Synthesizing Tight Privacy and Accuracy Bounds
via Weighted Model Counting

Lisa Oakley
Khoury College of Computer Sciences
Northeastern University
Boston, USA
oakley.l @northeastern.edu

Abstract—Programmatically generating tight differential pri-
vacy (DP) bounds is a hard problem. Two core challenges are
(1) finding expressive, compact, and efficient encodings of the
distributions of DP algorithms, and (2) state space explosion
stemming from the multiple quantifiers and relational properties
of the DP definition.

We address the first challenge by developing a method for
tight privacy and accuracy bound synthesis using weighted
model counting on binary decision diagrams, a state of the art
technique from the artificial intelligence and automated reasoning
communities for exactly computing probability distributions. We
address the second challenge by developing a framework for
leveraging inherent symmetries in DP algorithms. Our solution
benefits from ongoing research in probabilistic programming
languages, allowing us to succinctly and expressively represent
different DP algorithms with approachable language syntax that
can be used by non-experts.

We provide a detailed case study of our solution on the binary
randomized response algorithm. We also evaluate an implemen-
tation of our solution using the Dice probabilistic programming
language for the randomized response and truncated geometric
above threshold algorithms. We compare to prior work on exact
DP verification using Markov chain probabilistic model checking
and the decision procedure DiPC. Very few existing works
consider mechanized analysis of accuracy guarantees for DP
algorithms. We additionally provide a detailed analysis using our
technique for finding tight accuracy bounds for DP algorithms.

Index Terms—Differential Privacy, Weighted Model Counting,
Probabilistic Programming

I. INTRODUCTION

Differential privacy (DP) [1] is an important property for
randomized algorithms that can ensure a balance between
preserving user privacy and allowing systems to draw mean-
ingful conclusions from their data. Crafting algorithms which
satisfy meaningful differential privacy bounds while main-
taining useful accuracy guarantees is no small feat, and the
design and analysis of these differentially private algorithms
is extensive and highly technical. As is often the case with
complicated, technical fields, as the landscape of differential
privacy research has grown, so too has the tendency for bugs
in the theory and implementations of these algorithms [2]-
[4]. It is therefore vital for algorithm designers to have tools
and frameworks to help formally and mechanically analyze
their algorithms both in the design phase, and to validate
their theoretical results and implementations. Furthermore, it

Steven Holtzen
Khoury College of Computer Sciences
Northeastern University
Boston, USA
s.holtzen @northeastern.edu

Alina Oprea
Khoury College of Computer Sciences
Northeastern University
Boston, USA
a.oprea@northeastern.edu

is important that these tools be as accessible and automated
as possible.

Most current methods for formally verifying differential
privacy properties involve manually mechanizing existing pen-
and-paper privacy proofs using proof assistants like Easy-
Crypt [5]. This method of deductive verification is useful
for mechanically validating asymptotic privacy bounds [5]-
[9]. This method, however, requires almost entirely manual
work and often hinges on first having an existing proof
written by hand. Importantly, it also requires a technician
who understands both theoretical differential privacy and proof
assistants well enough to translate the pen-and-paper proof into
the language of the proof assistant. Therefore, these methods
can be extremely useful, but are not practical for keeping up
with the pace of ongoing differential privacy research, and are
not as helpful in the algorithmic design phase where there is
incomplete pen-and-paper analysis.

There is also active research on statistically verifying differ-
ential privacy in practice, discovering lower bounds by finding
counterexamples to differential privacy, or programmatically
tightening existing bounds [10]-[13]. In addition, privacy
auditing provides a set of statistical techniques for estimating
privacy leakage of machine learning (ML) algorithms empir-
ically and determining lower bounds on privacy [14]-[19].
While these methods are useful for automatically analyzing
algorithms over large data sets, they often rely on statistical
procedures and are evaluated mostly through experimental
methods on specific data sets.

Existing methods here also focus almost entirely on veri-
fying privacy, and do not analyze accuracy bounds. This is a
problem because incorrect or non-existent accuracy bounds
forces a reliance on proxy functions for accuracy that can
be flawed and result in algorithm designers adding too much
noise, or adding noise in non-optimal parts of the algorithm.
Furthermore, without full accuracy analysis, applications like
optimization-based synthesis for differentially private algo-
rithms [20] must use these flawed accuracy proxy functions
and end up finding potentially non-optimal solutions.

Our goal is to develop a technique for exactly solving
the tight differential privacy bound and tight accuracy bound
synthesis problems. In other words, given a randomized al-
gorithm, find the parameters which tightly bound its privacy

Weighted Boolean Formula (WBF)

PRR2 =
y1 4 (01 Azy) V(01 AT1))A
Y2 ((@2 A 1‘2) V (92 A fz))

Randomized Algorithm
RR2=

w2 (0:) = 1— A, wrpe(0:) = A, wgge() =1

Tractable
Circuit
(BDD)

BDDgge =

Weighted Model
Count Query

[Knowledge

Input: z,, 22 € {0,1}, A € [0,1]
Ly x;wp.1—Aelse 1 —z;
2: Yo <z Wp. 1 —Aelse 1 —zo
3: return (y1,y2)

Probabilistic Program

fun rr(x1: bool, x2: bool) {
let yl = if flip .2 then !x1 else x1 in

let y2 = if flip .2 then !x2 else x2 in
(y1,y2)

WMC(BDDggs) =

Compiler
>

WMC(grre | (21,221, Y2), wrr2) =
Pr(RR(1,22) = (y1,302))

Optimized | .
Logical

Expression

Fig. 1: We represent the probability distribution of a randomized algorithm as a binary decision diagram (BDD) so that we can
efficiently compute the weighted model count to perform probabilistic inference (compute the probabilities of certain events
occurring). Starting from a randomized algorithm, there are many ways to compile to a BDD. The top path shows a more
manual process where a user crafts a weighted boolean formula by hand and uses a knowledge compiler, a tool for efficiently
representing and querying logical formulas, to compile this into a BDD. The bottom path exhibits an example of the flow of
an expressive probabilistic programming languages which allow the user to define an easily readable program defined similarly
to the pseudocode. From here, the programming language can compile an optimized logical expression and pass it to the
knowledge compiler. In this way, there is very little manual effort, and the resulting logical expression and BDD are optimized

for WMC queries.

and accuracy guarantees. Our technique will provide more
theoretical grounding to the analysis of differentially private
mechanisms than the statistical methods, and provide more
automation than the traditional proof mechanizing process
described in prior work. It will also critically fill a gap in
mechanized analysis for accuracy bounds.

Beyond its utility in finding tight privacy and accuracy
bounds, another benefit of our technique is that it allows us to
identify which input, neighbor, and output assignments lead
to these bounds. In other words, we can identify the worst-
case assignments. We provide empirical examples of using our
technique to find the top worst-case assignments for accuracy,
which highlights how our framework can help an algorithm
designer determine which outliers are most impactful on
privacy and accuracy bounds.

Very few attempts have been made at exactly synthesizing
tight privacy bounds, and those that exist are extremely limited
in the kinds of algorithms they can analyze [21]-[23], and
in Section VI, we show that our method outperforms these
techniques for randomized response. As far as we are aware,
no one has attempted to mechanically solve for exact accuracy
bounds of a given differentially private algorithm.

There are two main reasons this is the case. Firstly, finding
an easily computable encoding of the algorithm on which to do
probabilistic inference is hard. Previous work on exact DP ver-
ification has required an explicit, hand-crafted Markov chain
as input [22], [23]. Secondly, exact verification by quantifying
over all neighboring inputs and outputs is intractable as the
data sets increase in size. Our approach addresses both of

these key challenges, and the resulting technique improves the
feasibility of exactly solving the privacy and accuracy bound
synthesis problems.

To tackle the first challenge, we use a method called
weighted model counting (WMC) for computing the prob-
abilities of certain events (otherwise known as performing
probabilistic inference). WMC 1is an established state-of-the-
art strategy for performing discrete probabilistic inference
in the artificial intelligence and automated reasoning com-
munity [24], [25]. In order to leverage WMC, one must
encode their problem into a weighted Boolean formula (WBF).
We reduce the problem of computing accuracy and privacy
bounds of randomized algorithms to computing the WMC of
a particular set of Boolean formulas. This technique has many
benefits. Firstly, we can rely on the many decades of algorith-
mic advances in WMC: for instance, high-performance data-
structures like binary decision diagrams (BDDs) can efficiently
represent the distributions of the randomized algorithms and
efficiently query for exact probabilities. Secondly, there exist
expressive probabilistic programming languages that can effi-
ciently compile into these optimized representations [26]. This
makes it simple to encode DP algorithms which often invoke
probability distributions as programs, and allows for a usable
strategy even for non-experts in probabilistic programming. In
Fig. 1, we present an example of this pipeline for randomized
response with two inputs.

To tackle the second challenge of state space explosion
due to multiple for-all quantifiers on the input and output
space, we introduce the concepts of inference, privacy, and

accuracy sets, and provide algorithms for synthesizing bounds
with respect to these restricted state spaces. These sets allow us
to define which inputs and outputs are sufficient for finding
privacy and accuracy bounds of DP algorithms. These sets
provide a simple framework for utilizing inherent symmetries
in DP algorithms to reduce the space of the exact synthesis
problems. Despite being simple to define, a limitation of our
approach is that there is some manual work which goes into
finding these symmetry sets. We provide a detailed analysis
of an example of soundly defining the symmetry sets for a
randomized response case study.

