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Abstract

Recent developments in shape reconstruction and comparison call for the use of many different (topological)
descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework
to quantitatively compare the strength of different descriptor types, setting up a theory that allows for future
comparisons and analysis of descriptor types and that can inform choices made in applications. We use this
framework to partially order a set of six common descriptor types. We then give lower bounds on the size
of sets of descriptors that uniquely correspond to simplicial complexes, giving insight into the advantages of
using verbose rather than concise topological descriptors.

1 Introduction

The persistent homology transform and Euler characteristic transform were first explored in [41], which shows the
uncountable set of persistence diagrams (or Euler characteristic functions, respectively) corresponding to lower-
star filtrations in every possible direction uniquely represents the shape being filtered. That is, the uncountable
set of topological descriptors is faithful for the shape. Faithfulness of topological transforms is closely related
to tomography [22,39], and the alternate proof of faithfulness given in [16] makes use of tools from this field.
Of course, applications can only use finite sets of descriptors, which are not guaranteed to be faithful. This
motivates theoretical work on finding finite faithful sets of descriptors [3,7,13,32], and such work supports the
use of topological descriptors in shape comparison applications. Many descriptor types are used in applications,
such as versions of persistence diagrams [4,21,23,37,42,45], Euler characteristic functions [1,6,20,26,31, 33, 36],
Betti functions [15,25,35,38,44, 46], and others [2,17,40].

Faithfully representing a shape with a small number of descriptors is desirable for computational and storage
reasons. How, then, should investigators choose the particular topological descriptor type to use in applications?
While computational complexities of computing each topological descriptor type are well-studied, it is not yet
known how the use of particular descriptor types impacts the minimum size of faithful sets. This uncertainty
motivates our main questions: how can we rigorously compare descriptor types in terms of their ability to uniquely
correspond to shapes, and how do popular descriptor lypes compare?

We prove the partial order of Figure 1. Additionally, we provide lower bounds on the cardinality of faithful sets

verbose Euler ~ verbose verbose
haracteristic functions — \_ Betti functions = persistence diagrams

concise Euler ~ concise ~ concise

characteristic functions — \ Betti functions / — persistence diagrams

Figure 1: Summary of the relations between common descriptor types. For example, concise persistence diagrams
are always at least as eflicient as concise Betti functions at forming faithful sets, where efficiency is measured by
cardinality of faithful sets.

for both concise and verbose descriptors, and identify properties that indicate concise descriptors are generally

much weaker than verbose descriptors. This suggests applications research may benefit from the use of verbose
descriptors instead of the more widely adopted concise descriptors.

2 Preliminary Considerations

In this section, we provide background and definitions used throughout.
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Simplicial Complexes and Filtrations We assume the reader is familiar with foundational ideas from
topology, such as homology, Betti number (8x) and Euler characteristic (x). See, e.g., [9,18]. For a simplicial
complex K and ¢ € N, we use the notation K; for the set of its i-simplices and n; as the number of i-simplices.
Furthermore, we assume our simplicial complexes are abstract simplicial complexes immersed in Euclidean space
such that each simplex is embedded and the vertices are in general position. Specifically, this is:

General Position 1. A simplicial complex K immersed in R? is in general position if, for all V C Ky with
V| < d+1, the set V is affinely independent

A filter of K is a monotone map f: K — R such that, each sublevel set f~!(—o0,t] is either empty or
a simplicial complex. Letting F(t) := f~!'(—o0,t], the sequence {F(t)}icr is the filtration associated to f.
For each k € N, the inclusion F(i) — F(j) induces a linear map on homology, Hy(F(i)) — Hp(F(j)). We
write 8,7 (K, f) to mean rank of this map, or simply 5,7 if K and f are clear from context. We call a filter
function f’ : K — {1,2,...,#K} a compatible index filter for f if, for all 7,0 € K with f(7) < f(o), then we
have f'(r) < f'(o). Every filter function has at least one compatible index filter.

The lower-star filter of a simplicial complex K immersed in R? with respect to some direction s € S, is
the map fs : K — R that takes a simplex o to the maximum height of its vertices with respect to direction s,
ie., fs(0) :=max{s-v|v € KynNo}, where s-v denotes the dot product.

Faithfully Representing a Simplicial Complex Since we define relations based on the ability of descriptor
types to represent particular filtrations of simplicial complexes, we take the following definition.

Definition 1 (Topological Descriptors). A (topological) descriptor type is a map whose domain is the collection
of filtered simplicial complexes. Given such map, D, a (topological) descriptor of type D is the image of a specific
filtered simplicial complex under D.

When considering many filtrations of the same simplicial complex, we may index the filtrations by some
parameter set, P. If a descriptor of type D corresponds to a filtration of a simplicial complex K where the
filtration is parameterized by p € P, we use the notation D(K,p), or D(p) when K is clear from context. We
refer to the parameterized set of descriptors as D(K, P) := {(p, D(K,p)) }pep-

We compare descriptor types by their ability to efficiently and uniquely identify a shape. The ability for a
set of descriptors to uniquely identify a shape is formalized as follows:

Definition 2 (Faithful). Let K be a simplicial complex, P parameterize a set of filtrations of K, and D be
a topological descriptor type. We say that D(K, P) is faithful if, for any simplicial complex L we have the
equality D(L, P) = D(K, P) if and only if L = K.

To unpack the equality D(L, P) = D(K, P), recall D(K, P) := {(p, D(K,p))}pep. Thus, D(L, P) = D(K, P)
if and only if for all p € P, we have D(K, p) = D(L, p). Then, D(X, P) is faithful if and only if

() {E' cR*|D(K',p) =D(K,p)} = {K}. (1)
pEP

From this perspective, we prove the following lemma providing a sufficient condition for finite faithful sets.

