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Abstract. Differential Privacy (DP) was originally developed to protect
privacy. However, it has recently been utilized to secure machine learning
(ML) models from poisoning attacks, with DP-SGD receiving substantial
attention. Nevertheless, a thorough investigation is required to assess the
effectiveness of different DP techniques in preventing backdoor attacks in
practice. In this paper, we investigate the effectiveness of DP-SGD and,
for the first time, examine PATE and Label-DP in the context of back-
door attacks. We also explore the role of different components of DP algo-
rithms in defending against backdoor attacks and will show that PATE is
effective against these attacks due to the bagging structure of the teacher
models it employs. Our experiments reveal that hyper-parameters and
the number of backdoors in the training dataset impact the success of
DP algorithms. We also conclude that while Label-DP algorithms gen-
erally offer weaker privacy protection, accurate hyper-parameter tuning
can make them more effective than DP methods in defending against
backdoor attacks while maintaining model accuracy.
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1 Introduction

Deep neural networks are vulnerable to backdoor attacks. The goal of a backdoor
adversary is to misclassify the prediction of the target model on samples that
contain a special pattern (trigger), while maintaining the inference performance
on normal samples. To achieve this goal, backdoor attacks typically manipulate
a small portion of training data with carefully designed triggers that lead to the
mismatch between training features and labels [19]. Many studies have proposed
countermeasures against this powerful attack or the more general data poisoning
attacks. The most common approach in these studies is discovering abnormalities
in model statistics or training data [7,8,31,35,36].

Differential privacy (DP) [12] is a fundamental concept of data privacy, guar-
anteeing that the inclusion or exclusion of individual data points doesn’t signifi-
cantly impact the outcome of any analysis. A common method to achieve DP in a
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deep learning model is by introducing calibrated randomness during the training
process such as DP-SGD (Differentially Private Stochastic Gradient Descent),
which adds noise to the gradients during the training. An alternative approach
is PATE (Private Aggregation of Teacher Ensembles), which involves training
multiple teacher models on disjoint subsets of the data and then using their ag-
gregated outputs with added noise to train a student model with auxiliary data.
Label differential privacy [14,34] is a variant of differential privacy that ensures
that the learning process (and the resulting model) cannot reveal whether any
individual’s label was used or not. As the success of backdoor attacks relies on
the influence of the triggered samples on the model, it is intuitive that the model
might be more robust to backdoor attacks if the influence of each training sample
is bounded. This concept of limiting the influence of individual samples aligns
with the principles of DP. Thus a recent promising area of research focuses on
using DP to build robust models against backdoor and poisoning attacks. This is
accomplished by introducing randomness to the model through DP techniques,
making it less sensitive to input.

There are a few works exploring this area in theory [5,25]. A few others
have obtained experimental results either under a centralized setting using DP-
SGD [4,10,17,40] or under the federated learning setting [24,27,28]. These studies
provide some evidence that models trained with DP-SGD mitigate poisoning
attacks, but they fall short of a comprehensive investigation and do not explore
the power of other state-of-the-art DP models against backdoor attacks.

This paper aims to bridge the theory and practice and provide a comprehen-
sive and in-depth understanding of whether and, more importantly, how various
DP models and methods defend against backdoor attacks in practice given the
theoretical promise and preliminary evidence in the literature. We study both
the standard DP class of algorithms and the Label-DP variant, and compare
them in their defense power against backdoor attacks. PATE and Label-DP are
being examined for the first time against these types of attacks. We evaluate
their performance empirically on two widely used datasets in the domain of
backdoor attacks and differential privacy. To summarize, we make the following
contributions:

1. Comparative study of DP approaches against backdoor attacks,
including standard DP-SGD approach and the less-studied PATE
approach. Existing studies use DP-SGD for training DP models to de-
fend against poisoning or backdoor attacks. In this work, we explore the
other well-known DP algorithm PATE against backdoor attacks in order to
understand whether different DP algorithms (gradient perturbation vs. ag-
gregation perturbation) have different powers against backdoors. We show
that both of these classical DP approaches can provide robust models for
backdoor attacks. Also, we will demonstrate that the ensemble structure of
the PATE inherently makes it suitable against backdoors.

2. A deeper understanding of the impact of noise and other param-
eters of DP approaches on backdoor attacks. The effectiveness of DP
approaches is affected by parameters other than noise. We explore the ori-
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gin of these algorithms’ resilience by examining whether randomness is the
sole factor or if the other parameters have an impact. We empirically show
that the randomness (privacy budget) contributes to mitigating the back-
door attack success rate, which is compatible with the theoretical results in
the literature [39]. However, we demonstrate that the impact of other pa-
rameters can be significant on the outcome, especially for PATE, e.g., the
threshold used to aggregate the teacher models’ outputs.

