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Abstract—Device interrupts have long been a problem in real-
time systems. Handling an interrupt in the context of a critical
task potentially leads to a missed deadline. While modern systems
have proposed techniques to schedule interrupts, the challenge is
to determine the correct priority based on the task that triggers
their occurrence. One approach is to assign an interrupt with
the highest priority among all tasks waiting on a corresponding
device. However, this does not fully eliminate priority inversion,
as the interrupt may be handled at a much higher priority than
the task with which it is associated.

To solve this problem, we present a solution for devices con-
nected to a Universal Serial Bus (USB). USB has properties that
make it potentially suitable for tackling high bandwidth sensor
data processing and low-latency input/output (I/O) control. We
describe the implementation of an xHCI (USB 3.x) driver in the
Quest RTOS, which guarantees throughput and delay require-
ments for USB devices and their I/O requests using time-budgeted
interrupt handling servers. Our paper is the first to introduce
differentiated USB interrupt servicing. Experiments show how
our approach outperforms a Linux xHCI driver running on
a PREEMPT_RT-patched system with SCHED_DEADLINE tasks.
Differentiated USB interrupt handling is shown to improve the
performance of Quest’s default xHCI driver, which is purposely
designed to provide real-time I/O guarantees.

Index Terms—Universal Serial Bus (USB), Message Signaled
Interrupts (MSIs), Differentiated Service, Real-Time I/O

I. INTRODUCTION

Embedded single board computers connect with input/out-

put (I/O) devices using relatively low-bandwidth interfaces

based on RS232 [1], Serial Peripheral Interface (SPI) [2],

I2C [3], or Controller Area Network (CAN) [4] bus proto-

cols, among others. However, new classes of real-time and

embedded systems are emerging with the need to process high-

bandwidth data from sensors such as cameras, LIDARs and

RADARs. Examples include those in the automotive domain,

where an array of cameras might work together with a LIDAR

or RADAR unit to provide sensory inputs for a semi- or full-

autonomous advanced driving assistance system (ADAS). Var-

ious standards are being developed to support host connectivity

of high-bandwidth devices, including GSML [5] and Ethernet

MAC-PHY chips [6]. However, none of these are as prevalent

as Universal Serial Bus (USB), which is increasingly popular

on many industrial grade board computers.

USB allows multiple different devices to be attached to a

host via a shared bus instance managed by a host controller.

The host controller generates interrupts on completion of

device transfers at a moderated rate. USB has the bandwidth to

handle modern sensor devices such as cameras, while meeting

the latency requirements of many control buses. For example,

USB 3.2 is capable of reaching bus rates of 20 Gbps, with

USB 4.0 rising to 40 Gbps, and USB/Thunderbolt 5.0 expected

to reach as high as 120 Gbps. At the same time, transfer

requests are schedulable in microframes of 125 microseconds,

making USB potentially suitable for latency-sensitive transfers

typically associated with CAN buses.

While USB appears to be a viable bus technology for han-

dling I/O requests for both low- and high-bandwidth devices,

with relatively low latency bounds, it poses several challenges.

First, the host controller driver needs to be able to schedule

I/O requests according to real-time guarantees, but evidence

suggests that most such drivers are not sufficiently predictable

to meet real-time requirements in timing-critical domains [7]–

[9]. Second, many devices now connect to hosts with different

service-level guarantees, dictated by task criticality levels.

To understand the importance of mixed-criticality sys-

tems [10] and real-time I/O, consider the direction being taken

by automotive systems. These systems are tending towards

centralized or zonal architectures [11], which replace separate

electronic control units (ECUs) with either a centralized main

computer or several domain controllers managing multiple

vehicle functions. These functions include chassis, body, pow-

ertrain, infotainment and ADAS services, and increasingly

are being consolidated onto one or several computers where

they run as software tasks. Consequently, we are now seeing

the emergence of software-defined vehicles (SDVs) [12]–[16]

comprising multiple functions of different criticality levels on

the same host machine. These host machines feature powerful

multicore CPUs, capable of handling hundreds of software

tasks, each interacting with the physical environment through a

network of sensors and actuators. It becomes critical to ensure

real-time information exchange between sensors and actuators

connected to the same host machine.

