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Abstract

This paper considers a novel application of deep
AUC maximization (DAM) for multi-instance
learning (MIL), in which a single class label is
assigned to a bag of instances (e.g., multiple 2D
slices of a CT scan for a patient). We address a
neglected yet non-negligible computational chal-
lenge of MIL in the context of DAM, i.e., bag
size is too large to be loaded into GPU memory
for backpropagation, which is required by the
standard pooling methods of MIL. To tackle this
challenge, we propose variance-reduced stochas-
tic pooling methods in the spirit of stochastic op-
timization by formulating the loss function over
the pooled prediction as a multi-level composi-
tional function. By synthesizing techniques from
stochastic compositional optimization and non-
convex min-max optimization, we propose a uni-
fied and provable muli-instance DAM (MIDAM)
algorithm with stochastic smoothed-max pooling
or stochastic attention-based pooling, which only
samples a few instances for each bag to compute
a stochastic gradient estimator and to update the
model parameter. We establish a similar conver-
gence rate of the proposed MIDAM algorithm as
the state-of-the-art DAM algorithms. Our exten-
sive experiments on conventional MIL datasets
and medical datasets demonstrate the superiority
of our MIDAM algorithm. The method is open-
sourced at https://libauc.org/.
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1. Introduction
Deep AUC maximization (DAM) has recently achieved
great success for many AI applications due to its capability
of handling imbalanced data (Yang & Ying, 2022). For
example, it earned first place at Stanford CheXpert compe-
tition (Irvin et al., 2019), and state-of-the-art performance
on other datasets (Yuan et al., 2021; Wang et al., 2021b).
However, a novel application of DAM for multi-instance
learning (MIL) has not been studied in the literature.

MIL refers to a setting where multiple instances are ob-
served for an object of interest and only one label is given
to describe that object. Many real-life applications can
be formulated as MIL. For example, the medical imaging
data for diagnosing a patient usually consists of a series
of 2D high-resolution images (e.g., CT scan), and only a
single label (containing a tumor or not) is assigned to the
patient (Quellec et al., 2017). MIL has a long history in
machine learning and various methods have been proposed
for traditional learning with tabular data (Babenko, 2008;
Carbonneau et al., 2016) and deep learning (DL) with un-
structured data (Oquab et al., 2015; Charles et al., 2017; Ilse
et al., 2018). The fundamental theorem of symmetric func-
tions (Zaheer et al., 2017; Qi et al., 2016), inspires a general
three-step approach for classifying a bag of instances: (i) a
transformation of individual instances, (ii) a pooling of trans-
formed instances using a symmetric (permutation-invariant)
function, (iii) a transformation of pooled representation. A
key in the implementation of the three steps is the symmet-
ric function that takes the transformations of all instances
as input and produces an output, which is also known as
the pooling operation. In the literature, various pooling
strategies have been explored, e.g., max pooling, average
pooling, and smoothed-max (i.e., log-exp-sum) pooling of
predictions (Ramon et al., 2000), attention-based pooling of
feature representations (Ilse et al., 2018).

However, to the best of our knowledge, none of the existing
works have tackled the computational challenge of MIL in
the context of DL when a bag is large due to the existence of
multiple instances in the bag. The limitation of computing
resources (e.g., the memory size of GPU) might prevent
loading all instances of a bag at once, creating a severe
computational bottleneck for training. For example, an MRI
scan of the brain may produce up to hundreds of 2D slices
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of high resolution (Calabrese et al., 2022). It is hard to
process all slices of a patient at each iteration for DL. Even
if the size of an image can be reduced to fit into the memory,
the convergence performance will be compromised due to
a small batch size (i.e., few patients can be processed due
to many slices per patient). A naive approach to deal with
this challenge is to use mini-batch stochastic pooling, i.e.,
only sampling a few instances from a bag for computing the
pooled prediction and conducting the update. However, this
naive approach does not ensure optimization of the objective
that is defined using the pooling of all instances for each
bag due to the error of mini-batch stochastic pooling.

We tackle this challenge of multi-instance DAM in a spirit
of stochastic optimization by (i) formulating the pooled pre-
diction as a compositional function whose inner functions
are expected functions over instances of that bag, and (ii)
proposing efficient and provable stochastic algorithms for
solving the non-convex min-max optimization with a multi-
level compositional objective function. A key feature of the
proposed algorithms is replacing the deterministic pooling
over all instances of a bag by a variance-reduced stochastic
pooling (VRSP), whose computation only requires sampling
a few instances from the bag. To ensure the optimization of
the original objective, the VRSP is constructed following
the principle of stochastic compositional optimization such
that the variance of stochastic pooling estimators is reduced
in the long term. In particular, the inner functions of the
pooled prediction are tracked and estimated by moving av-
erage estimators separately for each bag. Based on VRSP,
stochastic gradient estimators are computed for updating
the model parameter, which can be efficiently implemented
by backpropagation.

Our contributions are summarized in the following:

• We propose variance-reduced stochastic pooling esti-
mators for both smoothed-max pooling and attention-
based pooling. Building on these stochastic pooling
estimators, we develop unified efficient algorithms of
multi-instance DAM (MIDAM) based on a min-max
objective for the two pooling operations.

• We develop novel convergence analysis of the proposed
MIDAM algorithms by (i) proving the averaged error
of variance-reduced stochastic pooling estimators over
all iterations will converge to zero, and (ii) establishing
a convergence rate showing our algorithms can suc-
cessfully find an ϵ-stationary solution of the min-max
objective of DAM.

• We conduct extensive experiments of proposed MI-
DAM algorithms on conventional MIL benchmark
datasets and emerging medical imaging datasets with
high-resolution medical images, demonstrating the bet-
ter performance of our algorithms.

2. Related Works
In this section, we introduce previous works on AUC maxi-
mization, multi-instance learning, and medical image classi-
fication, and then discuss how they are related to our work.

Deep AUC maximization (DAM). Maximizing the area
under the receiver operating characteristic curve (AUC), as
an effective method for dealing with imbalanced datasets,
has been vigorously studied for the last two decades (Yang
& Ying, 2022). Earlier studies focus on learning tradi-
tional models, e.g., SVM, decision tree (Cortes & Mohri,
2003; Joachims, 2005b; Ferri et al., 2002). Inspired by
the Wilcoxon-Man-Whitney statistic, a variety of pairwise
losses and optimization algorithms have been studied for
AUC optimization (Gao et al., 2013; Zhao et al., 2011a;
Kotlowski et al., 2011; Gao & Zhou, 2015; Calders &
Jaroszewicz, 2007; Charoenphakdee et al., 2019). Inspired
by the min-max objective corresponding to the pairwise
square loss function (Ying et al., 2016), stochastic algo-
rithms have been developed for DAM (Liu et al., 2020; Yuan
et al., 2021). In this work, we propose efficient and scalable
methods for DAM under the multi-instance learning (MIL)
scenario with real big-data applications.

Multi-instance learning. Multi-instance learning (MIL)
has been extensively studied and adopted for real applica-
tions since decades ago (Ramon & De Raedt, 2000; Andrews
et al., 2002; Oquab et al., 2015; Kraus et al., 2016). Usually,
a simple MIL pooling strategy, that is, max-pooling over a
data bag has been widely utilized. This idea has been in-
corporated with support vector machine (SVM) and neural
networks (Andrews et al., 2002; Oquab et al., 2015; Wang,
2018). Other pooling strategies have also been proposed,
e.g., mean, smoothed-max (aka. log-sum-exponential), gen-
eralized mean, noisy-or, noisy-and (Wang, 2018; Ramon
& De Raedt, 2000; Keeler et al., 1990; Kraus et al., 2016).
Recently, attention-based pooling was proposed for deep
MIL (Ilse et al., 2018). It is worth noting that almost all
the pooling strategies (except max-pooling) require loading
all the data from a bag to do the computation, specifically
backpropagation. However, there is still no existing method
that considers mitigating the computational issue when the
data size is too large even for a single data bag.

Medical image classification. In MRI/CT scans, multi-
ple slices of images are acquired at different locations of
the patient?s body, which not only improves the diagnostic
capabilities but also lowers doses of radiation. Hence, a
patient can be represented by a series of 2D slices. A tra-
ditional approach is to concatenate these 2D slices into a
3D image and then learn a 3D convolutional neural network
(CNN) (Singh et al., 2020). However, this approach suffers
from several drawbacks. First, it demands more computa-
tional and memory resources as processing high-resolution
3D images is more costly than processing 2D images. As a
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consequence, the mini-batch size for back-propagation in
training is compromised or the resolution is reduced, which
can harm the learning capability. Third, it is more difficult
to interpret the prediction of a DL model based on 3D im-
ages as radiologists still use 2D slices to make diagnostic
decision (Brunyé et al., 2020). To avoid these issues, we
will investigate MIL and make it practical for medical image
classification.

3. Preliminaries
Notations. Let Xi = {x1

i , . . . ,x
ni
i } denote a bag of data

instances (e.g., 2D image slices of an MRI/CT scan). Let
D = {(Xi, yi), i = 1, . . . , n} denote the set of labeled data,
where yi ∈ {0, 1} denotes the label associated with the
bag i. Let D+ ⊂ D only contain D+ positive bags with
yi = 1 and D− ⊂ D only contain D− negative bags with
yi = 0. Without loss of generality, let w ∈ Rd denote all
weights to be learned, which includes the weights of the
feature encoder network, the weights of the instance-level
classifier, and the parameters in the attention-based pooling.
Let e(we;x) ∈ Rdo be the instance-level representation
encoded by a neural network we, ϕ(w;x) ∈ [0, 1] be the
instance-level prediction score (after some activation func-
tion), and h(w;Xi) ∈ [0, 1] be the pooled prediction score
of the bag i over all its instances. Besides, σ(·) denotes the
sigmoid activation.