3. Comparative study of Label-DP approaches against backdoor at-
tacks. Label-DP protects the privacy of the labels of the training data by
ensuring the output model is indistinguishable with respect to the label of a
training sample. We study the Label-DP class of algorithms for the first time
against backdoor attacks using two algorithms ALIBI [26] and LP-2ST [14].
We hypothesize that Label-DP also provides robustness against backdoor
attacks while maintaining better utility than DP based on two observations.
First, since Label-DP ensures the indistinguishability of labels, we expect a
model with Label-DP to break the association between the backdoor trig-
gers and their assigned target class (label). Second, Label-DP methods typi-
cally converge faster than standard DP algorithms while maintaining higher
model utility. This is because indistinguishability is required only for the
labels, rather than for both the features and labels, which necessitates less
noise to achieve the same level of privacy.
Our evaluations confirm that Label-DP makes the model more immune to
backdoor attacks while preserving model accuracy. We show that Label-DP
is superior to DP approaches in terms of convergence speed. Furthermore,
we demonstrate that it can achieve better robustness accuracy trade-offs
under certain settings. For instance, with a lower percentage of backdoors,
ALIBI can eliminate the negative impact of the attack while achieving the
highest accuracy among all approaches. For stronger attacks with higher
percentage of backdoors, LP-2ST outperforms other approaches when the
privacy budget is low.

2 Preliminaries

2.1 Backdoor Attacks

Backdoor attacks are a category of attacks that involve attaching a small patch
to a portion of a base class of the training dataset along with flipping their
labels to a specified target class. After the model has been trained using these
backdoor samples, it would be vulnerable to the presence of the patch in the
inputs. So as the next step of the attack, the attacker attaches the same patch
to some desired test samples of the base class and passes it to the backdoored
model, so that this combination of the base class pattern plus the patch pattern
misleads the model to misclassify the sample as the target class. This form of
backdoor attacks, initially introduced by Gu et al. [15], is a powerful attack that
has gained much attention. Some other works tried to make some other type
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of backdoor attacks that are less detectable or employ them in other domains
including videos [32,41].

2.2 Differential Privacy and Label Differential Privacy

Differential Privacy (DP). DP is a privacy-preserving notion that makes an
observer unable to tell if particular information contributes to the outcome [13].
In the context of machine learning, a DP method should not reveal whether a
training sample has been utilized in the training process.

Let X and Y be the feature and label domain, respectively. Also, let the
training dataset consists of n samples from a domain U = (X×Y )n. Given sam-
ple x, we have a classification task for the model M to predict y. A randomized
training algorithm M : U → R is (ε, ¶)-DP if for any two adjacent datasets
D,D′ ∈ U differing on at most one sample, it holds that:

∀S ⊂ R,P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + ¶. (1)

A smaller ε guarantees stronger privacy but typically leads to a lower utility
or accuracy of the model due to the randomization in the training. Using a DP
property called group privacy, this definition can be extended to two datasets
differing in k examples where k denotes more than one data point [11]. This is
achievable by a linear increase in the privacy cost.

Label Differential Privacy (Label-DP). Label DP is an extension of DP
that considers the labels as the only sensitive part of the training data that
requires to be kept secret. So in contrast to (ε, ¶)-DP which defines privacy for
datasets D and D′ differing on at most one sample, (ε, ¶)-Label-DP considers D
and D′ differing on the label of at most one sample. Therefore, Label-DP can
be seen as a relaxation of DP algorithms that guarantees only the privacy of the
labels. One of the applications of Label-DP is recommendation systems where
the user’s profile or search queries are public, but the history of the user rating
is sensitive.

2.3 DP and Label-DP Algorithms for Deep Learning

In this section, we explore the main methods for achieving DP (DP-SGD, PATE)
and Label-DP (LP-MST and ALIBI) respectively, with Table 1 showing the
critical parameters of the first two algorithms.

DP-SGD [1] is the most widely used algorithm for building DP models. DP-
SGD restricts the privacy loss in each iteration of SGD (Stochastic Gradient
Descent), by updating model in two steps: 1) clipping the L2 norm of the gradi-
ents, and 2) inserting calibrated Gaussian noise into those clipped gradients.
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Table 1. Parameters of the DP algorithms

Method Parameters

DP-SGD

1. Noise multiplier : Added randomness to the model’s clipped gradients
to provide DP

2. Upper bound of the clipping norm (Cnorm) : Bound to clip the
L2-norm of the gradients to control their sensitivity to the noise

PATE

1. Threshold T : Queries exceeding this minimum teachers’ aggregation are
selected for training the student model

2. Selection noise with variance σ1 : Gaussian noise added to the aggre-
gator’s votes before applying threshold to enforce privacy

3. Result noise with variance σ2 : Noise added to the selected queries
after applying threshold to guarantee DP

4. Number of teacher models
5. Number of queries

PATE [29] provides privacy through a teacher-student structure. First, an en-
semble of teachers is trained on disjoint subsets of the private data. Then, given
an unlabeled public dataset, a student model queries the teacher ensemble and
uses their noisy aggregated vote as the label. The number of queries is restricted.
Plus, their response is based on a noisy aggregation without access to any specific
private data point. However, access to a public dataset forces a strong assump-
tion on PATE compared to DP-SGD.