The problem addressed by this paper is to consider how

USB is able to manage the real-time exchange of information

between host tasks and devices such as those connected to

traditional CAN bus networks or high-bandwidth sensors. In

tackling this problem we consider the importance of meeting

throughput and delay constraints associated with tasks of

different criticality levels.

While prior work has investigated the use of USB for real-

time I/O [7]–[9], [17], [18], we are unaware of any reports



of how to ensure differentiated service guarantees for I/O

requests, beyond the basic endpoint service-level agreements

supported by a device. While a USB request might select a

particular transfer requirement based on the endpoint capa-

bilities (e.g., number of bytes to transfer over a window of

time), no prior work has looked at how to differentiate the

handling of interrupts from USB devices according to their

service requirements.

Significantly, USB has the ability to associate specific

interrupts with different service requests, by including an

interrupter value in the request. This is similar to early

demultiplexing [19], [20], which associates each interrupt with

the task that led to its occurrence [21]–[23]. However, most

approaches either assign a highest priority among a set of

waiting tasks to the handling of interrupts, or they require

software assistance to determine the match of an interrupt with

the task that caused it to occur. Here, we investigate USB

capabilities to support differentiated services.

In this paper, we present the following contributions: (1)

we describe the design and implementation of a USB dif-

ferentiated services framework, which uses multiple USB

interrupters to associate different I/O requests with specific

interrupt handlers; (2) we show how to guarantee service-level

constraints on I/O requests by scheduling USB interrupts along

with tasks that depend on them; (3) we compare our approach

in the Quest RTOS [24] against a Linux system that features

one USB interrupter for all I/O requests. This work is the first,

to our knowledge, to implement multiple USB interrupters into

a real-time scheduling framework. Experimental results show

how our approach is able to guarantee differentiated services

support while prior solutions, including Linux, are not.

The next section provides background to the problem ad-

dressed in this work. It includes pertinent details about USB,

interrupters and how interrupts are typically handled in modern

operating systems. This is followed by technical details behind

our USB differentiated services approach in Section III . Sec-

tion IV describes the evaluation of USB differentiated services

in comparison to prior approaches, including Linux. Related

work is discussed in Section V, followed by conclusions and

future work in Section VI .

II. BACKGROUND

One of the main challenges for real-time USB transfers

is the timely handling of interrupts when such transfers are

completed. Simply preempting the currently executing task

to handle an interrupt is often unacceptable. Systems such

as Linux charge the preempted task for time spent handling

interrupts, even though the task is not actually making progress

during that time, potentially causing it to miss an impor-

tant deadline. What is needed is an approach that correctly

accounts and charges interrupt processing time to an entity

associated with the task that initiated the USB request.

In Linux, the interrupt handling is divided into a top and

bottom half. The top half acknowledges the interrupt as soon

as it is triggered, and then defers the bulk of the handler to a

bottom half. Normally, the bottom half is executed as soon as

the top half of a handler finishes, with interrupts enabled. If

a bottom half is preempted by interrupts and restarted MAX -

SOFTIRQ RESTART times, it defers execution to a per-core

ksoftirqd thread. MAX SOFTIRQ RESTART defaults to 10 to

achieve a trade-off between low-latency interrupt handling and

CPU time needed by preempted tasks. Each ksoftirqd thread

is scheduled using the SCHED FIFO class, to handle deferred

interrupts.

As others have noted [21], [22], the Linux interrupt-handling

approach leads to a mismatch between the priority of the task

requesting I/O and the priority associated with the interrupt

handler on I/O completion. To begin, interrupt bottom halves

take highest priority until they have interfered with task

processing too many times, which leads to their demotion to

an entirely different priority. It makes sense in a real-time

system to manage interrupts at the priority of the entity, either

a kernel or application task, that generated the request.

In our case, we wish to differentiate between USB requests,

so that host controller interrupts are matched to the correct

bottom half processing priority. In the rest of the section, we

will discuss how eXtensible Host Controller Interface (xHCI)

interrupters and Message Signaled Interrupts (MSIs) provide

the basis for correct prioritization of interrupts resulting from

USB requests.