Lemma 1 (Sufficient Conditions for Finite Faithful Set Existence). Let K be a simplicial complex immersed
in R and let D be a type of topological descriptor that can faithfully represent K. Suppose there exists a finite
set of descriptors of type D that is faithful for Ky. Then, there exists a finite faithful set of descriptors of type D
that is faithful for K.

Proof. Let P be a parameter set such that D(K, P) that is faithful for K, and let Py be a finite parameter set
such that D(K, Py) that is faithful for Ky. Let B be the set of simplicial complexes that are indistinguishable
from K using only parameter set Py; that is,

B:= () {K' cR?|D(K',p) = D(K,p)}. (2)
JASE50)

Since P, is faithful for K¢, we know that B C {K' | K = Ko}, i.e., B is a subset of all simplicial complexes built
out of the vertices of K. In particular, we note that this set is finite; since nyq is finite, there are a finite number
of simplicial complexes we can build over this set of vertices.

If B = {K}, we are done. Otherwise, since D(K, P) is faithful for K, for each L # K in B, there exists
some pr, € P such that D(L,pr) # D(K,pr). Let P* = PU{pr | L € B}. Then, D(K, P*) faithfully represents K.
Furthermore, since P and B are finite, we also know that P* is finite. O



3 Six Common Descriptor Types

The set we partially order is the strength equivalence classes of six popular descriptor types, which we define
here. We begin with concise persistence diagrams.

Definition 3 (Concise Persistence Diagram). Let f : K — R be a filter function. For k € N, the k-dimensional
concise persistence diagram is:

) N
pi ={@i, )" " st (i,j) R
and p(9) = i1 _ gid _ gi=1d=1 4 gi=li}

where R = R U {00} and (i,7)™ denotes m copies of the point (i,§). The concise persistence diagram of f,
denoted p?, is the indexed union of all k-dimensional concise persistence diagrams pf := UkeNpi.

Since simplices can appear at the same parameter value in a filtration, not all cycles are represented in the
concise persistence diagram. However, having every simplex “appear” in a topological descriptor is helpful, in
addition to being natural. Thus, we introduce verbose descriptors, which contain this information. We define
verbose descriptors via compatible index filtrations; by Lemma 52 and Corollaries 54-55 of [12], this is well-defined
and independent of our choice of compatible index filtration. We begin with verbose persistence diagrams:

Definition 4 (Verbose Persistence Diagram). Let f : K — R be a filter for K, and let ' be a compatible index
filter. For k € N, the k-dimensional verbose persistence diagram is the following multiset:

ol = {0 f(0) st o) e ol }

The verbose persistence diagram of f, denoted pf, is the indexed union of all ﬁi.

Recording invariants other than homology leads to other topological descriptor types; recording Betti numbers
gives us concise or verbose Betti functions.

Definition 5 (Betti Functions). Let f: K — R be a filter function. The kth concise Betti function, ﬂ{: R—7Z,
is defined by
BE() = Be (7 (—o00,1]).

The indexed collection of such functions for all dimensions, 37 := {ﬂ,’: | k € N}, is the concise Betti function.

Let f" be an index filter compatible with filter function f. We call o € K positive (respectively, negative)
for By if the inclusion of o into the index filtration of f’ increases (resp., decreases) . We denote the positive
(resp., negative) simplices by K;" C K}, (and K, .y € Kiy1). Then, the kth verbose Betti function, B}: ‘R — 72,
is defined by

Bl () = (|{a € Kf st fo) <),

|{o € Ky s.t. f(o) Sp}’).

The collection of verbose Betti number functions for each dimension is known as the verbose Betti function and

is denoted Bf.
If we record Euler characteristic in a filtration, we obtain concise or verbose Fuler characteristic functions.

Definition 6 (Euler Characteristic Functions). Let f: K — R be a filter function. The concise Euler character-
istic function, x/ : R — Z, is defined by:

X! (0) = x ({f 7 (—o0,p]}).

Let f' be an index filter compatible with f. We call 0 € K even (respectively, odd) if the dimension of o is
even (resp., odd). Denoting the set of even (resp., odd) simplices by E (and O), the verbose Euler characteristic
function, ¥/ : R — Z2, is defined by

()= (o € E st f(o) <pllo €0 st f(o) <pl).

In other words, X! represents x! as a parameterized count of even- and odd-dimensional simplices.

IEuler characteristic functions and Betti functions are sometimes called Euler (characteristic) curves or Betti curves.



In each of the descriptor types above, we drop the superscript f when it is clear from context. See Appendix A
for examples of these descriptor types. While concise descriptors may feel more familiar, verbose descriptors are
not new. Many algorithms for computing persistence (e.g., [9, Chapter VII]), explicitly compute events with
trivial lifespan. In [27], the definition of persistence diagrams agrees with our Definition 4. Verbose descriptors
are closely connected to the charge-preserving morphisms of [14,28]. In [43], verbose persistence is defined via
filtered chain complexes; [5,29,30,47] also take this view as a foundational definition. The behavior of verbose
versus concise descriptors is explored in [10,30, 48].

Verbose (concise) descriptors are sometimes called augmented (non-augmented, respectively) in the literature.
We refer to points on a verbose diagram with zero-lifespan as instantaneous. Such points correspond to length-
zero barcodes in a verbose barcode, which are sometimes referred to as ephemeral.

While we chose the six descriptor types above due to their relevance in applications, we emphasize that
Definition 1 is very general. We explore a few pathological descriptor types in Appendix B.

4 Relating Descriptor Types

We now develop tools to compare descriptor types, by comparing the sizes of faithful sets. We note here
that |D(K, P)| = |P|, and for brevity of notation, we elect to write the later. Given a topological descriptor
type D and simplicial complex K immersed in R?, we denote the infimum size of faithful sets for K as

I'(K,D) := {1P[}

Intuitively, the stronger D is, the smaller I'(K, D). Often, we find I'(K, D) is finite. For some descriptors
and K, we find I'(K, D) = Rq (the cardinality of N) or I'(K, D) = ¥y (the cardinality of R); see Appendix B
for examples. If no faithful set of type D exists for K, we write inf,cg{x} = R+, and we think of this as “the
highest” cardinality.? By the axiom of choice, Ry < Ny; see e.g., [19, Ch. 2]. Thus, we have a total order on
possible values of T'(K, D):

inf
D(K,P) faithful

c< Ny <Ny <NT,
where ¢ € N.