Multi-instance Learning (MIL). We work under the stan-
dard MIL assumption that (i) an instance can be associated
with a label and (ii) a bag is labeled positive if at least
one of its instances has a positive label, and negative if
all of its instances have negative labels (Dietterich et al.,
1997b). The assumption implies that a MIL model must be
permutation-invariant for the prediction function h(X ). To
achieve permutation invariant property, fundamental theo-
rems of symmetric functions have been developed (Zaheer
et al., 2017; Qi et al., 2016). In particular, Zaheer et al.
(2017) show that a scoring function for a set of instances
X , h(X ) ∈ R, is a symmetric function if and only if it can
be decomposed as h(X ) = g(

∑
x∈X ψ(x)), where g and

ψ are suitable transformations. Qi et al. (2016) prove that
for any ϵ > 0, a Hausdorff continuous symmetric function
h(X ) ∈ R can be arbitrarily approximated by a function
in the form g(maxx∈X ψ(x)), where max is the element-
wise vector maximum operator and ψ and g are continuous
functions. These theories provide support for several widely
used pooling operators used for MIL.

Max and smoothed-max pooling of predictions. The
simplest approach is to take the maximum of predictions of
all instances in the bag, i.e., h(w;X ) = maxx∈X ϕ(w;x).
However, the max operation is non-smooth, which usually
causes difficulty in optimization. In practice, a smoothed-

max (aka. log-sum-exp) pooling operator is used instead:

h(w;X ) = τ log

(
1

|X |
∑
x∈X

exp(ϕ(w;x)/τ)

)
, (1)

where τ > 0 is a hyperparameter and ϕ(w;x) is the predic-
tion score for instance x.

Mean pooling of predictions. The mean pooling operator
just takes the average of predictions of individual instances,
i.e., h(w;X ) = 1

|X |
∑

x∈X ϕ(w;x). Indeed, smoothed-
max pooling interpolates between the max pooling (with
τ = 0) and the mean pooling (with τ = ∞).

Attention-based Pooling. Attention-based pooling was
recently introduced for deep MIL (Ilse et al., 2018), which
aggregates the feature representations using attention, i.e.,

E(w;X ) =
∑
x∈X

exp(g(w;x))∑
x′∈X exp(g(w;x′))

e(we;x) (2)

where g(w;x) is a parametric function, e.g., g(w;x) =
w⊤

a tanh(V e(we;x)), where V ∈ Rm×do and wa ∈ Rm.
Based on the aggregated feature representation, the bag level
prediction can be computed by

h(w;X ) = σ(w⊤
c E(w;X )) (3)

= σ

(∑
x∈X

exp(g(w;x))δ(w;x)∑
x′∈X exp(g(w;x′))

)
,

where δ(w;x) = w⊤
c e(we;x). In this paper, we will focus

on smoothed-max pooling and attention-based pooling due
to their generality and the challenge of handling them.

Deep AUC Maximization (DAM). AUC score can be in-
terpreted as the probability of a positive sample ranking
higher than a negative sample (Hanley & McNeil, 1982),
i.e., AUC(h) = EX ,X ′

[
I(h(w;X ) − h(w;X ′) ≥ 0)

∣∣y =

1, y′ = 0
]
. In practice, one often replaces the indicator

function in the above definition of AUC by a convex sur-
rogate loss ℓ : R → R+ which satisfies I(h(w;X ′) −
h(w;X ) > 0) ≤ ℓ(h(w;X ′) − h(w;X )) (Joachims,
2005a; Herschtal & Raskutti, 2004; Zhang et al., 2012;
Kar et al., 2013; Wang et al., 2012; Zhao et al., 2011b;
Ying et al., 2016; Liu et al., 2018; Natole et al., 2018).
Hence, empirical AUC maximization can be formulated as
minw∈Rd Ê

[
ℓ(h(w;X ′)−h(w;X ))|y = 1, y′ = 0

]
, where

Ê is the empirical average over data in the training set D.

Since optimizing the pairwise formulation is not suitable
in some learning scenarios (e.g., online learning, feder-
ated learning) (Ying et al., 2016; Guo et al., 2020), recent
works of DAM have followed the line of min-max optimiza-
tion (Yuan et al., 2021; Liu et al., 2020). Denote c as a
margin parameter and Êi∈D as the empirical average over
i ∈ D. The objective is:
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min
w∈Rd,(a,b)∈R2

max
α∈Ω

F (w, a, b, α) := (4)

Êi∈D+

[
(h(w;Xi)− a)2

]︸ ︷︷ ︸
F1(w,a)

+ Êi∈D−

[
(h(w;Xi)− b)2

]︸ ︷︷ ︸
F2(w,b)

+ α(c+ Êi∈D−h(w;Xi)− Êi∈D+
h(w;Xi))−

α2

2︸ ︷︷ ︸
F3(w,α)

,

where the first term is the variance of prediction scores of
positive data, the second term is the variance of prediction
scores of negative data. The maximization over α ∈ Ω
yields a term that aims to push the mean score of positive
data to be far away from the mean score of negative data.
When Ω = R, the above min-max objective was shown to
be equivalent to the pairwise square loss formulation (Ying
et al., 2016), and when Ω = R+, the above objective is the
min-max margin objective proposed in (Yuan et al., 2021). It
is notable that we use conditional expectation given positive
or negative labels instead of joint expectation over (Xi, yi)
as in (Ying et al., 2016; Yuan et al., 2021; Liu et al., 2020).
The reason is that we consider the batch learning setting
and it was found in (Zhu et al., 2022) sampling positive
and negative data separately at each iteration is helpful for
improving the performance.

4. Multi-instance DAM
Although efficient stochastic algorithms have been de-
veloped for DAM, a unique challenge exists in multi-
instance DAM due to the computing of the pooled predic-
tion h(w;X ). For example, in smoothed-max pooling com-
puting h(w;Xi) = τ log( 1

|Xi|
∑

x∈Xi
exp(ϕ(w;x)/τ)) re-

quires processing all instances in the bag Xi to calculate
their prediction scores ϕ(w;x), ∀x ∈ Xi. Hence, one may
need to load all instances of a bag into the GPU memory
for forward propagation and backpropagation. This is pro-
hibited if the size of each bag (i.e., the total sizes of all
instances in each bag) is large.

A naive approach to address this challenge is to replace the
pooling over all instances with mini-batch pooling over
randomly sampled instances of a bag. The mini-batch
smoothed-max pooling can be computed as h(w;Bi) =
τ log( 1

|Bi|
∑

x∈Bi
exp(ϕ(w;x)/τ)), where Bi ⊂ Xi only

contains a few sampled instances from the bag of all in-
stances. However, this approach does not work since
h(w;Bi) is not an unbiased estimator, i.e., EBi

h(w;Bi) ̸=
h(w;Xi). As a result, the mini-batch pooled predic-
tion would incur a large estimation error that depends on
the number of sampled instances, i.e., EBi

[(h(w;Bi) −
h(w;Xi))

2] ≤ O( 1
|Bi| ), which would lead to non-negligible

optimization error (Hu et al., 2020).

We propose a solid approach to deal with this challenge. Be-

low, we first describe the high-level idea. Then, we present
more details of variance-reduced stochastic pooling estima-
tors and the corresponding stochastic gradient estimators
of the min-max objective. Finally, we present a unified
algorithm for using both stochastic pooling methods.

We regard the pooled prediction as two-level composi-
tional functions h(w;Xi) = f2(f1(w;Xi)), where f2 is
a simple function that will be exhibited shortly for the two
pooling operations, and f1(w;Xi) = Ex∼Xi

[f1(w;x)] in-
volves average over the set of instances x ∈ Xi. As a
result, we cast the terms of objective into three-level com-
positional functions f(f2(f1(w))), where f is a stochas-
tic function. In particular, the first term in the min-max
objective can be cast as 1

|D+|
∑

i∈D+
f(f2(f1(w;Xi)), a),

where f(·, a) = (· − a)2. The second term can be cast
as 1

|D−|
∑

i∈D−
f(f2(f1(w;Xi)), b). As a result, the three

terms of the objective can be written as

F1(w, a) =
1

|D+|
∑
yi=1

f(f2(f1(w;Xi)), a)

F2(w, b) =
1

|D−|
∑
yi=0

f(f2(f1(w;Xi)), b)

F3(w, α) = α

(
c+

1

|D+|
∑
yi=1

f2(f1(w;Xi))

− 1

|D−|
∑
yi=0

f2(f1(w;Xi)

)
− α2

2
.

To optimize the above objective, we need to compute a
stochastic gradient estimator. Let us consider the gradient
of the first term in terms of w, i.e.,

∇wF1(w, a) =
1

|D+|
· (5)∑

yi=1

∇f1(w;Xi)∇f2(f1(w;Xi))∇1f(f2(f1(w;Xi)), a),

where ∇1 denotes the partial gradient in terms of the first ar-
gument. The key challenge lies in computing the innermost
function f1(w;Xi) and its gradient ∇f1(w;Xi). Due to
that the functional value f1(w;Xi) is inside non-linear func-
tions f2, f , one needs to compute an estimator of f1(w;Xi)
to ensure the convergence for solving the min-max prob-
lem. To this end, we will follow stochastic compositional
optimization techniques to track and estimate f1(w;Xi) for
each bag Xi separately such that their variance is reduced
in the long term (Wang & Yang, 2022).

4.1. Variance-reduced Stochastic Pooling (VRSP)
Estimators and Stochastic Gradient Estimators

We write the smoothed-max pooling in (1) as h(w;Xi) =
f2(f1(w;Xi)), where f1, f2 are defined as:
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f1(w;Xi) =
1

|Xi|
∑

xj
i∈Xi

exp(ϕ(w;xj
i )/τ),

f2(si) = τ log(si).

