System-of-Systems Approach )
for Improving Quality of Kidney el
Transplant Decision-Making Support

for Transplant Surgeons

Rachel Dzieran, Lirim Ashiku, Richard Threlkeld, Cihan Dagli,
and Robert Marley

1 Introduction

Utilizing Al-powered machine learning in the healthcare industry is crucial, espe-
cially in the complex and interdisciplinary field of deceased donor kidney alloca-
tion. Evaluating hard-to-place kidneys for potential recipients can be immensely
challenging, making an Al-powered platform like Organ Procurement Organization
(OPO) Al indispensable [1]. This innovative tool is currently in the testing phase at
the Mid-America Transplant. This paper aims to identify the best meta-architecture
for capturing individualized practices and assessments of transplant surgeons
through fuzzy associative memory. The model will be referred to as the transplant
surgeon fuzzy associative model (TSFAM). The goal of the TSFAM is to comple-
ment OPO Al and provide valuable assistance to transplant surgeons in assessing
deceased donor organs for their patients based on their practices, ultimately result-
ing in a more efficient kidney allocation process.

This research aims to create, evaluate, and select decision-making architectures
for modelling the Transplant Surgeon FAM using genetic algorithms coupled with
the fuzzy inference system. The primary objective of the SoS is to maximize the
balance between the key performing parameters: performance, acceptability, usabil-
ity, affordability, and robustness. The results of this research will provide a sugges-
tion for the most successful human-Al system interaction model that can be used to
improve the quality of kidney transplant decision-making support for transplant
surgeons. The outcomes of this research will suggest the most desirable SoS meta-
architecture that can be used to improve further the quality of kidney transplant
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decision-making support for transplant surgeons, with the goal of creating a suc-
cessful human-Al system interaction model.

2 Background

Artificial intelligence (Al) is being scrutinized across all domains as there is a grow-
ing desire for humans to understand and have some control over Al. To manage the
advancement of Al, scientific research interests and the government have estab-
lished blueprints and guidelines. In March 2022, the National Institute of Standards
and Technology released a unique publication that identified three categories of bias
in Al: systemic bias, statistical bias, and human bias [2]. In October 2022, the
United States White House published the blueprint for an Al Bill of Rights to make
automated systems work for the American people [3]. This government blueprint
emphasizes safe and effective systems, algorithmic discrimination protections, data
privacy, notice and explanation, and the human alternatives-considerations fallback
options. These areas apply to the healthcare domain, with a greater emphasis on the
efficacy of systems, explainability, bias, and human interaction.

Al algorithms are commonly used in healthcare for biomarker discovery, drug
discovery, limited disease diagnosis, patient risk stratification, and treatment recom-
mendation systems [4]. These tools provide additional reference information to help
clinicians identify anomalies in various diagnostic tools. However, the current Al
tools do not provide a definitive decision recommendation for the clinician and only
highlight what appears to be abnormal based on the tool’s training. The data used to
train the model defining what is normal vs. what is abnormal does not have a signifi-
cant deviation. It is important to note that these decision-support tools are different
from those used to assist in the acceptance of a deceased donor kidney for
transplantation.

As previously acknowledged, kidney acceptance and transplantation are highly
complex and require a collaborative effort from multiple disciplines. Each potential
donor and transplant recipient has unique characteristics that do not conform to a
standardized decision-making process. Moreover, the models trained on similar
cases only provide an approximate solution. Research in the organ transplant field,
particularly in deceased donor organ assessment (DDOA), has improved our under-
standing of Al capabilities in healthcare [1, 4-8, 10—12]. Various studies, such as the
ones conducted by Ashiku et al. [5] and Threlkeld et al. [6], have collected data
through workshops and interviews with stakeholders to better understand their
requirements. This work has led to the development of the DDOA model and the
current review of the digital twin model, which enhances decision-making support
from a logistical perspective.

The DDOA interface, shown in Fig. 1, is publicly available to support transplant
decision-making. The DDOA model is an advanced tool used by transplant sur-
geons to assess kidney allocation cases [7, 8]. The deep learning network model was
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Fig. 1 Deceased donor organ assessment (DDOA) app for Al model [8]. (https://ddoa.mst.heka-
demeia.org/#/)
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trained and tested using the organ procurement and transplantation network dataset,
covering a period from January 1, 2016, to March 21, 2023.

