
Synthesizing Tight Privacy and Accuracy Bounds

via Weighted Model Counting

Lisa Oakley

Khoury College of Computer Sciences

Northeastern University

Boston, USA

oakley.l@northeastern.edu

Steven Holtzen

Khoury College of Computer Sciences

Northeastern University

Boston, USA

s.holtzen@northeastern.edu

Alina Oprea

Khoury College of Computer Sciences

Northeastern University

Boston, USA

a.oprea@northeastern.edu

Abstract—Programmatically generating tight differential pri-
vacy (DP) bounds is a hard problem. Two core challenges are
(1) finding expressive, compact, and efficient encodings of the
distributions of DP algorithms, and (2) state space explosion
stemming from the multiple quantifiers and relational properties
of the DP definition.

We address the first challenge by developing a method for
tight privacy and accuracy bound synthesis using weighted
model counting on binary decision diagrams, a state of the art
technique from the artificial intelligence and automated reasoning
communities for exactly computing probability distributions. We
address the second challenge by developing a framework for
leveraging inherent symmetries in DP algorithms. Our solution
benefits from ongoing research in probabilistic programming
languages, allowing us to succinctly and expressively represent
different DP algorithms with approachable language syntax that
can be used by non-experts.

We provide a detailed case study of our solution on the binary
randomized response algorithm. We also evaluate an implemen-
tation of our solution using the Dice probabilistic programming
language for the randomized response and truncated geometric
above threshold algorithms. We compare to prior work on exact
DP verification using Markov chain probabilistic model checking
and the decision procedure DiPC. Very few existing works
consider mechanized analysis of accuracy guarantees for DP
algorithms. We additionally provide a detailed analysis using our
technique for finding tight accuracy bounds for DP algorithms.

Index Terms—Differential Privacy, Weighted Model Counting,
Probabilistic Programming

I. INTRODUCTION

Differential privacy (DP) [1] is an important property for

randomized algorithms that can ensure a balance between

preserving user privacy and allowing systems to draw mean-

ingful conclusions from their data. Crafting algorithms which

satisfy meaningful differential privacy bounds while main-

taining useful accuracy guarantees is no small feat, and the

design and analysis of these differentially private algorithms

is extensive and highly technical. As is often the case with

complicated, technical fields, as the landscape of differential

privacy research has grown, so too has the tendency for bugs

in the theory and implementations of these algorithms [2]–

[4]. It is therefore vital for algorithm designers to have tools

and frameworks to help formally and mechanically analyze

their algorithms both in the design phase, and to validate

their theoretical results and implementations. Furthermore, it

is important that these tools be as accessible and automated

as possible.

Most current methods for formally verifying differential

privacy properties involve manually mechanizing existing pen-

and-paper privacy proofs using proof assistants like Easy-

Crypt [5]. This method of deductive verification is useful

for mechanically validating asymptotic privacy bounds [5]–

[9]. This method, however, requires almost entirely manual

work and often hinges on first having an existing proof

written by hand. Importantly, it also requires a technician

who understands both theoretical differential privacy and proof

assistants well enough to translate the pen-and-paper proof into

the language of the proof assistant. Therefore, these methods

can be extremely useful, but are not practical for keeping up

with the pace of ongoing differential privacy research, and are

not as helpful in the algorithmic design phase where there is

incomplete pen-and-paper analysis.

There is also active research on statistically verifying differ-

ential privacy in practice, discovering lower bounds by finding

counterexamples to differential privacy, or programmatically

tightening existing bounds [10]–[13]. In addition, privacy

auditing provides a set of statistical techniques for estimating

privacy leakage of machine learning (ML) algorithms empir-

ically and determining lower bounds on privacy [14]–[19].

While these methods are useful for automatically analyzing

algorithms over large data sets, they often rely on statistical

procedures and are evaluated mostly through experimental

methods on specific data sets.

Existing methods here also focus almost entirely on veri-

fying privacy, and do not analyze accuracy bounds. This is a

problem because incorrect or non-existent accuracy bounds

forces a reliance on proxy functions for accuracy that can

be flawed and result in algorithm designers adding too much

noise, or adding noise in non-optimal parts of the algorithm.