PATE was originally introduced with Laplacian noise [29]. Then it was revised
to improve the utility and privacy trade-off through a more confident aggregated
teacher consensus, called Confident-GNMax [30]. In this paper, we adopt the
Confident-GNMax version of the PATE framework, which is based on Gaussian
noise.

Label Private Multi-Stage Training (LP-MST) [14] is a work regarding
differential privacy that achieves Label-DP for deep learning. It leverages a mod-
ified version of the Randomized Response (RR) algorithm to add noise to the
labels [38]. RR outputs the actual class of a sample or randomly replaces it with
one of the other classes. However, the randomness deteriorates the utility.

Ghazi et al. [14] modify the RR algorithm to compensate for the utility, by
iteratively training the model on disjoint subsets of the dataset. Then they use
the trained model from the previous stage to get the top-K predictions and limit
the RR algorithm to those predictions. Similar to the main paper, we report our
results on LP-2ST with two training stages.

Additive Laplace Noise Coupled with Bayesian Inference (ALIBI) [26]
is another Label-DP method in ML that has been recently proposed. It first adds
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Laplacian noise to one-hot labels, then uses these soft new labels to train the
model while preserving Label-DP. Since post-processing does not affect differen-
tial privacy, Bayesian post-processing de-noises the soft labels iteratively during
each step of SGD. The combination of additive Laplacian noise and iterative
Bayesian inference increases the utility.

3 Related Work

DP has recently been highlighted for providing robust models to alleviate the
negative impact of poisoning attacks. The rationale is that according to the def-
inition of DP and group privacy, DP models are less sensitive to the impact of
one or a group of poisoned data. In this section, we go through the literature
to investigate where and how differentially private approaches used to defend
against backdoor and poisoning attacks. We then identify the gaps in the liter-
ature, formulate those as research questions, and try to answer them and assess
the results empirically.

There are two lines of work in the literature that consider the defensive power
of DP methods on poisoning attacks; theoretical and practical studies.

Ma et al. [25] theoretically prove the robustness of DP models and provide a
theoretical bound. They assume a training dataset D and an attacker with full
knowledge creates some poisoned dataset D̃ from D. The poisoned model ¹D̃,b

is parameterized through the poisoned data D̃ and noise parameter b of the DP
model. The attacker’s objective loss C : Θ → R aims to misclassify some targets
or disrupt the overall classifier’s functionality. Assuming the attacker does not
know the exact realization of the noise, the attack is reduced to:

min
D̃

J(D̃) = Eb

[

C(¹D̃,b)
]

(2)

Given k poisoned data, the authors utilize the property of differential privacy
in Equation (1) and conclude:

J(D̃) ≥ e−sign(C).kεJ(D) (3)

According to Equation (3) the attacker is unable to change J(D̃) arbitrarily
because it is lower bounded by 0 if C is positive (for example, in case of Mean
Squared Error) or it is unbounded from below if C is negative.

This paper provides insight into how DP methods may provide a natural
immunity against data poisoning attacks. However, it has two limitations. First,
the lower bound of J(D̃) is loose. Second, this paper implements and evaluates
its theoretical findings on general attack loss functions and DP frameworks.
Thus, the specific impact of Equation (3) on SOTA deep learning models (e.g.
DP-SGD) and practical attacks (e.g. backdoor attacks) remains neglected.

To overcome the second limitation, a parallel set of works has employed DP-
SGD as a practical usage of DP in deep learning to achieve protection against
poisoning attacks [10,40,4]. Hong et al. [17] was one of the first works that con-
sidered DP-SGD against backdoor and other poisoning attacks. However, their



DP against Backdoor Attacks 7

primary motive was not originated from the fact that DP-SGD is a private al-
gorithm and Equation (1). Instead, they observed that during the training on a
poisoned dataset, the gradients computed on poisoned samples have a higher
magnitude and different orientation than those computed on clean samples.
Hence they leveraged DP-SGD to offset the behavior of the model’s gradients on
both clean and poisoned data through the randomness of the gradients. Their
results show some degree of protection against specific poisoning attacks, but
their outcome is not promising on backdoor (insertion) attacks. Later, Jagielski
and Oprea claimed that DP itself can not serve as a defense against poisoning
attacks [18]. They argued that it is possible that the robustness of DP-SGD
stems from some parameters other than noise.