We express the attention-based pooling in (3) as h(w;Xi) =
f2(f1(w;Xi)), where f1, f2 are defined as:

f1(w;Xi) =

[
1

|Xi|
∑

xj
i∈Xi

exp(g(w;xj
i ))w

⊤
c e(we;x

j
i )

1
|Xi|

∑
xj
i∈Xi

exp(g(w;xj
i ))

]
,

f2(si) = σ

(
si1
si2

)
.

One difference between the two pooling operators is that
the inner function f1 for attention-based pooling is a vector-
valued function with two components. For both pooling
operators, the costs lie at the calculation of f1(w;Xi). To
estimate f1(w;Xi), we maintain a dynamic estimator de-
noted by si. At the t-th iteration, we sample some positive
bags St

+ ⊂ D+ and some negative bags St
− ⊂ D−. For

those sampled bags i ∈ St
+ ∪ St

−, we update sti by:

sti = (1− γ0)s
t−1
i + γ0f1(w

t;Bt
i), i ∈ St

+ ∪ St
−, (6)

where Bt
i ⊂ Xi refers to a mini-batch of instances sampled

from Xi and γ0 ∈ [0, 1] is a hyperparameter. For smoothed-
max pooling, sti is computed by

sti = (1− γ0)s
t−1
i +

γ0
|Bt

i |
∑

xj
i∈Bt

i

exp(ϕ(wt;xj
i )/τ), (7)

and for attention-based pooling, sti is computed by
sti = (1− γ0)s

t−1
i + γ0· (8)[

1
|Bt

i |
∑

xj
i∈Bt

i
exp(g(wt;xj

i ))δ(w
t;xj

i )
1

|Bt
i |
∑

xj
i∈Bt

i
exp(g(wt;xj

i ))

]
.

With sti, we refer to f2(sti) as the variance-reduced stochas-
tic pooling (VRSP) estimator. We will prove in the next
section that the moving average estimators sti will ensure
the averaged estimation error 1

T

∑T−1
t=0 ∥sti − f1(w

t;Xi)∥2
for all bags across all iterations will converge to zero as
T → ∞ by properly updating the model parameter and set-
ting the hyper-parameters. As a result, the following lemma
will guarantee that the stochastic pooling estimator f2(sti)
will have a diminishing error in the long term.

Lemma 1. If f2 is continuously differentiable on a compact
domain and there exists c > 0 such that f2 is c-Lipschitz con-
tinuous on that domain, then (f2(s

t
i)− f2(f1(w

t;Xi))
2 ≤

c2∥sti − f1(w
t;Xi)∥2 for sti, f1(w

t;Xi) ∈ domf2.

Building on the VRSP estimators, a stochastic gradient esti-
mator of the objective can be easily computed. In particular,
The gradient of f(f2(f1(w;Xi))) in terms of wt can be esti-
mated by ∇f1(wt;Bt

i)∇f2(s
t−1
i )∇1f(f2(s

t−1
i ), at), and a

stochastic gradient estimator of f2(f1(wt;Xi)) can be com-
puted by ∇f1(wt;Bt

i)∇f2(s
t−1
i ). As a result, the stochas-

tic gradient estimators in terms of w, a, b, α of the three
terms F1(w, a), F2(w, b) and F3(w, α) of the objective are

Algorithm 1 The Unified MIDAM Algorithm
1: Initialize w0,s0,v0, η, η′, β1, γ0
2: for t = 1, . . . , T do
3: Sample a batch of positive bags St

+ ⊂ D+ and a
batch of negative bags St

− ⊂ D−
4: for each i ∈ St = St

+ ∪ St
− do

5: Sample a mini-batch of instances Bt
i ⊂ Xi and

update sti = (1− γ0)s
t−1
i + γ0f1(w

t;Bt
i)

6: end for
7: Update stochastic gradient estimator of (w, a, b):

vt
1 = β1v

t−1
1 + (1− β1)(G

t
1,w +Gt

2,w +Gt
3,w)

vt
2 = β1v

t−1
2 + (1− β1)G

t
1,a

vt
3 = β1v

t−1
3 + (1− β1)G

t
2,b

8: Update (wt+1, at+1, bt+1) = (wt, at, bt)− ηvt (or
the Adam-style update)

9: Update αt+1 = ΠΩ[α
t + η′(Gt

3,α − αt)]
10: end for

computed as following, respectively:
Gt

1,w = Êi∈St
+
∇f1(wt;Bt

i)∇f2(st−1
i )∇1f(f2(s

t−1
i ), at),

Gt
2,w = Êi∈St

−
∇f1(wt;Bt

i)∇f2(st−1
i )∇1f(f2(s

t−1
i ), bt),

Gt
3,w = αt ·

(
Êi∈St

−
∇f1(wt;Bt

i)∇f2(st−1
i )

−Êi∈St
+
∇f1(wt;Bt

i)∇f2(st−1
i )

)
,

Gt
1,a = Êi∈St

+
∇2f(f2(s

t−1
i ), at),

Gt
2,b = Êi∈St

−
∇2f(f2(s

t−1
i ), bt)

Gt
3,α = c+ Êi∈St

−
f2(s

t−1
i )− Êi∈St

+
f2(s

t−1
i ),

where ∇f1(wt;Bt
i) denotes the transposed Jacobian matrix

of f1 in terms of w. By plugging the explicit expression
of (partial) gradients of f2, f , we can compute these gradi-
ent estimators by backpropagation. With these stochastic
gradient estimators, we will update the model parameter fol-
lowing the momentum update or the Adam update, which is
presented in next subsection.

4.2. The Unified Algorithm
Finally, we present the unified algorithm of MIDAM for
using the two stochastic pooling estimators shown in Algo-
rithm 1. The algorithm design is inspired by momentum-
based methods for non-convex-strongly-concave min-max
optimization (Guo et al., 2021). With stochastic gradient es-
timators in terms of the primal variable (wt, at, bt), we com-
pute a moving average of their gradient estimators denoted
by vt+1 in Step 7. Then we update the primal variable fol-
lowing the negative direction of vt+1 = (vt+1

1 ,vt+1
2 ,vt+1

3 ),
which is equivalent to a momentum update. The step size η
can be also replaced by the adaptive step size of Adam. For
updating the dual variable α, the algorithm simply uses the
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stochastic gradient ascent update followed by a projection
onto a feasible domain.

Computational Costs: Before ending this section, we
discuss the per-iteration computational costs of the pro-
posed MIDAM algorithm. The sampled instances include
Bt =

⋃
i∈St{Bt

i}, where St = St
+ ∪ St

− denotes the sam-
pled bags, and Bt

i denotes the sampled instances for the sam-
pled bag Xi. For updating the estimators st+1

i , i ∈ St, we
need to conduct the forward propagations on these sampled
instances for computing their prediction scores ϕ(wt;xj

i )
(in smoothed-max pooling and attention-based pooling) and
for computing their attentional factor exp(ϕa(wt;xj

i )). For
computing the gradient estimators, the main cost lies at
the backpropagation for computing ∇f1(wt;Bt

i) of i ∈ St,
which are required in computing Gt

1,w, G
t
2,w, G

t
3,w. Hence,

with S+ = |St
+| and S− = |St

−| and B = |Bt
i |, the total

costs of forward propogations and backpropogations are
O((S+ + S−)Bd), where (S+ + S−)B is the number of
instances of each mini-batch. Hence this cost is independent
of the total size of each bag Ni = |Xi|.

5. Convergence Analysis
Approach of Analysis. We first would like to point out
the considered non-convex min-max multi-level composi-
tional optimization problem is a new problem that has not
been studied in the literature. To the best of our knowl-
edge, the two related works are (Yuan et al., 2022; Gao
et al., 2022). However, these two works only involve one
inner functions to be estimated. In contrast, our problem
involves many inner functions f1(w;Xi) to be estimated,
while only a few of them are sampled for estimating their
stochastic values. To tackle this challenge, we borrow a
technique from (Wang & Yang, 2022) which was developed
for a minimization problem with two-level compositional
functions and multiple inner functions. We leverage their
error bound analysis for two-level stochastic pooling esti-
mators and combine with that of momentum-based methods
for min-max optimization (Guo et al., 2021) to derive our
final convergence.

Since the objective F (w, a, b, α) in (4) is 1-strongly con-
cave w.r.t. α, maxα∈Ω F (w, a, b, α) has unique solution
and ∇Φ(w, a, b) is Lipschitz continuous if ∇F is Lipschitz
continuous. Following (Lin et al., 2019; Rafique et al.,
2020), we define Φ(w, a, b) := maxα∈Ω F (w, a, b, α) and
use ∥∇Φ(w, a, b)∥2 as an optimality measure.
Definition 1. (w, a, b) is called an ϵ-stationary point (ϵ ≥
0) of a differentiable function Φ if ∥∇Φ(w, a, b)∥2 ≤ ϵ.

Our theory is established based on the following assumption.
Assumption 1. (Smoothed-max Pooling) We assume that
ϕ(w;x) is bounded, Lipschitz continuous, and has Lips-
chitz continuous gradient, i.e. there exist Bϕ, Cϕ, Lϕ ≥
0 such that ∥ϕ(w;x)∥2 ≤ Bϕ, ∥∇ϕ(w;x)∥2 ≤ Cϕ,

Table 1. Data statistics for the benchmark datasets

Data Format Dataset D+ D−
average
bag size #features

MUSK1 47 45 5.17 166
MUSK2 39 63 64.69 166

Tabular Elephant 100 100 6.1 230
Fox 100 100 6.6 230
Tiger 100 100 6.96 230

Histopathological Breast Cancer 26 32 672 32x32x3
Image Colon Ade. 100 1000 256 32x32x3

MRI/CT Scans
PDGM 403 55 155 240x240x1
OCT 747 1935 31 256x256x1∥∥∇2ϕ(w;x)

∥∥
2
≤ Lϕ for each x.