Definition 7 (Strength Relation). Let A and B be two topological descriptor types. If, for every simplicial
compler K immersed in R?, we have I'(K,A) > I'(K,B), then we say that A is weaker than B (and B is
stronger than A) denoted [A] <X [B]. If [A] <X [B] and [B] =< [4], then we say that A and B have equal strength,
denoted [A] = [B].

The relations = are < are well-defined on strength equivalence classes.

Lemma 2. The relation = is an equivalence relation, and the relation = is well-defined on sets of strength
equivalence classes.

Proof. When we compare infimums in Definition 7, we compare values in N U {Ng, Ny, N+}. The relation < on
values in this set is reflexive, antisymmetric, and transitive. The relation = on this set is reflexive, symmetric,
and transitive. The result follows. O
See Example 1 of Appendix B for two different descriptor types in the same equivalence class.
We write [A] < [B] if [A] < [B] and [A] # [B]. That is, if [A] < [B] and there exists a simplicial complex
for which the minimum faithful set of type B is strictly smaller than that of type A, or for which there exists a
faithful set of type B but not of type A. Descriptor types need not be comparable; see Lemma 12 of Appendix B.

We conclude this section by defining reduction of one descriptor to another and show this is a valid strategy
for determining equivalence class order.

Definition 8 (Reduction). Let A and B be two topological descriptor types. We say B is reducible to A if, for
all simplicial complexes K and any filtration f of K, we can compute A(f) from B(f) alone.?

Intuitively, B is at least as informative as A. More formally, we have the following lemma:
Lemma 3. Let A and B be two topological descriptor types. If B is reducible to A, we have [A] < [B].
Proof. Let K be a simplicial complex. Define the sets

Wa :={P s.t. A(K,P) is faithful} and Wp :={P s.t. B(K, P) is faithful}.

For each P € Wy, by definition, A(K, P) is faithful. Since B is reducible to A, this also means B(K, P) is
faithful, and so P is also in Wg. Hence, W4 C Wg. Hence, infpew, |P| > infpcw, |P|. Note that these are
exactly the infimums in Definition 7, and so, we have [A] < [B]. O

2We hope any discomfort caused by our use of Rt will be outweighed by the benefit of being able to avoid lengthy and awkward
case analyses.
31In this reduction, we assume the real-RAM model of computation.



5 A Proof of Partial Order

In this section, we provide a partial order on the six topological descriptors of Section 3. While the results and
definitions of previous sections were general, we now focus on descriptors corresponding to lower-star filtrations.
By simple reduction arguments, we immediately have the following lemma.

Lemma 4. [x] < [8] < [p] and [¥] < [3] < [3]-

Proof. The proof follows directly from a reduction argument. We can reduce any p(s) to 3(s) by “forgetting”
the relationship between birth and death events. We can then reduce S(s) to x(s) by taking the alternating
sum of points from S(s). A nearly identical argument shows the relationship between verbose versions of these
descriptors. [

The reductions described above are well-known, and are observed in other work; for example [7, Prop 4.13]
points out the reduction from a persistence diagram to an Euler characteristic function.
We also use reduction to order a class of a concise descriptor type and its verbose counterpart.

Lemma 5. [x] < [¥], [8] <[], and [p] = [4].

Proof. Each verbose descriptor has a clear reduction to its concise counterpart. A verbose persistence diagram
becomes a concise persistence diagram by removing all on-diagonal points. Verbose Betti functions and verbose
Euler characteristic functions become concise if we subtract their second coordinates from their first coordinates.
Then, by Lemma 3, we have the desired relations. O

Next, we see that no concise class is equal to a verbose class.
Lemma 6. For D € {x,,p} and D € {, 53,5}, we have [D] # [D].

Proof. To show inequality of strength classes, we find a simplicial complex for which minimum faithful sets of
type D and D have different cardinalities. Let K be the simplicial complex that is a single edge in R? with vertex
coordinates (1,1) and (1,2). See Figure 2 for this complex, and an illustration for the specific case D = p. In the
direction e; = (1,0), if D = j, we see an instantaneous birth/death and an infinite birth in degree zero. If D =3,
we see two positive simplices and one negative simplex for Betti zero. If D= X, we see two even simplices and
one odd simplex. This all occurs at height 1, and there are no other events, which is only explainable by the
presence of a single edge. From D(ey), we see a non-instantaneous and instantaneous event at heights 1 and 2,
respectively, which give us the y-coordinates of our two vertices. Then, K is the only complex that could have
generated both D(e;) and D(ey), i.e., the set D(K, {ey, ep}) is faithful.

Next, consider the descriptor type D. For any s € S, D(s) contains exactly one event; if the lowest vertex
of K with respect to s has height a in direction s, then D(s) records a change in homology/Betti number/Euler
characteristic at height a and records no other changes. Thus, D(s) can only give us information about one
coordinate of the vertex set of K at a time, corresponding to whichever vertex is lowest in direction s. However, K
has three relevant coordinates; namely, x = 1, y = 1, and y = 2, meaning it is not possible for any faithful set of

type D to have size less than three. Thus, since 3 # 2, we have shown [D] # [D], as desired. O

The specific inequality [x] # [¢] is also implied by [32, Thm. 10].

In [13], faithfulness is shown via knowing the dimension of event rather than any birth-death pairings, so the
resulting faithful sets of verbose persistence diagrams and verbose Betti functions have equal cardinality for every
simplicial complex. One might wonder, then, if [p] equals [8]. However, this is an incorrect leap; faithful sets
of [13] are almost certainly not minimal. The next lemma gives an instance where birth-death pairings matter,
rather than just an event’s existence or dimension.