The DDOA model is not designed to recommend acceptance of a kidney for
transplant but rather to identify hard-to-place kidneys that could benefit from an
accelerated placement path sooner in the allocation process. The DDOA outcome
provides the kidney donor profile index and a prediction value for the difficulty of
placing the kidney.

The use of Al in business to increase profits is truly fascinating. However, in
healthcare, the approach is entirely different. Healthcare professionals are more
concerned about ensuring that any new technology they adopt will have a positive
impact on patient care. This is where things get tricky since it is difficult to process
subjective knowledge that is represented by linguistic information. Large language
models have proliferated in all domains but are heavily scrutinized for bias and
producing implausible outputs (aka hallucinations) that can have catastrophic
effects in healthcare [9]. Keeping the human expert in the loop is an important way
to mitigate these challenges; however, words can mean different things to different
people, and that’s where fuzzy logic comes in. It’s a clever way to model uncertainty
and express expert knowledge in an easy-to-understand and analyzed way.

In this paper, we propose a novel approach to improve decision-making support
for transplant surgeons by blending human input with Al decision-making algo-
rithms. The proposed approach, TSFAM, is designed to integrate a network of sys-
tems and evaluate the surgeons’ practices using fuzzy logic. The TSFAM model is
based on the premise that human expertise and Al-powered decision-making algo-
rithms can be combined to form a unified system that enhances decision-making
support for transplant surgeons. The approach employs fuzzy logic, a state-of-the-
art mathematical tool that can handle imprecise or uncertain data, to assess the sur-
geons’ practices and integrate them into the system of systems. The TSFAM model
is depicted in Fig. 2, which provides a visual representation of the integration of

Input Transplant Surgeon Fuzzy Associative Memory
- Human Decision Maker: (TSFAM)

Transplant Surgeon (TS) Rules nsing Fuzzy Associative Memory ¢
: > ‘ustomize Outs
- DDOA App for Al model -Decision Specific -Decision Maker Specific ik
TR ey o eL3om U iicle pe A TS Centered Customization
= i t [I - s .
< :;I::itaigmz:;n Develop Represent Transplant of Al Decision Making
~"Natire of Decision Transplant Surgeon Surgeon General Rules output
Membership Functions Based on patient case

‘ Fuzzification ‘ t
Collect Information (GUI) ' Apply to
- TS perceived bt A ate Dﬂ:@ul Mak_ing L.i.udel
- Value of systems -aprere BIeE Decision Making using

Trust of s yl ; Transplant Surgeon Teansplant Srgeon and. Customized Tool based on

Wi Decision-Making Rules DDOA model rules nique TS rules

‘ ' Fuzzy Inference
Identify the gap ‘
- TS & Al model Identify
- TS & outcome Preferred Attributes Map Relationship
- Al model & outcome Transplant Surgeon Inpuis to Output

Fig. 2 Operational view of proposed transplant surgeon fuzzy associative memory model
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human expertise and Al-powered decision-making algorithms in the proposed
approach. The tool is expected to significantly boost decision-making support
for transplant surgeons and potentially increase deceased donor kidney
transplantation.

The aim is to engage transplant surgeons by bringing their individualized assess-
ments based on their patients and general practices into an Al decision-making pro-
cess, which will include:

» Identifying decision-making rules employed by the transplant surgeon as the
human decision-maker.

» Tailoring the Al-based decision-making model to support decision cases in hand.

* Enhancing trust of the decision-maker in the Al tool.

» Fostering greater acceptance of Al machine learning decision-support outcomes.

The proposed model, TSFAM, includes evaluating the level of trust experienced
by the transplant surgeon and applying fuzzy associative memory to identify their
unique rules. It is anticipated that in the decision-making process, the transplant
surgeon will have two models available for use when making placement decisions
for a given kidney case, whereas the DDOA model provides an opportunity to assess
the interaction of the transplant surgeon directly with an AI model built for the
donor kidney domain. This interaction between human-AlI systems is used to build
the SoS model for evaluation with the SoS Explorer.