4 Research Questions

The existing studies on DP-SGD are inconclusive, and there are no studies on
other state-of-the-art DP approaches as a potential defense. It motivates us to
extend current works by conducting more comprehensive experiments on DP-
SGD and introducing other DP methods as a defense. Based on this primary
motivation, we pose some research questions in this section and elaborate their
significance. Then in the following sections, we will try to address them empiri-
cally.

Question 1. Is DP-SGD a successful protective algorithm against backdoor at-

tacks? Can PATE, as another main DP approach, mitigate backdoor attacks?

Current studies have differing views on whether DP, particularly DP-SGD, can
defend against backdoor attacks. It opens the door for a more comprehensive
study of DP-SGD. It’s not clear whether the robustness is achieved by the ran-
domization introduced by DP methods in general or by other algorithm-specific
parameters of DP-SGD. Additionally, this outcome can emphasize the gap be-
tween DP’s theoretical and practical results against poisoning data.

So in this work, we first explore DP-SGD to understand why there is no con-
sensus in the literature on DP-SGD as a defensive algorithm. Then for the first
time, we explore PATE as a DP method against backdoor attacks to demonstrate
if it confirms DP models’ robustness. We examine the effectiveness of these algo-
rithms by analyzing their hyper-parameters, even those that do not contribute to
the randomness for DP. With this investigation, we hope to determine whether
these algorithms are effective defense mechanism solely because they are DP.

Question 2. Can other DP notions, such as Label-DP, also provide robustness

and even better accuracy and robustness trade-off? How do different DP notions

and algorithms compare in the trade-off?

Answering the research question 1, leads us to two other major challenges with
regard to DP-SGD and PATE. The first challenge is their prohibitive training
time. Training an ensemble of teachers in PATE is heavily costly. Also, DP-SGD
requires computation of per-sample gradient norms, which is extremely slow.
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The other issue with the DP algorithms is the trade-off between the privacy bud-
get and the utility, which means decreasing the privacy budget (i.e., achieving
stronger DP) is accompanied by a drop in models’ accuracy. We will show that
lower privacy budgets usually lead to a lower attack success rate (ASR), which is
necessary to defeat attacks. We call this simultaneous reduction in accuracy and
ASR the Accuracy-ASR trade-off. We will define the criteria for attack success
rate in Section 5. To address these challenges, we conduct a comparison between
Label-DP and other DP algorithms by varying DP budgets and attack strengths.

5 Experimental Setup

Datasets and Models We evaluate each DP model on two datasets: MNIST
[23] and CIFAR-10 [22]. We study end-to-end training and fine-tuning since
both are common practices in modern machine learning. We use the same CNN
architecture as [2] with two convolutional layers for MNIST and train it from
scratch. Also, for CIFAR-10, as [37] suggests, we use ResNet50 [16] pretrained
on ImageNet as a feature extractor and fine-tune its classification head.

Corresponding to each DP algorithm’s specification, we find an optimizer
and a learning rate using a grid search algorithm to ensure the training process
achieves the highest accuracy. In addition, data augmentation reduces the effec-
tiveness of all of the attacks [33,21], leading to a bias in our results. Therefore,
we skip the data augmentation in our experiments. More details on the training
process can be found in the appendix.

Attack and Threat Model All the DP models are in white-box settings.
The backdoors are made based on the triggers introduced in BadNets [15]. To
generate backdoors, we first randomly select two classes as base and target class.
Then, we randomly select half of the samples from the base class, attach a
4 × 4 trigger patch to their bottom right corner and assign the target class as
their labels [4]. We poison 50% base class to ensure the number of backdoors is
high enough, and sufficient clean samples are left in the base class. Under this
condition, the model learns both clean and backdoor data points.

Evaluation Metrics Attack success rate (ASR) is the metric to evaluate the
success of the backdoor attacks. According to the definition of the backdoor
attacks in Section 2.1, ASR indicates the number of test samples from base class
that are patched with the backdoor trigger and misclassified as the target class.
Thus, a defense method is considered more successful if it leads to a lower ASR.

The second defensive purpose is to maintain high accuracy for the clean
test data. The original accuracy of our CIFAR-10 vanilla model over the clean
test data is 91.24% and the backdoor ASR is 98.1%. The MNIST model’s initial
accuracy and ASR are 98.92% and 100%, respectively.
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Fig. 1. Effectiveness of DP-SGD against backdoor attacks, w.r.t the noise
multiplier, clipping norm, and the optimizer.

