X(T,w))logp(x(

ox(r
N LR

+/Q/:3 pd=1 (p(x(r,a)))log SEEE ::;i — p(x(r,w)) + q(x(r,w))) drdw

< 18M2H?*(p, q) + 5136 M>H?(p, q) = 5154 M*H?(p, q).

— p(x(rw)) + Q(X(r,w))> drdeo

— p(x(r,w)) + q(x(r, w))) drdw

This completes the proof of Theorem 1. |
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Appendix B. Proof of Theorem 5
Given some constant > 1, we consider the following distribution:
7 = (1 = hy)do + hy6y,
where h, = exp (—%) . Then for any r > 1, 7, is a K -subgaussian distribution.
We let p, = m * N'(0,1). Since zlogx — x + 1 > 0 holds for all z > 0, we have
KL(pr [N (0, 1))

Y NS A G I iy 2 Co B 3 Co N 2 C) .
= [ penoslae = [ ot <¢<w>lg¢<w> (D) “)d

i ) pr(z) o pr(ﬂf)_pr($) - T 2)lo pr(x)_ 2V
> [ e <¢<x>1g¢<x> (@) “)d > [ pon T e

According to our construction, for r < z < r + 1 we have

pr(w) = (1 = hy)p(x) + hep(r —x) > hy - (1)  andalso  o(x) < @(r).

Therefore, we obtain that forr < xz < r + 1,

pr(x) pr@(l)
o) =% o)

Noticing that ¢(1) = - exp (1) > %, we obtain that

r+1 2 2 2 2
KL(p,IN(0,1)) > / . < S 1) dr — ( I 3) b (13)

log +

o2
2K2 2 2

< r2 1 2> r2 2
= logexp

. 5

Next, we write

We divide the integral domain into three regions: (—oo, —r], [—r, 7] and [r, c0), and upper bound
the contribution from each region separately.
Noticing that p,(z) = (1 — h,)e(x) + hr(r — ), we have for any x < —r,

0 <pr(x) < ().

Therefore,

/ (m_m)%xg/”@mdx:l/o exp (_M> iz

—r
—00 —00 2 J oo

2 0 1 2 9
o (<2 [ oicroris = Lo (-2) <o () =

Noticing that for those = > 7,

(= hpte) < olo) = —ep (~5) < e (L) < hptr— ),



ENTROPIC CHARACTERIZATION OF OPTIMAL RATES FOR LEARNING GAUSSIAN MIXTURES

we obtain
0 <p(x) <(1—"hy)p(x)+ hep(r—z)=p(x) <2hp(r —x) Va >,

which indicates that
oo 2 o0 o0
/ <\/pr(x) — \/go(a:)) dx = / pr(z)dx < 2hT/ o(r —x)dx = hy.
T T T
Finally for those —r < x < 7, we notice that

pr(®) — (@) = (1 = hp)p(x) + hep(r — z) — p(z) = he(@(r — 2) — p(2)),

hence |p,(z) — p(z)| < hy - |o(r — z) — p(z)] < \;LTLW < h,. Therefore, if either p,(z) > h, or
o(z) > hy, we have

m_m2: (pr(2) — p(x))? < h .
SCERGR (Voral + Vo) VA

And if neither p,(z) > h, nor p(z) > h, holds, then we have 0 < p,(z), p(z) < h, and hence

(Vorla) = /o) <

Overall, we have ( \/m — \/m)Q < h, and hence
/_: (\/pr(x) - mfdx < 2rh,.

Combining the contributions from these regions, we obtain that
00 2
H?*(p,, N(0,1)) = / (\/pr(a;) — Vgo(:c)) dx < hy +2rhy + hy = (24 2r)h,.  (14)
— 0o

Finally, applying (13) and (14), we choose the parameter  so that KL/ H? exceeds an arbitrary

. . 2 2
constant C'. Noticing that K > 1, we have {5 — 16’7

> 0, hence there exists > 1 such that
——— ——>c-(2+2r).

And for this r, we have
KL(p,|N(0,1)) > ¢ H*(p,, N(0,1)).

This finishes the proof of Theorem 5.
Remark 18 Notice that with similar proving techniques, we can also show that
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Appendix C. Proof of Theorem 4

Without loss of generality, we assume d < ﬁ (otherwise we use 1 — % > K to replace K,

and since , ) are K -subgaussian, hence they are also ( 1-— %d)—subgaussian. The results still hold).
We abbreviate fr(-), f(-) as p(-), q(-).