3 Approach

The integration of Al in domains beyond the healthcare industry is gradually gain-
ing momentum. However, there is limited data or support available on how to inte-
grate the human element into Al design. This is a critical issue as Al should not
replace human decision-making but rather enhance it. Significant interests and
activities exist in Al for social entertainment, as seen in the exploration of large
language models. However, the healthcare industry requires clinical studies and
data to validate any potential changes in the way a provider makes decisions for
patients. This is because healthcare decisions can significantly impact patient out-
comes. As such, the integration of Al in healthcare requires a human-centric
approach that considers the needs of patients, providers, and caregivers. Al can be
used to support decision-making, improve patient outcomes, and reduce costs.
However, it should not be seen as a substitute for human expertise, empathy, and
judgment.

The Department of Systems Engineering at Missouri S&T has developed a tool
that is designed to provide an optimized architecture for various systems [10]. This
tool works by performing complex computations based on several key factors and
attributes, including key performance attributes, fuzzy inference rules, system char-
acteristic values, and system capabilities. By analyzing these factors, the tool can
generate an optimized architecture that is tailored to the specific needs of the system
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in question. This can help improve system performance, efficiency, and reliability
while minimizing the risk of errors or failures. Overall, the tool is a valuable resource
for optimizing their systems and improving their overall performance.

When transplant surgeons are presented with a deceased donor kidney for trans-
plantation, they consider various factors before deciding whether to accept it or not.
The process begins with the input of natural language data, which is then trans-
formed into a numerical value using fuzzy inference rules. These numerical values
are used to generate a fuzzy set, which is then mapped based on the aforementioned
rules. The outcome of this mapping determines the consequences of the rules, which
are then used to balance the KPAs to represent an optimal architecture through an
evolutionary algorithm. The evolutionary algorithm uses the input and the rules to
determine a chromosome, which is then used to find the optimal architecture. The
SoS Explorer generates the optimal architecture based on how one system can con-
nect with another within the system-of-systems model; the system connections are
shown as interfaces. The optimal architecture is then used to determine which fac-
tors are most critical when considering whether to accept a deceased donor kidney
for transplantation.

This is a fifth-dimensional optimization problem that is solved based on finding
the values for the variables S(X,i) and S(X,i,j) as used in the five objectives defined
in Sect. 3.1. Objective 1 is performance, objective 2 is acceptability, objective 3 is
usability, objective 4 is affordability, and objective 5 is robustness. The five objec-
tives are subject to feasibility constraints. The characteristics provide parameters
based on the domain selected for measuring objectives based on the selected archi-
tecture with the assigned values to S(X,i) and I(X.,i,j). The fifth dimension is con-
nected to one dimension using fuzzy inference, considering trades based on the
customers’ requirements as defined through their rules. This optimization problem
is solved using non-gradient descent optimization using SoS Explorer, measuring
the systems and interfaces of the model.

3.1 Key Performance Attributes

KPAs for this SoS were developed with consideration of the previous research work
for AI model prediction in kidney donor disposition [11, 12] and meta-architecture
optimization for kidney transplant systems of systems [13]. While the referenced
work engaged the stakeholders in building their KPAs, the focus was primarily on
what quantifiable data to include or not include for the development of the Al deep
learning model. This contrasts with the focus of this work to incorporate the unique
expertise and rules used by the transplant surgeon in the decision-making process
for whether or not to accept a deceased donor kidney. The KPAs used for this model
utilized similar quantifiable objectives like affordability and then added objectives
reliant on the transplant surgeon’s perspective, like acceptability and usability.
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The SoS KPAs are calculated utilizing equations shown as objectives 1-5 in the
SoS Explorer. Systems are defined as S(X,i) = 1 if the ith system participates in
chromosome X of the meta-architecture, and O otherwise. The interfaces are defined
as I(X,i,j) = 1 if the ith and jth systems have an interface connection in chromosome
X, and 0 otherwise. The real-valued variables of X(i) are evolved through recombi-
nation and mutation until they reach overall optimization, with the real-valued vari-
ables of S(i) determining the chromosome of the real-valued X(i). The delta (5)
variable represents the augmenting factor of the interfaces between active systems,
which enables more or less value to be given to the equation based on the impor-
tance of that KPA to the system.

The key performance attributes are derived as follows, where Ns is the number
of systems that contribute to the defined KPA:

Objective 1: The performance KPA utilizes kidney transplant success as measured
in number of additional years of life given to the transplant recipient. Literature
cites that 99% of kidney transplant recipients extend their life by at least 1 year,
and 91% of recipients extend their life by 5 years [14].