Lemma 7. [3] < [f].

Proof. We know by Lemma 4 that [3] < [p]. We must show that equality does not hold; that is, that there exists
a simplicial complex for which the cardinality of the minimal faithful sets of verbose Betti functions and verbose
persistence diagrams differ. Consider the simplicial complex K in R? consisting of: four vertices v; = (0,0), vy =
(0,1),v3 = (1,0), and vy = (1,1) and two edges [v1,v4] and [v2,v4], as in Figure 3(a).

Let e; = (1,0) and ez = (0,1). We first claim that p(K, {e1,ez}) is faithful, meaning I'(K, p) < 2. Such
diagrams uniquely identify the vertex set of K by [3, Lemma 4]; we provide further details here. From j(e1), we
know K has four vertices, two with z-coordinate 0, and two with z-coordinate 1. Similarly, from j(es), we know
two of the four vertices have y-coordinate 0 and two have y-coordinate 1. There are exactly four ways to pair
our z- and y-coordinates, so we know the locations of each vertex. See Figure 4(b).

For the edges, we first note that from j(e3) in degree zero we see an instantaneous birth/death at height one
as well as a connected component born at height zero that dies at height one, so we know K has exactly two
edges with height one in direction e;. Namely, we know we have either the edges [v1, v3] and [va, v3], or [v1, v4]
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Figure 2: The simplicial complex considered in the proof of Lemma 6 as well as the verbose diagrams in direc-
tions e; and es. Note that p(K,{e1,ea}) is indeed a faithful set, since we can recover the coordinates of both
vertices (p(K, e1) tells us the z-coordinates and p(K, eq) tells us the y-coordinates), as well as determine there is
only a single edge present (there is only one instantaneous zero-dimensional point in each verbose diagram). The
concise versions of these diagrams do not have on-diagonal points, and each only contain a single point at co.
This is true for concise diagrams corresponding to any direction.

V@ Uy Vg Uy

Yy Uy V0 Uy
(a) K (b) K’

Figure 3: Complexes used in the proof of Lemma 7.

and [vz,v4], i.e., we have one of the two complexes shown in Figure 3. Because p(eq) sees two zero-dimensional
births at height zero with an infinite lifespan, we know there is no edge from vy to v3. Finally, since higher
homology is trivial, we know there are no other simplices and have determined K exactly; thus, we have a
faithful set of size two.

We next show that T'(K, B) > 2. Suppose, by way of contradiction, that s; and s; are two directions such
that B(K, {s1,s2}) is a faithful set. We first show, without loss of generality, s; € {e1, —e1} and ss € {ea, —ea}.
Suppose this is not the case. Because s; = —s3 does not correspond to a faithful set, we assume (without loss of
generality) that s; £ —ss. Then, at least one of s1 or s5 sees the vertices of K at more than two distinet heights;
see Figure 4(a). In order to know the precise coordinates of each vertex, we need to correctly pair heights in
directions s; and ss. However, since at least one of s1 or ss reports more than two distinct heights, we have
more than four possible pairings (see also [3, Lemma 4]). We claim it is not possible to find the four correct
pairings. The degree-zero information fSy(s1) and Sy(ss) alone is insufficient, as it only tells us the heights of
vertices. From B, we know the height of edges, which only confirms the height of the top vertex and that there is
some vertex below, information we already had from B(). Thus, we must have s1 € {e1,—e1} and s € {ea, —ea}.
However, for each of these four directions, the associated verbose Betti function is not able to distinguish the
two complexes shown in Figure 3(b). For instance, both 8 (K,e1) and 8 (K',e1) see two vertices at height zero,
and two vertices and two edges at height one, i.e., B(K, e1) = B(K’, e1). The other cases of s1 and so are similar.
Thus, we have found a faithful set of verbose persistence diagrams with cardinality two, but have shown any
faithful set of verbose Betti functions must have cardinality greater than two. O

Combining results, we arrive at our main theorem.

Theorem 1 (Partial Ordering). The partial order of strength classes of topological descriptor types shown in
Figure 1 is correct.

6 Bounds on Faithful Sets

Here, we provide lower bounds on the size of faithful sets of the six descriptor types of Section 3.
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Figure 4: For the given vertex set, heights of filtration events in the indicated directions are shown as dashed
grey lines. While we know the number of vertices on each line, for two directions not both in {£e;, fes}, as
in (a), we can not identify vertex locations. Only when choosing one each of +e; and +ez, as in (b), is the set
of vertices satisfying these constraints unique.

6.1 Concise Descriptor Bounds

A defining feature of concise descriptors is that there are not generally events at every vertex height in a filtration.
The closer a feature is to coplanar, the smaller the range of directions that can detect it becomes ([11, Sec. 4]
explores this specifically for Euler characteristic functions). Difliculty detecting the presence or absence of
structures near to the same affine subspace puts greater restrictions on the ability of concise descriptors to form
faithful sets. We use the following definition to help this claim be precise.

Definition 9 (Simplex Envelope). Let K be a simplicial complex in R?, let o0 € K, and let S € S, Then, we
define the envelope of o, denoted £, as the intersection of (closed) supporting halfspaces

;= [MpeR!|s p=min(s-v)}.
sES

If S is clear from context, we write £,. By the dimension of &,, we mean the largest dimension of ball that can
be contained entirely in &, .

See Figure 5. Since £7 is an intersection of convex regions, it is itself convex. Furthermore, with respect to

Figure 5: Given S = {s, s'}, the envelope for o is the grey and pink shaded regions.

each s € S, the height of each point of o is greater than or equal to its minimum vertex, so £ contains o.

Remark 1. The simplex envelopes of Definition 9 have connections to well-studied topics such as convez cones,
support functions, etc. See [8, 34]. In particular, [84, Thm 3.1.1, Cor 3.1.2] establish that a simplex envelope
corresponding to the entire sphere of directions is the simplex itself.