A. USB & xHCI

Universal Serial Bus (USB) is a master-slave protocol that

allows multiple devices to be connected to a host computer.

All USB transfers are initiated by the host acting as the master.

Different bus speeds include low, full, high, superspeed, and

superspeed+ versions 3.1 and 3.2, supporting device through-

puts of 1.5Mbps, 12Mbps, 480Mbps, 5Gbps, 10Gbps and

20Gbps, respectively.

A USB device is defined by a set of descriptors that are

readable by the host. The descriptors correspond to the device,

its configurations, interfaces and supported endpoints. A de-

vice has one device descriptor, with at least one configuration.

A configuration contains at least one interface, which defines

zero or more endpoints.

A device descriptor contains general information, such as

the USB version, vendor and product IDs, the device class,

and the number of supported configurations. A configuration

descriptor includes information such as the maximum bus

power consumed by the device, and the number of interfaces

supported by the current configuration. Only one configuration

is active at a time. An interface descriptor serves as the header

for a defined number of endpoints, used for communication

with the host. Each endpoint descriptor then defines the type

and direction of transfer, polling interval, and maximum packet

size of the endpoint. There are four endpoint transfer types:

(1) Control, for lossless transmission of device configuration

data, (2) Bulk, for lossless transmission of non-real-time data,

(3) Interrupt, for lossless real-time data, and (4) Isochronous,

for loss-tolerant real-time data.

All USB transfers are managed by the host controller, which

has undergone four standards, at the time of writing: the Open



Host Controller Interface (OHCI), Universal Host Controller

Interface (UHCI), Enhanced Host Controller Interface (EHCI),

and Extensible Host Controller Interface(xHCI). These speci-

fications are intended to work with USB 1.1, USB 1.x, USB

2.0, and USB 3.x respectively. All specifications are backward

compatible with earlier standards.

xHCI defines three types of ring buffer, for communication

between USB devices, host and host controller: Command

Ring, Event Ring and Transfer Ring. A single Command Ring

per extensible host controller (xHC) instance is used to pass

commands to the xHC. An xHC supports up to 1024 Event

Rings. Each Event Ring is used by the xHC to pass various

event notifications to the host, such as transfer completion.

Event rings are managed by interrupters (discussed in Sec-

tion II-B). One Transfer Ring per USB endpoint is used by

the host to exchange data with a device.

B. Interrupters & PCI Interrupts

Traditionally, a device asserts a signal on a physical pin to

trigger an interrupt to the host. Legacy x86-based platforms

use up to two cascaded 8259 Programmable Interrupt Con-

troller (PIC) chips, which support up to 15 device interrupts,

each with fixed priority.

The 8259 PIC’s limited number of interrupts and lack of

support for symmetric multiprocessing (SMP) led to it being

replaced by the Advanced Programmable Interrupt Controller

(APIC). The APIC consists of one Local APIC (LAPIC) per

core and one optional IO-APIC that directs external interrupts

to specific cores. An IO-APIC supports up to 240 interrupt

lines, with each line capable of being assigned an independent

interrupt vector. However, most IO-APICs such as Intel’s

82093AA [25] only support 24 interrupt lines. When an

interrupt line is asserted, the IO-APIC writes the interrupt

vector associated with the line into the LAPIC. Then, the

LAPIC will deliver the interrupt to its processor core.

The Peripheral Component Interconnect (PCI) bus is com-

monly found in personal computers (PCs), and provides a

means to connect hardware devices to the host computer. PCI

is used to deliver interrupts through an IO-APIC. When using

an IO-APIC, all functions on a PCI device share four interrupt

lines: INTA#, INTB#, INTC# and INTD#. Each interrupt is

then mapped to an interrupt number on the CPU by the BIOS.

Due to limited interrupt lines provided by the IO-APIC, it is

often necessary for a PCI device to share the same interrupt

number with other PCI devices. Therefore, the host must

query the PCI device to determine the function that caused

an interrupt.

