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Abstract

We provide the first convergence guarantee for black-box variational inference
(BBVI) with the reparameterization gradient. While preliminary investigations
worked on simplified versions of BBVI (e.g., bounded domain, bounded support,
only optimizing for the scale, and such), our setup does not need any such algorith-
mic modifications. Our results hold for log-smooth posterior densities with and
without strong log-concavity and the location-scale variational family. Notably,
our analysis reveals that certain algorithm design choices commonly employed
in practice, such as nonlinear parameterizations of the scale matrix, can result in
suboptimal convergence rates. Fortunately, running BBVI with proximal stochas-
tic gradient descent fixes these limitations and thus achieves the strongest known
convergence guarantees. We evaluate this theoretical insight by comparing proxi-
mal SGD against other standard implementations of BBVI on large-scale Bayesian
inference problems.

1 Introduction

Despite the practical success of black-box variational inference (BBVI; Kucukelbir et al., 2017; Ran-
ganath et al., 2014; Titsias & Lázaro-Gredilla, 2014), also known as stochastic gradient variational
Bayes and Monte Carlo variational inference, whether it converges under appropriate assumptions
on the target problem have been an open problem for a decade. While our understanding of BBVI
has been advancing (Bhatia et al., 2022; Challis & Barber, 2013; Domke, 2019, 2020; Hoffman &
Ma, 2020), a full convergence guarantee that extends to the practical implementations as used in
probabilistic programming languages (PPL) such as Stan (Carpenter et al., 2017), Turing (Ge et al.,
2018), Tensorflow Probability (Dillon et al., 2017), Pyro (Bingham et al., 2019), and PyMC (Patil
et al., 2010) has yet to be demonstrated.

Due to our lack of understanding, a consensus on how we should implement our BBVI algorithms has
yet to be achieved. For example, when the variational family is chosen to be the location-scale family,
the “scale” matrix can be parameterized linearly or nonlinearly, and both parameterizations are used
by default in popular software packages. (See Table 1 in Kim et al. 2023.) Surprisingly, as we
will show, seemingly innocuous design choices like these can substantially impact the convergence
of BBVI. This is critical as BBVI has been shown to be less robust (e.g., sensitive to initial points,
stepsizes, and such) than competing inference methods such as Markov chain Monte Carlo (MCMC).
(See Dhaka et al., 2020; Domke, 2020; Welandawe et al., 2022; Yao et al., 2018.) Instead, the
evaluation of BBVI algorithms has been relying on expensive empirical evaluations (Agrawal et al.,
2020; Dhaka et al., 2021; Giordano et al., 2018; Yao et al., 2018).
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To rigorously analyze the design of BBVI algorithms, we establish the first convergence guarantee
for the implementations precisely as used in practice. We provide results for BBVI with the repa-
rameterization gradient (RP; Kingma & Welling, 2014; Titsias & Lázaro-Gredilla, 2014) and the
location-scale variational family, arguably the most widely used combination in practice. Our re-
sults apply to log-smooth posteriors, which is a routine assumption for analyzing the convergence of
stochastic optimization (Garrigos & Gower, 2023) and sampling algorithms (Dwivedi et al., 2019,
§2.3). The key is to show that evidence lower bound (ELBO; Jordan et al., 1999) satisfies regular-
ity conditions required by convergence proofs of stochastic gradient descent (SGD; Bottou, 1999;
Nemirovski et al., 2009; Robbins & Monro, 1951), the workhorse underlying BBVI.

Our analysis reveals that nonlinear scale matrix parameterizations used in practice are suboptimal:
they provably break strong convexity and sometimes even convexity. Even if the posterior is strongly
log-concave, the ELBO is not strongly convex anymore. This contrasts with linear parameterizations,
which guarantee the ELBO to be strongly convex if the posterior is strongly log-concave (Domke,
2020). Under linear parameterizations, however, the ELBO is no longer smooth, making optimiza-
tion challenging. Because of this, Domke (2020) proposed to use proximal SGD, which Agrawal
& Domke (2021, Appendix A) report to have better performance than vanilla SGD with nonlinear
parameterizations. Indeed, we show that BBVI with proximal SGD achieves the fastest known con-
verges rates of SGD, unlike vanilla BBVI. Thus, we provide a concrete reason for employing proxi-
mal SGD. We evaluate this insight on large-scale Bayesian inference problems by implementing an
Adam-like (Kingma & Ba, 2015) variant of proximal SGD proposed by Yun et al. (2021).