We use simplex envelopes to define a necessary condition for concise descriptors to form a faithful set.

Lemma 8 (Envelopes for Faithful Concise Sets). Let K be a simplicial complex immersed in R?, let D € {x, 3, p},
and let S C S s0 that D(K, S) is faithful. Then, for any mazimal simplex o in K, the dimension of £, equals
the dimension of 0.

Proof. Let k be the dimension of ¢, and let ¢ be the dimension of £;. First, we observe that since ¢ is contained
in &, we must have & < ¢. The claim is trivial when & = d, so we proceed with the case £ < d and assume, by
way of contradiction, that £ < c.



We claim that in this case, 1) at every interior point of o, there is a vector normal to o that ends in the
interior of &, and 2) letting p denote the endpoint of such a vector, p is higher than the lowest vertex of o with
respect to each s € S.

The first part of the claim, 1), is true since otherwise, &, would be k-dimensional. 2) is true since each
halfspace defining &£, contains the lowest vertex (or vertices) of o with respect to the corresponding direction.
Thus, since p is in the interior of &, it must be higher than this lowest vertex (or vertices) with respect to the
corresponding direction.

Now consider the simplicial complex K’, defined as having all the simplices of K in addition to the simplex
formed by taking the geometric join of p and o, i.e., the simplex p * . We claim that, for any s € S, we
have D(K', s) = D(K, s). First, we note that since p* o deformation retracts onto o, K’ has the same homology
as K. Next, we observe that D(K”, s) and D(K, s) cannot differ by more than a connected component birth/death;
higher dimensional differences would require more than the join of a point with an existing face.

Finally, since p is higher than the lowest vertex of o with respect to any direction s € S, the simplex pxo € K’
does not correspond to any connected component birth or death in D(K’,s) that was not present in D(K, s).
Thus, we have shown D(K',S) = D(K, S). This contradicts the assumption that D(K, S) is faithful, so we must
have £ =c. |

7 M
s@© s@

(a) (b)

Figure 6: With only the single direction s perpendicular to maximal edge ¢ in R?, the envelope £ is two-
dimensional. Then, we could place an adversarial two-simplex contained in £ that is undetectable by D(s),
for D € {x, B, p}, as in (a). In (b), the inclusion of s’ reduces 55{5’5 } to a linear subspace (purple intersection of
pink and blue halfspaces) and the adversarial two-simplex would be detected by D(s’).

See Figure 6 for an example of what might go wrong if a simplex envelope does not satisfy the conditions
of Lemma 8. Since we require the envelopes of a k-simplex to be k-dimensional, and since envelopes are the
intersections of closed half spaces, standard arguments from manifold theory give us the following.

Corollary 1 (Concise Descriptors Per Maximal Simplex). Let K be a simplicial complex immersed in RY,
let D € {x,B,p}, and let S C S 1. If D(K,S) is faithful, then for each mazimal k-simplex o0 € K with k < d,
the set S has at least d — k + 1 directions perpendicular to o. If k < d — 1, these directions are pairwise linearly
independent.

Lemma 8 and Corollary 1 each give us the following.

Corollary 2 (Tight Lower Bound). Let K be a simplicial complez in R?, D € {x,8,p}, and S C S¥~1. Suppose
that D(K, S) is faithful. Then, |S| > d+ 1, and this bound is tight.

This bound is met whenever K is a single vertex. However, minimal faithful sets of concise descriptors
are generally much larger. Counteracting the need for perpendicular directions is the fact that, as d increases,
more simplices span common hyperplanes, so perpendicular directions can increasingly be shared. We use these
observations to lower bound the worst-case size of faithful set of concise descriptors.

Theorem 2 (Lower Bound for Worst-Case Concise Descriptor Complexity). Let D € {x, 3,p} and let K be a
simplicial complex in R? with n, edges. Then, the worst-case cardinality of a minimal faithful descriptor set of
type D is Q(d +nq).

Proof. We construct a simplicial complex, K, and bound the minimum cardinality of a faithful set for K. Suppose
that, for d > 2, that K is a graph in R? with ny < d—1 edges, and for some S C S~ 1, the set D(K, S) is faithful.
Then, by Lemma 8, the envelope of each maximal edge ¢ must be one-dimensional. Then, by Corollary 1, for
every such o, § contains d — 1 + 1 = d pairwise linearly independent directions perpendicular to . Let S* be a
minimal subset of directions in S satisfying the conditions of perpendicularity and one-dimensional envelopes.
To build §*, first note all edges of K are contained in a common 7-plane, so there is a (d — ny — 1)-sphere’s
worth of directions perpendicular to all edges simultaneously. Such directions are maximally efficient in the sense
that each can “count” for all edges at once. We choose any d — 1 pairwise linearly independent directions from
this sphere to be included in $*. Now we need an additional perpendicular direction for each edge to bring the



total for each edge to d. To ensure the envelopes of each edge are one-dimensional, these additional directions
must not be perpendicular to any hyperplane defined by subsets of more than one edge. This means we must
consider a total of n; additional directions, so that S* has cardinality d — 1 4 ny. Since |S*| lower bounds |S5],
we find |S| € Q(d + n1). O

6.2 Verbose Descriptor Bounds

We now shift to verbose descriptors, and begin with the tight lower bound.

Lemma 9 (Tight~ Lower Bound). Let K be a simplicial complex in R? and D e {)Z,B,ﬁ}. Suppose for some
S C S the set D(K,S) is faithful. Then, |S| > d, and this bound is tight.

Proof. No vertex in K can be described using fewer than d coordinates, so a set of descriptors of type D with
cardinality less than d can never be faithful. To see that this bound is tight, when K is a single vertex, verbose
descriptors generated by any d pairwise linearly independent directions form a faithful set. O

Next, we identify a family of simplicial complexes for which minimal faithful sets of verbose descriptors are at
least linear in the number of vertices. We use «; ; to denote the angle that vector v; — v; makes with the z-axis,
taking value in [0, 27). We first observe a consequence of a specific instance of the general phenomenon that a
simplicial complex stratifies the sphere of directions based on vertex order [7,24].