Lemma 19 Suppose p = mxN (0, I), where 7 is a K -subgaussian distribution with K < 1. Then

for everyr > 12_{/7% and any w € (), we have the following propositions:

1V € [1{@,@, we have
p(x(r',w)) = p(x(;‘”)) (15)
2. ¥r' > r, we have
p(x(r',w)) < Tp(x(r,w)) - exp (— ! _4Kr<r’ - r)) : (16)

Proof For every ' > r and w € €, notice that we can write p(-) as the following integral:

P ) = [ oxlr' ) — winluldu,  plx(rw) = [ plxre) - w(w)d,
Rd Rd
where we use 7(+) to denote the density distribution of 7 (which can be a generalized function), and
©(+) to denote the density distribution of (0, I).

Since 7 is a K -subgaussian distribution, we have P[|| X ||2 > o]

Pl X2 > 1] < ﬁ < 2, where X ~ . Therefore, P[|| X[ < 1]

r’ (a, B will be specified later), we have

<
>

exp (—%) for a > 0 and
%.Givenogagrgﬁg

x(r',w) —u)w(u)du 1 ex _w ) N
/aSUSBSO( (r,w) —wr(u)d S\ﬁd p( 5 ) P[[| X]]2 > a

2
1 G
<mdexp(_2K2_ 2 >7
2
Px(r,w) 2 — e p(—(”;) ) P X]l> < 1]
2w
11 (r+1)2
Zg-mdeXp<— 5 >,
which indicates that
2 2 I a2
/ ey PR ) = WA < plx(ri)) - Sexp ((“;’ - -5 )

We further have

! 1 1 52
s 2060 it < g P 2 ) < — ey (~5k2):
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which indicates that

x(r', w) —u)r(u)du x(r,w)) - 3ex (T+1)2—ﬁ2
[ 20 i < gt - 3o (5 - )

Finally, for every x such that ||x||2 < «, similar to previous proof we have
e = x(r,w)[3 = (r — a)* < [lx = x(",w)[I5 — (" — @)%,

which indicates that

: (r—a) (' —a)
x(r',w) —u)r(u)du < x(r,w) —u)m(u)du - ex —
/”u”@sou ) - wr(u) </u§oﬁ"“ )~ wr(wdu-exp (U . )

< p(x(r,w)) exp <("” _20‘)2 _( —2a)2> |

Above all, we get

r 2 o2 r— B3)2
p(x(r',w)) < p(x(r,w)) - <3exp <( zl) _ ) )

2K?2 2
e )

‘o 2VK
Further noticing that when r > e e have

1-VK

r—vVEKEl+7)> 5

r > 0.

Therefore, choosing o« = VK (r + 1) and § = "/3'7", and noticing that 2(1 — v/K) > 1 — K holds
forall 0 < K < 1, we will get

r—a)? r—a)? r—r)?
( 5 ) —( 5 ) :exp<—( 5 ) —(r’—r)(r—@(r—!—l)))

< exp (- L _2\@7«(74' - 7«)> < exp (- L _4K7“(r’ _ r)) ,

(r+1)>2 a? (r' — B)? (r+121-K) (r'—r)? < 1—-K)y? (' —r)?

2 2K? 2 2K 8 - 2 8 ’
N 0 T N (i OO (O BN G Y R
2 2K?2 — 2 2K? SK?2 — 2 2K SK?
(1—-K)r? (¢ —r)?
— - 2 - 8 .

Hence we get

plxtr' ) < plxtr) - (s (- 555 L i ’“)2) v (155000 ).

2 8
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Next we notice that

1-K)* (' —r)?
2 + 8

S e I e e

2 8

which indicates that

1-K
p(x(r',w)) < Tp(x(r,w)) - exp <_ 4 r(r' — 7")> .
This proves (16).
Finally, swapping r and 7’ in (16), and noticing that

1-K
0 <exp (— 1 r(r'—r)) <1,

we get (15). |

Lemma 20 Suppose p = m x N (0, I;), where 7 is a K -subgaussian distribution with K < 1. For
x € RY, we have

[VIogp(x)llz < 3[Ixl[2 +12, [|[Viogp(x)l2 < 3|r[l2 + 12.

