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Abstract. We revisit the non-overlapping indexing problem for an effi-
cient repetition-aware solution. The problem is to index a text T'[1..n],
such that whenever a pattern P[l..p] comes as a query, we can report
the largest set of non-overlapping occurrences of P in T. A previous
index by Cohen and Porat [ISAAC 2009] takes linear space and opti-
mal O(p + occro) query time, where occn, denotes the output size. We
present an index of size O(r), where r denotes the number of runs in
the Burrows Wheeler Transform (BWT) of T. The parameter r is signif-
icantly smaller than n for highly repetitive texts. The query time of our
index is O(ploglog,, o + sort(occns)), where o denotes the alphabet size,
w denotes the machine word size in bits and sort(z) denotes the time for
sorting z integers within the range [1, n].

1 Introduction and Related Work

Text indexing is a well-studied problem in computer science with many applica-
tions in information retrieval and bioinformatics. The basic version is defined as
follows: Preprocess a given text T'[1..n] into a data structure (called index) such
that whenever a pattern P[1..p] comes as an input, we can efficiently support
both counting queries and reporting queries. A reporting query asks to output
Occe(T,P) = {i | T[i..i+p) = P}, the set of occurrences of P in T and a counting
query asks for its size occ. We assume that the characters in T" and P are from
an alphabet ¥ = {0,1,2,...,0 — 1} and o = n®®). Our model of computation
is word RAM with a machine word of size w = 2(logn) bits.

By maintaining the classic suffix tree data structure over T', we can perform
both counting and reporting in optimal times O(p) and O(p + occ), respec-
tively [25]. Alternatively, we can use the suffix array of T for counting in time
O(plogn) and reporting in time O(plogn + occ) [19]. The space complexity
of both structures is O(n) words, equivalently O(nlogn) bits, which can be
orders of magnitude more than the size of text, which is nflogo] bits. There-
fore, obtaining space-efficient encoding of these fundamental data structures has
been an active line of research. Two important results on this topic from early
2000 are the Compressed Suffix Arrays and the FM index—encodings in succinct
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 260-270, 2023.
https://doi.org/10.1007/978-3-031-43980-3_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_21&domain=pdf
http://orcid.org/0000-0003-1493-5432
http://orcid.org/0009-0001-0351-6155
http://orcid.org/0000-0002-6852-1035
https://doi.org/10.1007/978-3-031-43980-3_21

Non-overlapping Indexing in BWT-Runs Bounded Space 261

or entropy-compressed space [7,13]. Compressed suffix tree was also introduced
later [24]. These initial results have witnessed various improvements over time;
we refer to [20] for further reading. One of the recent breakthroughs in (com-
pressed) text indexing is the r-index by Gagie, Navarro, and Prezza [8]. Its O(r)
space version can perform counting and reporting in times O(ploglog, (c+n/r))
and O((p + occ) loglog,, (o + n/r)) respectively, where r denotes the number of
runs in the text’s Burrows-Wheeler Transform (BWT). The parameter r is a
popular measure of compressibility that captures repetitiveness. It can be signifi-
cantly smaller than n for highly repetitive texts. In a new result by Nishimoto and
Tabei [22], the r-index’s query times for counting and reporting were improved
to O(ploglog,, o) time and O(ploglog,, o+ occ), respectively. Another result by
Gagie et al. [9] shows that the suffix tree can be encoded in O(rlog(n/r)) space
and support most of its operations in time O(log(n/r)), which includes random
access to suffix array, inverse suffix array, longest common prefix array, etc.
We now formally define the main problem considered in this paper.

Problem 1 (Non-overlapping indexing). Preprocess a given text T[l..n]
over an integer alphabet of size o = n°WY) into a data structure (called index)
such that whenever a pattern P[1..p] comes as a query, we can report the largest
set Occpo(T, P) C Oce(T, P) of occurrences of P in T, such that the difference
between any two occurrences in Occpo(T, P) is at least p.