Observation 1. Suppose a simplicial complex in R? contains an isolated edge [v1,vs]. Then, a birth event occurs
height s - vy in p(K, s) for all s the interval I = (10— /2,012 +7/2) of S' (all s so that s-vy > s-vy) and as
an instantaneous event for all s € I€.

Next, we make the following geometric observation.

Observation 2. Consider a pair of nested triangles as in Figure 7. Then, angle A is larger than 6, ¢ — B,
and ¥ — C.

0

Figure 7: Nested triangles as discussed in Observation 2

We now construct the building block that forms the complexes used in our bound.

Construction 1 (Clothespin Motif). Let K be a simplicial complez in R? with a vertex set {v1,v2,v3,v4} such
that only vz is in the interior of the convex hull of {v1,v2,v4}, and that the edge set consists of [v1, va] and [vs, v4].
See Figure Sa.

Uy Uy
Us .Q.
o—
Uy Uy G U,
(a) K (b) K’

Figure 8: The two simplicial complexes of Lemma 10.

Construction 1 was built specifically for the following necessary condition:

Lemma 10 (Clothespin Representability). Let K be as in Construction 1, and suppose that p(K,S) is faithful.
Then, there is some s € S so that the angle formed between s and the x-axis lies in the region

W = [043,277’(/2,@3’4771'/2]U[CM372+7T/2,05374+7T/2].



Proof. Let K’ be a simplicial complex immersed in R? with the same vertex set as K, but with edges [v1, v4]
and [vz, vs] (see Figure 8b). Recall that, since p(K,S) is faithful, by definition, the set S must contain some
direction s so that p(K, s) # p(K', s).

Fach vertex corresponds to either a birth event or an instantaneous event depending on the direction of
filtration. We proceed by considering each vertex v; individually and determining subsets R; C S' such that,
whenever s € R;, the event at s-v; is different when filtering over K versus K', but for s, € R;, the type of event
at s. - v; is the same between the two graphs. Figure 9 shows these regions, and in what follows, we define them
precisely.

First, consider v1. By Observation 1, v; € K corresponds to a birth event for all directions in the interval
B = (a12—7/2,04 2+ 7/2) and v; € K’ corresponds to a birth event for all directions in the interval B’ =
(01,4 — /2,004 + 7/2). Then, we write Ry = (B\ B’) U (B’ \ B), which is the wedge-shaped region such that
for any s € Ry, the type of event associated to v; € K and vy € K' differ, meaning p(K, s) # p(K’, s).

Using this same notation, identify the wedge-shaped region R; for vertex i € [2,3,4] such that any direction
from R; generates verbose persistence diagrams that have different event types at the height of vertex v; when
filtering over K versus K'. Similar arguments for ¢ € [2, 3, 4] give us the complete list;

a2+ 7/2, 004 +7/2)
Qo3+ 7m/2, 021+ 7/2)
a3+ /2,034 + 7/2)
14+ 7/2, 034 +7/2)

Ry = (oo —7/2,004 —7/2] U]
Ry = (g3 — /2,001 —7/2] U]
Ry =(as2—7/2,034 — /2] U]
Ry =(oga—7/2, 034 —7/2] U]

Let W = UL, R;, meaning W is the set of directions for which the corresponding filtrations have different event
types at some vertex of K and K’. Then, for any s € W, we have p(K,s) # p(K',s), and for any s. € W¢, we
have p(K, s.) = p(K’,s5.).

Finally, we claim that W is the closure of R3, denoted Rs, i.e., exactly the region described in the lemma
statement. This is a direct corollary to Observation 2; the angles swept out by each region correspond to the
angles formed by pairs of edges in K and K'; in particular, the angle Lvsvgvy is the largest and geometrically
contains the others. This means the extremal boundaries over all R;’s are formed by the angles as 3 £ 7/2 and
ag4 £ 7/2, the defining angles of R3. Each of these four angles appears as an included endpoint for some R;,
s0 Ry, Ro, Ry C R3 = W (Figure 9) and we have shown our claim. [

R;

Figure 9: The regions described in the proof of Lemma 10, with additional shading in the interior of the sphere
of directions to aid in visibility. K is shown as solid black edges and K’ as dashed edges. For any lower-star
filtration in a direction contained in R;, the event at vertex v; differs when considering K or K’, thus, such
directions are able to distinguish K from K’. Note that any direction outside the regions of observability (i.e.,
the non-shaded portions of the circle) is not able to distinguish K from K'.

We call W, the intervals of directions in S for which corresponding verbose descriptors can distinguish K
from K’ a clothespin's region of observability (similar to observability for concise Euler characteristic functions
in [7,11]). Crucially, W is defined by Lvsv3vs, so we have the following.

Remark 2 (W Can be Arbitrarily Small). As the angle Lvsvzvy approaches zero, the region of observability
from Lemma 10 also approaches zero.

We use Remark 2 to piece together clothespins so their regions of observability do not overlap.
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Construction 2 (Clothespins on a Clothesline). Let K be a simplicial complex in R? formed by m copies of
Construction 1 (m clothespin molifs) such that the regions of observability for each clothespin do not intersect.
This is possible for any m by Remark 2.

See Figure 10. Construction 2 implies a lower bound on the worst-case cardinality of faithful sets of verbose
persistence diagrams, which we formalize in the following lemma.

Figure 10: An example of K" for m = 4. Regions of observability are shown below each clothespin. By
construction, each of these regions of S' are disjoint.

Lemma 11 (Verbose Persistence Diagram Complexity). Let K™ be as in Construction 2 and suppose p(K™) | S)
is a faithful set. Then, S contains al least one direction in each of the m regions of observability, so |S| > m =

no/4. Thus, |S| is Q(ng).
By Theorem 1, Lemma 11 implies the following:

Theorem 3 (Lower Bound for Worst-Case Verbose Descriptor Complexity). Let D e {x, B, py. Then, the
worst-case cardinality of a minimal descriptor set of type D is Q(ng).