PCI revision 2.2 introduced Message Signaled Interrupts

(MSIs) to allow devices to bypass an IO-APIC and write

directly to a target LAPIC. MSIs allow each device to have

up to 32 interrupts without needing a physical interrupt pin.

Intel’s tests with Linux [26] show that an IO-APIC reduces

interrupt delivery latency by a factor of around three compared

to a PIC, while MSIs reduce the latency by a factor of around

seven relative to a PIC. MSI-X was introduced in PCI 3.0, to

allow up to 2048 interrupts per device. Unlike MSI, where all

interrupts from one device are directed to the same LAPIC,

MSI-X allows each interrupt to target different LAPICs. In

this paper, we focus on MSI, as our test platform’s xHC does

not support MSI-X capabilities.

The xHC must support MSI if it features more than one

interrupter. An xHCI supports up to 1024 interrupters, with

each interrupter managing events and their notification to the

host. Each interrupter consists of an Interrupter Management

Register, an Interrupter Moderation Register and an Event

Ring. The Interrupter Management Register allows the host

to enable and disable individual interrupters. The Interrupter

Moderation Register allows the host to moderate the frequency

of interrupts generated by an interrupter. Each interrupter will

generate an interrupt to the host if it is enabled and there is

something in its event ring that requires interrupt handling.

The MSI capability in the xHC’s PCI configuration space

must be programmed, to establish interrupt vectors and han-

dlers with each interrupter. The MSI capability allows the host

to set the total number of interrupts to be enabled. The host

sets the vector for interrupter zero, with subsequent vectors

being automatically assigned to higher numbered interrupters.

For example, if the starting vector is set to be 32, then the

first interrupter will generate vector 32, the second interrupter

will generate vector 33, and so on. Therefore, with MSI, it

is possible to associate a unique interrupt (and corresponding

interrupter) with each separate USB device (and corresponding

xHC Event Ring).

III. TECHNICAL DETAILS

To support the correct prioritization of interrupts resulting

from USB requests, we use the Quest real-time operating

system (RTOS) [27] in this work. In Quest, interrupt handling

is divided into top and bottom halves, as with Linux. However,

a top half will acknowledge an interrupt and schedule a bottom

half on Quest’s Virtual CPUs (VCPUs) [24]. Each VCPU

is given a budget of C, and period of T, time units. There

are two types of VCPUs in Quest: Main and I/O VCPUs.

Application and system tasks are assigned to Main VCPUs,

which are implemented as Sporadic Servers [28]. Interrupt

bottom halves are executed on I/O VCPUs, which operate as

bandwidth preserving servers with a utilization factor, UIO.

A task executing on a Main VCPU may issue a blocking I/O

request that completes interrupt processing on a specific I/O

VCPU, before the task is unblocked and rescheduled on its

Main VCPU.

The budget and period of an I/O VCPU are dynamically

calculated as a function of UIO and the period of a specific

Main VCPU for a task awaiting I/O completion, as described

shortly. Significantly, an I/O VCPU has a single replenishment,

which is available at a future eligibility time. This guarantees

its bandwidth utilization never exceeds UIO on the underlying

physical CPU (or core). This approach is effective for short-

lived interrupt handlers, as it avoids frequent reprogramming

of replenishment timers needed to accurately manage budget

usage of a Sporadic Server [29].







host controller driver (xhci_hcd.c) is able to tell which

interrupter generated a device interrupt by checking the MSI

vector number. The corresponding interrupter thread is woken

up to run with the shortest period among all tasks currently

waiting on the interrupter’s event.

USB request blocks (URBs) capture all information nec-

essary to perform USB transactions. An URB is a system

abstraction that is converted to a transfer request block (TRB)

when service requests are submitted to the host controller.

A field in each URB contains the index of the interrupter

associated with an I/O request. The correct interrupter index

is determined by querying the xHCI_interrupter_to_-

IOVCPU_map with the I/O VCPU associated with the request-

ing task’s file descriptor. The binding between a file descriptor

and I/O VCPU is recorded in the caller’s task structure field,

fd_iovcpu_bind.