Concurrently to this work, convergence guarantees on BBVI with the RP and the sticking-the-landing
estimator (STL; Roeder et al., 2017) under the linear parameterization were published by Domke
et al. (2023). To achieve this, they show that a quadratic bound on the gradient variance is sufficient
to guarantee the convergence of projected and proximal SGD. In contrast, we focus on analyzing
the ELBO under nonlinear parameterizations and connect it to existing analysis strategies. A more
in-depth comparison of the two works is provided in Appendix E.

¶ Convergence Guarantee for BBVI: Theorem 3 establishes a convergence guarantee for BBVI
with assumptions matching the implementations used in practice. That is, without algorithmic
simplifications and unrealistic assumptions such as bounded domain or bounded support.

· Optimality of Linear Parameterizations: Theorem 2 shows that, for location-scale variational
families, nonlinear scale parameterizations prevent the ELBO from being strongly-convex even
when the target posterior is strongly log-concave.

¸ Convergence Guarantee for Proximal BBVI: Theorem 4 guarantees that, if proximal SGD
is used, BBVI on 𝜇-strongly log-concave posteriors can obtain a solution 𝜖-close to the global
optimum with 𝒪 (1/𝜖) iterations.

¹ Evaluation of Proximal BBVI in Practice: In Section 5, we evaluate the utility of proximal
SGD on large-scale Bayesian inference problems.

2 Background
Notation Random variables are denoted in serif (e.g., 𝘹, 𝙭), vectors are in bold (e.g., 𝒙, 𝙭), and
matrices are in bold capitals (e.g. 𝑨). For a vector 𝒙 ∈ ℝ𝑑, we denote the inner product as 𝒙⊤𝒙 and⟨𝒙, 𝒙⟩, the ℓ2-norm as ‖𝒙‖2 = √𝒙⊤𝒙. For a matrix 𝑨, ‖𝑨‖F = √tr (𝑨⊤𝑨) denotes the Frobenius norm.𝕊𝑑++ is the set of positive definite matrices. For some function 𝑓, D𝑖𝑓 denotes the 𝑖th coordinate of∇𝑓, and C𝑘 (𝒳, 𝒴) is the set of 𝑘-time differentiable continuous functions mapping from 𝒳 to 𝒴.

2.1 Black-Box Variational Inference
Variational inference (VI, Blei et al., 2017; Jordan et al., 1999; Zhang et al., 2019) aims to minimize
the exclusive (or backward/reverse) Kullback-Leibler (KL) divergence as:

minimize𝝀∈Λ DKL (𝑞𝝀, 𝜋) ≜ 𝔼𝙯∼𝑞𝝀 − log𝜋 (𝙯) − ℍ (𝑞𝝀) ,
where DKL (𝑞𝝀, 𝜋) is the KL divergence, ℍ is the differential entropy,𝜋 is the (target) posterior distribution, and 𝑞𝝀 is the variational distribution,

While alternative approaches to VI (Dieng et al., 2017; Hernandez-Lobato et al., 2016; Kim et al.,
2022; Naesseth et al., 2020) exist, so far, exclusive KL minimization has been the most successful.
We thus use “exclusive KL minimization” as a synonym for VI, following convention.
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Equivalently, one minimizes the negative evidence lower bound (ELBO, Jordan et al., 1999) 𝐹:

minimize𝝀∈Λ 𝐹 (𝝀) ≜ 𝔼𝙯∼𝑞𝝀 − log𝑝 (𝒛, 𝒙) − ℍ (𝑞𝝀) ,
where log𝑝 (𝒛, 𝒙) is the joint likelihood, which is proportional to the posterior as 𝜋 (𝒛) ∝ 𝑝 (𝒛, 𝒙) =𝑝 (𝒙 ∣ 𝒛) 𝑝 (𝒛), where 𝑝 (𝒙 ∣ 𝒛) is the likelihood and 𝑝 (𝒛) is the prior.

2.2 Variational Family

In this work, we focus on the following variational family. ( d= is equivalence in distribution.)

Definition 1 (Reparameterized Family).
Let 𝜑 be some 𝑑-variate distribution. Then,𝑞𝝀 that can be equivalently represented as𝙯 ∼ 𝑞𝝀 ⇔ 𝙯 d= 𝒯𝝀 (𝙪) ; 𝙪 ∼ 𝜑,
is said to be part of a reparameterized family
generated by the base distribution 𝜑 and the
reparameterization function 𝒯𝝀.