Proof According to Proposition 2 in Polyanskiy and Wu (2016), we only need to verify E[|| X ||2] <
3, where X ~ 7. Indeed, applying K -subgaussianity, we have

o] e8] 2
E[|| X]s] = /0 P[|| X |2 > r]dr < /0 exp (-’") dr = V21K < 3.

2K?
|
Proof [Proof of Theorem 4] First we can write
i e 1o P
KLGlo) = [ [ rp(x(r)) log 5520 dra a7
= Oord_l x(r,w)) lo pi(x(r,w))_ x(r,w x(r,w rdw
= [T (o ton BEEE i) + a0 ) e 13)
2
HQ(p,q):/Q/O rdlp(x(r,w))< m-1> drdw (19)
For every w € (2, we define r, as
o e (3= VE)?
Tw 1nf{r. 1 gq(x T @) > log3 + 21 —\/E)2}

We notice that for every x € R?,

b = [ wlyotx vty <~ [ atyyy =
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and we further have

q(x) = /Rd n(y)e(x —y)dy > / n(y)e(x —y)dy

llyll2<1

2(1*6_1/2)' min go(x—y)Z%.LeXp <(HXH+1)2)

Ivli<1 Var? 2
Therefore, for all x such that ||x||2 < ﬁ, we have
p(x(ry,w)) (3 - VK)? 18 20
log—=——L <log3+ ——F=— <log3 + < . 20
Byt < aa s vRe S R Saore Y
Hence for every w € €2, we have
2 2(1 K 2

re _ 204 VE) . @1)

“1-VK 1-K T 1-K

Then according to Lemma 19 and Lemma 20, we know that for every r > r,,, we have

plx(r:) < Tolx(rsexp (-l 1))
P gy s g
log (x(r.2)) <T+( w) (31 4 31y, + 24),

where T is defined in (20). Therefore, we obtain that

* i plx(rw))
/Tw r p(x(r,w))logq 7nw))al

< Tplx(ranw) [ Oo i1 ((1_20[() (1) Br 4 3+ 24)) exp (_

1-K
4

ro(r —ry) | dr.

(22)
We adopt the changes of variables from r to ¢ = r — r,,, and obtain that

> 1-K o w 1-K w
/ r4lexp (— 1 r(r — rw)> dr = rﬁl)_l/ exp <(d —1)log btre ( 1 Jtr ) dt
Tw 0 Tw

and

1-K
4

/ rL(r — 7,,) (3 + 31, + 24) exp (— ru(r — m)) dr

h t 1— K)t
= rfﬂ_l/ exp <(d —1)log ‘;Tw + logt + log(3t + 67y, + 24) — (4)7@) dt
0 w

We first bound the first term in (22). We define

t W 1-K
f(t)é(d—l)log iT -3 rut,
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then noticing that d < ﬁ—i—l and hence 8(d—1) < ﬁ < (1—K)72 holds for r,, > 172 >
2

—=—, its derivative satisfies that

N

I-K°*

d—-1 (1-K)r, d—1 (1-K)r,

"(t) = - < - <0, Vt>0.
F®) t 41y 8 7, 8 -7 =
Therefore, for every t > 0, we have
t 1-K
(4= 1)log " — 2t = 1(1) < 1(0) =0,
Tw

which indicates that

1 1- K = |- K 8
77{5_1 /rw T exp <_ 1 Tw(T' - Tw)) dr < /0 exp (_ 3 th> dt = (1 — K)’I”w

(23)
We next bound the second term in (22). We define
1-K
g(t) 2 logt + log(3t + 6r,, + 24) — —
then we have
/ 1 1 1-K
g (t) - + Tw,

Tt " 3t+6r,+24 16

which has a single root ¢y on (0,00). And we have g(t) < g(to) holds for all ¢ > 0. We further
have

0=g(to) = ~ + ! -k <2 _1-K
TN T Bty 6r £ 24 16 YT 3t 16
which indicates that ¢y < 94— Next noticing that r, > —2 we have (1 — K)r,, >

3(1-K)ry,
2(1+ J[?) > 2, hence we get

1-vVK’

3ty + 67, +24 < + 67, + 24 < 67, + 56 < 34r,,.