Our contributions are (1) a technique for using probabilistic
programming languages and WMC for efficient probabilistic
inference for DP algorithms, (2) a framework for leveraging
symmetries to combat the state space explosion problem for
both the tight privacy and accuracy bound synthesis problems,
(3) a detailed theoretical analysis of the symmetry sets for a
randomized response case study, (4) examples of using our
framework for automated analysis of the randomized response
and geometric above threshold algorithms, and (5) comparison
to existing techniques of probabilistic model checking using
Markov chains and the decision procedure, DiPC, from [21].

The paper is organized as follows. In Section II we provide
relevant background. In Section III we introduce our tight
privacy and accuracy bound synthesis problems and explain
the benefits of efficient WMC. In Section IV we introduce a
framework for leveraging symmetries. In Section V we provide
a detailed case study using our framework for randomized
response. In Section VI we present experimental results on
implementations of our solution using the Dice probabilistic
programming language. In Section VII we outline related work
and in Section VIII we conclude and outline future work.

II. PRELIMINARIES

We start by reviewing some important definitions.

A. Differential Privacy

Differential privacy is a notion of privacy which ensures
that, on two closely related data sets, the output distribution of
a randomized algorithm is similar. In other words, an adversary
who receives the output of a differentially private algorithm
has trouble distinguishing whether a specific entry is in the
data set.

Definition 1 (e-Differential Privacy). A randomized algorithm
A X" = Y is e-differentially private for size n data sets if,
Sor every pair of neighboring data sets x,x/, for all E C')),

Pr(A(x) € E) .
Pr(A(x') € E) =c M

Where neighboring data sets are data sets that differ in
the value of exactly one entry. An important property of e-
Differential Privacy is that for all possible outputs y in)/,

Pr(A(x) = y) Pr(A(x) € E)
Pr(A(x')=y) — Pr(A(x') e E) —

)

e (2

In other words, for e-DP, it is sufficient to look at all
singleton sets in the event space. In subsequent sections we
will directly use the definition of differential privacy which is
quantified over the singleton sets, and refer to the quantity
% as the likelihood ratio. We will also limit our
method to algorithms with discrete, finite inputs and outputs
(i.e. X" and) are discrete and finite).

B. Accuracy

We consider a widely-used notion of («, 5)-accuracy from
the differential privacy literature [27]. Intuitively, this measures
the probability that the algorithm’s output is within an « ball
around the “true” or “target” value for the associated input.

Definition 2 ((«, 8)-Accuracy). Given a > 0 and 3 € [0, 1],
a randomized algorithm A : X™ — Y is («, 8)-accurate if for
all x € X,

PrlA(x) = Vx| <a)>1-p8 3)

where Vy correspond to the target outputs for each input x.

C. Weighted Model Counting

1) Model Counting: Let ¢ be a Boolean formula over a set
of variables. The model count of ¢ is the number of solutions
to ¢, written as [{m = @}| where {m | ¢} is described
as “the set of models m that entail ¢”. For example, ¢ =
a V b where ¢ is defined over {a,b} = |{m | ¢}| =3
since there are three satisfying assignments to ¢, where an
assignment is a mapping from variables to boolean values.

2) Weighted Boolean Formula (WBF): A weighted Boolean
Sformula is a tuple (y,w) where ¢ is a Boolean formula over
literals in L and w : L — IR is its weighting function that
maps literals in ¢ to weights, where literals are a set of
variables and their negations.

3) Weighted Model Counting (WMC): We find the weighted
model count (WMC) of WBF (¢, w) by computing

WMC(pw) = > [] w®

mlE=p Lem

“4)

where m is the set of models, or satisfying assignments, of ¢,
and ¢ represents the set of literals in m.

For example, we can find the weighted model count of ¢ =
a V b, where ¢ is defined over variables a and b, by defining
the weight function w over the literals as w(a) = 1/3, w(b) =

3/4, w(a) = 2/3, and w(b) = 1/4 and computing

WMC(py) =1/3-3/4+1/3-1/4+2/3-3/4. (5)

4) WMC for Probabilistic Algorithms: We can define a
WRBEF for any finite, discrete probabilistic algorithm A4 : X" —
Y by ensuring that the probabilities of each WBF assignment
correspond with probabilities of input/output pairs of the
algorithm. More formally,

Definition 3 (WBF of a probabilistic algorithm). Given a
randomized algorithm A : X™ — Y with discrete, finite
X", Y, we say that (p,w) is a WBF of A ifV(x,y) € X" X)),

there exists exactly one assignment assn to (¢, w) such that
WMC((¢ | assn),w) = Pr(A(x) =y)

We use a shorthand (¢ | (x,y)) to indicate the WBF
instantiated with the assignment a for which WMC((¢ |
assn),w) = Pr(A(x) = y).

For example, we consider binary randomized response for
n = 2 as described in Fig. 1. In the randomized response
algorithm, clients report a bit message (represented by x;
and x5 here) with probability 1 — A, and flip this bit with
probability A for some coin-flip parameter A. More formally,
RRz(xl,.TQ) = (y1,y2) such that y; = z1 w.p. (1 —) else
1— 2 and yo = x5 w.p. (1 —) else 1 — x5. In this case,
the WBF for randomized response is the tuple (¢@grg2, Wrg2)
where @grz = y1 < ((01 A x1) V (01 AT1)) ANy &
((92 A\ :L‘Q) V (92 /\fz)) defined over z1, 2, y1, Y2, 01,02. We
define weight function w(6;) = 1 — A, or the probability that
the value of ; does not flip, and w(#;) = \ as the probability
that x; does flip for ¢ € {1,2}. For all other literals, we set
w(-) = 1.

We can see that for all (z1,22,y1,v2), WMC(prr2 |
(.1’17 xr2,Y1, y2)7 ’wRRz) = PI"(RR2(1‘1, 3?2) = (yl7 yg)) For ex-
ample, for (z1,22,y1,y2) = (0,0,1,0), WMC(¢rrz |
(0,0,1,0),’[URR2) = wRR2(01) ’ wRR2(02) = A (1 - /\) =
Pr(RR?(0,0) = (1,0)).

III. WEIGHTED MODEL COUNTING FOR SYNTHESIZING
TIGHT PRIVACY AND ACCURACY BOUNDS

We start by introducing the two main synthesis problems
we will address in this paper. Then, we describe how weighted
model counting can be used to efficiently perform probabilistic
inference in an exhaustive solution. In Section IV, we will
outline a framework for leveraging symmetries in the DP
algorithms to further improve on this solution.

A. Synthesis Problems

The first problem is the privacy bound synthesis problem.
We want to find the triple of neighboring input and output
values which maximize the likelihood ratio.

Problem 1 (Privacy Bound Synthesis). Given a randomized
algorithm A : X™ — Y with discrete, {ﬁnite X", Y, find the
triple (x,%’,y) that maximizes %, where x, *' are
neighboring inputs.

If we take solution (x,x’,y) to the privacy bound synthesis
problem to find e®* = %, we have a tight e-DP bound
for algorithm A.

The second synthesis problem is the tight accuracy bound
synthesis problem. Here we want to find the input to A which
minimizes the accuracy probability with respect to a given «
bound.

Problem 2 (Accuracy Bound Synthesis). Given a randomized
algorithm A : X" — Y with discrete, finite X™, Y, and
a > 0, find x which minimizes Pr(|A(x) — Vx| < «) where
Vx is the target output value for input x.

If we take solution x from the Accuracy Bound Synthesis
problem to find 1 — 8 = Pr(]A(x) — Vx| < a), we have a
tight (v, 8)-accuracy bound for algorithm A.

B. WMC and Probabilistic Programming For Privacy Bound
Synthesis

We start by looking at the most straightforward solution
to the privacy bound synthesis problem, which is to iterate
through every input/neighbor/output triple and compute the
likelihood ratio for that set. In other words, we consider a
solution where, for A : X" —) we exhaustively compute
%}m for each (x,x’,y) € X" x X" x) where x,x’
are neighbors. We will refine this solution further in Section
IV, but for now we use this simple solution to illustrate the
utility of WMC for probabilistic inference.

If we consider even this simple exhaustive solution, it is
immediately apparent that for a complex randomized algo-
rithm, A, it is necessary to perform probabilistic inference
(i.e. compute the probabilities Pr(A(x) = y)) for each input
and output pair.

The power of our technique comes from performing prob-
abilistic inference (computing the probability distributions of
the algorithm) by compiling a representation of the probabilis-
tic algorithm into a tractable circuit for which computing the
weighted model count can be performed efficiently [24], [26].

We consider our target data structure to be a binary decision
diagram (BDD). A BDD is a directed acyclic graph that rep-
resents boolean formulas. We prefer to use this data structure
for WMC computation because BDDs can leverage shared
structure in the encoding to simplify a complicated function
with many free variables into a compact, efficiently queryable
circuit. As we see in Fig. 1, a program with two inputs, two
outputs, and two weighted coin flip parameters can be encoded
into a BDD with only two internal nodes when the input is
fixed. When we compare this to other popular methods for
exact probabilistic inference such as Markov chains, we see
in Section VI that a BDD is able to scale much more efficiently
with the state size on static systems such as DP algorithms.