Keller et al. [16] introduced this problem and presented an O(nlogn) space
solution with O(p + occpe - loglogn) query time, where occ,, = |Oceno(T, P)|.
In 2009, Cohen and Porat proposed an improved solution with space O(n) and
optimal O(p + occyo) query time [4]. Later, Ganguly et al. [10,11] showed that
all we need is a suffix tree (or any of its space-efficient variants) of 7'. The time
complexity of their query algorithm is O(search(P) + occpo - tsa + sort(occyo)),
where search(P) denotes the time for computing the suffix range of P and tsa
denotes the time for accessing a given entry in the suffix array or inverse suffix
array, and sort(z) denotes the time for sorting a subset of {1,2,...,n} of size
x. Many space-time trade-offs are immediate from this general result, includ-
ing a repetition-aware index of size O(rlog(n/r)) and query time O(p + occpo -
log(n/r) + sort(occno)) using the suffix tree of Gagie et al. [9]. The interesting
question is, can we improve the space complexity to O(r)? Note that Ganguly et
al.’s algorithm [11] needs random access to the suffix array and its inverse array,
and whether suffix trees can be encoded in O(r) space is still open. To that end,
we present the following result.

Theorem 1. For the non-overlapping indexing problem, there exists an O(r)
space index that can report Occno(T, P) in time O(ploglog,, o + sort(occyo)).

Our result is based on the work by Hooshmand et al. [15], where the authors
proposed modifying Ganguly et al.’s algorithm [11], which led to an efficient
external memory solution; also see [14]. This modified algorithm avoids much
of the random accesses but requires some additional structures, specifically the
suffix array of the reverse of T, for its implementation. The critical insight we
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make in this paper is that the (less general) operations supported by the r-index
of T suffice to efficiently implement the algorithm by Hooshmand et al. [15].

2 Preliminaries

For a string S[1..m] € 2™, we denote its i-th character by S[i], and a substring
starting at position ¢ and ending at position j by S[¢..j], which is an empty string
if ¢ > j. When S[i..j] is a suffix of S (i.e., 5 = m), we denote it by S[i..] and
when S[i..j] is a prefix of S (i.e., i = 1), we denote it by S[..j]. The reverse of S
is denoted by 'S, The concatenation of two strings (or characters) S; and Ss is
denoted by 51.55.

2.1 Rank and Select

For any string S[1..m] € X™, ranks(i,c) denotes the number of occurrences of ¢
in S[1..i], where i € [1,m], ¢ € X. Also, selects(j, c) denotes the ith occurrence
of ¢ in S. A rank query of the form rankg(i, S[i]) is called a partial query.

If S is a binary string with ¢ 1’s, we can maintain a ¢log(m/t) + O(¢)-bit
structure (known as indexible dictionary) and find rankg(i,1) for any ¢ with
S[i) =1 in O(1) time [23]. It can also support select queries in O(1) time.

2.2 Suffix Array

The suffix array of a text T'[1..n] is an array SA[1,n], such that SA[i] represents
the starting position of the ith smallest suffix of T" in lexicographic order. For
convenience, we assume that the last character of T, denoted by $, does not
appear anywhere else in the text or in the pattern and is lexicographically smaller
than all other symbols in X. The suffix range of a pattern P[l..p], denoted
by [sp(P),ep(P)] is the maximal range, such that Oce(T,P) = {SA[i] | i €
[sp(P),ep(P)]}. The suffix range is empty if P does not appear in 7. The suffix
range, hence the number of occurrences, can be computed in O(plogn) time. The
inverse suffix array IS A is also an array of length n, such that ISA[SA[i]] = ¢
for all i € [1,n]; equivalently, ISA[i] is the lexicographic rank of the suffix T'[i..].

2.3 Burrows—Wheeler Transform

The Burrows-Wheeler Transform (BWT) [3] of a text T is a (reversible) per-
mutation of the symbols of T such that BWT[i] = T[SA[i] — 1] if SA[{] # 1
and is T[n] otherwise (recall that T[n] = $ appears only once in T and is
smaller than all other symbols in lexicographic order). The BWT can be encoded
in nlogo bits or even in O(r) words by applying run-length encoding, where
r € [o,n] denotes the number of runs (maximal unary substrings) in BWT.
For example, the BWT of the text mississippi$ is ipssm3pissii with 9 runs.
The LF-mapping is a function defined as follows: LF[i] is ISA[SA[i] — 1] if
SA[i] # 1 and is 1 otherwise. The LF-mapping can be computed using rank
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queries on BWT as follows: LF[i] = Count[BWTIi]] + rankpwr (i, BWT][i]),
where Count[c] = |[{k € [1,n] | T[k] < c}| for any c € &¥'. We call ¢ € [1,n] a run
boundary, if i € {1,n} or BWTYi] # BWT[i — 1] or BWTY[i] # BWT[i+ 1].