(1 —=K)ry,
Therefore for all ¢ > 0,
4 2176 4
t) < g(tg) < logty(3ty + 6 24) — - <log ——= — =
Combine this result with our previous estimation on f, we get
t 1-K
(d—1)log + 7w + logt + log(3t + 67, + 24) — 1 rot
Tw
1-K 2176 4 (1= K)ryt
= f(t t) — t<log o — = —
fO+9(t) = gt slogga— =3 16

Hence we obtain

0 1-K
/ rd_l(r — 1) (37 + 31y, + 24) exp (— 1 To(r — 'rw)> dr
_ —4/3 d—2
. rg—l/ exp (log 20 4 (= Erut) 20760 16 3100
0 31-K) 3 16 3(1 - K) 1-K)ry — (1-K)?
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Therefore, according to (22) we have

(x(r,w)) 0 <1607~g—2 3100r¢2 2300074 2p(x(ry, w))

/rw o px(rw)) log - KP " (1K) ) i) = T s

Similarly, we can also obtain bound on [°rd~1

obtain that

q(x(r,w))dr: According to Lemma 19 we

o(x(r.)) < Talx(rons)) exp (=2 =) )

which indicates that

J R B e ) L

According to (23), we get

> 1-K 8ri—2
d—1 w
r®exp | — T(T—T))drg ,
/m < T 1-K

00 d—2
/ rd g (x(r,w))dr < D07, 1q£xf(gw,w))

which indicates that

Next noticing log % =log3 + ((1 ‘p) > 0. we have q(x(r,w)) < p(x(ry,w)). There-

fore, we have

oo d—2 d—2
/ rd_lq(x(r,w))dr < 561 p(x(ry,w)) < 5618 p(x(ry,w))

Therefore, we have the following upper bound

/ /:D -1 (p(X(T, w)) log Zgi — p(x(r,w)) + q(x(r,w))> drdw

//Tw rp(x(r w))logzéxg :Z;idrder/Q/:) P g (x(r, ) )drdus

2305614 2p(x(r,,, w))
< /Q (1= K)3 dw.

>¢

Next, according to (20), we notice that for any w € 2 and 0 < r < r,, we have

V log PEXET, w);

< 6r 4+ 24 < 6r, + 24.
q(x(r,w)

px(row)) _ (B=VEK)?
According to our choice of r,,, we have log dx(row) = log 3 + AT VR

rw > 2 for every w € ) according to (21), we have for any 7, — ﬁ <r<nry,

p(x(r,w))
q(x(r,w))

Hence noticing that

B-VK)> 6r,+24
21-VK)?  18ry

log > log3 + >14+2-1=2,
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which indicates that
2

2
p(x(r,w)) —\el B
Additionally, according to Lemma 16, for every rw - 181m < r < r,, we have p(x(r,w)) >
%f’w)) We further adopt the assumption d < ( 7+ 1 and also use (21) to get

d—1
1 d—1 1 1
d—1 d—1 d—1 d—1 d—1
> S I - > S I - > 1—— ) > — .
o= ( 1871%) =Tw ( 18r3) =Tw < 36) =93

Therefore, we have

-

W 187‘

1, 1
> C_ >
/18rw gl PE(rw,w) -5 > 72 w

= 1660032 // i 1( ))logm—p(x(r,w))+q(x(r,w))> drdw.
Therefore, according to (17), we have
2
v (1) Y
0= [ [T, >>< e 1) ird
2
/ / x(r,w»( W—l) drdes

= 1660032 //w " 1( ))logzgg

Next we consider those x(r,w) with 0 < r < r,,. According to the definition of r,,, we know

that for any such r, we have

w\»—‘

px(rw) oo, B=VE)? 20
dx(rw)) =80 0 T VRR S WK
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Hence we obtain that

o (. )

[ (ot 108 2 i) +atx(r) )
g px(r, @) | plx(rw))  pl(r.)