For example, prior work has used Markov chain model
checking for exact DP verification [22], [23]. This technique
requires an explicit Markov chain model of the probability
distribution, which is optimized for dynamic models with
small state space which model long-running services. In this
case, computation becomes inefficient quickly as state size
increases, as is the case in DP algorithms [28].

Using BDDs for WMC computation is therefore more
efficient for our problem space than in prior attempts, but
we also desire an expressive encoding method for the ran-
domized algorithm. To use WMC to perform inference on
the randomized algorithm, we must encode the algorithm as
a weighted Boolean formula with free variables that represent
the inputs, outputs, and coin flips/distributions, and craft a
weighting function to represent the randomness of the algo-
rithm. For some algorithms, this is straightforward and little
manual work is required to discover the right formula and
weighting function. We provide an example of this manual

process for randomized response in Section V. However, for
many algorithms, this manual process can be difficult, and the
resulting weighted Boolean formula can be unnecessarily large
or otherwise inefficient to work with.

In recent years, there has been a significant amount of work
on developing probabilistic programming languages that can
efficiently compile weighted Boolean formulas from proba-
bilistic programs [25]. Importantly, these weighted Boolean
formulas are optimized to efficiently compile into tractable
data structures such as BDDs that can be efficiently queried
to find the weighted model count. This means that we can write
our randomized algorithm as a probabilistic program in these
languages and to easily compile it into a WBF and perform
efficient WMC. We show an example of this full pipeline in
Fig. 1.

In summary, using WMC for performing probabilistic infer-
ence is a method of efficient computation of the probabilities
needed to find tight bounds. Furthermore, recently developed
probabilistic programming languages provide approachable
and intuitive methods for encoding DP algorithms. This is a
big improvement over prior work which required that the DP
algorithm be explicitly encoded as a Markov chain [22], [23].

C. WMC for Exhaustive Accuracy Bound Synthesis

Similarly to our exhaustive approach for solving the privacy
bound synthesis problem, we can also leverage the benefits
of WMC in an exhaustive approach for solving the accuracy
bound synthesis problem. Because the target value of the DP
algorithm (i.e. the value of the query with no added noise)
is non-probabilistic, we can formulate an optimization which
will directly use probabilistic inference to solve the accuracy
bound synthesis problem.

Theorem 1. Given randomized A : X™ — Y, with discrete,
finite X™ and)Y, set of target values V, and o > 0,
the x which minimizes » 1y oy, +a PT(A(X) =y) also
minimizes Pr(|A(x) — Vx| <)
Proof.
Pr(|A(x) — Vx| < a)
=Pr(Vx —a < Ax) < Vi +a)
= Z Pr(A(x) = y).
YE[Vx—a,Vx+a]
O
We can therefore also use weighted model counting for
the simple exhaustive approach for A : X" —) where we
compute »-, ey o v, +a) PT(A(X) =y) for each x € A™.
Again, in Section IV, we will show a further refinement of
this exhaustive algorithm.
IV. FRAMEWORK FOR LEVERAGING SYMMETRIES

Arguably the hardest problem when attempting to find
bounds for DP algorithms — explored in related works on
counterexample generation and proof synthesis — is handling
the multiple quantifiers over inputs, neighbors, and outputs.

Approaches like StatDP [10] and DP-Sniper [29] use a manu-
ally chosen heuristic to divide the input search space, then use
hypothesis testing or classifiers to find candidate outputs which
are likely DP violations. These techniques result in approxi-
mate solutions with little to no theoretical guarantees on their
correctness. On the other hand, all prior work which attempts
to find provably exact bounds has exhaustively searched the
space of inputs, neighbors, and outputs [21]-[23].

Because we want to provide theoretical evaluations of our
solution, we cannot use these manual heuristics for finding
candidate counterexamples. However, we also want to make
progress toward a solution that is more tractable than the
exhaustive search methods from prior work. Fortunately, many
differentially private algorithms have inherent symmetry. We
provide a framework for leveraging these symmetries to make
our WMC solutions more tractable by introducing algorithms
ExactDP and ExactAcc for computing the privacy and ac-
curacy bounds which use modular inference, privacy, and
accuracy sets for limiting the search space while maintaining
provable exactness of our solution.

While this step requires a manual process of finding these
symmetry sets, we believe it is still valuable to define this
framework so that we can explore this problem from a fresh
perspective of finding symmetries to reduce the search space.
This framework provides proof obligations for determining
a valid symmetry set, which can set guidelines for future
automated analysis. Automatically finding these symmetry sets
is an interesting open problem that we hope to explore in
future work by leveraging techniques for exploiting symmetry
in satisfiability or probabilistic inference [26], [30]-[32].

A. Inference Algorithm

Our refined solutions for privacy and accuracy bound syn-
thesis both use probabilistic inference via weighted model
counting as a subprocess. We provide an algorithm for pre-
computation of necessary probabilities to help with modular-
ization and simplification of the algorithm and analysis.

In Algorithm 1, we describe how we compute a matrix of
assignment probabilities for a given restricted inference set.
An inference set To C X™ x) for A : X™ —) is a set of
input/output pairs on which to do probabilistic inference.

Algorithm 1 INFERENCE

Input: WBF (p,w) of A: X" —) and inf. set Z
Output: M a matrix of probabilities
1: Initialize M matrix
2: for (x,y) in Z do
3 M(x,y) « WMC(o | (x,))
4
5

: end for
: return M

Algorithm 1 runs in O(WMC - |Z|) where WMC is the
complexity of the WMC computation. We will show in Section
V that for some algorithms, we can reduce the size of the
inference set such that the complexity is linear in the length

input
| 10,01 | [10] | [L1]
OO0 | X=X X ({1-X | X

output

TABLE I: Output of Algorithm 1 for A = RR?, Zgge =
{([0,0],[0,0]), ([1,0],[0,0]), ([1,1],[0,0])}

of the input vector, multiplied by the complexity of the WMC
computation.

Returning to our example of binary randomized re-
sponse, an inference set for RR® could be Zgge =
{(]0,0],[0,0]), ([1,0],[0,0]), ([1,1],[0,0])}. Table I shows
the output of this computation. We show in Section V that
this table grows linearly in n, where n is the length of the
input list for randomized response.

B. Finding Tight Privacy Bound

Once we have computed the necessary probabilities using
weighted model counting, we can use these probabilities to
find the maximum likelihood ratio. Because we consider only
neighboring inputs, and due to the symmetries in differential
privacy algorithms, we do not have to enumerate all pairs of
inputs and all output events to cover all sufficient ratios. We
therefore define our algorithm over a set of inputs and outputs
which are a sufficient subset of all computable likelihood
ratios.

Definition 4 (Privacy Set). A privacy set C for A: X" — Y
is a set of tuples of the form (Xc,Xp,yc) such that
D (x¢,%p,yc) € X" x X" x Y
2) V(x,x',y) € X" x X" x Y where x,x" are neighbors,
there exists (X¢,xp,yc) € C such that

Pr(A(x) =y) _ Pr(A(xc) = ye)
Pr(A(x') =y) Pr(A(xz) =yc)

We present the ExactDP algorithm for computing worst
case privacy bounds in Algorithm 2. We use the INFERENCE
algorithm (Algorithm 1) as a subprocess to compute exact
probabilistic inference via weighted model counting.

Algorithm 2 ExactDP

Input: WBF (p,w) of A : X™ —), privacy set C, and
inference set Z such that V(x¢,x;,yc) € C, (xc,yc) € Z
and (XéjayC) €1

Output: Maximum likelihood ratio p and worst case assign-

ments ¢ = (x,x’,y)

M + INFERENCE(p,T)

p0,c+— O

for (x,x’,y) in C do

if JA\;I((::,’Z)) > p then
P ey
¢+ (x,x',y)
end if
end for
return p,c

R A A ol e

Returning to our binary randomized response example, we
can use IRR2 = {([0’0]7 [Ov 0})7 ([1’ 0]’ [070])’ ([17 1}7 [05 O])]’?
and CRR2 = {([070}7[1a0]’[070])7 ([1’0]7[070]’[07 Dv
([1,0],[1,1],[0,0]), ([1,1],[1,0],][0,0])} and set A = 0.2.
In this case, the output of Algorithm 2 would be ¢ =
([0,0],[1,0],[0,0]), p = 4. This means that ([0, 0], [1, 0], [0, 0])
is the worst case assignment for RR? and e° = 4 is a tight
privacy bound.

1) Correctness and Complexity of Privacy Bound Synthesis
Algorithm: To verify correctness of ExactDP, we must show
that the maximal likelihood ratio found using the potentially
restricted inference and privacy set is the same as the maximal
likelihood ratio using exhaustive inference and privacy sets
le. T=X"xYand C = X" x X" x) where all z,z’ are
neighbors).

Theorem 2. The output c of Algorithm 2 is a solution to the
Privacy Bound Synthesis problem.