Definition 2 (Location-Scale Reparameteri-
zation Function). 𝒯𝝀 ∶ ℝ𝑑 → ℝ𝑑 defined as𝒯𝝀 (𝒖) ≜ 𝑪𝒖 +𝒎
with 𝝀 containing the parameters for forming
the location 𝒎 ∈ ℝ𝑑 and scale 𝑪 = 𝑪 (𝝀) ∈ℝ𝑑×𝑑 is called the location-scale reparameteri-
zation function.

The location-scale family enables detailed theoretical analysis, as demonstrated by (Domke, 2019,
2020; Fujisawa & Sato, 2021; Kim et al., 2023), and includes the most widely used variational
families such as the Student-t, elliptical, and Gaussian families (Titsias & Lázaro-Gredilla, 2014).

Handling Constrained Support For common choices of the base distribution 𝜑, the support of𝑞𝝀 is the whole ℝ𝑑. Therefore, special treatment is needed when the support of 𝜋 is constrained.
Kucukelbir et al. (2017) proposed to handle this by applying diffeomorphic transformation denoted
with 𝜓, often called bjectors (Dillon et al., 2017; Fjelde et al., 2020; Leger, 2023), to 𝑞𝝀 such that𝞯 ∼ 𝑞𝜓,𝝀 ⇔ 𝞯 𝑑= 𝜓−1(𝙯); 𝙯 ∼ 𝑞𝝀,
such that the support of 𝑞𝜓,𝝀 matches that of 𝜋. For example, when the support of 𝜋 is ℝ+, one can
choose 𝜓−1 = exp. This approach, known as automatic differentiation VI (ADVI), is now standard
in most modern PPLs.

Why focus on posteriors with unconstrained supports? When bijectors are used, the entropy
of 𝑞𝝀, ℍ (𝑞𝝀), needs to be adjusted by the Jacobian of 𝜓 (Kucukelbir et al., 2017), 𝑱𝜙−1 . However,
applying the transformation to 𝜋 instead of 𝑞𝝀 is mathematically equivalent and more convenient. In
fact, bijectors can be automatically incorporated into our notation by implicitly setting𝑝 (𝒙 ∣ 𝒛) = 𝑝 (𝒙 ∣ 𝜓−1 (𝒛)) and 𝑝 (𝒛) = 𝑝 (𝜓−1 (𝒛)) ||𝐉𝜓−1 (𝒛)||,
such that 𝜋 (𝜻) ∝ 𝑝 (𝒙 ∣ 𝜻) 𝑝 (𝜻), where 𝜋 is the constrained posterior that we are actually interested
in. Therefore, our setup in Section 2.1, where the domain of 𝙯 is taken to be the unconstrained ℝ𝑑,
already encompasses constrained posteriors through ADVI.

Lastly, we impose light assumptions on the base distribution 𝜑, which are already satisfied by most
variational families used in practice. (i.i.d.: independently and identically distributed.)
Assumption 1 (Base Distribution). 𝜑 is a 𝑑-variate distribution such that 𝙪 ∼ 𝜑 and 𝙪 =(𝘶1,… , 𝘶𝑑) with i.i.d. components. Furthermore, 𝜑 is (i) symmetric and standardized such that𝔼𝘶𝑖 = 0, 𝔼𝘶2𝑖 = 1, 𝔼𝘶3𝑖 = 0, and (ii) has finite kurtosis 𝔼𝘶4𝑖 = 𝑘𝜑 < ∞.

The assumptions on the variational family we will use throughout this work are collectively summa-
rized in the following assumption:
Assumption 2. The variational family is the location-scale family formed by Definitions 1 and 2
with the base distribution 𝜑 satisfying Assumption 1.

2.3 Scale Parameterizations
For the “scale” matrix 𝑪 (𝝀) in the location-scale family, any parameterization that results in a
positive-definite covariance 𝑪𝑪⊤ ∈ 𝕊𝑑++ is valid. However, for the ELBO to ever be convex, the
entropy ℍ (𝑞𝝀) must be convex, which requires the mapping 𝝀 ↦ 𝑪𝑪⊤ to be convex. To ensure this,
we restrict 𝑪 to (lower) triangular matrices with strictly positive eigenvalues, essentially, Cholesky
factors. This leaves two of the most common parameterizations:
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