Experimental Roadmap This subsection provides an overview of the experi-
ments in the forthcoming sections. In Section 6, we analyze two DP algorithms,
DP-SGD and PATE, by assessing the impact of their privacy budget and other
hyper-parameters on the attack success rate. This analysis helps us clarify the
underlying reason for their defensive power. At the same time, we will show
their resulting accuracy and attack success rate. Then, in Section 7, we compare
all the DP and Label-DP algorithms in various circumstances to witness which
one is prominent and whether the outcome alters in a different situation. Due
to space constraints, we could not include all of our experiments and refer to
the appendix for our findings on the exploration of parameters for Label-DP
algorithms and the training procedure.

6 DP against Backdoors

This section investigates DP-SGD and PATE, against backdoor attacks. For each
algorithm, we will evaluate their key hyper-parameters (introduced in Table 1)
on CIFAR-10 dataset and show that some of them have a critical impact on the
accuracy and ASR. The results of the MNIST dataset are very similar. So to be
concise, we skip their reports here but use them to conduct the experiments in
the subsequent sections.

6.1 DP-SGD vs. Backdoors

SGD is the dominant optimizer in practice paired with the DP-SGD algorithm,
especially in defeating poisoning attacks [1,5,17,18]. So we consider different
optimizers and learning rates to depict the sensitivity of DP-SGD performance
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to these factors: RMSProp, SGD with a learning rate of 0.1, and SGD with
a learning rate of 0.01. Based on the size of the dataset, we set the DP-SGD
algorithm as (ε, 10−5)-DP and report ε as the privacy budget [30].

Fig. 1a and 1b show the impact of the noise multiplier by fixing the clipping
norm to 1.2 (typical for CIFAR-10). Interestingly, the rate of the accuracy drop
to the ASR drop differs for each optimizer. However, in general, higher noise
levels reduce both accuracy and ASR simultaneously. This suggests that SGD
can resist backdoor attacks more effectively by paying a slightly higher utility
cost.

Fig. 1c and 1d illustrate the impact of different clipping norms on the accu-
racy (top) and ASR (bottom) using a fixed noise of 5.6. In contrast to RMSProp,
for SGD optimizers, the choice of learning rate creates two different patterns of
ASR with respect to the clipping norm. This reveals how SGD training without
an adaptive learning rate can be affected by the norm of the gradients. Therefore,
while the clipping norm significantly impacts the model utility and robustness,
it is difficult to optimally adjust it when the defender is unaware of the attack
specifications.

According to [6], the impact of the clipping norm on accuracy is not mono-
tonic, which is manifested as a non-monotonic pattern of accuracy and ASR in
Fig. 1c and 1d. Regarding the different pattern of ASR on the left side of Fig. 1d
with SGD-0.01, we speculate that the small learning rate accompanied by a high
noise and small clipping norm can hardly learn the normal images’ manifold, and
instead it retains the repetitive and striking patterns of the backdoor triggers.

Conclusion (Q1): In our evaluations, DP-SGD was successful in mitigating
the impact of backdoor attacks. However, the noise multiplier, clipping norm and
training parameters determine the extent of this success. As a result, differences
in these parameters contribute to the varying results reported in previous studies
on the effectiveness of DP-SGD as a defense mechanism.

6.2 PATE vs. Backdoors

In this section, we evaluate the robustness of PATE against backdoor attacks
and the impact of different parameters including the number of teachers, number
of queries, threshold, selection noise, and result noise. The results are shown in
Fig. 2. Whenever noises or threshold are not evaluated, we fix their values to 0.
In the case of the number of queries and number of teachers, the default values
are fixed to 10000 and 200, respectively. For training PATE, we assume 1/5 (i.e.
10000 samples) of the training data is publicly available for training the student
model, and the rest is private. In the original PATE paper [29], the number of
queries is set to as low as 1000. However by doing so, we naturally remove a
large fraction of poisoned data and make the comparison between different DP
methods unfair. Therefore, we keep the default number of queries at 10000 and
in the next sections, to compare the models, we analyze the impact of both noise
and the number of queries on the PATE’s utility and privacy budget.
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Fig. 2. The impact of number of teachers, number of queries, threshold,
selection noise and result noise on the student model’s accuracy and ASR
from left to right and top to bottom, respectively).

Fig. 2a and 2b show that the number of teachers and the number of queries
impact the accuracy and ASR in opposite ways. A higher number of teach-
ers means fewer training data and lower accuracy for each teacher, hence less
accurate consensus from the aggregator. This also compromises the consensus
on assigning the target class to the backdoor samples and decreases the ASR,
which aligns with the literature finding that bagging can hinder the success of
the backdoor attacks [3,20,9]. Furthermore, in Fig. 2b, a lower number of queries
is associated with less training data for the student model and fewer backdoors,
hence lower accuracy and ASR.