Proof. Let WBF (p, w) be the WBF of algorithm A : X" —
Y with inference and privacy sets Z, C. From the definition of
Algorithm 1, ¥(x,y) € Z, M (x,y) = Pr(A(x,y)). Therefore,
by the definition of Algorithm 2, output ¢ maximizes %
over all (x,x’,y) € C. By the definition of a privacy set, for
all (x,x',y) € X" xX™x)), where x, x’ are neighbors, there
exists a (x,x’,y) € C such that F?rr(f((;))::yy)) = gig‘:gg;izg;

Therefore, ¢ maximizes % over all (x,x’,y) € X" x

X™ x Y where x, x’ are neighbors and is therefore a solution
to the Privacy Bound Synthesis problem. O

Algorithm 2 runs in O(WMC - |Z| 4 |C|). Again, in Section
V, we will show a case where the privacy set can be restricted
such that |Z| and |C| are linear in n.

When we concretely define the inference set Z and privacy
set C for a specific algorithm, we must prove two things:

1) C satisfies the definition of a valid privacy set in Def. 4,
and
2) All the neighboring assignments in C are present in Z,
ie. V(x¢,x0,yc) €C, (x¢,yc) € T and (xp,yc) € L.
We provide an example of one such instantiation for ran-
domized response in Section V.

C. Finding Tight Accuracy Bound

In the case of accuracy bound synthesis, we can also limit
the number of values we need to compute to leverage sym-
metries in the problem to reduce the runtime of the accuracy
computation. We introduce the accuracy set as follows.

Definition 5 (Accuracy Set). An accuracy set A for A: X" —
Y is a set A such that

1) ACxm

2) Vx € X", there exists x4 € A such that

S Pr(A(x) = y) =

ye[Vix]—a,V[x|+a]

> Pr(A(xa) =y).

yeVIxal-a,V[xal+a]

where Vx| is the target output for input x.

We present our solution in Algorithm 3. Again, use the
INFERENCE algorithm (Algorithm 1) as a subprocess to
compute exact probabilistic inference via WMC.

Algorithm 3 ExactAcc

Input: WBF (¢, w) of A: X™ —), accuracy set A, vector
of target outputs V, accuracy parameter o, and inference
set Z that contains all (x,y) pairs such that z € A and
y € Vx —a,Vx + af

Output: Minimal probability p and worst case input acc

1: M + INFERENCE(y,7)
2: p <4 00, acc <— J
3: for x in (Zyn) do

4. if Zye Vi —a,Vatal M[x,y] < p then

5: D= YE[Vx—a,Vx+a] M[Xa y]

6

7

8

9

acc +— x
end if
: end for
: return p,acc

Again, we return to our binary randomized response exam-
ple. Since we are considering accuracy, we have to wrap the
raw output to compute some quantifiable query. For example,
we can add a counting query wrapper, such that the output
of RRcount?®(zy,z2) = sum(RR*(zy,z2)). Here we set
a=1, A=0.2, Ipgcounz = {([0,0],0), ([1,1],0), ([0,0],1),
([170}, 1)7 ([17 1]) 1)7 ([170]’ 2)7 ([L 1]v 2)}7 and Aggeount2 =
{[O, O], [1, OL [1, 1]} where V[O,O] = O7V[1,0] = 1,V[171] =2.In
this case, the output of Algorithm 3 would be acc = [0, 1],
p = .96. This means that [1,0] is the worst case accuracy
assignment for RRcount? and 1 — 8 = .96 is a tight accuracy
bound.

1) Correctness and Complexity of Accuracy Bound Synthe-
sis: To verify correctness of ExactAcc, we must show that
the minimal accuracy probability found using the potentially
restricted inference and accuracy set is the same as the minimal
accuracy probability using exhaustive inference and accuracy
sets.

Theorem 3. The output acc of Algorithm 3 is a solution to
the Accuracy Bound Synthesis problem.

Proof. Let WBF (p,w) be the WBF of A : X" —), V
be a vector of target outputs of A, « > 0 and let Z, A be
inference and accuracy sets of A such that Z contains all
(x4,y) where x4 € A and y € [V[x4] — a,V[x4]| + o] We
know that acc minimizes >_, iy \)—a,vixal+a] M ¥4 Y]
by the definition of Algorithm 3, and that M lx A,y =
Pr(A(x.4) = y) by the definition of Algorithm 1. Therefore,
acc minimizes Pr(A(x4) = y) over x4 € A. By the def-
inition of an accuracy set, for all x € X", there exists
a x € A such that Y i o vixta) PTAX) =) =
D yeVixal—aVixal+a) PT(A(x4) =y). Therefore, ¢ maxi-
mizes % over all (x,x’,y) € X" x X" x). By The-
orem 1, this means that acc minimizes Pr(|A(x) — Vx| <)

over all x € A" and is therefore a solution to the Accuracy
Bound Synthesis problem. O

Algorithm 3 runs in O(WMC - |Z| + |A] - «).

Like with the privacy algorithm, there are two main proof
requirements when we design a concrete inference set 7
and accuracy set 4 to use in the accuracy bound synthesis
algorithm. These requirements are:

1) A satisfies the definition of a valid accuracy set in

Definition 5 and
2) all necessary input/output assignments are present in Z,
ie.Vz e Aand y € [V[x] — a, V[x]| + q, (x,9) € L.

V. RANDOMIZED RESPONSE CASE STUDY

We have been using an example of binary randomized
response for n = 2. In this section, we generalize this solution
to any n and provide a detailed explanation of how to utilize
these tools for a tractable solution to the tight privacy and
accuracy bound problem.

Algorithm 4 Randomized Response (RR)

Input: Bit array x of true client messages.
Output: Bit array y of randomized client messages.
1: Initialize bit array y of length |x|
2. for i € {1,...,|x|} do
3: y[i] « 1 — x[i] with probability \, otherwise x[i].
4
5

: end for
: return 'y

In this section, we provide a WBF for RR and show the
complexity of ExactDP and ExactAcc for RR with exhaustive
search space. We then analyze the correctness of ExactDP with
restricted search space that leverages the inherent symmetries
in RR that runs linearly in n (multiplied by WMC). We also
provide an instantiation of ExactAcc with restricted search
space that runs in time quadratic in n (again multiplied by
WMCO).

A. Weighted Boolean Formula for RR

We can manually craft a WBF (¢, w) for randomized
response where n is the number of clients. We set

o= Nwi o (0 Aai) v (0: AT7)) (6)
i=1

where each z; corresponds to the bit value in the input vector
of RR, and the y;’s likewise correspond with the output
vectors. The 6 values correspond with the coin flips in the
randomized portion of the algorithm.

We set the weighting function to be w(6;) =1 — A, or the
probability that the value of z; does not flip, and w(6;) = A
as the probability that z; does flip. For all other literals, we

set w(-) = 1.
Theorem 4. (p,w) is a valid WBF of RR.

Proof. Let (x,y) € X™ x V™. For each i € {1,...,n} assign
the x; and y; literals in ¢ the values of x[i] and y[i], and

7; = 1 — x[i]. If x[i] = yl[i], then for y; < ((6; A ;) V
(0; NZT;)) to be satisfied, 0; = 0. If x[i] # y[é], then for
Y; < ((?Z A J)L) V (91 A fz)) to be satisfied, 0; = 1.

This is the only satisfying assignment of ¢ for x, y assigned
as described, therefore there is only one model, and the
weighted model count is therefore [[,.,, w(£).

The product of weights of literals is w(x;) - w(y;) - w(6;
1-1-(1=X) for i s.t. x[i] = y[i] and w(z;) - w(y;) - w(b;
1-1- A for i st x[i] # y[i], so WMC((p,w))
)\)#i st x[i]=yli] \#i st x[i]Ay[i] — PI(RR(X) _ }’)- O

We provide this analysis to demonstrate what a valid WBF
for RR would look, however, as discussed in Section III, this is
not necessarily the best WBF for computing the WMC of RR.
In Section VI we use a probabilistic programming language
to find the WBF, compile to a compact BDD, and efficiently
query the WMC.

B. Exhaustive Solution

It is evident that for ExactDP and ExactAcc, setting Zgg =
X" x)Y, Crr = X" x X" x), and Aggr = X" gives the
correct bounds for both privacy and accuracy because we are
optimizing the bounds over all possible inputs and outputs.
However, because |X™| = 2™ and |Y| = 2" for randomized
response, when we analyze this solution, we see that the
runtime of the inference algorithm is O(WMC - |Zggr|) =
O(WMC - 4™), the runtime of ExactDP is O(WMC - |Zgg]| -
IC]) = O(WMC - 4™ + 16™) and the runtime of ExactAcc
is OWMC - |Zgr| + |Arr| - @) = O(WMC - 4™ + 2™ -).
We therefore need to find a way to improve this runtime for
randomized response.

C. Leveraging Symmetries for Finding Privacy Bound

Because of the independence properties between different
clients responses, there are many inherent symmetries in this
algorithm. In this section, we identify an inference and privacy
set which satisfy the coverage properties from the previous
section, and reduce the complexity by orders of magnitude.