(Attention-based Pooling) We assume that g(w;x) is
bounded, Lipschitz continuous, and has Lipschitz contin-
uous gradient and δ(w;x) is bounded, Lipschitz continu-
ous, and has Lipschitz continuous gradient, i.e., there exist
Bg, Cg, Lg, Bδ, Cδ, Lδ ≥ 0 such that ∥g(w;x)∥2 ≤ Bg,
∥∇g(w;x)∥2 ≤ Cg,

∥∥∇2g(w;x)
∥∥
2
≤ Lg, ∥δ(w;x)∥2 ≤

Bg , ∥∇δ(w;x)∥2 ≤ Cg ,
∥∥∇2δ(w;x)

∥∥
2
≤ Lg .

We provide some examples in which the assumption above
holds: First, objective (4) with smoothed-max pooling,
ϕ(w;x) = σ(w⊤e(we;x)), and pre-trained, fixed we;
Second, objective (4) with bounded weight norms (e.g.
∥we∥ , ∥wa∥, ∥V ∥) during the training process. Some prior
works indicate that the weight norm may be bounded when
weight decay regularization is used (HaoChen & Ma, 2022).

Theorem 1. Algorithm 1 with stepsizes β1 = O(ϵ2), γ0 =

O(ϵ2), η = O
(
min

{
S+

D+
, S−
D−

}
ϵ2
)

, η′ = O(ϵ2) can find

an ϵ-stationary point in T = O
(
max

{
D+

S+
, D−
S−

}
ϵ−4

B

)
iterations, where S+ = |St

+| and S− = |St
−| and

B = |Bt
i |. Besides, the average estimation error

1
T

∑T−1
t=0 E

[
∥sti − f1(w

t;Xi)∥
2
]
≤ O(ϵ2), ∀i.

Remark: This theorem states that more bags and larger
bag sizes lead to faster convergence of our algorithm, at the
cost of more computational resources. The order of com-
plexity O(1/ϵ4) is the same as that of non-convex min-max
optimization in (Guo et al., 2021). Proofs are in appendix.

6. Experiments
In this section, we present some experimental results. We
choose datasets from three categories, namely traditional
tabular datasets, histopathological image datasets, and
MRI/CT datasets. Statistics of these datasets are described
in Tabel 1. Details of these datasets will be presented later.

Baselines. We mainly compare with two categories of ap-
proaches for MIL with different pooling operators. The
first category is optimizing the CE loss by Adam optimizer
with mean, smoothed-max (smx), max, attention-based (att)
poolings, denoted by CE (XX), where XX is the name of
a pooling. The second category is optimizing the min-max
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margin AUC loss (Yuan et al., 2021) with the same set of
poolings, denoted as DAM (XX). We note that for large-
resolution medical image datasets, deterministic pooling is
unrealistic due to limits of GPU memory. For example, the
CE (att) method could consume about 22 Giga-Bytes GPU
memory for PDGM dataset even with a single bag of data.
Medical researchers also have raised concern for the GPU
constraint of large size histopathologica images (Tizhoosh
& Pantanowitz, 2018). Hence, we implement the naive mini-
batch based stochastic poolings for baselines, which are
denoted by CE (MB-XX) and DAM (MB-XX) with XX be-
ing the name of a pooling. For medical image datasets, we
also compare with two traditional baselines that treat multi-
ple instances as 3D data in their given order and learn a 3D
network by optimizing the CE loss and the min-max margin
AUC loss, which are denoted as CE (3D) and DAM (3D).
Our methods are denoted as MIDAM (smx) and MIDAM
(att) for using two stochastic pooling operations, respec-
tively. We fix the margin parameter as 0.1 for DAM and MI-
DAM. For attention-based pooling, we use the one defined
in (2) with an attentional factor exp(w⊤

a tanh(V e(we;x)))
according to (Ilse et al., 2018).

6.1. Results on Tabular Benchmarks
Five benchmark datasets, namely, MUSK1, MUSK2, Fox,
Tiger, Elephant (Dietterich et al., 1997a; Andrews et al.,
2002), are commonly used for evaluating MIL methods.
For the MUSK1 and MUSK2 datasets, they contain drug
molecules that will (or not) bind strongly to a target protein.
Each molecule (a bag) may adopt a wide range of shapes or
conformations (instances). A positive molecule has at least
one shape that can bind well (although it is not known which
one) and a negative molecule does not have any shapes that
can make the molecule bind well (Dietterich et al., 1997a).
For Fox, Tiger, and Elephant datasets, each object contains
features extracted from an image. Each positive bag is a bag
that contains the animal of interest (Andrews et al., 2002).

We adopt a simple 2-layer feed-forward neural network
(FFNN) as the backbone model, whose neuron number
equals data dimension. We apply tanh as the activation
function for the middle layer and sigmoid as a normaliza-
tion function for prediction score for computing AUC loss
function. We uniformly randomly split the data with 0.9/0.1
train/test ratio and run 5-fold-cross-validation experiments
with 3 different random seeds (totally 15 different trials).
The initial learning rate is tuned in {1e-1,1e-2,1e-3}, and
is decreased by 10 fold at the end of the 50-th epoch and
75-th epoch over the 100-epoch-training period. For all ex-
periments in this work, the weight decay is fixed as 1e− 4,
and we fix η′ = 1, (1 − β1) = 0.9 in our proposed algo-
rithm decreasing by 2 fold at the same time with learning
rate. We report the testing AUC based on a model with the
largest validation AUC value. For each iteration, we sample

Table 2. The testing AUC on benchmark datasets.
Methods MUSK1 MUSK2 Fox Tiger Elephant
CE (mean) 0.803(0.14) 0.805(0.113) 0.701(0.116) 0.822(0.093) 0.877(0.065)
DAM (mean) 0.832(0.147) 0.818(0.079) 0.647(0.111) 0.842(0.085) 0.897(0.053)
CE (max) 0.678(0.121) 0.84(0.106) 0.657(0.147) 0.855(0.094) 0.885(0.044)
DAM (max) 0.739(0.126) 0.859(0.09) 0.595(0.159) 0.858(0.06) 0.902(0.073)
CE (smx) 0.769(0.121) 0.851(0.111) 0.668(0.117) 0.865(0.078) 0.902(0.068)
DAM (smx) 0.806(0.118) 0.854(0.108) 0.66(0.138) 0.867(0.07) 0.902(0.052)
CE (att) 0.808(0.112) 0.76(0.122) 0.705(0.13) 0.834(0.09) 0.883(0.092)
DAM (att) 0.768(0.139) 0.757(0.154) 0.69(0.123) 0.848(0.067) 0.872(0.074)
MIDAM (smx) 0.834(0.12) 0.905(0.068) 0.622(0.188) 0.861(0.071) 0.873(0.104)
MIDAM (att) 0.826(0.107) 0.843(0.107) 0.733(0.097) 0.867(0.066) 0.906(0.069)

Table 3. The testing AUC on medical image datasets.
Histopathological Image MRI/OCT 3D-Image

Methods Breast Cancer Colon Ade. PDGM OCT
CE (3D) 0.925(0.061) 0.724(0.165) 0.582(0.118) 0.789(0.032)
DAM (3D) 0.725(0.2) 0.846(0.075) 0.545(0.122) 0.807(0.027)
CE (MB-mean) 0.85(0.242) 0.883(0.042) 0.616(0.023) 0.799(0.019)
DAM (MB-mean) 0.875(0.137) 0.877(0.017) 0.635(0.113) 0.839(0.029)
CE (MB-max) 0.325(0.232) 0.856(0.032) 0.462(0.108) 0.793(0.047)
DAM (MB-max) 0.475(0.215) 0.825(0.044) 0.624(0.112) 0.841(0.01)
CE (MB-smx) 0.575(0.127) 0.863(0.031) 0.491(0.111) 0.826(0.018)
DAM (MB-smx) 0.725(0.184) 0.905(0.01) 0.659(0.058) 0.829(0.008)
CE (MB-att) 0.9(0.146) 0.9(0.042) 0.564(0.072) 0.823(0.017)
DAM (MB-att) 0.875(0.112) 0.882(0.029) 0.624(0.112) 0.842(0.013)
MIDAM-smx 0.875(0.137) 0.91(0.02) 0.669(0.032) 0.848(0.01)
MIDAM-att 0.95(0.1) 0.893(0.08) 0.635(0.052) 0.843(0.012)

8 positive bags and 8 negative bags (S+ = S− = 8), and
for each bag sample at most 4 instances for our methods
but use all instances for baselines, given that the dataset
is small and bag size is not identical across all bags. The
mean and standard deviation of testing AUC are presented
in Table 2 1.

From the results, we observe that MIDAM (att) or MIDAM
(smx) method achieves the best performance on these classi-
cal tabular benchmark datasets. This might sound surprising
given that the DAM baselines use all instances for each bag
for computing the pooling. To understand this, we plot the
training and testing convergence curves (shown in Figure 4
in Appendix C due to limit of space). We find that the better
testing peformance of our MIDAM methods is probably
due to that the stochastic sampling over instances prevents
overfitting (since training performance is worse) and hence
improves the generalization (testing performance is better).
In addition, DAM is better than CE except for DAM (att).

6.2. Experiments on Medical Image datasets

We choose two histopathological image datasets, namely
Breast Cancer and Colon Adenocarcinoma (Gelasca et al.,
2008; Borkowski et al., 2019a). These have been used in
previous deep MIL works (Ilse et al., 2018) for evaluation.
Histopathological images are microscopic images of the tis-
sue for disease examination, which are prevalent for cancer
diagnosis (Borkowski et al., 2019b). Since histopathologi-
cal images have a high resolution, it is difficulty to process
the whole image. Hence MIL approaches are appealing
that treat each image as a bag of local small batches. For

1The code is available at https://github.com/
DixianZhu/MIDAM

https://github.com/DixianZhu/MIDAM
https://github.com/DixianZhu/MIDAM
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Figure 1. (a, b): Convergence of training AUC for MIDAM (att) and DAM (MB-att) on Breast Cancer data with margin c = 0.1 and
learning rate tuned in {1e-1,1e-2,1e-3}; (c, d): Convergence of training AUC with different instance-batch size by fixing bag-batch size
S+ = S− = 8 on MUSK2 data; (e,f,g,h): Convergence of training and testing AUC with different bag-batch sizes S+ = S− = B̂

2
and

instance-batch sizes (B) on Colon Ade. data.