= /0 ri g (x(r, w)) (q(x(r,w)) log o — + 1) dr

Therefore, we have

/Q/Om pd=1 (p(x(r,w)) log m —p(x(r,w)) + q(x(r, w))) drdw
2
M " rd=lg(x(r,w)) - px(r,w)) rdw
<o | q(“))<q@mm>l>dd

2
24 / /OO d—1 p(x(r,w)) 24 2772
< —— = r q(x(r,w)) - —= — 1| drdw = M“H*(p,q).
=52 Jody 7 UV axirw) -t
Combine these two analysis together, we obtain that

= Oord_l x(r,w p(x(r,w)) x(r,w x(r,w Traw
KLl = [ [ (pxtrontog 50 < gt + () ) drd
(r,))

r,w)
://’“w -1 <p( ))IngEz(: i) p(x(r,w))juq(x(r,w))) drdw

w
w
w

pa-1 (xv(r,w))_ (. i »
//rw ( ,w))log Jx(r. @) p(x(r,w)) + q(x(r, )))d d
= m 2(p,q) + m *(n,0) = MH (p,q)-
This completes the proof of Theorem 4. u

Appendix D. Proof of Theorem 7
Applying (5) with P = f and S = Q = f,, as long as (4) holds we get

_ 4log(1/9) log(1/0) | ot [ 00
(fﬂ”fﬂ) ( 5) (1_6)2 +9 R fn(x)/\fld

Notice that the last term is an fy-divergence Dy, with fy(z) = 2, which is a convex function for

A > 1, hence fRd 7 ( ) A) rdx is convex in ( fr, fy). Therefore, by Jensen’s inequality we have

= ()
R [y ()N

H2(f7r7f77)

(24)

pdx = Dy, (E[6x * N (0, Ig)][E[5x7 * N'(0, 14)])

< E[Dys, (N(X, 1) IV (X', Iy))]
=K {exp ()\()\2_ o) HX - X’H%”
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for any possible coupling between (X, X') where X ~ 7, X/ ~ 7.
Now according to the definition of subgaussian distributions, we have

2 , 2
PN d <o (~5rs ) PUXa 21 <o (—57z) . w20,

which indicates that P[|| X |2 > 2K],P[||X'|]2 > 2K] < % Therefore, we can construct the
coupling between (X, X') so that if | X'||2 > 2K we always have || X |2 < 2K, and if || X||2 > 2K

we always have || X'||2 < 2K. And we have

B [exp (W;”nx - X'B)|

A(A AA—1

= |exp < \X X’ ”2) 1||X||2>2K] +E {eXP <(2)\|X - Xl”%) 1||X||2<2K]
A(A AA—1

<E [exp ( L = 1) tpcpacane| + 2 [exp (220 - 1) 1yacan
)\ AA—=1

<E [exp Nt + 202 )| + 8 [exp (2O (10 +2002) |

[exp )\ ) (||X||2 +4K2))] +E [exp ()\()\ -1) (||X’||§ + 4K2))]

for any § > 0.
Since 7 and 7 are K -subgaussian distributions, we have,

& Lo, (1X15 _/me 2N gl <1 < /°°e T W S SR
Plar? )| 7 ), TP \ak2 )" o TP\ar? ) k2P ok
[ee] t2 t2
— _— _— :2
[ e (i) 1 (i) -

and similarly we also have
E |exp X153\ <
4K? -

,and we have A(A — 1) =

14+4/141/K?
2

We choose A = Hence we get

4K2

o (720 )] = e o () o ()

Therefore, according to (24), as long as (4) holds we get

4log(1/6) 9 45log(1/5) A-1
wllf) < LS H (S 20°08L/9) | 195%F
_8 _v1
Choosing § = (W) (=D "and we will get
5§ < (JZ”f”) % and 627 < H2(fr, f,).
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Therefore, the first inequality in (4) holds. As for the second one, we notice that if A\ > 2, then
% > % and it always holds. For 1 < A < 2, we have ﬁ V1= ﬁ, and hence log% >

?)l\o_gl(?g) > G 41)2 > 4. Since log L is decreasing for t > 4, we have 105) 1go(g1(/16/)6) < 1og4(;1(/)5:)12)2)'

Moreover, using the fact that z > 2log « holds for all x > 0, we have % . ﬁ — log ﬁ =

)\ T — 2log +2 =7 > 0. Hence we get % < %, which proves that the second inequality in

(4) always holds.
Therefore, noticing that (1 — §)? > 1 and also

log(1/6) < (32K*(K + VK2 +1)2V1)log ———— 72

8 Y 4
<<A—1>2V ) B dy)
< (512K* + 32)

(fmfﬁ)

) 4
B (fr fa)

we get

KL(fr fy) < (10240K* + 652) H 2(f7r>f7))10g]{2(;im'

Appendix E. Comparison inequalities for other distances

In this appendix, we discuss comparison inequalities for other popular distances between densities,
namely, the X2—divergence, the TV distance, and the Lo distance.