1) Counting Flips: We identify one significant symmetry
in RR which is the number of clients whose bit flips. In other
words, we can find a representative input/output pair for each
number of bit flips that occurs.

Lemma 1. Given i € {l,...,n}, Vx € X" and y €
Y™ such that count(x @ y) = i, PrlAx)=y) =
Pr(A(100"~%) = 0").

Proof. Let x € X™ and y € Y™ such that count(x ®y) = i.
This means that there are i entries such that x[i] # y[é]. There-
fore, Pr(RR(x) = y) = (1 _,\)#i st x[i]l=y[i] \#i st x[i]#y[i] —
Pr(A(190™~%) = 0™). O

We also identify a key fact about the relationship between
the number of bit flips in neighboring inputs, specifically that
a neighboring input has either one more or one less bit flip
with respect to the output.

Lemma 2. For neighboring inputs x,x’ € X", count(x’ ®
y) =count(x®y) + 1 or count(x®y) — 1.

Lemma 2 follows directly from the definition of neighboring
inputs.

2) Constructing Privacy Set: Because we have these inher-
ent symmetries in the number of flips between each input/out-
put pair, we can define the privacy set to be

Crr ={ (170", 1+ gn—(+1) 0" }iconmnyU ()
{0 10 Y 0 ey ()
We note that |Crr| = 2n.
Theorem 5. Crr is a valid privacy set for RR.

Proof. Let (x,x',y) € X™ x X™ x Y™ such that x,x’ are
neighbors.

If count(x’ ®y) = count(x @ y) + 1, then by Lemma
1 with count(x & y) = ¢ and count(x’ ®@y) = i+

Pr(A(x)=y) PT(A(lionfi):O") o
L Pr(A(x’):l;) Pr(A(Li+10n—GFD)=0n) " By definition,

(11‘07171'7 11'+10nf(i+1)7 On) is in Cgrr.

If count(x’ @ y) = count(x @ y) — 1, then by Lemma
1 with count(x @ y) = ¢ and count(x’ @ y) = i —
1. PrAG)=y) _ Pr(A(1°0")=0")
> Pr(A(x')=y) Pr(A(1i—1on—G-1))=0n)
(17074, 1= 10"~ (=1 0") is in Crg.

By Lemma 2, this covers all possible cases, and by defini-
tion of Crr, V(x,X',y) € Crr, (x,X,y) € X" x X™ x).
Therefore Cgrg is a valid privacy set. O

By definition,

We can now build a smaller inference set that computes all
necessary probabilities that are used in the privacy set. In this
case we define

Irr = {(170"7%,0") }ico,...n) - 9)

Theorem 6. V(XCRRDX/CRFUyCRR) € Crr, (XCRR,chR) € Irr
and (XERRayCRR) € Irr

Proof. Let (Xcge,X(orsYere) € Crr and i € {0,1,...,n}.
By the definition of Cgrgr, x is (1?0"~%, 1°+107~ G+ 07) or
(1°0m=%, 1= 10"~ (=1 o). Therefore, (Xcgq, Ycre) € Zrr and
(XCpes Ycrr) € Irr as desired. O

By the previous theorems, ExactDP is correct for Zrr and
CRRr.

3) Complexity: Since |Zrgr| = n + 1 and |Crgr| = 2n, the
inference algorithm (Algorithm 1) runs in O(WMC - n) time
and ExactDP (Algorithm 2) runs in O(WMC-n) time as well.

D. Computing Accuracy

For accuracy computation, we consider the counting query
on RR. Here, we take the output vector y; of RR and compute
the number of 1’s in that vector. In this case, the input space
is X™ = {0,1}™ and output space is {0,1,...,n}. We refer
to this counting version of RR as RRcount. Here, the set V
is equivalent to the counting function over Booleans, count :
{0,1}" = {0,...,n}.

Here too we have a key lemma about the symmetries.
Lemma 3. Given i € {0,...,n}, Yy € {0,...,n}, for any x

such that count(x) = i, it is true that Pr(RRcount(x) = y) =
Pr(RRcount(110"~%) = y).

Proof. Let x € X", y €)Y such that count(x) = i.
By the definition of RRcount, Pr(RRcount(x)=1y) =

ZyRR s.t. count(yrr)=y PI‘(RR(J)) = yRR) =
Pr(RRcount(1°0"~*) = y). O

1) Constructing A: We define the accuracy set to be

ARRcount - {1i0n7i}i6{0,4..,wz} (10)
Theorem 7. ARrgrcount IS an accuracy set for RRcount.
Proof. Let x € X" and count(x) = i. By Lemma
3, Pr(RRcount(x)=y) = Pr(RRcount(1?0"~%) = y).

Since count(x) = count(1:0"~%),
ZyE[count(x)—(x,count(x)+o¢] Pr(RRcount(x) = y) =
y€[count(1?0m—*)—a,count(10™~%)+a] PI‘(RRCOUHt(XA) = y)'
By definition, Vx € Argrcount, X € X". Therefore Crreount
is a valid accuracy set. O

We define the inference set to accommodate all necessary

values.
IRRcount = U U

i€[0,n] jE[i—a,ita]

{(rro"=*,5)Hr A

Theorem 8. Zrreount contains all (x,y) pairs such that x €
-ARRcount and Yy S [V[X] - O‘7V[X] + Oé]

Proof. Letx € ARrcount Such that count(x) = i. By definition
of ARRcounts X = 1°0"~%. By definition of Zgreount, Yy €
[i —a,i+al, (1°0"%y) as desired. O

By these theorems, ExactAcc with this inference and accu-
racy set is correct.

2) Complexity: We have |Zgreount|] = n - 2« and
|Arrcount] = (n 4+ 1) - «. Therefore, inference (Algorithm
1) and accuracy bound synthesis (Algorithm 3) both run in
O(WMC - na) (or O(WMC - n?) time since 2a < n).

VI. EVALUATION

We have shown that our method is theoretically sound. In
this section we demonstrate how our implemented method far
outperforms prior methods even for the exhaustive case. We
also show how the expressiveness of probabilistic program-
ming can be leveraged to easily implement new algorithms
with more complex input and output spaces, a feat which
would be difficult using prior techniques for exact verification.
We then go on to discuss how our method computes accuracy
and demonstrate the importance of also having access to
accuracy analysis when evaluating private algorithms.

We implement the weighted model counting solution with
BDDs by running programs in the Dice probabilistic pro-
gramming language [25]. We compare with a discrete time
Markov chain (DTMC) model checking solution using the
Storm probabilistic model checker [33] and with DiPC, an
implementation of the decision procedure described in [21].
All experiments are written in Python and use the solver (Dice
or Storm) as a subprocess. We implement INFERENCE (Al-
gorithm 1), ExactDP (Algorithm 2), and ExactAcc (Algorithm
3) in Python. In the case of DiPC, we use the published

code without modification. To easily compare performance
on different parameters, we also develop a tool to generate
Dice programs and Storm models for different DP algo-
rithms, input/output spaces, and randomization parameters.
Experiments are run on a 16 core AMD EPYC with 64GB
of RAM and code for the experiments can be found here:
https://github.com/lisaoakley/wmc_for_privacy_and_accuracy.

A. Comparison to Markov Chain Model Checking

The heart of our method is using weighted model counting
on tractable circuits to vastly improve both the size of the
models and the implementation runtime. In our experiments,
we use the Dice probabilistic programming language to model
and compute tight privacy bounds for the randomized response
algorithm as explained in Section V for variable number of
clients n.

Prior work on inference for exact DP verification uses
model checking on discrete time Markov chains (DTMCs)
to perform exact inference [22], [23]. The examples in these
papers are limited and require adaptation to solve our synthesis
problem. We compare our solution with a similar Markov
chain model checking technique and confirm that our WMC
solution outperforms the Markov chain solution in model size,
number of solver runs, and inference time.

In Table II, we see that, for various n, ExactDP finds an
extremely compact BDD for randomized response, where the
model size is n 4 2. This contrasts with the Markov chain
solution where the models are size 7". This is because every
state in the Markov chain represents a possible setting of
every free variable in the model. With each client added in
randomized response, we multiply the number of free variables
in the Markov chain, which causes an exponential increase in
the number of states. These tools were developed to handle
dynamic programs for small state spaces, and are therefore
not intended to handle problems with large numbers of free
variables and little to no notion of dynamics over time. BDDs,
however, are exactly optimized for this kind of problem.

The Markov chain solution also requires a manually crafted
Markov chain which means that the Markov chains used in
our experiments might not be the optimal encoding of this
algorithm. However, finding an optimal encoding is a hard
problem and requires technical knowledge on the internals
of the model checking process. A benefit of our solution is
that the Dice program is almost identical to the randomized
response pseudocode, and the optimization of the BDD size
is handled automatically.