Ns Ns
Performance = Y S (X.1) Cq,poonurmmmspians | 1|1+ 05 (X)) (X.ij)]

i J#i

Objective 2: The acceptability KPA measures how likely a transplant surgeon is to
accept the decision-making support data as measured based on how trustworthy
the surgeon perceives the information source.

Ns Ns
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Objective 3: The usability KPA is a measurement of how intuitive the decision-
making support system is for the transplant surgeon which is weighted more on
the relevance of the information being provided, in addition to the impact on
decision-making and trustworthiness of the information.
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Objective 4: The affordability KPA is derived by minimizing the overall cost of the
system, using the interface costs and each individual system’s cost. The value is
based on real dollars, using the cost of a surgeon’s time for any system that
requires surgeon interaction.
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Ns Ns
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Objective 5: The final KPA is robustness as evaluated by the impact of the decision-
making support and the level of success found in the transplant results based on
the decision.

Ns
RObUStneS §= ZS (X’ l ) |:a ClmpacttoDecisionMaking,i + ﬂCSuccessfulTransplam,i :I
i

+ﬁ[1+5s(x,i)1(X,iJ)]
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3.2 Systems of Systems Explorer

The SoS meta-architecture is assessed using the SoS Explorer tool, which attempts
to determine optimal prediction or decision-making architecture in other domains
[15, 16]. As was used by Ashiku and Dagli [12], a single optimization of the model
will be performed with a focus on augmenting the objectives to achieve a higher
overall value. The objectives are used to determine the overall performance of the
architecture. The equations listed above are used to calculate the crisp values for the
objectives that are input into the fuzzy inference system. MATLAB is used to
develop the objective equations and rules applied to the architecture. For the fuzzy
logic designer interface in MATLAB, the Mamdani fuzzy assessor and centroid
defuzzification methods are selected. The objectives are then evaluated by the sim-
ple self-organizing genetic algorithm (SOGA) evolutionary algorithm within the
SoS Explorer. For this SoS, the genetic algorithm encodes the SoS with a chromo-
some that is a binary string length of 231, with the first 21 bits representing the
systems selected, and the remaining 210 bits are the interfaces of the SoS. The sys-
tems used in this human-Al systems interaction have eight capabilities and seven
characteristic or technical performance values used in the KPA equations to deter-
mine optimization.

When setting up the initial architecture, the impact of manipulating the fuzzy
rules was explored, like the SoS approach taken by Curry et al. [16]. The five objec-
tives were broken into a granularity of five from the beginning. The additional
change made for this model was to supplement the initial 25 fuzzy rules with addi-
tional rules to produce a more desirable control surface.

The big “C,” capability of the SoS, is a decision-making support system for trans-
plant surgeons. Within the SoS, each of the individual systems is evaluated for their
ability to meet the small “c” capabilities. These capabilities include data visualiza-
tion, organ assessment, medical evidence assessment, input patient information,
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Fig. 3 Portions of the GA chromosome representing system selection and interfaces

display of donor information, data interactivity, storing data, and providing objective
data analysis. If a system advances a capability, it is assigned the Boolean value of 1
for “true,” and if it does not, it is assigned the value O for “false.” These values are
shown as the interfaces in green and blue in Fig. 3. All 21 systems are listed in the
pink area, and the interfaces follow as alternating green and blue with three selected
for the figure as representative of the full chromosome chart.

3.3 Membership Functions and Rules

The membership functions and rules used in MATLAB fuzzy assessor enable the
system to handle uncertainty, make decisions based on imprecise information, and
provide an assessment of various elements within the system. The membership
functions define the degree to which the input belongs, and in this SoS, they have a
granularity of five to help assess the complex system. When defining the member-
ship function, it is essential to capture real-world characteristics close to the domain
of the represented variables. They are defined for each input as poor, feasible, aver-
age, good, and preferred. The output granularity is also five and is defined as very
unacceptable, unacceptable, tolerable, desirable, and very desirable. These terms
resonate with human intuition, typically used to evaluate how well a function meets
the required need.