First we presents the results of x> < H?, where x*(fllg) = [ @.

Theorem 21 For d-dimensional distributions m,n supported on Ba(M) with M > 2, we have

X2(f7ern) < 2exp (50<M2 \ d)) Hz(fm fn)-

Next, we show that for one-dimensional Gaussian mixtures where the mixing distribution is
compact supported, TV distance and Lo distance are close to each other up to log factors.

Theorem 22 Suppose 7 and 1 are one-dimensional distributions supported on [—M, M| with
M > 1. Then we have

) 1 T
TV(fefy) < (8VAT + 2008 oo Y U = il

Theorem 23 For any one-dimensional distributions 7,1 (that need not be compactly supported),

- e L
6= foll < (to&™" 5 v 3) TV )

We discuss a statistical application of these results. The Lo squared minimax estimation rates for
all Gaussian mixtures are shown in Kim (2014); Kim and Guntuboyina (2022) to be © <10gd/ n / n) ,

which is sharp for all constant d. Therefore, equipped with the above comparison theorems, we can
also get an upper bound on the minimax estimation rates under the TV distance. Previously, Ashtiani
et al. (2020) showed a rate O(y/kd?/n) for k-atomic Gaussian mixtures, where O hides polylog
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factors. For one-dimensional Gaussian mixtures with compactly supported mixing distributions, the
best TV upper bound so far is O (log3/ 8n / \/71), which in fact follows from combining the sharp

Lo rate and Theorem 22.
More details and proofs are provided in Section E.1 and E.2. Throughout this appendix, for
simplicity we abbreviate p = f and ¢ = f;,.

E.1. Proof of Theorem 21

Lemma 24 Suppose p = n+x N (0, 1), q = n*x N (0, I;) where supp(r), supp(n) C Ba2(M), then

foreveryr > r, > M, we have
Plx(rw) _ plox(ru.)
q(x(r,w)) = q(x(rw,w))

exp (2(r —ry,)M).

Proof We first prove that for any w € Q andr > r, > M,

(7"+M)2—(7"w+M)2>‘

q(x(r,w)) > q(x(ry,w)) exp (— 5

Without loss of generality, we assume w = (1,0,---,0). Then for any u = (uy,us, - ,uq) €
Ba(M), we have |u;| < M and

r—up)? d .2
plx(r, ) — w) = — em)<_< ) ;5122>

Var
1 (Tw—u)Q‘f'Z?: UZQ
wWMﬂFMM% o 2)

Noticing that |u1| < M < 7, < r, we have (r — u1)? — (ry, —u1)? < (r + M)? — (r, + M)?,
which indicates that

_(T_“1)2+Z?:2“12 > _(Tw—ul)2+2?:2“? _r+M)?— (1 + M)?

2 - 2 2 ’

and hence

(r+M)*—(r, +M)2) ,

o(x(r,w) —u) > (x(r,,w) —u)exp <_ 5

Since we can write

«nnm>—/ n(w)p(x(r, w) — u)du,

B (M)
we can verify that

(r+M)? — (r, + M)?
)

o(x(r.) 2 alx(rn ) exp -
Next, we notice that according to Lemma 16, we have

v—Mﬂ4m—MF>

p(x(r,w)) < p(x(ry,w)) exp (- 2
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This indicates that

px(rw) _ px(ro,w) o (r+M)?—(ro+M)*  (r—M)*— (r, - M)’
o R Rl 2 ’ 2 )
pXrww) o
= glx(r, ) P TD
|
Proof [Proof of Theorem 21] Without loss of generality, we assume d < M?2. We write
o x(r, w 2
X’ (pllg) = /Q/O rg(x(r,w) (M - 1) drdw
. 7 2 (25)
wipa) = [ [ e (, [ree) 1) drd

Notice that for any » < 6 M and w € 2, we have

1
Vi 27Td

= u X\r,w),u)au L ex —M
ot = [ gt wan 2 e (RS,

) = | 1 TR, Wy <

which indicates that

p(x(r,w)) ox 4902 ox 9
g <ow (M) <ewmr).