7 Discussion

We provide a framework for comparing general topological descriptor types by their ability to efficiently represent
simplicial complexes. The tools developed here are a first step towards more theoretical justifications for the use
of particular descriptor types in applications.

We focus on the descriptors that are particularly relevant to applications and related work; verbose and
concise FEuler characteristic functions, verbose and concise Betti functions, and verbose and concise persistence
diagrams. We give a partial order on this set of six descriptors, including the strict inequality, [B] =< [p].

We then identify tight lower bounds for both concise and verbose descriptors in the set of six, as well as
asymptotic lower bounds for worst-case complexity of sizes of faithful sets. Because faithful sets of concise
descriptors require many perpendicular directions to each maximal simplex, a huge hindrance in practice, we
believe applications research may benefit from the use of verbose descriptors rather than the current standard of
concise descriptors.

Perhaps the strength classes [x],[8], and [p] intuitively feel as though they should be related by strict in-
equalities. However, this issue is nuanced. Lemma 13 (Appendix B) shows the impact that general position
assumptions have on relations in this set. But even with general position, the seemingly advantageous “extra”
information of homology compared to, e.g., Euler characteristic may no longer be so useful when we require
tight envelopes around each maximal simplex. That is, once we have all the (many) required directions, we have
already carved out the space filled by the complex, and already know quite a lot simply from the presence of
events. Non-equality/equality of concise descriptors remains an area active of research.

In other ongoing work, we hope to classify the simplicial complexes for which minimal faithful sets of verbose
descriptors are independent of the size of the complex. We are also interested in relating other common descriptor
types, such as merge trees.

Acknowledgements BTF was partially supported by the National Science Foundation grant numbers DMS 1854336
and CCF 2046730. AS was supported by the Dutch Research Council (NWO) under project no. P21-13.
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A Example Filtration with Six Descriptor Types

We consider the simplicial complex on four vertices given in Figure 11(a). In the e; direction we see four distinct
heights of vertices, a, b, ¢, and d.

First, we describe what happens in p(K) and p(K). At height a, and then again at height b, we see connected
components born. At height ¢, the homology of the sublevel set does not change, so no change is recorded in
p(K). However, a corresponding index filtration sees the connected component corresponding to first adding the
vertex at ¢, which then immediately dies as we include the edge at height ¢. Thus, in p(K), we have the point
(¢, ¢). For similar reasons, we see the point (d, d) in p(K). Also at height d, our two connected components merge
into a single connected component. It is a standard convention to choose the eldest component to survive, so we
have the point (b, d) in both diagrams. We also see a cycle appear at height d, giving us the point (d, co) in both
diagrams. Finally, since the connected component born at height a did not die, we have the point (a, cc0) in both
diagrams.
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Figure 11: Six descriptors corresponding to the lower-star filtration in the direction indicated by the arrow of
the simplicial complex in (a).

Next, we describe what happens in S(K) and B (K). At the height a, only the Betti number in dimension
zero changes, going from zero to one. Since the inclusion of this vertex increased Betti zero, we count the vertex
as positive in Sy (K). At the height b, again, only Betti zero changes, going from one to two, and we also count
the corresponding vertex as positive for Bg (K). At the height of ¢, no Betti number changes, and thus there is
no event in B(K). However, in a corresponding index filtration, the inclusion of the vertex at height ¢ increases
By by one, and the inclusion of the edge then reduces 5y by one. This is recorded in B (K) at ¢ as an additional
positive simplex (going from two total to three total), and our first negative simplex. We see similar behavior
in dimension zero at the height of d. At height d we also see 51 go from zero to one, which is recorded in the
concise Betti function. In a corresponding index filtration, the inclusion of the second edge at height d increases
51, and is thus recorded as positive.

Finally, we describe what happens in x(K) and ¥(K). At both heights @ and b, the Euler characteristic of the
sublevel sets increases by one. Since this is due to inclusions of vertices, which are even-dimensional simplices,
both of these increases are recorded as even-dimensional in ¥(K). At ¢, the Euler characteristic remains the
same, so no change occurs in x(K). In a corresponding index filtration, we see the vertex (an even-dimensional
simplex) and an edge (odd-dimensional simplices), which are recorded in ¥(K). Finally, the Euler characteristic
at d changes from two to zero, which is recorded directly in x(K). An index filtration witnesses the appearance
of one even and two odd simplices at height d, and this is recorded in ¥(K).

B Zoo of Other Descriptor Types

In Section 2, we adopt a general definition of topological descriptor (Definition 1). In this appendix, we explore
non-standard topological descriptors and corresponding scenarios that may arise as a result of this generality.
The descriptors presented here are not intended to be taken as anything that would necessarily make sense to
use in practice, but rather, as a sort of zoo of examples to get a quick glance at the mathematical extremes and
properties of the space of strength classes of topological descriptors.

First, we give an example of two distinct descriptor types that are in the same equivalence class of strength.
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Example 1. Consider the topological descriptor denoted —p that takes a lower-star filtration in direction s,
and produces p(—s), the persistence diagram in direction —s. Although generally p(s) # p(—s) (as multisets), a
faithful set p(K,S) has the same cardinality as the faithful set —p(K,—S), and if a simplicial complex has no
faithful set of type p, then it has no faithful set of type —p. Thus, [p] = [—p].

Next, we observe that many examples of topological descriptors are not capable of faithfully representing
most simplicial complexes, such as the following.

Descriptor Type 1 (First Vertex). Consider a descriptor Dy that returns (1) the coordinates of the first vertex
(or vertices) encountered and (2) the cardinality of the vertex set, but no other information.