Another benefit of inference via WMC on BDDs demon-
strated in Table II is that Dice is able to compute the entire
output distribution of the program for a given input in one run,
whereas the Markov chain model checking solution requires
a run for each input/output pair. As shown in Table II we
have to run Storm 4" times in the exhaustive case, but even
in the exhaustive case we only have to run Dice 2" times. We
leverage the symmetries in the randomized response algorithm
such that for the Dice restricted solution, we only have to run

Method n BDD Size | # States | # Trans. | # Solver Runs | Inf. Time (s) | Synth. Time (s) | Build Time (s)
DTMC 2 - 49 100 16 0.0104 < 0.0001 0.0001
(Exhaustive) 4 - 2401 8488 256 0.8877 0.0007 0.0005

6 - TO TO TO TO TO TO

2 4 - - 4 0.152 0.0001 0.0005
ExactDP 4 6 - - 16 0.4128 0.0011 0.0015
(Exhaustive) 6 8 - - 64 1.5683 0.0226 0.008

8 10 - - 256 8.097 0.5285 0.024

10 | 12 - - 1024 63.1988 11.016 0.0917
DTMC 5 - 16807 73054 32 1.371 0.0001 0.0001
(Restricted) 10 | - TO TO TO TO TO TO

5 7 - - 1 0.0239 < 0.0001 0.0001
ExactDP 10 | 12 - - 1 0.0518 0.0001 0.0001
(Restricted) 15 17 - - 1 1.2864 0.0001 0.0001

20 | 22 - - 1 53.9282 0.0002 0.0001

TABLE II: Comparison of state space and runtimes for a BDD weighted model counting solution (ExactDP) and a Markov
chain model checking solution (DTMC). Model size for ExactDP is the number of nodes in the BDD (BDD size) and for
DTMC is the number of states and transitions in the Markov chain. TO means that the experiment timed out on probabilistic
inference. For ExactDP and DTMC we provide results for both the exhaustive solution and restricted solution which uses
symmetry sets as described in Section V. Model size is independent of the symmetry sets, e.g. the model size for n = 10 is
12 for both ExactDP exhaustive and ExactDP restricted. # Solver Runs indicates the number of calls to the solver required
to compute the necessary probabilities. Inf. and Synth. time are the the total times in seconds for running implementations of
the Inference and Privacy Bound Synthesis algorithms including subprocess times. Build time is the time it takes to build the

program or model sent to the solver.

the solver once, compared with Storm where we still have to
run it 2" times.

The outcome of these factors is that the Storm solution times
out for n = 6 in the exhaustive case and n = 10 in the
restricted case, while our solution with a Dice solver can find
a tight bound in around a minute for n = 10 in the exhaustive
case, and less than a minute for n = 20 in the restricted case
as can be seen in Table II.

B. Comparison to DiPC

In [21], Barthe ef. al provide a decision procedure for
exactly verifying DP for a class of algorithms that can be
encoded as DTMCs. The implementation of their decision
procedure, DiPC, exhaustively computes the likelihood ratio
by generating Wolfram Mathematica® scripts for a subset of
the class of programs on which they prove decidability.

In Table III, we provide an empirical comparison of Ex-
actDP vs. DiPC for randomized response with varying num-
bers of clients, n. DiPC is primarily an implementation to
illustrate the decision procedure, and therefore is not optimized
for fast probabilistic inference. As expected, we see that our
tool outperforms DiPC as the number of clients increases.

C. Expressiveness and the Geometric Above Threshold

We have shown that our method outperforms Markov chain
model checking for computing tight privacy bounds both for
the exhaustive and restricted solutions in the case of binary
randomized response. We now demonstrate the expressiveness
of our solution using the truncated geometric above threshold
mechanism.

The geometric above threshold takes as input a length
n list of integers in {0,1,...,k}, and outputs an integer

. ExactDP ExactDP
n DiPC [21] (Exhaustive) (Restricted)
2 Os Os Os
4 Os Os Os
6 1s 2s Os
8 7s Os Os
10 149s 74s Os
12 | 2841s 1965s Os

TABLE III: Runtime comparison between DiPC [21] and Ex-
actDP with exhaustive and restricted search spaces (rounding
to the nearest second to match the granularity reported by
DiPC). For n > 8, ExactDP outperforms DiPC even without
using any symmetry optimizations.

representing the index of the first value in the list that exceeds
the threshold. We provide the complete pseudocode and an
example Dice program for the randomized (private) above
threshold algorithm in Appendix A. For methods like model
checking with Markov chains, this would be a very difficult
algorithm to encode as it has multiple invocations of the
geometric mechanism and multiple growth dimensions which
would require many explicit states and transitions to encode
as a Markov chain.

We encode this algorithm as a simple 2n + 3 line Dice
program and run our exhaustive privacy verification bound
algorithm on it. We see in Fig. 2 that, even with the exhaustive
solution, we are able to easily encode compact, computable
BDDs for a variety of list lengths and max int values.

Not only does Dice provide a simple encoding, but we see
that the optimized BDDs are extremely reasonably sized. Even

Max Int Size

16

18

4

5 6

List Length

Fig. 2: BDD sizes for the truncated geometric above threshold
algorithm for various maximum integer sizes (k) and list
lengths (n).

0.35]
175 . @ Priv. Bound ~@- Acc. Bound .
1 0.301 :
15.01
H 0.251 ;
125
§ ©_0.201
‘o 1004 i I L
L] — 0.15
e 0.10 s
50l .'a.. P
25 .. 0.051 o
: %o "y
09 0.00({0-®®
01 02 03 04 05 01 02 03 04 05
A A

(a) Privacy Bound (RR) (b) Accuracy (RR counting)

Fig. 4: Tight Accuracy and privacy bounds over varying coin
flip parameters, A, for binary randomized response with n = 8.
Generated using the ExactDP and ExactAccimplementations

with restricted search space.

Input | 1-5

00000000 | 0.9437184
11111111 | 0.9437184
01111111 | 0.9723904
00000001 | 0.9723904

601 Priv. __ 10%4 Priv.
= Ace w ~m- Acc.
501 5 @ Priv. (Exh.)
Q 'g 10t4 - Acc. (Exh.)
@ 40/ 5 X Acc. (Exh)TO ¥
=) =
o; 30 S 1001
© - £
= 201 . s
Q a2
X
101 .m 10714
|
2 4 6 8 2 4 6 8
n n

(a) BDD Sizes (b) Experiment Durations

Fig. 3: BDD sizes and experiment durations for accuracy
bound synthesis with ExactAcc for randomized response with
counting over various numbers of clients n and A = 0.2.

for integers between 0 and 3 and list lengths up to 6 (which
means 6* = 1296 possible inputs and two invocations of the
geometric distribution over 4 values each), we see that the
generated BDD is able to represent this with only 91 nodes.
This is still less than the number of states in the Markov chain
for the much simpler randomized response algorithm for n = 3
when looking at the Storm solution. This means that exact
inference, even for more complex DP algorithms can be orders
of magnitude more efficient than previously believed.

D. Accuracy

A key benefit of our method is its ability to compute tight
accuracy bounds. We see in Fig. 3a that having large integral
output space (for example an output space of {1...n + 1}
as is the case for the randomized response algorithm with a
counting wrapper) causes the BDD sizes to grow more quickly
than in privacy computation. As we noted in the theoretical
portion of the paper, finding accuracy bounds also has larger
time complexity due to the range of outputs bounded by «.
However, we are still able to compute accuracy bounds for
small n in under 4 minutes, as shown in Fig. 3b.

TABLE IV: 4 inputs for which 1— /3 is lowest for randomized
response counting with n = 8 and A = 0.2. Generated using
ExactAccimplementation with restricted search space.

Even though we are only able to perform tight accuracy
bound synthesis on small examples, we begin to see the utility
of our program as a tool in the algorithm design process. For
example, in Fig. 4 we use our tool to find tight privacy and
accuracy bounds for noise parameters. We see that noise is
not linearly related to privacy or accuracy, as often implicitly
assumed when algorithm designers minimize noise as a proxy
for accuracy, as is done for differentially private synthesis as
in [20]. Using such a proxy algorithm will result in an inexact
outcome, and it is important to have a more detailed view of
accuracy, even if n is small.

Our method goes beyond bound synthesis. We can run a
variation of ExactAcc and get each example for which there
is a unique 1 — 3, sorted by their values. We show a result
generated by our tool of 4 inputs for which 1 — g is lowest
for randomized response with n = 8 and A = 0.2 in Table
IV. An algorithm designer can use this information to inform
which examples have the greatest impact on accuracy.

VII. RELATED WORKS

A. Exact Methods

There are a few closely related works on exact differen-
tial privacy verification. In [22], [23], Liu et. al provide a
probabilistic model checking approach for exactly solving
the differential privacy verification problem. We provide a
comparison with this approach in Section VI.

In [21] Barthe et. al, provide theoretical grounding for a
class of algorithms for which exact DP verification is decid-
able. This class of programs, namely DiPWhile programs, are
looping programs in which each real and integer variable can
be assigned a bounded number of times during program exe-
cution. Here, the authors propose a similar decision procedure
to our exhaustive algorithm, however, they do not discuss the
method for performing exact probabilistic inference except to
prove that the probabilities are computable because DiPWhile
programs can be encoded as DTMCs (Lemma 7.1). In contrast,
our work has a focus on the computational gains we can
achieve if we use weighted model counting for this inference
step.

Along with theoretical analysis, [21] presents an implemen-
tation of their decision procedure which solves the differential
privacy verification problem for a subset of DiPWhile pro-
grams, including randomized response, by generating Wolfram
Mathematica® scripts to perform probabilistic inference. As
shown in Section VI, our tool outperforms DiPC for random-
ized response, even in the exhaustive case where we do not
restrict the search space at all.