Hence for every w € §2, we all have 7, > 6M. And if 7, # oo, we have that % =

exp (25M?). According to Lemma 16 and Lemma 24, we know that for every r > r,, we all have

Since 2Xre)) — oy (250M2) > 1, and exp (2(r — r,)M) > 1 for every r > r,,, we have

q(x(rw,w))
peerw) Vb (e oY L o
<q(x(r,w)) 1> < max {1’ (q(x(rw,w)) xp (2(r w)M)> } = exp (50M* + 4(r — ry)M) .
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Therefore, we obtain that

)

< q(x(rw,w)) /Oo riLexp <5OM2 +A(r —r,)M — (r— M)? —2<7"w - M)2> i

We adopt the changes of variables from r to ¢t = r — r,,, and obtain that
00 - M 2 - M 2
/ rd L exp (50]\42 +4(r —ry)M — (r )" — (e ) > dr
Tw

i1 o [ t+r, 12
=r " exp(b0M )/ exp | (d—1)log — — — (ro — M)t +4Mt | dt.
0

Next, we define

t+r, 1

F(t) 2 (d—1)log — 5 (= 5M)L.

Tw
Since

1 1
d—1<d§M2<5.(6M)-(6M—5M)girw(rw—f)M),

the first-order derivative of f satisfies that

d—1 1 d—1 1
'(t) = — —(ry, —5M) < — —(ro, —5M) <0, Vt>D0.
f() tt T 2(rw ) < o 2(7"w ) < =
Therefore we have
t 1
(d—1)log 2 _ 5(ro = 5M)t = f() < f(0) =0, vt >0.
Tw

This directly indicates that

00 t » t2
/ exp ((d—l)log Rkl —2—(7“w—M)t+4Mt> dt
0 Tw

o0 2 1 o 1 2
< —— — —(ry, —BbM)t ) dt < ——(ry —BM)t ) dt = ———
/0 exp( 2 Q(T 5M) > /0 exp( Q(T 5M) > Tw —DOM

Therefore, we obtain that

= -1 (P N 2 exp(50M2)g(x(ru, w))
[ et (RS 1) s ro— 5

Next, according to Lemma 17, for Vw € Q and r € [0, r,,] we have

Vlog ]m = Vlogp(x(r,w)) — Vlog q(x(r,w)) < 6r + 8M < 61, +8M < 8r, +8M.
q )

Notice that we also have log 2&«%)) — 95112 Hence for Vr,, — m <r<r,

q(x(rw,w)

p(x(r,w)) 2
log ————2£ > 25 M~ — w + 8M) -
8 q(x(r,w)) — g (8re, + ) Ty + M

=25M? —8>2,
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which indicates that

q(x(r,w))

2
( P<X(W))_1) > (2~ 1) > 4o.

We further notice that r, > 5M > M and d — 1 < d < M?. Hence for Vr, — —— <7 <7

d—1
1 d—1 d—1Y\ _ 1
d-1 5 ,d=1 (1 _ S pd-1.(1 _ S pd=1 (1 _ S 1pd-1
o= ro(re + M) =T ro(re + M) ) = 30M2) = 2’

After noticing that p(x(r,w)) > p(x(ry,w)) according to Lemma 16, we obtain

2
N ) s A
[ o) ( o(x(r.w)) 1) !

Tt M ,
i e (R )
rd=lq(x(ry,w
> o Jlr v %rﬁl,_l 40q(x(ry, w)) > 2 “Tj(_ éM )
o x(r,w 2
> exp (—50M?) / ritg(x(r,w)) - (M - 1) dr.

Therefore, according to (25), we have

2
v o ey N
0.0 = [ [ >>( v 1) drd

2
e -1 q(x(r,w))
> /Q/Tw_ T p(x(r,w))( (@) 1) drdw

. [ [t (B

Next we consider those x(r,w) with 0 < r < r,,. According to the definition of r,,, we know
that for any such r, we have

p(x(r,w))

—_— ex 2 .
d(x(r.w)) = P (BM)

Notice the inequality
2
(t—1)* = (Vt+1)*(Vt —1)* < exp (50M?) (\/i - 1) , YO <t<exp(25M?).