0 200 400 600 800

0

100

200

300

400

500

600

700

(a) Positive image

0 5 10 15 20 25

0

5

10

15

20
20

15

10

5

0

5

(b) Prediction scores

0 5 10 15 20 25

0

5

10

15

20 0.0001

0.0002

0.0003

0.0004

0.0005

(c) Attention weights

Figure 2. Demonstration for positive example for Breast Cancer dataset. Left: original image. Middle: prediction scores for each patch.
Right: attention weights for each patch.

Breast Cancer, there are 58 weakly labeled 896× 768 hema-
toxylin and eosin (H&E) stained whole-slide images. An
image is labeled malignant if it contains breast cancer cells,
otherwise it is benign (examples shown in Figure 3). We
divide every image into 32 × 32 patches. This results in
672 patches per bag. For Colon Adenocarcinoma dataset2,
there are originally 5000 (H&E) images for benign colon
tissue and 5000 for Colon Adenocarcinoma. We uniformly
randomly sample 1000 benign images and 100 Adenocar-
cinoma images to form the new Colon Ade. dataset for
our study. We divide every 512× 512 image into 32× 32
patches and get 256 patches for each image. We also use
two real-world MRI/OCT image datasets. The first data set
is from the University of California San Francisco Preopera-
tive Diffuse Glioma MRI (UCSF-PDGM) (Calabrese et al.,

2https://www.kaggle.com/datasets/
biplobdey/lung-and-colon-cancer

2022), short as PDGM in this work. The problem is to pre-
dict patients with grade II or grade IV diffuse gliomas. The
second dataset contains multiple OCT images for a large
number of patients (Xie et al., 2022). The goal is to predict
hypertension from OCT images, which is useful for physi-
cians to understand the relationship between eye-diseases
and Hypertension. Exemplar images of two datasets are
shown in Figure 3 in the Appendix C.

For all the medical images, we adopt ResNet20 as the back-
bone model. For AUC loss function, we apply sigmoid as
normalization for the output. The weight decay is fixed
as 1e-4. For all the experiments, we run 100 epochs for
each trial and decrease learning rate by 10 fold at the end
of the 50-th epoch and 75-th epoch. For the Breast Cancer
dataset, we generate data train/test (0.9/0.1) splitting 2 times
with different random seeds and conduct five-fold cross
validation (10 trials). For the other datasets, we do single

https://www.kaggle.com/datasets/biplobdey/lung-and-colon-cancer
https://www.kaggle.com/datasets/biplobdey/lung-and-colon-cancer
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random train/test (0.9/0.1) splitting and conduct five-fold
cross validation (5 trials). The margin parameter is tuned
in {0.1,0.5,1.0} for AUC loss function. The initial learning
rate is tuned in {1e-1,1e-2,1e-3} for histopathological image
datasets, and is fixed as 1e-2 for PDGM, 1e-1 for OCT.

The results are shown in Table 3. From these results, we
make the following observations. (1) Our MIDAM still per-
forms the best. Although CE (3D) on Breast Cancer, and
CE (MB-att) on the two histopathological image datasets
are competitive, most of the CE based approaches are less
competitive with DAM based approaches. (2) By comparing
MIDAM (att) with DAM (MB-att) and MIDAM (smx) with
DAM (MB-smx), our methods perform consistently bet-
ter. This confirms the importance of using variance-reduced
stochastic pooling operations instead of the naive mini-batch
based stochastic poolings. This can be also verified by com-
paring their training/testing convergence in Figure 1(a,b)
and Figure 5 in the Appendix. (3) For Breast Cancer data,
our method MIDAM (att) performs better than all baseline
methods. It is notable that CE (3D) and CE (MB-att) are
competitive approaches but still have worse performance
than MIDAM (att). On Colon Ade. dataset, our method
MIDAM (smx) performs the best and CE (MB-att) is still
competitive. Finally, we see that there is no clear winner
between MIDAM (att) and MIDAM (smx). (4) In general,
MIL pooling based methods can achieve better performance
than the traditional baseline using 3D data input. Hence, our
MIDAM algorithms are a good fit for 3D medical images.

6.3. Ablation Studies
First, we conduct an experiment to study the influence for
different instance-batch sizes (B) on four tabular datasets.
The results on MUSK2 are shown in Figure 1 (c,d) with
more plotted in Figure 6, which demonstrate our methods
converge faster with a larger B with fixed bag-batch size S+

and S−. In addition, we observe that with B = 4 MIDAM
converges to almost same level as using all instances in 100
epochs, even for the MUSK2 dataset with average bag size
as 64.69. Second, we show an ablation study on the two
histopathological image datasets that fixes the total budget
for bag-batch-size×instance-batch-size. Exemplar results
are plotted in Figure 1 (e,f,g,h) with more results plotted in
Figure 7. We can see that due to sampling of instances per-
bag, we have more flexibility to choose the bag-batch size
S+ = S− = B̂/2 and instance-batch size B to have faster
training, e.g., with B̂ = 4, B = 64 MIDAM converges the
fastest, which demonstrates the superiority of our design.
Third, we demonstrate the effectiveness of stochastic atten-
tion pooling based MIDAM on a Breast Cancer example
by attention weights and prediction scores for each instance
(image patch). The results are presented in Figure 2, where
we can observe the lesion parts for the histopathology tis-
sue have larger prediction scores and attention weights (the

brighter patches). More demonstration on a negative ex-
amples are included in Figure 8 in Appendix C, where the
attention module focus on a blank patch to generate low
overall prediction score.

7. Conclusions
We have proposed efficient algorithms for multi-instance
deep AUC maximization. Our algorithms are based on
variance-reduced stochastic poolings in a spirit of com-
positional optimization to enjoy a provable convergence.
We have demonstrated the effectiveness and superiority of
our algorithms on benchmark datasets and real-world high-
resolution medical image datasets.
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A. Technical Lemmas
Lemma 2. Based on Assumption 1, we have that h(w;X ) is bounded, Lipschitz continuous, and has Lipschitz continuous
gradient, i.e., there exists Bh, Ch, Lh ≥ 0 such that |h(w;X )| ≤ Bh, ∥∇h(w;X )∥2 ≤ Ch, and ∇2h(w;X ) ⪯ LhI .

Proof. Smoothed-max pooling: Property of the LogSumExp (LSE) function implies that

|h(w;X )| ≤ τ max
x∈X

|ϕw(x)|
τ

+ (1− τ) log |X |.

The norm of ∇h(w;X ) can be bounded as

∥∇h(w;X )∥2 =

∥∥∥∥∥∑
x∈X

exp(ϕ(w;x)/τ)∑
x∈X exp(ϕ(w;x)/τ)

∇ϕ(w;x)

∥∥∥∥∥
2

≤ Cϕ.

The norm of ∇2h(w;x) can be bounded as∥∥∇2h(w;x)
∥∥
2
≤

∥∥∥∥∥∑
x∈X

exp(ϕ(w;x)/τ)∑
x∈X exp(ϕ(w;x)/τ)

(
∇ϕ(w;x)[∇ϕ(w;x)]⊤/τ +∇2ϕ(w;x)

)∥∥∥∥∥
2

+

∥∥∥∥∥
(∑

x∈X

exp(ϕ(w;x)/τ)∑
x∈X exp(ϕ(w;x)/τ)

∇ϕ(w;x)

)(∑
x∈X

exp(ϕ(w;x)/τ)∑
x∈X exp(ϕ(w;x)/τ)

[∇ϕ(w;x)]⊤/τ

)∥∥∥∥∥
2

≤ 2C2
ϕ/τ + Lϕ.

Attention-based pooling: According to (3), it is clear that |h(w;X )| ≤ 1. The norm of ∇h(w;X ) can be bounded as

∥∇h(w;X )∥2 ≤ 0.25

∥∥∥∥∥∑
x∈X

exp(g(w;x))δ(w;x)∑
x′∈X exp(g(w;x′))

∇g(w;x)

∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥∑
x∈X

exp(g(w;x))∑
x′∈X exp(g(w;x′))

∇δ(w;x)

∥∥∥∥∥
2

+ 0.25

∣∣∣∣∣∑
x∈X

exp(g(w;x))δ(w;x)∑
x′∈X exp(g(w;x′))

∣∣∣∣∣
∥∥∥∥∥∑
x∈X

exp(g(w;x))∑
x′∈X exp(g(w;x′))

∇g(w;x)

∥∥∥∥∥
2

≤ 0.5CgBδ + 0.25Cδ.