Fig. 2c illustrates that the aggregation threshold is crucial in defeating back-
doors and has minimal impact on utility loss. This finding complements previous
results suggesting the use of bagging against poisoning attacks. The threshold
forces the aggregation process to filter out uncertain data and backdoors, re-
sulting in higher accuracy and lower ASR in the student model. To the best of
our knowledge, this factor has not been considered in previous works as a major
contributor to the effectiveness of bagging.

Fig. 2d and 2e demonstrate the effect of selection noise and result noise used
in selecting and randomizing queries which form the basis of DP for PATE. We
found similar trends when one of the noises is fixed to a random positive value.
Based on these results, to defeat ASR we need a high result noise which leads
to a drop in accuracy. Since we fixed the number of queries and only varied the
noise values to control privacy, the privacy budget still remains as large as ε = 4
at a high noise level of 175.

Conclusion (Q1): PATE is very successful in defeating backdoor attacks. It
can be more successful than DP-SGD but it is highly sensitive to the algorithm
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Fig. 3. The impact of epsilon on DP and Label-DP methods using MNIST
(top) and CIFAR-10 dataset(bottom).

parameters. Result noise (Ã2) and the number of queries which are the most
influential parameters on the privacy budget (ε) decrease the ASR but also
cause a drastic decrease in the accuracy at the same time. Conversely, the best
result is achieved through tuning the threshold, although it cannot provide any
DP by thresholding alone.

7 Comparison of DP and Label-DP Methods

In this section, we compare all the DP and Label-DP algorithms to discover
which one and under what conditions are more successful.

7.1 Privacy Budget Analysis

The ϵ in DP and Label-DP serves two different goals. So we do not directly
compare the ϵ values of the two methods even though both can be reduced to
label DP [14]. Instead, what we focus on is the trade-off between accuracy and
ASR provided by varying ϵ of the two methods. We select the best parameters
from the results in the previous section to conduct the current experiment. These
best parameters lead to high accuracy and a low ASR. Wherever there is a trade-
off between accuracy and ASR, we prioritize accuracy. For MNIST, we do not
present those parameter selections due to the similar outcomes.

Fig. 3a,b compare the accuracy and ASR of the different methods for CIFAR-
10 with varying ϵ while 3c shows the trade-off of accuracy and ASR of different
methods (the ideal case correspond to 100%accuracy and 0% ASR). PATE can
achieve different levels of privacy by varying two factors: 1) noises (lime green
plots), and 2) number of queries (orange plots). The first observation is that
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Fig. 4. The significant impact of poisoned data on DP-based defense meth-
ods. The epsilon is fixed to 1 and then all the methods are compared by varying the
percentage of the training data that has been poisoned.

non-DP PATE outperforms all other results and methods (the rightmost point
of the lime green plot). It indicates the power of bagging with a threshold against
backdoor attacks. LP-2ST for some ϵ values works well. For instance, ε = 1 has
high accuracy (78%) and a significantly decreased ASR (39%). However DP-
SGD gives the best results when ε = 0.5. For ALIBI, both accuracy and ASR
drop proportionally.

Fig. 3d,e,f show similar trends for MNIST. Fig. 3f combines the results of
the two other columns by directly comparing the accuracy and corresponding
ASR. The rectangular areas with the hatched pattern in the last column consist
of the most desired results with high accuracy and dropped ASR regardless of
their privacy budget. This area includes different private algorithms, but mostly
PATE, which indicates the dominance of PATE.

Conclusion (Q2): The DP and Label-DP techniques effectively reduce the
vulnerability of backdoor attacks, albeit at the cost of decreased accuracy. If
the optimal approach is determined by the accuracy-to-ASR ratio, then the
superiority of each DP or Label-DP model depends on the allocated privacy
budget.

7.2 Attack Strength Analysis

We discussed the hyper-parameters and the privacy budget of the algorithm as
two factors that impact the immunity of the DP approaches against backdoor
attacks. A third factor that should be considered when assessing the level of
immunity is the strength of the attack itself. So far, we have synthesized powerful
attacks by poisoning 50% of the data with backdoors. However, in practice, the
attacker conceals her malicious activity by limiting the percentage of poisoned
data introduced into the pipeline. Therefore we change the percentage of the
backdoors in the base class to develop a range of more realistic and more powerful
(but less realistic) attacks.

Fig. 4 shows the accuracy and ASR with respect to the number of backdoors,
when the privacy budget for all DP algorithms has been fixed to ε = 1. We ob-
serve that the accuracy does not drastically change with respect to the number
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of backdoors, yet the ASR increases as the attack becomes more powerful. Look-
ing at the pattern, we can see that the DP algorithms almost entirely diffuse
the attack when the percentage of backdoors is sufficiently small. It should be
noted that the low accuracy of PATE is a result of controlling its privacy budget
by adding noise, rather than limiting the number of queries according to the
reasoning we had in section 6.2.