2.4 The r-Index and Some Related Results

Using the r-index by Gagie et al. [8,9] and refinements by Bannai et al. [2], we
can support the following operations:

1. Given a pattern P[1..p], for each j € [1,p], we can compute the suffix range
of P[j..p]. i.e., [sp(P[j..]),ep(P[j..])], in total time O(ploglog,, (o + n/r)). In
addition to this, we can get SA[sp(P[j..])] and SA[ep(P[j..])] for each j € [1,p]
in the same time.

2. Given any ¢, we can compute LF[i] in O(loglog,,(n/r)) time.

3. Given any (i,SA[i]), we can compute ¢ 1(SA[]) = SA[i + 1] in
O(loglog,,(n/r)) time.

Nishimoto and Tabei [22] improved the time complexity of operation 1 to
O(ploglog,, o), and operations 2 and 3 to O(1) time. As a result, given any
(i,i+h, SA[i]), we can report {SA[k] | i <k <i+h}in O(h+1) time. Since the
result for operation 1 is not explicitly stated in their paper, especially SA[ep(-)]
part, we provide a short proof here.

Lemma 1 (Modified Toehold Lemma). By maintaining some additional
information with r-index in O(r) space, we can support the following query:
given a pattern P[1..p], we can output SA[sp(P[j..])] and SAlep(P[j..])] for all
Jj €[1,p] in time O(ploglog,, o).

Proof. We store a bit vector B[l..n] and a sampled suffix array SA’. The vec-
tor B is defined as follows: B[LF[i]] = 1 iff ¢ is a run boundary. Therefore,
number of 1’s in B is ©(r). By maintaining B in space O(rlog(n/r)) bits,
i.e., O(r) words, we can compute rankpg(i,1) for any ¢ with B[i] = 1 in O(1)
time (via a partial rank query) [23]. The sampled suffix array SA’ is defined
as, SA'[j] = SA[selectp(j,1)] and its size is O(r). Therefore, SA[LF[i]] =
SA'[rankg(LF[i],1)] for any run boundary ¢ can be retrieved in O(1) time.
We also explicitly store Count|c] for all ¢ € X.

We process a query P[l..p] as follows. Inductively, assume that we have
already computed sp(P[k..]),ep(Plk..]), SA[sp(P[k..])] and SAlep(Pl[k..])] for
all k € [j,p] for some j < p (the base case where k = p is easy). The r-index
can give us [sp(P[k — 1..]),ep(P[k — 1..])] in O(loglog,, o) time. Let a be the
first and [ be the last occurrences of P[k — 1] in the range [sp(P[k..]), ep(Plk..])]
in BWT. Note that since BWT is run-length encoded form; finding o and (3 is
costly, however we have LF[a] = sp(P[k—1..]) and LF[(] = ep(P[k —1..]). Also
observe that finding BWT[z] for an arbitrary « is costly. However, we can utilize
the O(1) time LF-mapping operation to determine if BWTx] equals P[k — 1],
since BWT[z] = Plk — 1] iff Count(P[k — 1]) < LF[z] < Count(P[k — 1] + 1).
We have the following cases:
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— It BWT[sp(Plk..])] = P[k — 1], then SA[sp(P[k —1..])] = SA
1. Else, a will be a run boundary and SA[sp(P[k — 1..])] =
SA'[rankp(LF[a],1)] can be obtained in constant tlme

— It BWT[ep(Plk..])] = P[k — 1], then SA[ep(Plk —1..])] = SA

[sp
S[ []]:

[ep
SA[LF[G]] =

1. Else, # will be a run boundary and SA[ep(P[k — 1..])]
SA'[rankp(LF[f],1)] can be obtained in constant time.
This completes the proof. a
3 The Data Structures
Let 21,xa,...,Z0c denotes the occurrences of P[l..p] in T in the ascending

order. We say z; and x;, where i < j are overlapping occurrences if 0 < z; —
x; < p and non-overlapping occurrences otherwise. Define, Overlap(z;,z;) =
max{p — (z; — x;),0}. The following simple algorithm can report the largest
set of non-overlapping occurrences. First, find all occurrences of P and sort
them to obtain 1,3, ..., T Report the last occurrence x,... Then scan the
remaining occurrences in the right-to-left order, and report an occurrence if it
does not overlap with the last reported occurrence. Although this algorithm
correctly reports Occy,, its time complexity is equal to the time for reporting all
occurrences of P plus sort(occ). For a better solution, we exploit the pattern’s
periodicity.

The period of P[1..p] is its shortest prefix @, such that we can write P as a
concatenation of several copies of Q and a proper prefix R of (). Note that R
can be an empty string. For example, we can write P = abcabcab as Q%R, where
@ = abc and R = ab. Also, define A = [p/|Q|]. Also, we say P is periodic if
A > 2 and aperiodic otherwise. We can determine P’s period in O(p) time [5]. If
P is aperiodic, then occ = @(occy,) and the result of Theorem 1 is immediate
using r-index and the simple algorithm described before. The rest of this paper
focuses only on the more involved periodic case.

If P is periodic and Overlap(x;+1,2;) > |Q|, then z; 11 — z; = |@Q]. Based on
this, we have the following definition from [11].

Definition 1 (Cluster). Let 1 < i < j < occ and P is periodic. We call a
subset {x;, xit1,...,%;} of consecutive occurrences a cluster, iff

1. i =1 or Overlap(x;—1,z;) < |Q|,
2. Tht1 — T = |Q| fOT’ all k S [7'7.])7 and
3. j = occ or Overlap(xj,xzj11) < |Q)|.

Additionally, we call z; (resp., x;) the head (resp, tail) of the cluster.

We use 7 to denote the number of clusters. Let hq, ho,...,h; denotes the
clusters heads and t1,ts,...,t; denotes clusters tails, where h; < t1 < hy <
to < ..., < hy <tr. Define C; = {h;, h; +|Q|, hi +2|Q)|, ..., t;}, which call the
ith cluster. Note that two consecutive non-overlapping occurrences within the
same cluster must be exactly A|Q| characters apart.
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3.1 An O(rlog(n/r)) Space Solution

We obtain the following result in this section via a direct implementation of
Ganguly et al.’s algorithm [11] using the O(rlog(n/r)) space suffix tree of Gagie
et al. [9]. The algorithm is based on the following observations:

— The number of clusters m = O(occp); follows from the fact that
{h1, h3,hs,...} is a set of non-overlapping occurrences of size [7/2].
— The set {t1,t2,...,t,} of all cluster tails can be obtained using a suffix tree

(or an equivalent data structure) efficiently as described below.
— Once we have sorted the list of all cluster tails, we can find Occ,,, via O(0ccno)
number of ISA queries.

We now present the algorithm formally.

7~

1. Find all cluster tails and sort them to obtain t1,ts,...,t, (also let
to = 0).

2. Initialize x = oo (we use this variable to keep track of the last reported
occurrence).

3. For ¢ = 7 to 1, process C; as follows:
(a) If z and t; are non-overlapping, then x = t;; otherwise x = t; — |Q)|
(this new z is potentially the rightmost output from C;).
(b) While z € C; (i.e., ISA[x] € [sp(P),ep(P)] and t;_1 < x)
report x and z «— x — |Q|\.

To find all cluster tails, observe that an occurrence of P is a cluster tail
iff it is not an occurrence of QP. Therefore, {t1,ta,...,t:} = {SA[k] | k €
[sp(P),ep(P)] and k ¢ [sp(QP),ep(QP)]}. Since P is a prefix of QP, we have
[sp(QP), ep(QP)] C [sp(P), ep(P)]. Therefore,

{ti,ta, - tx} = {SAIK] | sp(P) < k < sp(QP), ep(QP) < k < ep(P)}.