For brevity, we denote the softmax function s(w;x) := exp(g(w;x))∑
x′∈X exp(g(w;x′)) . The norm of ∇2h(w;x) can be bounded as∥∥∇2h(w;x)

∥∥
2

≤ 0.1
∥∥∇h(w;X )[∇h(w;X )]⊤

∥∥
2
+ 0.25

∥∥∥∥∥∑
x∈X

s(w;x)(δ(w;x)∇g(w;x) +∇δ(w;x))[∇g(w;x)]⊤

∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥∑
x∈X

s(w;x)
(
∇g(w;x)[∇δ(w;x)]⊤ + δ(w;x)∇2g(w;x) +∇2δ(w;x)

)∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥
(∑

x∈X
s(w;x)(δ(w;x)∇g(w;x) +∇δ(w;x))

)(∑
x∈X

s(w;x)(δ(w;x)∇g(w;x) +∇δ(w;x))[∇g(w;x)]⊤

)∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥∥
(∑

x∈X
s(w;x)∇g(w;x)

)(∑
x∈X

s(w;x)(δ(w;x)∇g(w;x) +∇δ(w;x))

)⊤
∥∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥∥
(∑

x∈X
s(w;x)∇g(w;x)

)(∑
x∈X

s(w;x)δ(w;x)

)(∑
x∈X

s(w;x)∇g(w;x)

)⊤
∥∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥
(∑

x∈X
s(w;x)δ(w;x)

)(∑
x∈X

s(w;x)(∇g(w;x)[∇g(w;x)]⊤ +∇2g(w;x))

)∥∥∥∥∥
2

+ 0.25

∥∥∥∥∥∥
(∑

x∈X
s(w;x)∇g(w;x)

)(∑
x∈X

s(w;x)∇g(w;x)

)⊤
∥∥∥∥∥∥
2

≤ 0.1C2
h + 0.5(BδCg + Cδ)Cg + 0.25(CgCδ +BδLg + Lδ)

+ 0.25(BδCg + Cδ)
2Cg + 0.25C2

g (Bδ + 1) + 0.25Bδ(C
2
g + Lg).
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Lemma 3. Under Assumption 1, MIDAM with γ ∈ (0, 1), s0i = 0, we have |sti| ≤ Bs for all t > 0.

Proof. This lemma follows from Assumption 1 and the facts that f1 is continuously differentiable on its domain and the
update formula of si is a convex combination.

Lemma 4. If η ∈ (0, 0.5) and a0 = 0, b0 = 0, there exist Ba, Bb > 0 |at| ≤ Ba, |bt| < Bb for all t > 0.

Proof. Note that Gt
1,a = − 2

|St
+|
∑

i∈St
+
(f2(s

t
i)− at) and Gt

2,b = − 2
|St

−|
∑

i∈St
−
(f2(s

t
i)− bt). Thus, the update formulae

of a and b can be re-rewritten as

at+1 = at − ηGt
1,a = (1− 2η)at + 2η

1

|St
+|
∑
i∈St

+

f2(s
t
i),

bt+1 = bt − ηGt
2,b = (1− 2η)bt + 2η

1

|St
−|
∑
i∈St

−

f2(s
t
i).

Due to Lemma 3 and the fact that f2 is continuously differentiable on its domain, at and bt are bounded in all iterations as
long as η ∈ (0, 0.5) such that the update formulae of at and bt are convex combinations.

Lemma 5. Under Assumption 1, there exists LF > 0 such that ∇F is LF -Lipschitz continuous.

Proof. Note that h(w;Xi) = f2(f1(w;Xi)), ∇h(w;Xi) = ∇f1(w;Xi)∇f2(f1(w;Xi)). For distinct (w, a, b, α) and
(w′, a′, b′, α′), we have∥∥∇(w,a,b)F (w, a, b, α)−∇(w,a,b)F (w

′, a′, b′, α′)
∥∥
2
+ |∇αF (w, a, b, α)−∇αF (w

′, a′, b′, α′)|

≤

∥∥∥∥∥∥ 2

|D+|
∑
i∈D+

(∇h(w;Xi)(h(w;Xi)− a)−∇h(w′;Xi)(h(w
′;Xi)− a′))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 2

|D−|
∑
i∈D−

(∇h(w;Xi)(h(w;Xi)− b)−∇h(w′;Xi)(h(w
′;Xi)− b′))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥α 1

|D−|
∑
i∈D−

∇h(w;Xi)− α′ 1

|D−|
∑
i∈D−

∇h(w′;Xi)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥α 1

|D+|
∑
i∈D+

∇h(w;Xi)− α′ 1

|D+|
∑
i∈D+

∇h(w′;Xi)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 2

|D+|
∑
i∈D+

(h(w;Xi)− a)− 2

|D+|
∑
i∈D+

(h(w′;Xi)− a′)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 2

|D+|
∑
i∈D+

(h(w;Xi)− b)− 2

|D+|
∑
i∈D+

(h(w′;Xi)− b′)

∥∥∥∥∥∥
2

+ |α− α′|+

∥∥∥∥∥∥ 1

|D−|
∑
i∈D−

h(w;Xi)−
1

|D−|
∑
i∈D−

h(w′;Xi)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

|D+|
∑
i∈D+

h(w;Xi)−
1

|D+|
∑
i∈D+

h(w′;Xi)

∥∥∥∥∥∥
2

≤ 2(2LhBh + 2C2
h + (Ba +Bb)Lh +BΩLh + 3Ch) ∥w −w′∥2

+ 2(Ch + 1)|a− a′|+ 2(Ch + 1)|b− b′|+ 2(Ch + 1)|α− α′|.

Lemma 6 (Lemma 4.3 in Lin et al. (2019)). For an F defined in (4) that has Lipschitz continuous gradient and
Φ(w, a, b) := maxα∈Ω F (w, a, b, α) with a convex and bounded Ω, we have that Φ(w, a, b) is LΦ-smooth and
∇Φ(w, a, b) = ∇(w,a,b)F (w, a, b, α

∗(w, a, b)). Besides, α∗(w, a, b) is 1-Lipschitz continuous.
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We define v :=

v1

v2

v3

, W :=

wa
b

, and Gt
W =

Gt
1,w +Gt

2,w +Gt
3,w

Gt
1,a

Gt
2,b

, Ḡt
W =

Ḡt
1,w + Ḡt

2,w + Ḡt
3,w

Ḡt
1,a

Ḡt
2,b

, where

Ḡt
1,w = Êi∈St

+
∇f1(wt;Bt

i)∇f2(f1(wt;Xi))∇1f(f2(f1(w
t;Xi)), a

t),

Ḡt
2,w = Êi∈St

−
∇f1(wt;Bt

i)∇f2(f1(wt;Xi))∇1f(f2(f1(w
t;Xi)), b

t),

Ḡt
3,w = αt ·

(
Êi∈St

−
∇f1(wt;Bt

i)∇f2(f1(wt;Xi))− Êi∈St
+
∇f1(wt;Bt

i)∇f2(f1(wt;Xi))
)
,

Ḡt
1,a = Êi∈St

+
∇2f(f2(f1(w

t;Xi)), a
t),

Ḡt
2,b = Êi∈St

−
∇2f(f2(f1(w

t;Xi)), b
t).

Lemma 7 (Lemma 11 in Wang et al. (2021a)). Suppose that X = 1
n

∑n
i=1Xi. If we sample a size-B minibatch B from

{1, . . . , n} uniformly at random, we have E
[
1
B

∑
i∈B(Xi −X)

]
= 0 and

E

∥∥∥∥∥ 1

B

∑
i∈B

(Xi −X)

∥∥∥∥∥
2
 ≤ n−B

B(n− 1)

1

n

n∑
i=1

∥Xi −X∥2 ≤ n−B

B(n− 1)

1

n

n∑
i=1

∥Xi∥2 .

Lemma 8. Under Assumption 1, there exists CG, CΥ > 0 for MIDAM such that
T−1∑
t=0

E
[
∆t
]
≤ ∆0

β1
+ 2Tβ1CG + 5L2

F

T−1∑
t=0

E
[
Ψt+1

]
+

3η2L2
Φ

β2
1

T−1∑
t=0

E
[∥∥vt

∥∥2
2

]
+ 5CΥ

T−1∑
t=0

E
[
Υt+1

+

]
+ 5CΥ

T−1∑
t=0

E
[
Υt+1

−
]

+ 5CΥ

T−1∑
t=0

1

D+
E

∑
i∈St

+

∥∥st+1
i − sti

∥∥2
2

+ 5CΥ

T−1∑
t=0

1

D−
E

∑
i∈St

−

∥∥st+1
i − sti

∥∥2
2

 .
where ∆t := ∥vt −∇Φ(W t)∥22, Υt

+ := 1
D+

∑
i∈D+

∥sti − f1(w
t;Xi)∥

2
2, Υt

− := 1
D−

∑
i∈D+

∥sti − f1(w
t;Xi)∥

2
2, Ψt :=

∥αt − α∗(W t)∥22.

Proof. Based on the update rule of vt, we have

Et+1

[
∆t+1

]
= Et

[∥∥vt+1 −∇Φ(W t+1)
∥∥2
2

]
= Et

[∥∥vt+1 −∇WF (W t+1, α∗(W t+1))
∥∥2
2

]
= Et+1

[∥∥(1− β1)v
t + β1G

t+1
W −∇WF (W t+1, α∗(W t+1))

∥∥2
2

]
= Et+1

∥∥∥∥∥∥(1− β1) (v
t −∇Φ(W t))︸ ︷︷ ︸

♣

+(1− β1) (∇Φ(W t)−∇Φ(W t+1))︸ ︷︷ ︸
♡

+β1(G
t+1
W − Ḡt+1

W )

+β1 (Ḡ
t+1
W −∇WF (W t+1, αt+1))︸ ︷︷ ︸

♢

+β1 (∇WF (W t+1, αt+1)−∇Φ(W t+1))︸ ︷︷ ︸
♠

∥∥∥∥∥∥∥
2

2

 .
Note that Et+1[♣ · ♢] = 0, Et+1[♡ · ♢] = 0, Et+1[♠ · ♢] = 0. Then,
Et+1

[
∆t+1

]
= (1− β1)

2∆t + (1− β1)
2
∥∥∇Φ(W t)−∇Φ(W t+1)

∥∥2
2
+ β2

1Et+1[
∥∥Gt+1

W − Ḡt+1
W

∥∥2
2
]

+ β2
1Et+1[

∥∥Ḡt+1
W −∇WF (W t+1, αt+1)