Furthermore, without full accuracy analysis, applications like

optimization-based synthesis for differentially private algo-

rithms [20] must use these flawed accuracy proxy functions

and end up finding potentially non-optimal solutions.

Our goal is to develop a technique for exactly solving

the tight differential privacy bound and tight accuracy bound

synthesis problems. In other words, given a randomized al-

gorithm, find the parameters which tightly bound its privacy

Fig. 1: We represent the probability distribution of a randomized algorithm as a binary decision diagram (BDD) so that we can

efficiently compute the weighted model count to perform probabilistic inference (compute the probabilities of certain events

occurring). Starting from a randomized algorithm, there are many ways to compile to a BDD. The top path shows a more

manual process where a user crafts a weighted boolean formula by hand and uses a knowledge compiler, a tool for efficiently

representing and querying logical formulas, to compile this into a BDD. The bottom path exhibits an example of the flow of

an expressive probabilistic programming languages which allow the user to define an easily readable program defined similarly

to the pseudocode. From here, the programming language can compile an optimized logical expression and pass it to the

knowledge compiler. In this way, there is very little manual effort, and the resulting logical expression and BDD are optimized

for WMC queries.

and accuracy guarantees. Our technique will provide more

theoretical grounding to the analysis of differentially private

mechanisms than the statistical methods, and provide more

automation than the traditional proof mechanizing process

described in prior work. It will also critically fill a gap in

mechanized analysis for accuracy bounds.

Beyond its utility in finding tight privacy and accuracy

bounds, another benefit of our technique is that it allows us to

identify which input, neighbor, and output assignments lead

to these bounds. In other words, we can identify the worst-

case assignments. We provide empirical examples of using our

technique to find the top worst-case assignments for accuracy,

which highlights how our framework can help an algorithm

designer determine which outliers are most impactful on

privacy and accuracy bounds.

Very few attempts have been made at exactly synthesizing

tight privacy bounds, and those that exist are extremely limited

in the kinds of algorithms they can analyze [21]–[23], and

in Section VI, we show that our method outperforms these

techniques for randomized response. As far as we are aware,

no one has attempted to mechanically solve for exact accuracy

bounds of a given differentially private algorithm.

There are two main reasons this is the case. Firstly, finding

an easily computable encoding of the algorithm on which to do

probabilistic inference is hard. Previous work on exact DP ver-

ification has required an explicit, hand-crafted Markov chain

as input [22], [23]. Secondly, exact verification by quantifying

over all neighboring inputs and outputs is intractable as the

data sets increase in size. Our approach addresses both of

these key challenges, and the resulting technique improves the

feasibility of exactly solving the privacy and accuracy bound

synthesis problems.

To tackle the first challenge, we use a method called

weighted model counting (WMC) for computing the prob-

abilities of certain events (otherwise known as performing

probabilistic inference). WMC is an established state-of-the-

art strategy for performing discrete probabilistic inference

in the artificial intelligence and automated reasoning com-

munity [24], [25]. In order to leverage WMC, one must

encode their problem into a weighted Boolean formula (WBF).

We reduce the problem of computing accuracy and privacy

bounds of randomized algorithms to computing the WMC of

a particular set of Boolean formulas. This technique has many

benefits. Firstly, we can rely on the many decades of algorith-

mic advances in WMC: for instance, high-performance data-

structures like binary decision diagrams (BDDs) can efficiently

represent the distributions of the randomized algorithms and

efficiently query for exact probabilities. Secondly, there exist

expressive probabilistic programming languages that can effi-

ciently compile into these optimized representations [26]. This

makes it simple to encode DP algorithms which often invoke

probability distributions as programs, and allows for a usable

strategy even for non-experts in probabilistic programming. In

Fig. 1, we present an example of this pipeline for randomized

response with two inputs.

To tackle the second challenge of state space explosion

due to multiple for-all quantifiers on the input and output

space, we introduce the concepts of inference, privacy, and

accuracy sets, and provide algorithms for synthesizing bounds

with respect to these restricted state spaces. These sets allow us

to define which inputs and outputs are sufficient for finding

privacy and accuracy bounds of DP algorithms. These sets

provide a simple framework for utilizing inherent symmetries

in DP algorithms to reduce the space of the exact synthesis

problems. Despite being simple to define, a limitation of our

approach is that there is some manual work which goes into

finding these symmetry sets. We provide a detailed analysis

of an example of soundly defining the symmetry sets for a

randomized response case study.