The host controller driver is not aware of the file descriptor

used by the current task to submit USB requests. However, for

each USB request, a corresponding task structure field, called

current_iovcpu, is updated with the value of the fd_-

iovcpu_bind member. The host controller driver uses this

entry in the task structure to determine the I/O VCPU to handle

the interrupt on completion of the I/O request. An overview of

how a file descriptor binds to an I/O VCPU is shown in Figure

8 for a usb_read request. A similar approach is taken for

usb_write calls.

Fig. 7: Thread to I/O VCPU and Interrupter Binding

D. Throughput & Latency Model

The throughput of a task is defined as the number of bytes

transferred per unit time. The latency, as defined in this paper,

is the time it takes for a USB request to complete and then

return to user-space. We make the following assumptions in

order to model the expected throughput and latency for a given

task with our USB differentiated service framework in Quest:

• A task always issues read and write requests to the USB

device directly, instead of using an intermediate buffer.

• A USB device’s throughput is never less than the task’s

request rate; whenever a request is made to the device,

data is immediately available for transfer between the

USB device and host.

• The system’s USB software stack has a bounded worst-

case overhead for each USB request.

• Each task is mapped to an unique I/O VCPU and corre-

sponding interrupter.

We assume a task’s throughput and latency are affected by:

1) its Main VCPU’s budget, CMain, and period, TMain,

2) the chosen I/O VCPU’s utilization factor, UIO,

3) the number of bytes, β, in each USB read/write request,

4) the USB software overhead, ΩMain, which consumes

Main VCPU budget and which is assumed to have a

bounded worst-case value,

5) the USB software overhead, ΩIO, which consumes I/O

VCPU budget and is also assumed to have a bounded

worst-case value.

Given a real-time task in Quest, its I/O VCPU’s budget

CIO is calculated as TMain×UIO. The task consumes Main

Fig. 8: File Descriptor to I/O VCPU Mapping



VCPU budget for all its execution time except bottom half

interrupt handling, which is charged to the I/O VCPU. For

I/O requests, the Main VCPU is typically used to allocate and

free USB TRBs. The throughput and latency of I/O requests

are dictated by the I/O VCPU processing delays, followed by

the Main VCPU processing delays when the task is awoken

on completion of the bottom half interrupt handler.

There are two cases to consider that affect the latency: one

where ΩMain≤CMain and the other where ΩMain > CMain.

Ideally, a task’s Main VCPU budget, CMain, should always

be set greater than ΩMain, but for proper analysis we consider

the situation where this is not the case.

Case 1 (ΩMain≤CMain):

latency ≤
ΩIO

UIO

+ TMain (1)

Case 2 (ΩMain > CMain):

latency ≤
ΩIO

UIO

+ ⌈
ΩMain

CMain

⌉TMain (2)

Either case:

throughput =
β

latency
(3)

Equations 1 and 2 are based on the fact that each I/O

VCPU is a bandwidth preserving server. This accounts for

the overhead ΩIO

UIO
. When I/O VCPU bottom half processing

completes, the Main VCPU is awoken to finish the I/O request.

In Case 1, the task might not get to complete execution of

its budget until the end of its Main VCPU period. Hence,

the latency in Equation 1 is extended by a worst-case value

TMain. In Case 2, multiple budgets and, hence, periods of the

Main VCPU are needed to complete I/O processing after the

bottom half is handled. In either case, the throughput is shown

in Equation 3, from the calculation of latency. A task should

set its Main VCPU’s period to a frequency that matches the

data generation rate of the device. Then, the above equations

should be used to choose an appropriate UIO for its I/O VCPU

to meet the task’s latency and throughput requirements.

IV. EXPERIMENTAL EVALUATION

Test Setup. In this section, we evaluate our Quest USB dif-

ferentiated service framework and compare it with Linux. The

host machine used in all experiments is a Cincoze DX1100

embedded PC with a 2.4GHz Intel Core i7-8700T CPU [31].

For Linux, we use Ubuntu 20.04.2 with a PREEMPT_RT

patched kernel, version 5.4.19 rt.