∥∥2
2
] + β2

1

∥∥∇WF (W t+1, αt+1)−∇Φ(W t+1)
∥∥2
2

+ 2(1− β1)
2
〈
vt −∇Φ(W t), ∇Φ(W t)−∇Φ(W t+1)

〉
+ 2β1(1− β1)Et+1[

〈
vt −∇Φ(W t), Gt+1

W − Ḡt+1
W

〉
]

+ 2β1(1− β1)Et+1[
〈
vt −∇Φ(W t), ∇WF (W t+1, αt+1)−∇Φ(W t+1)

〉
]

+ 2β1(1− β1)Et+1[
〈
∇Φ(W t)−∇Φ(W t+1), Gt+1

W − Ḡt+1
W

〉
]

+ 2β1(1− β1)Et+1[
〈
∇Φ(W t)−∇Φ(W t+1), ∇WF (W t+1, αt+1)−∇Φ(W t+1)

〉
]

+ 2β2
1Et+1[

〈
Gt+1

W − Ḡt+1
W , Ḡt+1

W −∇WF (W t+1, αt+1)
〉
]

+ 2β2
1Et+1[

〈
Gt+1

W − Ḡt+1
W , ∇WF (W t+1, αt+1)−∇Φ(W t+1)

〉
].
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Use Young’s inequality for products.
Et+1

[
∆t+1

]
≤ (1− β1)

2(1 + β1)∆
t +

3(1− β1)
2(1 + β1)

β1

∥∥∇Φ(W t)−∇Φ(W t+1)
∥∥2
2
+ 2β2

1Et+1[
∥∥Ḡt+1

W −∇WF (W t+1, αt+1)
∥∥2
2
]

+ (3β1 + 5β2
1/3)

∥∥Gt+1
W − Ḡt+1

W

∥∥2
2
+ (3β1 + 5β2

1/3)Et+1[
∥∥∇WF (W t+1, αt+1)−∇Φ(W t+1)

∥∥2
2
]

≤ (1− β1)∆
t +

3L2
Φη

2

β1

∥∥vt
∥∥2
2
+ 2β2

1Et+1[
∥∥Ḡt+1

W −∇WF (W t+1, αt+1)
∥∥2
2
]

+ 5β1 Et+1[
∥∥Gt+1

W − Ḡt+1
W

∥∥2
2
]︸ ︷︷ ︸

△

+5β1
∥∥∇WF (W t+1, αt+1)−∇Φ(W t+1)

∥∥2
2
.

Note that sti, a
t, bt, αt are bounded due to Lemma 3, Lemma 4 and the projection step of updating α. Besides, there exist

Bf1 , Cf1 , Bf2 , Cf2 , Lf2 > 0 such that ∥f1∥2 ≤ Bf1 , ∥∇f1∥2 ≤ Cf1 , ∥f2∥2 ≤ Bf2 , ∥∇f2∥2 ≤ Cf2 ,
∥∥∇2f2

∥∥
2
≤ Lf2 due

to Assumption 1. Then, the definition of Ḡt+1
1,w , Ḡt+1

2,w , Ḡt+1
3,w , Ḡt+1

1,a , Ḡt+1
2,b leads to

Et+1[
∥∥Ḡt+1

W −∇WF (W t+1, αt+1)
∥∥2
2
]

= Et+1[
∥∥Ḡt+1

1,w + Ḡt+1
2,w + Ḡt+1

3,w −∇wF1(w
t+1, at+1)−∇wF2(w

t+1, bt+1)−∇wF3(w
t+1, αt+1)

∥∥2
2
]

+ Et+1[
∥∥Ḡt+1

1,a −∇aF1(w
t+1, at+1)

∥∥2
2
] + Et+1[

∥∥∥Ḡt+1
2,b −∇aF2(w

t+1, bt+1)
∥∥∥2
2
]

≤ 3Et+1[
∥∥Ḡt+1

1,w −∇wF1(w
t+1, at+1)

∥∥2
2
] + 3Et+1[

∥∥Ḡt+1
2,w −∇wF2(w

t+1, bt+1)
∥∥2
2
]

+ 3Et+1[
∥∥Ḡt+1

3,w −∇wF3(w
t+1, αt+1)

∥∥2
2
]

+ Et+1[
∥∥Ḡt+1

1,a −∇aF1(w
t+1, at+1)

∥∥2
2
] + Et+1[

∥∥∥Ḡt+1
2,b −∇aF2(w

t+1, bt+1)
∥∥∥2
2
]

≤ 12C2
f1C

2
f2(2B

2
f2 +B2

a +B2
b ) + 6B2

ΩC
2
f1C

2
f2 + 4(2B2

f2 +B2
a +B2

b ).

We define CG := 12C2
f1
C2

f2
(2B2

f2
+B2

a +B2
b ) + 6B2

ΩC
2
f1
C2

f2
+ 4(2B2

f2
+B2

a +B2
b ). Besides,∥∥∇WF (W t+1, αt+1)−∇Φ(W t+1)

∥∥2
2
=
∥∥∇WF (W t+1, αt+1)−∇WF (W t+1, α∗(W t+1))

∥∥2
2

≤ L2
F

∥∥αt+1 − α∗(W t+1)
∥∥2
2
.

Next, we turn to bound the △ term.

Et+1[
∥∥Gt+1

W − Ḡt+1
W

∥∥2
2
]

≤ 3Et+1


∥∥∥∥∥∥∥

2

|St+1
+ |

∑
i∈St+1

+

∇f1(wt+1;Bt+1
i )

(
∇f2(sti)f2(sti)−∇f2(f1(wt+1;Xi))f2(f1(w

t+1;Xi))
)∥∥∥∥∥∥∥

2

2



+ 3Et+1


∥∥∥∥∥∥∥

2

|St+1
− |

∑
i∈St+1

−

∇f1(wt+1;Bt+1
i )

(
∇f2(sti)f2(sti)−∇f2(f1(wt+1;Xi))f2(f1(w

t+1;Xi))
)∥∥∥∥∥∥∥

2

2



+ 6Et+1


∥∥∥∥∥∥∥αt+1

 1

|St+1
− |

∑
i∈St+1

−

∇f1(wt;Bt
i)
(
∇f2(sti)−∇f2(f1(wt+1;Xi))

)
∥∥∥∥∥∥∥
2

2



+ 6Et+1


∥∥∥∥∥∥∥αt+1

 1

|St+1
+ |

∑
i∈St+1

+

∇f1(wt;Bt
i)
(
∇f2(sti)−∇f2(f1(wt+1;Xi))

)
∥∥∥∥∥∥∥
2

2



+ Et+1


∥∥∥∥∥∥∥

2

|St+1
+ |

∑
i∈St+1

+

(f2(s
t
i)− f2(f1(w

t+1;Xi)))

∥∥∥∥∥∥∥
2

2

+ Et+1


∥∥∥∥∥∥∥

2

|St+1
− |

∑
i∈St+1

−

(f2(s
t
i)− f2(f1(w

t+1;Xi)))

∥∥∥∥∥∥∥
2

2

 .
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Note that sti and wt+1 are independent of St+1
+ and St+1

− .

Et+1[
∥∥Gt+1

W − Ḡt+1
W

∥∥2
2
]

≤ 12C2
f1

1

D+

∑
i∈D+

∥∥∇f2(sti)f2(sti)−∇f2(f1(wt+1;Xi))f2(f1(w
t+1;Xi))

∥∥2
2

+ 12C2
f1

1

D−

∑
i∈D−

∥∥∇f2(sti)f2(sti)−∇f2(f1(wt+1;Xi))f2(f1(w
t+1;Xi))

∥∥2
2

+ 6B2
ΩC

2
f1L

2
f2

1

D+

∑
i∈D+

∥∥sti − f1(w
t+1;Xi)

∥∥2
2
+ 6B2

ΩC
2
f1L

2
f2

1

D−

∑
i∈D−

∥∥sti − f1(w
t+1;Xi)

∥∥2
2

+ 4C2
f2

1

D+

∑
i∈D+

∥∥sti − f1(w
t+1;Xi)

∥∥2
2
+ 4C2

f2

1

D−

∑
i∈D−

∥∥sti − f1(w
t+1;Xi)

∥∥2
2

≤ CΥ

 1

D+
Et+1

∑
i∈D+

∥∥st+1
i − f1(w

t+1;Xi)
∥∥2
2

+
1

D−
Et+1

∑
i∈D−

∥∥st+1
i − f1(w

t+1;Xi)
∥∥2
2


+ CΥ

 1

D+
Et+1

∑
i∈D+

∥∥st+1
i − sti

∥∥2
2

+
1

D−
Et+1

∑
i∈D−

∥∥st+1
i − sti

∥∥2
2

 ,

where we define CΥ := 48C2
f1
(C4

f2
+B2

f2
L2
f2
) + 12C2

f1
B2

ΩL
2
f2

+ 8C2
f2

. Note that st+1
i = sti for those i ̸∈ St

+ ∪ St
−. Then,∑

i∈D+

∥∥st+1
i − sti

∥∥2
2
=
∑
i∈St

+

∥∥st+1
i − sti

∥∥2
2
,

∑
i∈D−

∥∥st+1
i − sti

∥∥2
2
=
∑
i∈St

−

∥∥st+1
i − sti

∥∥2
2

We define

Υt
+ :=

1

D+

∑
i∈D+

∥∥sti − f1(w
t;Xi)

∥∥2
2
, Υt

− :=
1

D−

∑
i∈D+

∥∥sti − f1(w
t;Xi)

∥∥2
2
, Ψt =

∥∥αt − α∗(W t)
∥∥2
2
,

such that

Et+1[∆
t+1] ≤ (1− β1)∆

t +
3L2

Φη
2

β1

∥∥vt
∥∥2
2
+ 2β2

1CG + 5β1CΥ

(
Et+1[Υ

t+1
+ ] + Et+1[Υ

t+1
− ]

)
+ 5β1L

2
FΨ

t+1

+ 5β1CΥ

 1

D+
Et+1

∑
i∈St

+

∥∥st+1
i − sti

∥∥2
2

+
1

D−
Et+1

∑
i∈St

−

∥∥st+1
i − sti

∥∥2
2

 .