The implementation is straightforward; step-1 takes O(w) number of SA
queries and the step-3 takes O(occp,) number of SA queries. This combined
with the time initial pattern search and the sorting of all cluster tails, the query
time can be bounded by O(p + occy, - log(n/r) + sort(occp,)).

3.2 An O(r + r®) Space Solution

This result is based on a slight “modification” of Ganguly et al.’s algorithm [11],
which was proposed by Hooshmand et al. [15] for efficiently solving the non-
overlapping indexing problem in the external memory model by minimizing the
number of SA/ISA queries. Some key observations on the previous algorithm are
as follows:

— Step-1 (of finding all cluster tails) can be implemented using r-index (using
¢~ ! queries instead of SA queries).
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— Once we have the sorted list of all cluster heads, we can avoid the ISA query
in Step-3(b), because z € C; iff h; < .

Formally, we have the following algorithm with a slight modification.

. Find all cluster tails and sort them to obtain tq,ts,..., % .

. Find all cluster heads and sort them to obtain hq, ho, ..., h; .
. Initialize x = oco.

. For i = 7 to 1, process C; as follows:

(a) If z and t; are non-overlapping, then x = t;; otherwise x = t; — |Q)|
(this new z is potentially the rightmost non-overlapping occur-
rence from C;).

(b) While z € C; (i.e., h; < ), report z and = «+— x — |Q|\.

=W N

We now present the implementation details. We execute step-1 using the r-
index of T as follows. Find the suffix range [sp(P), ep(P)] of P and the suffix
range [sp(QP), ep(QP)] of QP. We also obtain SA[sp(P)] and SA[ep(QP)] (refer
to Lemma 1). Then, all cluster tails can be obtained by applying ¢! function
7 times. The time complexity is O(ploglog,, o + 7) plus sort(w). For Step-2, we
use the following strategy by Hooshmand et al. [15]. An occurrence x of P is
a cluster head iff (z — |Q|) is not an occurrence of QP. Alternatively, we can
say, ¢ € [1,n] is a cluster head iff a substring of T ending at (i + p — 1) matches
with P, but not QP. The position (i +p—1) in T corresponds to an occurrence
(n—(i+p—1)+1) of (]3, but <Q—P in T. This means, cluster heads are equivalent
to cluster tails in the reverse text, and we can retrieve them using the strategy
used before, but on the suffix tree (or r-index) of the reverse text. Therefore,
the time complexity is also O(ploglog,, o + 7) plus sort(m). Step-4 takes (occno)
time and the overall time is O(ploglog,, o + sort(occpo)).

Since we maintain two r-indexes, the space complexity is O(r + r#), where
77 is the number of runs in the BWT of T. Note that 7F can be more than r
(see [12]) although a recent result shows that r* = O(rlog®n) [17]. Therefore,
the space complexity (in terms of 7 and n) is O(rlog® n).

3.3 Our Final O(r) Space Solution

In this section, we prove that by maintaining an O(r) space structure and the
r-index of T', we can find all cluster heads in time O(ploglog,, o + 7). Therefore,
for implementing Step-2 of the previous algorithm in Sect. 3.2, the r-index for
the text’s reverse is no longer required; hence Theorem 1 is immediate.

Recall that a position x is a cluster head iff z is an occurrence of P and
x — |@Q] is not an occurrence of QP. This means, x is a cluster head, iff there
exists a proper (possibly empty) suffix Q[j..] of @ (i.e., j € [2,|Q] + 1]), such
that y = (x — (|Q| —j + 1)) is an occurrence of Q[j..]P and Ty — 1] # Q[j — 1].
We have the following observation by substituting SA[i] = y.

Observation 1. For some j € [2,|Q|+1], SA[i] is an occurrence of Q[j..|P and
BWT[] # Qj — 1] iff SAli] + (|Q| — 5 + 1) is a cluster head.
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The set of cluster heads is given by the union of Ily, I3, ..., II|g|+1, where

1 = {SA[+(1QI—j+1) | i € [sp(Q[j--|P), ep(Qj--|P)] and BWTi] # Q[j—1]}.