Conclusion (Q2): These results illustrate the effectiveness of DP-SGD, LP-
2ST, and ALIBI against more realistic backdoor attacks (with backdoor% ≤ 10).
For such attacks, the accuracy drops by 10%, and the attack achieves no success.
This is compatible with Equation (3) that shows that the attacker’s loss limit in
DP models is theoretically linked to the number of poisoned data.

7.3 Accuracy-Privacy Trade-off

To see the accuracy when a perfect defense is desired (close to 0 ASR), we have
analyzed different privacy budgets for each DP method and found the greatest
ε where the ASR does not exceed 1%. This small ASR is achievable when the
number of backdoors is insignificant (we set it to 10%). By doing so, we achieve
the least randomness that leads to a successful defense. After removing the
impact of the attack, we can have a fair comparison of accuracy and training
time.

Table 2. Comparison of the highest accuracy and epsilon that DP methods
can achieve while ASR=0.

DP-SGD PATE ALIBI LP-2ST

Accuracy 88.67 85.02 89.53 79.9

Epsilon 2 inf 2 0.9

Time 140s 220s 59s 58s

Table 2 highlights the best values of accuracy, privacy budget, and training
time in each row. The previous findings indicate that a deterministic version of
PATE, with noise removed, is the most resilient against attacks. However, when
the goal is to simultaneously defend against backdoors and protect privacy, this
result is not favorable for PATE. DP-SGD and ALIBI, with the same privacy
budget, can achieve better accuracy than PATE.

Finally, with respect to training time, two Label-DP methods demonstrate
a considerable reduction in training time, surpassing other DP techniques. It is
important to note that this experiment was conducted on a CIFAR-10 fine-tuning
task, where training time is negligible. However, in more complex architectures
with end-to-end settings, time may become a bottleneck for PATE and DP-SGD.

Conclusion (Q2): When a perfect defense is desired, Label-DP methods
offer the best efficiency and comparable or better accuracy trade-off compared
to DP approaches.
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8 Discussion and Conclusion

This paper posed important questions regarding the ability of DP to provide
robustness against backdoor attacks in practice. In addition to DP-SGD, we
explored the other commonly used DP algorithm (PATE) and two Label-DP
algorithms (LP-2ST and ALIBI) for the first time. We have several main findings.

First, the noise and randomness added to the private models can indeed
decrease the attack success rate of the backdoors, but at the cost of utility
drop for clean input. In a nutshell, a model trained with privacy guarantee
has an inherent benefit in robustness against backdoor attacks. This statement
holds for all four methods mentioned above. A somewhat unexpected outcome
is that PATE delivers the best results, even without the use of noise (without
DP guarantee) due to the ensemble based teacher-student structure.

Second, contrary to the claims of some previous studies, DP-SGD provides
good resistance against backdoors while keeping the accuracy relatively high.
We also observed the same phenomenon for Label-DP algorithms. The accuracy-
ASR trade-off is diverse among the DP and Label-DP methods we analyzed. One
model may outperform the others depending on the privacy budget, algorithm
parameters, and attack specifications. Therefore, it is possible to use DP models
as defense strategies. A proper selection of the above mentioned factors can
adequately balance the accuracy and ASR.

This work was an empirical study on two benchmark datasets, MNIST and
CIFAR-10. It offered new empirical insights into the connection between DP
and backdoor attacks in relation to existing theoretical understandings. Future
research could focus on exploring the impact of Label-DP on particular type of
poisoning attacks focusing on labels such as label-based flipping attacks. Ad-
ditionally, given the ability of DP methods to enhance robustness, there is an
opportunity to develop modified DP algorithms that offer greater protection
against poisoning attacks, and simultaneously fulfill both privacy and robust-
ness objectives.
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A Appendix

A.1 Experimental Setup Details

Training Configuration. For MNIST and CIFAR-10 datasets, we used differ-
ent architectures for neural networks. For CIFAR-10, the ResNet-50 head was
followed by an average pooling layer and two linear layers of size 256 and 10.
For MNIST, the neural network consisted of two convolutional layers with 16
and 32 filters, each of kernel size 8 and 4 followed by max pooling layers and
two final linear layers with 32 and 10 neurons. The learning rate of all four DP
and Label-DP algorithms was 0.001 and the number of epochs was fixed to 50.
In contrast to Label-DP algorithms where an SGD optimizer was good enough
to train the model, for DP-SGD and PATE we required to use more adaptive
optimizers, i.e. RMSProp and Adam, respectively.