Teensy 4.1 controller boards, shown in Figure 9, connect

to the DX1100 via one or more USB serial interfaces. These

boards provide a means for the host machine to connect to an

array of different bus protocols and pins, to support general-

purpose I/O (GPIO), CAN, LIN, I2C, SPI, USART and PWM

signaling, among others.

Each Teensy board features an NXP iMX RT1062 System-

on-Chip (SoC) with an ARM Cortex-M7 600 MHz processor,

and USB 2.0 connectivity with speeds up to 480 Mbps. We

use Teensy controllers as programmable USB Communication

Device Class, Abstract Control Model (CDC-ACM) devices.

Each Teensy is configurable to operate in single, dual or triple

serial mode, presenting one, two or three USB interfaces,

respectively, to the host machine. This allows us to emulate

up to three USB devices with one controller. Unless stated

otherwise, all USB read and write requests are 512 bytes at a

time.

Quest and Linux CDC-ACM Drivers. We measure the per-

formance of our Quest xHCI differentiated services framework

communicating with a CDC-ACM device driver, to exchange

data between the DX1100 and the Teensy boards. We created

a custom Linux USB CDC-ACM driver, to circumvent several

problems with the original version.

The original Linux USB CDC-ACM driver submits a burst

of 16 USB read requests to a device all at once, as soon

as a user process opens the device. Whenever a USB read

request completes, the data read from device is pushed to an

intermediate layer called a line discipline. Then, the driver

will submit another request to the device. Consequently, when

a user process issues a USB read request, it goes to the line

discipline layer instead of the USB CDC-ACM driver. The

rationale behind Linux’s approach is to increase throughput

by reducing user-to-kernel context switching overhead.

Linux’s default CDC-ACM driver makes it challenging to

accurately measure the end-to-end latency of USB requests. By

end-to-end latency, we mean the time difference between when

a USB request is submitted and when the data is either read by

a user process, or has been sent to a device. Measuring latency

from user-space will only capture the delay from the buffered

line discipline layer. Likewise, measuring latency inside the

CDC-ACM driver will not include the delay to transfer data

between user- and kernel-space.

To accurately determine the the end-to-end latency of I/O

requests, the device driver must be modified in one of the two

ways. Either the line discipline layer is removed, ensuring data

is transferred directly between a device and user process, or

the driver tags data with specific USB requests. We chose to

take the first approach with our custom Linux driver, because

it is simpler to remove the line discipline layer. This makes it

easier to measure the latency of individual I/O requests without

adding extra code that could increase delays to Linux.

While the original Linux driver may increase throughput, it

negatively impacts the freshness of data. For example, if data

is buffered in the line discipline it may be stale by the time

it is read by a user process. Therefore, our custom Linux and

Quest drivers both submit USB requests directly to the driver

without buffering.

Fig. 9: Teensy 4.1





Quest experiment again with kfree removed from the USB

completion routine. The results for Quest (No kfree)

With IOVCPU in Figure 11 and Table I show that Quest’s

read latency is both lower and less variable than Linux’s. We

believe the spikes around 120 microseconds in the graph are

due to read transactions sometimes failing to complete within

a 125 microsecond USB microframe, and are therefore placed

in the next microframe by the xHC. While we cannot defer

kfree indefinitely, as that will lead to a memory leak, it is

possible to schedule resource reclamation at a suitable time

in the future that does not impact the predictability of I/O

requests. We leave the study of when to reclaim memory to

future work.

The experiment is conducted once again, with the I/O VCPU

disabled to identify whether it is affecting the latency. We

change the program to run on a Main VCPU with a period

of 400 microseconds and budget of 200 microseconds. The

budget matches that of the case when an I/O VCPU is used,

and the reduced period of the Main VCPU means its budget

is replenished more frequently according to the rules of how

a Sporadic Server operates. The result is shown in Figure 12.

Compared to Figure 11, shows that the use of an I/O VCPU

brings negligible overhead. As will be seen, I/O VCPUs

bring about benefits when supporting differentiated service for

separate classes of I/O requests.