Sum over t = 0, . . . , T − 1.
T−1∑
t=0

E
[
∆t
]
≤ ∆0

β1
+ 2Tβ1CG + 5L2

F

T−1∑
t=0

E
[
Ψt+1

]
+

3η2L2
Φ

β2
1

T−1∑
t=0

E
[∥∥vt

∥∥2
2

]
+ 5CΥ

T−1∑
t=0

E
[
Υt+1

+

]
+ 5CΥ

T−1∑
t=0

E
[
Υt+1

−
]

+ 5CΥ

T−1∑
t=0

1

D+
E

∑
i∈St

+

∥∥st+1
i − sti

∥∥2
2

+ 5CΥ

T−1∑
t=0

1

D−
E

∑
i∈St

−

∥∥st+1
i − sti

∥∥2
2

 .

Lemma 9 (Lemma 1 in Wang & Yang (2022)). Suppose that |St
+| ≡ S+, |St

−| ≡ S− and we define D+ = |D+|,
D− = |D−|. Under Assumption 1, MIDAM satisfies that

T−1∑
t=0

E
[
Υt

+

]
≤

4D+Υ
0
+

γ0S+
+

8Tγ0B
2
f1
(N −B)

B(N − 1)
+

20D2
+η

2C2
f1

γ20S
2
+

T−1∑
t=0

E
[∥∥vt

∥∥2
2

]
− 1

γ0S+

T−1∑
t=0

E

∑
i∈St

+

∥∥st+1
i − sti

∥∥2
2

 ,
T−1∑
t=0

E
[
Υt

−
]
≤

4D−Υ
0
−

γ0S−
+

8Tγ0B
2
f1
(N −B)

B(N − 1)
+

20D2
−η

2C2
f1

γ20S
2
−

T−1∑
t=0

E
[∥∥vt

∥∥2
2

]
− 1

γ0S−

T−1∑
t=0

E

∑
i∈St

−

∥∥st+1
i − sti

∥∥2
2

 .
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Lemma 10. Under Assumption 1, MIDAM satisfies that
T−1∑
t=0

E
[
Ψt
]
≤ 4Ψ0

η′
+ 64η′T (B2

f2 +B2
h) + 32

T−1∑
t=0

E
[
Υt

+

]
+ 32

T−1∑
t=0

E
[
Υt

−
]
+

20η2

(η′)2

T−1∑
t=0

E
[∥∥vt

∥∥2
2

]

+
32

D+

T−1∑
t=0

E

 ∑
i∈St−1

+

∥∥sti − st−1
i

∥∥2
2

+
32

D−
E

 ∑
i∈St−1

−

∥∥sti − st−1
i

∥∥2
2

 ,
where Ψt := ∥αt − α∗(vt)∥22.

Proof. We define Gt
α := Gt

3,α − αt and Ḡt
α := c+ 1

D−

∑
i∈D−

f(st−1
i )− 1

D+

∑
i∈D+

f(st−1
i )− αt. The update formula

of α and the 1-strong convexity of F (W, ·) implies that

Et

[∥∥αt+1 − α∗(W t)
∥∥2
2

]
= Et

[∥∥ΠΩ[α
t + η′Gt

α]−ΠΩ[α
∗(W t) + η′∇αF (W

t, αt)]
∥∥2
2

]
≤ Et

[∥∥αt + η′Gt
α − α∗(W t)− η′∇αF (W

t, αt)
∥∥2
2

]
=
∥∥αt + η′∇αF (W

t, αt)− α∗(W t)− η′∇αF (W
t, α∗(W t))

∥∥2
2
+ (η′)2Et

[∥∥Gt
α −∇αF (W

t, αt)
∥∥2]

+ 2η′Et

[〈
αt + η′∇αF (W

t, αt)− α∗(W t)− η′∇αF (W
t, α∗(W t)), Gt

α −∇αF (W
t, αt)

〉]
=
∥∥αt + η′∇αF (W

t, αt)− α∗(W t)− η′∇αF (W
t, α∗(W t))

∥∥2
2
+ (η′)2Et

[∥∥Gt
α −∇αF (W

t, αt)
∥∥2]

+ 2η′Et

[〈
αt + η′∇αF (W

t, αt)− α∗(W t)− η′∇αF (W
t, α∗(vt)), Ḡt

α −∇αF (W
t, αt)

〉]
≤ (1 + η′/2)

∥∥αt + ηα∇αF (W
t, αt)− α∗(W t)− η′∇αF (W

t, α∗(W t))
∥∥2
2
+ (η′)2Et

[∥∥Gt
α −∇αF (W

t, αt)
∥∥2]

+ η′
∥∥Ḡt

α −∇αF (W
t, αt)

∥∥2 .
We have∥∥Ḡt

α −∇αF (W
t, αt)

∥∥2
2

=

∥∥∥∥∥∥ 1

D−

∑
i∈D−

f2(s
t−1
i )− 1

D+

∑
i∈D+

f2(s
t
+,i)−

1

D−

∑
i∈D−

f2(f1(w
t;Xi)) +

1

D+

∑
i∈D+

f2(f1(w
t;Xi))

∥∥∥∥∥∥
2

2

≤ 2

D+

∑
i∈D+

∥∥st−1
i − f1(w

t;Xi)
∥∥2
2
+

2

D−

∑
i∈D−

∥∥st−1
i − f1(w

t;Xi)
∥∥2
2

≤ 4

D+

∑
i∈D+

∥∥sti − f1(w
t;Xi)

∥∥2
2
+

4

D−

∑
i∈D−

∥∥sti − f1(w
t;Xi)

∥∥2
2
+

4

D+

∑
i∈D+

∥∥sti − st−1
i

∥∥2
2
+

4

D−

∑
i∈D−

∥∥sti − st−1
i

∥∥2
2

=
4

D+

∑
i∈D+

∥∥sti − f1(w
t;Xi)

∥∥2
2
+

4

D−

∑
i∈D−

∥∥sti − f1(w
t;Xi)

∥∥2
2

+
4

D+

∑
i∈St−1

+

∥∥sti − st−1
i

∥∥2
2
+

4

D−

∑
i∈St−1

−

∥∥sti − st−1
i

∥∥2
2
,

where the last step is due to sti = st−1
i for those i ̸∈ St−1

+ ∪ St−1
− . Besides, we have∥∥Gt

α −∇αF (W
t, αt)

∥∥2
2

=

∥∥∥∥∥∥ 1

St
−

∑
i∈St

−

f2(s
t−1
i )− 1

S+

∑
i∈St

+

f2(s
t−1
i )− 1

D−

∑
i∈D−

h(wt;Xi)−
1

D+

∑
i∈D+

h(w;Xi)

∥∥∥∥∥∥
2

2

≤ 8(B2
f2 +B2

h).

Due to the 1-strong convexity of F (W, ·), we have

E
[∥∥αt + η′∇αF (W

t, αt)− α∗(W t)− η′∇αF (W
t, α∗(W t))

∥∥2
2

]
≤ (1− η′)E

[∥∥αt − α∗(W t)
∥∥2
2

]
.
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Note that α∗(·) is 1-Lipschitz (Lemma 6) such that

E
[∥∥αt+1 − α∗(W t+1)

∥∥2
2

]
≤ (1 + η′/4)E

[∥∥αt+1 − α∗(W t)
∥∥2
2

]
+ (1 + 4/η′)E

[∥∥α∗(W t)− α∗(W t+1)
∥∥2
2

]
≤ (1− η′/4)E

[∥∥αt − α∗(W t)
∥∥2
2

]
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Define Ψt := ∥αt − α∗(vt)∥22. Then, we have
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B. Proof of Theorem 1
According to Lemma 6, we have
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, Lemma 8 implies that
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Bag Bag

Histopathological Image MRI Scans

Figure 3. Illustration of MIL for medical data (Breast Cancer on the left and PDGM on the right).

Apply Lemma 9 and Lemma 10.
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Due to the update formula of vt, we have ∥vt∥2 ≤ Cv for all t ≥ 0, Cv := 2Cf1Cf2(2Bf2 +Ba +Bb) + 2BΩCf1Cf2 +
2(2Bf2 +Ba +Bb). We choose s0i = 0 for all i ∈ D+ ∪ D− and the step sizes as follows
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According to Lemma 9, we have 1
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C. More Figures
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Figure 4. Training and testing convergence of MIDAM (XX) vs DAM (XX). The top is for training AUC, and the bottom is for testing
AUC.
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(g) smx, testing, Colon Ade.
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Figure 5. Training and testing convergence of MIDAM (XX) vs DAM (MB-XX). The margin c = 0.1 and learning rate is tuned in
{1e-1,1e-2,1e-3}. The top is for training AUC, and the bottom is for testing AUC.
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(a) MIDAM-smx, MUSK2
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(b) MIDAM-smx, Fox
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(d) MIDAM-smx, Elephant
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(f) MIDAM-att, Fox
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0 20 40 60 80 100
Epochs

0.92

0.94

0.96

0.98

1.00

Tr
ai

ni
ng

 A
UC

B = 1
B = 2
B = 4
full

(h) MIDAM-att, Elephant

Figure 6. Training with different instance-batch sizes
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(c) smx, training, Colon Ade.
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(g) smx, testing, Colon Ade.
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Figure 7. Ablation study for fixing the total budget per-iteration by varying bag-batch size S+ = S− = B̂ and instance-batch size B for
the proposed MIDAM approaches
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(e) Prediction scores
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Figure 8. Demonstrations for positive and negative examples for Breast Cancer dataset. Left: original image. Middle: prediction scores
for each patch. Right: attention weights for each patch.