Table 3. Parameters of the DP and Label-DP algorithms

Method Parameters

LP-2ST

1. 1. Data split ratio : The portion the training dataset split between two
training stages (more in the first stage helps with accurate prior but causes
underfit in the second stage)

2. 2. Temperature T : For logit zi and calculation of prior pi of class i, a
small T in pi =

exp(zi/T )∑
j
exp(zj/T )

boosts the confidence of the top classes and

a large T makes the priors more uniform
3. 3. Epsilon ε : Randomness parameter that is equivalent to the privacy

budget

ALIBI
1. 1. noise of soft training labels : Laplacian noise with δ = 0 which is

applied once and determines the privacy budget

B Label DP against Backdoors

In this section , we evaluate LP-2ST, and ALIBI as two Label-DP models. We
investigate if their randomness or other related parameters can help to miti-
gate the backdoor attacks. To this end, Table 3 presents the various parameters
involved in these algorithms.

B.1 LP-2ST vs. Backdoors

Since the Label-DP algorithms randomly change the labels, we found that the
accuracy in high noise fluctuate among multiple runs. So for each experiment
on LP-2ST and ALIBI, the accuracy and ASR are the averages of 10 trials. For
each figure from left to right, we pick a parameter shown on the x-axis (which
is chosen randomly) and apply it for the experiments in the succeeding figure.
For the first two figures, we set ε = 1.
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Fig. 5a demonstrates the effect of temperature with a random data split of
[80/20]. Compatible to [14], sparsifying the priors helps to improve the utility, but
to our surprise, it decreases ASR. We speculate the reason is that the backdoor
still has a touch of the base class. Thus the first round of LP-2ST predicts target
and base classes as the backdoors’ top-2 classes. The sparsified prior shifts the
probabilities of these two classes far away from zero, so the algorithm selects the
base class more confidently.

In Fig. 5b the training data has been partitioned for two stages. [p1/p2] on
the x-axis indicates the percentage of the data in stage 1 and stage 2 of LP-2ST,
respectively. When 100% of data is allocated to the first stage, it means that we
are using LP-1ST with RR. There is not a clear pattern between ASR and data
split. But an LP-2ST model with more data in the first stage has more enhanced
priors and higher accuracy. Fig. 5c compares different privacy budgets ε, which
is the random factor of the RR algorithm. Naturally, more randomness helps
to decrease the ASR. The results for ε = 1 are particularly impressive since it
drops the ASR to less than 40%, while the accuracy is still roughly 80%.

Conclusion: Surprisingly, even though Label-DP only randomizes the la-
bels, it is still successful against backdoor attacks. In this success, all parame-
ters are involved, but noise has the major impact. LP-2ST can vividly mitigate
the attack, but it is very important which ε is selected to obtain a reasonable
accuracy-ASR trade-off.

Fig. 5. The impact of temperature, data split between two stages and epsilon
on LP-2ST (from left to right). Epsilon, the factor of privacy-preserving in LP-
2ST, can drastically deteriorate the ASR with an acceptable utility cost (c).

B.2 ALIBI vs. Backdoors

According to Fig. 6, ALIBI with higher noise drops both accuracy and ASR
proportionally. This can be justified by the fact that all the labels randomly
change just once at the beginning of the training.

Conclusion: On average, ALIBI can mitigate the effect of backdoor attacks
but with reduced utility costs.

B.3 Training Process

In this section, we compare the training process of DP-SGD, LP-2ST, and ALIBI
on CIFAR-10. These comparisons are based on two privacy budgets ε = ∞



20 F. Razmi et al.

Fig. 6. Effectiveness of randomizing labels on reducing ASR in ALIBI. The
noise added to one-hot labels in ALIBI impacts both accuracy and ASR proportionally.

and ε = 1, to provide an overview over the training process with and without
randomness. For LP-2ST, we only illustrate the training of the second and final
stage of the algorithm. In Fig. 7, each column demonstrates a different method,
and each row indicates one of the privacy budgets. For all three differentially
private methods, on the first row, with ε = ∞, the loss of the backdoor samples
drops below the clean loss on early training epochs. It is the opposite for all three
methods when ε = 1 on the second row. For LP-2ST the backdoor loss does not
converge to the clean loss and remains higher. It is consistent with the results
of LP-2ST at ε = 1 in Fig. 5c. For ALIBI the clean and backdoor losses change
very closely. It explains the similar values for the ALIBI accuracy and ASR in
Fig. 6. DP-SGD can resist the backdoor samples on early epochs. So one of the
suggestions is to stop the training early to avoid backdoors from overfitting.

Conclusion: During DP training, the model underfits or suppresses the
backdoor samples which results in defusing the backdoors’ impact on the model.
This finding confirms the results of the paper.

Fig. 7. An overview of the training process of LP-2ST, ALIBI and DP-SGD
using ε = ∞ (upper) and ε = 1 (lower).
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