In [21], the authors also present results for solving the (¢, §)-
DP problem for a very small example. Our technique could
also be immediately applied to verify (g,0)-DP by checking
every subset of output events rather than each individual
output. This straightforward, exhaustive solution has an even
larger computation explosion than the exhaustive solution for
e-DP, as you have to run inference and validation for the
power set of the output space. As is mentioned in [21],
this is not practical for exhaustive automated techniques.
Further exploration into symmetry-finding for the (g, 6)-DP
case remains an interesting open problem.

B. Finding Proofs and Counterexamples

Other works which are closely related to ours are works
on finding counterexamples to differential privacy or finding
proofs of differential privacy. In [10], Ding et. al develop a
statistical procedure for finding a candidate counterexample to
differential privacy in probabilistic algorithms. In [29], Bichsel
et. al present a similar technique which uses the same heuristic
for limiting the search space as in [10], but replace hypothesis
testing with trained classifiers.

Implicitly, our method for finding symmetries is similar to
the technique of Ding er. al [10]. They manually choose a
heuristic for segmenting the input space, for example using
a representative pair of neighboring inputs that represent a
class of “one below” pairs, where z’ has a single entry
which is one unit smaller than its corresponding entry in x
(e.g. x =[1,1,1,1,1] and 2’ = [0,1,1,1,1]). In our paper,
however, we formalize this logic and provide proof obligations
to show that these representative inputs cover the whole search
space, which allows us to introduce more formality and make
provable statements about the exactness of our solutions.

In [11], Wang et. al develop a tool for finding counterexam-
ples or proofs of validation of privacy in implementations of
DP algorithms. In [12], Bichsel et. al use a sampling approach

to find counterexamples to differential privacy. In [13], Zhang
et. al use interpreters to find counterexamples to differential
privacy.

C. Type Systems and Program Synthesis

There is significant work on developing type systems and
program logics for differential privacy algorithms. This work
begins with [34] in which Reed et. al develop a type system
for differential privacy. Following this, [35]-[39] present other
type systems and program logics for differential privacy. There
is a related line of work which develops and implements
a Hoare logic approach and uses probabilistic couplings to
mechanize proofs of differential privacy via the apRHL logic
and EasyCrypt [5]-[9]. In [40], Albarghouthi et. al propose
a technique to automate these proofs. In [41], Barthe et. al
develop a probabilistic programming framework which uses
inference for writing verifiable DP programs.

There are also works on program synthesis for DP programs
[20], [42], [43]. Our techniques could be used in these synthe-
sis approaches for verifying intermediate programs, and as a
more exact method of ensuring high accuracy while satisfying
DP properties.

In a more theoretical approach, Gaboardi et. al [44] find
complexity bounds for exact verification of DP in non-looping
programs. In follow-up work to this, Bun ez. al [45] extend
this analysis to looping programs.

D. Privacy Auditing

Privacy auditing provides empirical methods to estimate the
privacy leakage of an ML algorithm by mounting privacy
attacks. Privacy auditing can be performed with membership
inference attacks [46] or data poisoning [14], [15], but initial
techniques developed for auditing require training thousands
of ML models to provide confidence intervals for the estimated
lower bound on the privacy parameter. Recent techniques
showed how to rigorously perform estimation of the privacy
parameter while using multiple randomized canaries [18] and
eventually training a single ML model [16], [19].

E. Accuracy Verification

To our knowledge, there is very little work on theoretical
or applied formal verification or bound synthesis for accuracy
of DP algorithms. In [47], Barthe et. al provide theoretical
analysis on the decidability of accuracy different classes of
probabilistic computations. In [48], Lobo-Vesga et. al develop
a programming framework for estimating accuracy bounds.

VIII. CONCLUSION AND FUTURE WORK

We believe that our novel approach for synthesizing tight
privacy and accuracy bounds has a lot of promise for devel-
oping techniques for computing accuracy and privacy prop-
erties in a wide range of differential privacy applications.
Our approach uses state-of-the-art techniques for probabilistic
inference via weighted model counting, and can benefit from
ongoing advances in artificial intelligence and automated rea-
soning.

Though we are able to vastly improve automation from
prior work by leveraging expressive probabilistic programming
languages, one limitation is the manual step of identifying
symmetries to define the inference, comparison, and accuracy
sets. While there is room for improvement, in our experiments
we demonstrate how the power of our WMC solution provides
advances and utility, even for the exhaustive approach. In
future work, we plan to investigate techniques from SAT
solving and symmetry breaking to improve automation.

In future work, we can also extend this framework to
other definitions of differential privacy including Rényi and
approximate (or (g, d)) differential privacy [27]. Additionally,
we can look at more complex systems with more complicated
probability distributions such as randomized response with
amplification by shuffling [49].

Our work opens the door for further automation and
accessibility of using probabilistic programming languages
techniques for verification and synthesis of DP algorithms
using state-of-the-art inference tools.

ACKNOWLEDGMENT

We would like to thank Professors Marco Gaboardi and
Jon Ullman for their technical guidance and input on differ-
ential privacy case studies. Thanks also to Lydia Zakynthinou,
Konstantina Bairaktari, Ludmila Glinskih, Minsung Cho, and
LaKyah Tyner for discussions about approaches and theoret-
ical analysis. This work has been supported by NSF grant
CNS-2247484.

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” Journal of Privacy and Confiden-
tiality, vol. 7, no. 3, 2016.

[2] I. Mironov, “On significance of the least significant bits for differential
privacy,” in Proceedings of the 2012 ACM conference on Computer and
communications security, 2012, pp. 650-661.

[3] F. Tramer, A. Terzis, T. Steinke, S. Song, M. Jagielski, and N. Carlini,
“Debugging differential privacy: A case study for privacy auditing,”
arXiv preprint arXiv:2202.12219, 2022.

[4] T. Stevens, 1. C. Ngong, D. Darais, C. Hirsch, D. Slater, and J. P. Near,
“Backpropagation clipping for deep learning with differential privacy,”
arXiv preprint arXiv:2202.05089, 2022.

[5] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Zanella-Beguelin,
“Verified computational differential privacy with applications to smart
metering,” in 2013 IEEE 26th Computer Security Foundations Sympo-
sium. 1EEE, 2013, pp. 287-301.

[6] G. Barthe, B. Kopf, F. Olmedo, and S. Zanella Beguelin, “Probabilistic
relational reasoning for differential privacy,” in Proceedings of the 39th
annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, 2012, pp. 97-110.

[7]1 G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, C. Kunz, and P.-Y.
Strub, “Proving differential privacy in hoare logic,” in 2014 IEEE 27th
Computer Security Foundations Symposium. 1EEE, 2014, pp. 411-424.

[8] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub, “Proving
differential privacy via probabilistic couplings,” in Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science,
2016, pp. 749-758.

[9]1 J. Hsu, Probabilistic couplings for probabilistic reasoning. University

of Pennsylvania, 2017.

Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting

violations of differential privacy,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018,

pp. 475-489.

[10]

(11]

[12]

[13

—

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Wang, Z. Ding, D. Kifer, and D. Zhang, “Checkdp: An automated and
integrated approach for proving differential privacy or finding precise
counterexamples,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 919-938.

B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. Vecheyv,
“Dp-finder: Finding differential privacy violations by sampling and
optimization,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 508-524.

H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth, “Testing
differential privacy with dual interpreters,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1-26, 2020.

M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially
private machine learning: How private is private SGD?” in

Proceedings of Advances in Neural Information Processing
Systems, ser. NeurIPS, vol. 33, 2020, pp. 22205-22216.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/file/

fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf

M. Nasr, S. Song, A. Thakurta, N. Papernot, and N. Carlini, “Adversary
instantiation: Lower bounds for differentially private machine learning,”
in 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 866-882.
[Online]. Available: https://doi.org/10.1109/SP40001.2021.00069

G. Andrew, P. Kairouz, S. Oh, A. Oprea, H. B. McMahan, and
V. Suriyakumar, “One-shot empirical privacy estimation for federated
learning,” CoRR, vol. abs/2302.03098, 2023.

M. Nasr, J. Hayes, T. Steinke, B. Balle, F. Tramer, M. Jagielski,
N. Carlini, and A. Terzis, “Tight auditing of differentially private
machine learning,” in Proceedings of the 32nd USENIX Conference on
Security Symposium, ser. SEC *23. USA: USENIX Association, 2023.
K. Pillutla, G. Andrew, P. Kairouz, H. B. McMahan, A. Oprea,
and S. Oh, “Unleashing the power of randomization in auditing
differentially private ML,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023. [Online]. Available: https:
/lopenreview.net/forum?id=mlbesSTAAg

M. J. Thomas Steinke, Milad Nasr, “Privacy auditing with one (1)
training run,” in Thirty-seventh Conference on Neural Information
Processing Systems, 2023. [Online]. Available: https://openreview.net/
forum?id=mlbes5TAAg

S. Roy, J. Hsu, and A. Albarghouthi, “Learning differentially private
mechanisms,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 852-865.