Lemma 2 presents our structure for finding II; for any j in optimal O(1+|II;])
time, given sp(Q[j..]P), ep(Qj..]P) and SA[sp(Q[j..]P)]. Finding these input
parameters for all values of j € [2,|Q| + 1] using r-index takes O(ploglog,, o)
time. Thus, the overall time for finding all cluster heads is O(ploglog,, o+ |Q| +
> l;]) = O(ploglog,, o + m) as desired.

Lemma 2. By maintaining an O(r) space structure with r-index, we can sup-
port the following query: given a range [sp,ep], SA[sp] and a character c € X,
we can output the elements in X = {SA[i] | i € [sp,ep] and BWT[i] # ¢} in
optimal O(1 + | X|) time.

Proof. We maintain a sorted list L[1,7] of the start of all run boundaries (i.e.,
i’s, where i = 1 or BWTYi — 1] # BWT(i]. We also maintain a sampled suffix
array SA'[1,r], where SA'[i] = SA[Li]]. We now present the query algorithm.

If ep— sp = LF[ep] — LF[sp], we conclude that all characters in BWT[sp, ep]
are the same. Then, if BWT[sp] # ¢, we report SA[sp] and all the remaining
entries in SA[sp, ep] using &~ function, else, we report none of them. On the
other hand, if ep — sp # LF[ep| — LF[sp], there exists two values f and h, such
that L[f — 1] < sp < L[f] < L[f + h] < ep < L[f + h 4+ 1]. We find f via binary
search in time O(logr) and then find h in O(h) time. Then, perform the steps
below.

1. If BWT][sp] # ¢, then report SA[sp], compute the remaining entries in
SA[sp, L[f]) using #~! function, and report them.

2. For all g € [f,f+ h), if BWT[L[g]] # ¢, then report SA[L[g]] = SA[g],
compute the remaining entries in SA[L[g], L[g + 1]) using &1 function, and
report them.

3. If BWTI[L[f + h]] # ¢, then report SA[L[f + h]] = SA’[f + h], compute the
remaining entries in SA[L[g], ep] using ¢~! function, and report them.

The time complexity is O(logr+h+|X]|). Also note that for any g, BWT[L[g]] #
BWTIL[g + 1]]. Therefore, | X| > (h —1)/2.

Finally, to remove the term logr, we maintain some additional structures:
(i) the optimal one-dimensional range reporting structure by Alstrup et al. [1]
over L in O(r) space and (ii) a bit vector B[l..n], such that B[j] = 1 iff j = L[i]
for some ¢ € [1,r]. We maintain B in space O(rlog(n/r)) bits, i.e., O(r) words,
so that partial rank queries (rankp(j,1) when B[j] = 1) can be computed in
O(1) time [23]. Now, for computing f and h, we use the following procedure:
report all L[i]’s within (sp, ep] in time O(h). The smallest among them is L[f]
and the largest among them is L[f + h]. Then compute f = rankg(L[f],1) and
f+ h = rankg(L[f + h],1) using two partial rank queries. The overall time
complexity is optimal as desired. a
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4 Open Problems

We conclude with some follow-up questions for future research.

1.

Can we design an efficient index for counting the largest number of non-
overlapping occurrences of P in 717 i.e., an index that can quickly output
0CCpo- No nontrivial result is known for this problem; therefore, it is interesting
to know whether there exists an O(n-poly log(n)) space index with query time
O(p - polylog(n)).

Can we design new space-time trade-offs for the non-overlapping indexing
problem, where space is in terms of other measures of repetitiveness, like
the number of Lempel-Ziv factors [26] or d-measure [18] (a.k.a. substring
complexity)?

Can we design repetition-aware indexes for the range non-overlapping index-
ing problem, which is a generalization of the non-overlapping indexing prob-
lem? Here the input consists of a pattern P and a range [«, 5], and the task
is to output the largest set of non-overlapping occurrences within the range
[a, B]. Several solutions exist to this problem [4,6,16], including an O(nlog® n)
space index with optimal query time [11] and a linear-space index with near-
optimal query time [21], where ¢ > 0 denotes an arbitrarily small constant.
An orthogonal range query data structure is a part of these indexes, which
makes it challenging to encode them in repetition-aware space.
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