The performance membership function, illustrated in Fig. 4, is a representation
of how all the membership functions were measured. All membership functions are
developed in the universe of discourse from O to 100. The overlap between the
granularity recognizes that the inputs are not likely to be precise. This makes the
decision process more realistic. The functions also demonstrate the incremental
changes in the characteristics that impact the objective. The terms match simplistic
linguistic scaling; however, these terms may need to be reviewed to ensure that the
granularity levels align with the domain expert’s understanding and expectations of
the input variables.
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Fig. 4 Membership functions for KPA input

The control surfaces represent the overall membership function by comparing
two objectives simultaneously. A total of ten control surfaces were produced and
evaluated for smoothness. The goal is to have each control surface peak at the back
top intersection and smoothly end at a point at the front bottom intersection. The
amount and type of rules applied will affect these control surfaces. The rules are
used to apply tradeoffs within the system. Twenty-eight rules are used to govern the
assessment process and show expected smoothness in the control surfaces of the
objectives, as viewed in Fig. 5, using the comparison standards of overall perfor-
mance vs. each of the other objectives.

4 Results

The SoS Explorer has provided the output for the optimized architecture, which is
depicted in Fig. 6. The potential systems are represented by circles, and their names
are indicated beside them. If a particular system is included in the optimized archi-
tecture, it will be a filled circle. The filled circles, which represent the participating
systems, are expected to be linked by a line to at least one other system to show an
interface. This interface is necessary for the smooth functioning of the optimized
architecture. If a filled circle does not have an interface, the architecture is consid-
ered infeasible. In such a scenario, the equations, characteristic values, and rules
would need reassessment to determine where greater trade-off may be required.
This is crucial because the optimized architecture is intended to ensure that all sys-
tems work together to achieve the desired outcome.

To achieve the optimized architecture, the manipulation of parameters in an
interactive “what-if” approach was employed. This approach allowed for adjust-
ments to be made while working toward the optimized architecture. The use of this
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approach helped to identify areas that needed improvement and enabled the team to
make informed decisions.

This SoS meta-architecture has the best overall value of 80.27 among 10,000
iterations run, making this the most desirable architecture for the proposed human-
Al system interaction model. All systems are utilized and are participating with
select other systems. The population (1) and offspring (1) are both 40, probability
of mutation (Pm) is 0.0025, probability of crossover (Pc) is 0.7, and the number of
solutions generated is one. The objectives for this optimized architecture resulted in
a performance of 81.48, acceptability of 90.19, usability of 81.81, affordability of
43.01, and robustness of 83.26. The objective values were all at least one point
higher with the population and offspring set to 40 instead of an initial setup value of
60. There were no “single acting” systems where a system is identified as participat-
ing but does not have an interface. The results show a feasible architecture.

To further evaluate if this architecture is the best available, additional simulations
run with variance of the simple SOGA parameters should produce the same or simi-
lar architecture. It is also important to look at how the systems are connected to the
other systems as this identifies the interfaces between systems. Understanding how
the systems interact with each other will assist in the development of the transplant
surgeon fuzzy associative model.

5 Conclusions

A methodology was developed for designing the transplant surgeon fuzzy associa-
tive memory model using the SoS approach to identify the best meta-architecture.
The utilization of fuzzy logic to account for the ambiguity of the human decision-
maker provided the groundwork for this SoS evaluation. The results can be used to
improve the quality of kidney transplant decision-making support for transplant sur-
geons by developing a parallel model to the DDOA through fuzzy associative mem-
ory that captures the transplant surgeon’s individual expertise. With good architecture
in place, the development of the TSFAM will begin by setting up and utilizing an
interface for transplant surgeon interaction with the DDOA model to enable testing
and model design development. Future work will include coordination with trans-
plant surgeons for gathering data and using surveys to build the characteristic values
based on actual data compared to the simulated data used in this paper. Incorporating
the unique rules of the transplant surgeons based on their own experiences and
patient cases into an Al decision-support system will provide a customized model,
leading to increased user trust and acceptance of the decision-support outcomes
based on the decision in question. While current transplant-supporting algorithms
are trained using regional or national datasets, the TSFAM will be built on very
focused and specific input based on the local transplant team’s patient population to
provide a more relevant decision-making support tool. The anticipated benefits of
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this tool include improved accuracy and acceptance as well as a reduction in poten-
tial bias as it prioritizes local context in the decision-making process. The more the
user, in this case the transplant surgeon, feels they are part of the Al development
process, the greater the level of engagement, satisfaction, and continued improve-
ment of the decision-making support tool. The optimized architecture developed
using the SoS approach provides a roadmap for how to build the transplant surgeon
fuzzy associative memory model, identifying the best tools to include and how to
display. This will be used with the next step for efficient transplant surgeon rule
collection.
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