G. Barthe, R. Chadha, V. Jagannath, A. P. Sistla, and M. Viswanathan,
“Deciding differential privacy for programs with finite inputs and
outputs,” in Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, 2020, pp. 141-154.

D. Liu, B.-Y. Wang, and L. Zhang, “Model checking differentially
private properties,” in Asian Symposium on Programming Languages
and Systems. Springer, 2018, pp. 394-414.

——, “Verifying pufferfish privacy in hidden markov models,” in
International Conference on Verification, Model Checking, and Abstract
Interpretation. Springer, 2022, pp. 174-196.

M. Chavira and A. Darwiche, “On probabilistic inference by weighted
model counting,” Artificial Intelligence, vol. 172, no. 6-7, pp. 772-799,
2008.

S. Holtzen, G. Van den Broeck, and T. Millstein, “Scaling exact
inference for discrete probabilistic programs,” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, pp. 1-31, 2020.

S. Holtzen, T. Millstein, and G. Van den Broeck, “Generating and
sampling orbits for lifted probabilistic inference,” in Uncertainty in
Artificial Intelligence. PMLR, 2020, pp. 985-994.

C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211-407, 2014.

S. Holtzen, S. Junges, M. Vazquez-Chanlatte, T. Millstein, S. A. Seshia,
and G. Van den Broeck, “Model checking finite-horizon markov chains
with probabilistic inference,” in Proceedings of the 33rd International
Conference on Computer-Aided Verification (CAV), July 2021.

B. Bichsel, S. Steffen, I. Bogunovic, and M. Vechev, “Dp-sniper: Black-
box discovery of differential privacy violations using classifiers,” in 2021
IEEE Symposium on Security and Privacy (SP). 1EEE, 2021, pp. 391—
409.

G. Van den Broeck, K. Kersting, S. Natarajan, and D. Poole, An
Introduction to Lifted Probabilistic Inference. MIT Press, 2021.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

A. Sabharwal, “Symchaff: exploiting symmetry in a structure-aware
satisfiability solver,” Constraints, vol. 14, pp. 478-505, 2009.

F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient symmetry
breaking for boolean satisfiability,” IEEE Transactions on Computers,
vol. 55, no. 5, pp. 549-558, 2006.

C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker storm,” International Journal on Software
Tools for Technology Transfer, pp. 1-22, 2021.

J. Reed and B. C. Pierce, “Distance makes the types grow stronger:
a calculus for differential privacy,” in Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, 2010,
pp. 157-168.

M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce,
“Linear dependent types for differential privacy,” in Proceedings of
the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 2013, pp. 357-370.

G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and
P.-Y. Strub, “Higher-order approximate relational refinement types for
mechanism design and differential privacy,” ACM SIGPLAN Notices,
vol. 50, no. 1, pp. 55-68, 2015.

D. Zhang and D. Kifer, “Lightdp: Towards automating differential
privacy proofs,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, 2017, pp. 888-901.

J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang,
N. Somani, M. Zhang, N. Sharma, A. Shan et al., “Duet: an expressive
higher-order language and linear type system for statically enforcing dif-
ferential privacy,” Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 1-30, 2019.

M. Fredrikson and S. Jha, “Satisfiability modulo counting: A new
approach for analyzing privacy properties,” in Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS), 2014, pp. 1-10.

A. Albarghouthi and J. Hsu, “Synthesizing coupling proofs of differ-
ential privacy,” Proceedings of the ACM on Programming Languages,
vol. 2, no. POPL, pp. 1-30, 2017.

G. Barthe, G. P. Farina, M. Gaboardi, E. J. G. Arias, A. Gordon,
J. Hsu, and P.-Y. Strub, “Differentially private bayesian programming,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 68-79.

C. Smith and A. Albarghouthi, “Synthesizing differentially private
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. ICFP, pp. 1-29, 2019.

Y. Wang, Z. Ding, Y. Xiao, D. Kifer, and D. Zhang, “Dpgen: Automated
program synthesis for differential privacy,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 393-411.

M. Gaboardi, K. Nissim, and D. Purser, “The complexity of ver-
ifying loop-free programs as differentially private,” arXiv preprint
arXiv:1911.03272, 2019.

M. Bun, M. Gaboardi, and L. Glinskih, “The complexity of verifying
boolean programs as differentially private,” in 2022 IEEE 35th Computer
Security Foundations Symposium (CSF). 1EEE, 2022, pp. 396-411.
S. Zanella-Beguelin, L. Wautschitz, S. Tople, A. Salem, V. Riihle,
A. Paverd, M. Naseri, B. Kopf, and D. Jones, “Bayesian estimation
of differential privacy,” in Proceedings of the 40th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 23-29 Jul 2023, pp.
40624-40636. [Online]. Available: https://proceedings.mlr.press/v202/
zanella-beguelin23a.html

G. Barthe, R. Chadha, P. Krogmeier, A. P. Sistla, and M. Viswanathan,
“Deciding accuracy of differential privacy schemes,” Proceedings of the
ACM on Programming Languages, vol. 5, no. POPL, pp. 1-30, 2021.
E. Lobo-Vesga, A. Russo, and M. Gaboardi, “A programming framework
for differential privacy with accuracy concentration bounds,” in 2020
IEEE Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 411—
428.

A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Dis-
tributed differential privacy via shuffling,” in Advances in Cryptology—
EUROCRYPT 2019: 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Ger-
many, May 19-23, 2019, Proceedings, Part I 38. Springer, 2019, pp.
375-403.

[50] V. Balcer and S. Vadhan, “Differential privacy on finite computers,”
arXiv preprint arXiv:1709.05396, 2017.

APPENDIX A
TRUNCATED GEOMETRIC ABOVE THRESHOLD

The above threshold algorithm takes as input an array of
values and a thresholding value 7" and outputs the index of the
first value in the input array that exceeds 7. The DP version
of this algorithm adds noise both to each entry and to the
threshold T' [27].

Algorithm 5 Truncated Geometric Above Threshold

Input: Array of input integers X, threshold value 7', random-
ness parameters \; and A

Output: Index ¢

1: T« T + Geom(\)

2: for x; € X do

3: 1+ Geom(A2)

4: if1’1+T12Tthen

5: return %

6

7

8

. end if
: end for
: return 'y

We use a discrete, finite variation of this DP algorithm
which is defined over integer-valued input arrays, integer-
valued T, and uses the truncated geometric mechanism for the
added noise [50]. We provide the pseudocode for this variation
in Algorithm 5, and an example of the Dice program generated
by our ExactDP tool in Fig. 5. In our experiments, we set
randomness parameters A\; = Ao for simplicity.

let t_noisy = discrete (0.006692850924284843,0.9866142981514303,0.006692850924284843) in
let x0_noisy = discrete (4.5096074800597685e-05,0.006647754849484246,0.9933071490757152) in
let x1_noisy = discrete (0.9933071490757152,0.006647754849484246,4.5096074800597685e-05) in
let x2_noisy = discrete (0.006692850924284843,0.9866142981514303,0.006692850924284843) in
let x3_noisy = discrete (4.5096074800597685e¢-05,0.006647754849484246,0.9933071490757152) in
let answ = if x0_noisy > t_noisy then int(3,0) else int(3,4) in

let answ = if answ == int(3,4) && x0_noisy > t_noisy then int(3,0) else answ in
let answ = if answ == int(3,4) && x1_noisy > t_noisy then int(3,1) else answ in
let answ = if answ == int(3,4) && x2_noisy > t_noisy then int(3,2) else answ in
let answ = if answ == int(3,4) && x3_noisy > t_noisy then int(3,3) else answ in

Fig. 5: Sample Dice program generated from ExactDP implementation for above threshold for lists of length 4 and maximum
integer value 2 with X =[2,0,1,2] and T = 1.

	Introduction
	Preliminaries
	Differential Privacy
	Accuracy
	Weighted Model Counting
	Model Counting
	Weighted Boolean Formula (WBF)
	Weighted Model Counting (WMC)
	WMC for Probabilistic Algorithms

	Weighted Model Counting for Synthesizing Tight Privacy and Accuracy Bounds
	Synthesis Problems
	WMC and Probabilistic Programming For Privacy Bound Synthesis
	WMC for Exhaustive Accuracy Bound Synthesis

	Framework for Leveraging Symmetries
	Inference Algorithm
	Finding Tight Privacy Bound
	Correctness and Complexity of Privacy Bound Synthesis Algorithm

	Finding Tight Accuracy Bound
	Correctness and Complexity of Accuracy Bound Synthesis

	Randomized Response Case Study
	Weighted Boolean Formula for RR
	Exhaustive Solution
	Leveraging Symmetries for Finding Privacy Bound
	Counting Flips
	Constructing Privacy Set
	Complexity

	Computing Accuracy
	Constructing A
	Complexity

	Evaluation
	Comparison to Markov Chain Model Checking
	Comparison to DiPC
	Expressiveness and the Geometric Above Threshold
	Accuracy

	Related Works
	Exact Methods
	Finding Proofs and Counterexamples
	Type Systems and Program Synthesis
	Privacy Auditing
	Accuracy Verification

	Conclusion and Future Work
	References
	Appendix A: Truncated Geometric Above Threshold