If the filtrations are directional filtrations, then this descriptor is only faithful for convex point clouds. Any
set of vertices that defines the corners of a convex region can be faithfully represented by this Descriptor Type 1.
However, since no vertex interior to the convex hull nor any higher dimensional simplices are witnessed by any
direction, this descriptor type is incapable of faithfully representing any other type of simplicial complex.

We can also construct descriptor types that are simply never able to form faithful sets.

Descriptor Type 2 (Trivial). Consider the trivial descriptor type Dq that returns zero for all sublevel sets in
a filtration.

Although this trivial descriptor type is an invariant of any filtration, it can not faithfully represent any
simplicial complex. Thus, T'(K, Dy) = X~ for all K. And so, in the space of all topological descriptors, Descriptor
Type 3 is in the minimum strength class. We can (also trivially) construct a descriptor type that is in the
maximum strength class.

Descriptor Type 3 (Filtration-Returning). Consider the descriptor type Dy that returns the input filtration.

Thus, a single descriptor of this type is always faithful for a simplicial complex.
Finally, we can find instances of topological descriptors that are able to faithfully represent a simplicial
complex, but with a set no smaller than uncountably infinite.

Descriptor Type 4 (Indicator). Let K be a simplicial complex immersed in R? let Dy be a descriptor type
parameterized by R that is constant over a filtration and is defined by

DK, ) — {1 if € |K|
0 else.

Note that then, D(K,R?) is the (only) minimum faithful set for K, and so I'(K, Dg) = ¥, for all K. Thus,
the (minimal) strength class of Descriptor Type 4 is greater than the strength class of the trivial descriptor in
Descriptor Type 3, and there are no strength equivalence classes between them.

We now know the space of strength classes of topological descriptors has a minimum and maximum, and we
have identified a second smallest descriptor type; is it a total order? The following example shows that it is not;
there do indeed exist incomparable descriptor types.

Lemma 12 (Incomparable Strength Classes). There exist incomparable strength classes of topological descriptor
types.

Proof. Let Dy denote Descriptor Type 1. That is, given a direction s, Dy returns: (1) the coordinates of the
lowest vertex (or vertices) in direction s, and (2) the cardinality of the vertex set. We compare Dy with verbose
persistence diagrams. Let v; = (0,0) and ve = (0, 1).

First, consider the simplicial complex K = {v;}. Then, regardless of direction, a single descriptor of is faithful
for K. However, since K is in R?, any faithful set of verbose persistence diagrams must have at least two linearly
independent directions to recover both coordinates of K.

Next, consider the simplicial complex K’ = {vy,v2}. No set of descriptors of type Dy is faithful for K’
(it cannot distinguish between K’ and the simplicial complex consisting of the two disconnected vertices vq
and ve without an edge). However, two verbose persistence diagrams suffice to form a faithful set for K’; for
example, using the standard basis vectors {e1, e2} as the set. Thus, if Dy (K, Sp,, ) and p(K, S;) are both minimal
faithful sets, we see that |Sp, | < |Ss| but |Sp, | > [S;]. Thus, although we have shown [Dy| # [p], they are
incomparable. O

Finally, we give a lemma that shows an impact of not assuming general position of vertices.

Lemma 13 (Concise Equality). Without Assumption 1, the strength equivalence classes of the three concise
topological descriptor types from Section 8 are all equal.
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Proof. Let D € {x, 8, p}. We must consider faithful sets of such descriptors for an arbitrary simplicial complex
K immersed in R? (that may not be in general position). The argument differs depending on if K is a vertex
set, or contains at least one edge; we consider each case.

First, suppose n; = 0. Then, K has no edges and is a vertex set, meaning each vertex is a maximal simplex
of K. Then, by Corollary 1, faithful sets of type D must include descriptors from at least d + 1 directions. By
Lemma 8, the envelopes of each vertex must be zero-dimensional. Since the only zero-dimensional convex sets
are singleton points, the envelope of each vertex contains that vertex and nothing else.

Let S be a set of d+1 directions such that the envelope of each vertex is zero-dimensional (note that such a set
exists, for example, the standard basis directions (e;), and the negative diagonal direction, —1/v/d(1,1,...,1)).
Consider a single direction, s € S and a < b € R?. If no event occurs in D(s) between heights a and b, we know
no connected component of K has its lowest vertex (or vertices) with respect to s in the range from a to b. Then,
from D(s), we identify that K has ny connected components, and we know their starting heights with respect
to the s direction. In other words, we know these connected components are contained in the (closed) upper
half-spaces defined by s.

Each additional direction in S gives us more information about these 1y connected components, and, just like s,
each additional direction provides an additional upper half-space in which we know the connected component is
contained; each connected component must lie in the intersection of these half-spaces. Since we use a total of d+1
directions, chosen so that the envelope of each vertex, £ (the intersection of half-spaces), is zero-dimensional,
we conclude each connected component is zero-dimensional.

That is, we know the exact location of each vertex by identifying its envelope. Thus, minimal faithful sets of
type D have cardinality of exactly d 4+ 1, meaning the infimums considered in Definition 7 are T'(K, D) =d + 1
for such K.

Next, suppose n; > 1. We show no set of descriptors of type D can faithfully represent K. Let 7 be an edge
in K and construct another complex L by starting with K and taking the barycentric subdivision of 7 and all
simplices containing 7. Then, since |K| = |L| the Euler characteristics/Betti numbers/homology throughout the
filtrations of K or L agree. That is, for every direction s, D(K,s) = D(L, s). Since this is true for every s, the
descriptor type D is incapable of forming a faithful set for K, meaning the infimums considered in Definition 7
are I'(K, D) = N+ for such K.

We have shown that, for each K without a general position assumption, we have I'(K, x) = I'(K, §) = T'(K, p).
Thus, when removing the general position assumption, we find [x] = [8] = [p]. O

Fortunately, as shown in Section 5, the relations among concise descriptors becomes more interesting when
we assume general position. This also has the benefit of reflecting the general position assumptions that are often
taken in practical applications.
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