B. I/O Task Service Guarantee

Our next experiment compares Quest with a single inter-

rupter (the default implementation) against Linux, and also a

version of Quest with multiple interrupters. The objective of

this experiment is to guarantee service to a high priority I/O

task in the presence of low priority I/O tasks.

Two Teensy controllers are connected to the DX1100. Both

Teensy boards operate in triple-serial mode, resulting in a total

of six CDC-ACM device interfaces. Seven tasks, divided into

three separate categories, are created in both Quest and Linux.

The three categories encompass low, medium and high priority

tasks, with constraints as shown in Table II.

Five tasks are assigned to the low priority class, and each

read from a unique CDC-ACM interface until they run out

of their 1000 microsecond budgets. A single medium priority

task runs in an infinite loop without using any I/O devices. Ad-

ditionally, a single high priority I/O task issues a read request

from a Teensy device once every 10, 000 microseconds.

The read latency for the high priority task is measured using

the hardware timestamp counter. All tasks, regardless of prior-

ity, share the same USB interrupter and bottom half handling

thread in Linux and in the Quest (single interrupter) system.

However, in a Quest system with two USB interrupters, it is

possible to differentiate I/O requests for low and high priority

tasks – these tasks have their own interrupter and bottom half

handling thread dedicated to a separate I/O VCPU, with its

own budget and period.

The results for Linux and Quest with a single interrupter

are shown in Figures 13a and 13b, respectively. For Linux,

the read latency increases dramatically from what is shown in

Figure 10. The reason is that all bottom halves will eventually

be processed using a deferrable ksoftirqd thread, when the

interrupt frequency passes a threshold. While all the tasks in

Linux are set to run with SCHED DEADLINE, ksoftirqd is

still running with SCHED FIFO, which by design has a lower

priority. Therefore, the medium priority CPU-bound task takes

precedence over ksoftirqd, causing substantial delay as shown

in Figure 13a.

Even if Linux’s ksoftirqd task is altered to operate under

SCHED DEADLINE, there will still be a potential mismatch

of its priority and the priority of a task requesting I/O. To

confirm this, we conduct the experiment again on Linux.

Command line tool chrt is used to schedule ksoftirqd under

SCHED DEADLINE with a period of 10, 000 microseconds

and budget of 1000 microseconds. The result, shown in

Figure 14, suggests the situation is worse than expected, as

bottom half processing still experiences large variability in

latency. Similar results occur when attempting to set the period

of ksoftirqd to 5, 000 microseconds. We conclude that Linux’s

bottom half processing needs significant modification, to work

correctly at the priority of the task issuing the I/O request. This

is an area for future investigation.

# Tasks Period(µs) Budget(µs)

Low Priority I/O Task 5 20000 1000

Medium Priority CPU Task 1 15000 1000

High Priority I/O Task 1 10000 1000

TABLE II: Priority Inversion Experiment Task Parameters

Although the latency variation is generally lower with Quest

using one interrupter than with Linux, it still peaks at around

1200 microseconds, as shown in Figure 13b. Here, Quest

allows a bottom half to be executed on an I/O VCPU at

the (inherited) priority of the highest priority blocked task

awaiting I/O completion. Both high and low priority tasks

issuing I/O requests will share the same I/O VCPU, meaning

a low priority request might delay the servicing of one that is

higher priority. Each of the five low priority tasks delays the

high priority task by around 200 microseconds, on average, in

this experiment. Therefore, in total, the five low priority tasks

delay the high priority task by around 1000 microseconds.

Combined with the high priority task’s own 200 microseconds

average read latency, we see several latency spikes close to

1200 microseconds in Figure 13b.

When Quest uses two interrupters, as shown in Figure 13c,

the presence of medium and low priority tasks does not affect

the latency, previously shown in Figure 10. This shows that

correct interrupt priority assignment using hardware inter-

rupters is important to ensure temporal isolation between tasks.

C. Differentiated Service Effects on Throughput

In this experiment, the DX1100 runs a version of Quest with

multiple USB interrupters. A task with a Main VCPU period of

20,000 microseconds and budget of 2,000 microseconds reads

from a single Teensy device. The task continuously issues

512 byte read requests until it is out of budget. The time it
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