Hence we obtain that

" NG A
[ttt - (BEE) )
2
o p(x(r,w))
S/o ri L g(x(r,w)) - exp (5OM2)< q(x(r,w))_1> dr.
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Therefore, we have

/Q/Om ritg(x(r,w)) - (Zgz(r ) — 1 2 drdw
< exp (50M2) /Q /0 "1 (x( (
< exp (50M?) /Q/OOO rd g (x( (

KL(p|lq) = /Q /0 g (x(r,w)) - <\/§i 1) drdu

:/Q/Omrd_lq(x(r,w))- <\/§i 1) drdw
# [t W—Q drde

< exp (50M?) H?(p, q) + exp (50M?) H?(p, q) = 2exp (50M?) H*(p, q).

This completes the proof of Theorem 21.

E.2. Proof of Theorem 22 and 23

Proof [Proof of Theorem 22] First we notice that for any |t| > M, we have

_ 2
000 = [ ol in(e) < ma plt - ) = o (L)

Similarly we have the same estimation for ¢(¢). Hence we get

_ 2
(0) - (o) < = exp (U5 =

which indicates that for any m > M

/Mrpm 2)lda < m /|X< (& 2M>2>ds
L2 e (LI g 2y (L0220

Hence fort > M + % we have
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Additionally, according to Cauchy-Schwarz inequality we have

— d 2t - z) — q(x)?dx |,
(/lmrpof) 4(0) t) <ot (/lmrpm §()| )

which indicates that

/|<t p(z) — q(z)|dz < V2t - \//l - Ip(z) — q(z)|2dz < V2t - [|p — q||2.

Therefore, we obtain that for every t > M + %,

t— M)>?

Ip(e) —q(@)|dz < Gexp <—() V2 [p—al.

g = [ ;

|| >t

Ip(z)—q() | dz+ /

|z|<t

Finally, since for any z € R, we have 0 < p(z), ¢(z) < max,cga p(z) = —= < 2, we obtain

that
p-ali= [ 0@ - gl < [ 2p(0) + () g, _ 4,

oo oo 5
which indicates that

1 1 1
- @@ @ - Ogi
lp—all2 2 " lp—dl3

1 1 1
\/ P —qi2

1
TV(p,q) < 6|p— qll2 + 1| 2M + 2, /2log ———|p — |2
lp — qll2
1
<6llp—qll2+ | V2M + 2’/210gm Ip — qll2

1
< <8VM—|-210g1/4 Hp_q’b) ”p— qH2

log

Therefore, choosing

we get

Proof [Proof of Theorem 23] For any distribution P, we define its characteristic function Up : R —
C as:

Up(t) 2E[e"¥], X ~P.

39



J1A POLYANSKIY WU

Suppose the characteristic function of 7,7, p, g are ¥, ¥, ¥,,, ¥, respectively. Then by Gaus-
sian convolution
2

W, (t) = Wy(t) exp <—2> LW (t) = Uy () exp (-’i) .

We notice that for every ¢t € R, we have from Plancherel’s identity

< / 7 |(0(@) — q(2)e|dz = TV (p. q).

—00

(0 = 00 = | [ 0t0) = st

Similarly, we also have |¥,(t) — ¥, (¢)| < ||7 — 7|1 < 2, which indicates that for every t € R,

2 2
Ty () — (1)) = e 5 [n(t) — Wy (8)] < 2exp <—t2) |

Therefore, we obtain that for any s > 0,

10, — 0,2 = / W () — Wy (1)) dt

—0o0

— [ 1m0 - P as [ - voPd [ e - vk

—0o0 —S

—S t2 o.9] t2
< / exp (—2> dt + / exp <—2> dt +2s - TV (p, q)*

0

2

When TV (p,q) > 1. We further notice that |, () — W,(t)| < 2exp <—%) which indicates
that

1) — Wyl = /OO (W, (t) — W, (t))dt g/

o0 —00

When TV (p, q) < %, we have s = 1/210,53;@ 24 /logm > 2, we get

1 1
U, — U |2 < (1+2/log——— ] -TV(p,q)? <4,/log —— - TV(p,q)%

Above all, we get

[e.9]

36
dexp(—t?)dt = 4y/7 < - < 36TV(p,q)

1 2
U, — U 2§4<10g1/4\/3> -TV(p,q),

which indicates that

1 1
2 / 1/4
P —qll3 9 | P QHQ > <Og TV, q) ) (p,q)
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