Our contributions are (1) a technique for using probabilistic

programming languages and WMC for efficient probabilistic

inference for DP algorithms, (2) a framework for leveraging

symmetries to combat the state space explosion problem for

both the tight privacy and accuracy bound synthesis problems,

(3) a detailed theoretical analysis of the symmetry sets for a

randomized response case study, (4) examples of using our

framework for automated analysis of the randomized response

and geometric above threshold algorithms, and (5) comparison

to existing techniques of probabilistic model checking using

Markov chains and the decision procedure, DiPC, from [21].

The paper is organized as follows. In Section II we provide

relevant background. In Section III we introduce our tight

privacy and accuracy bound synthesis problems and explain

the benefits of efficient WMC. In Section IV we introduce a

framework for leveraging symmetries. In Section V we provide

a detailed case study using our framework for randomized

response. In Section VI we present experimental results on

implementations of our solution using the Dice probabilistic

programming language. In Section VII we outline related work

and in Section VIII we conclude and outline future work.

II. PRELIMINARIES

We start by reviewing some important definitions.

A. Differential Privacy

Differential privacy is a notion of privacy which ensures

that, on two closely related data sets, the output distribution of

a randomized algorithm is similar. In other words, an adversary

who receives the output of a differentially private algorithm

has trouble distinguishing whether a specific entry is in the

data set.

Definition 1 (ε-Differential Privacy). A randomized algorithm

A : Xn → Y is ε-differentially private for size n data sets if,

for every pair of neighboring data sets x,x′, for all E ⊆ Y ,

Pr(A(x) ∈ E)

Pr(A (x′) ∈ E)
≤ eε. (1)

Where neighboring data sets are data sets that differ in

the value of exactly one entry. An important property of ε-

Differential Privacy is that for all possible outputs y in Y ,

Pr(A(x) = y)

Pr(A (x′) = y)
≤ eε =⇒

Pr(A(x) ∈ E)

Pr(A (x′) ∈ E)
≤ eε (2)

In other words, for ε-DP, it is sufficient to look at all

singleton sets in the event space. In subsequent sections we

will directly use the definition of differential privacy which is

quantified over the singleton sets, and refer to the quantity
Pr(A(x)=y)
Pr(A(x′)=y) as the likelihood ratio. We will also limit our

method to algorithms with discrete, finite inputs and outputs

(i.e. Xn and Y are discrete and finite).

B. Accuracy

We consider a widely-used notion of (α, β)-accuracy from

the differential privacy literature [27]. Intuitively, this measures

the probability that the algorithm’s output is within an α ball

around the “true” or “target” value for the associated input.

Definition 2 ((α, β)-Accuracy). Given α ≥ 0 and β ∈ [0, 1],
a randomized algorithm A : Xn → Y is (α, β)-accurate if for

all x ∈ Xn,

Pr(|A(x)− Vx| ≤ α) ≥ 1− β (3)

where Vx correspond to the target outputs for each input x.

C. Weighted Model Counting

1) Model Counting: Let ϕ be a Boolean formula over a set

of variables. The model count of ϕ is the number of solutions

to ϕ, written as |{m |= ϕ}| where {m |= ϕ} is described

as “the set of models m that entail ϕ”. For example, ϕ =
a ∨ b where ϕ is defined over {a, b} =⇒ |{m |= ϕ}| = 3
since there are three satisfying assignments to ϕ, where an

assignment is a mapping from variables to boolean values.

2) Weighted Boolean Formula (WBF): A weighted Boolean

formula is a tuple (ϕ,w) where ϕ is a Boolean formula over

literals in L and w : L → IR is its weighting function that

maps literals in ϕ to weights, where literals are a set of

variables and their negations.

3) Weighted Model Counting (WMC): We find the weighted

model count (WMC) of WBF (ϕ,w) by computing

WMC(ϕw) =
∑

m|=ϕ

∏

`∈m

w(`) (4)

where m is the set of models, or satisfying assignments, of ϕ,

and ` represents the set of literals in m.

For example, we can find the weighted model count of ϕ =
a ∨ b, where ϕ is defined over variables a and b, by defining

the weight function w over the literals as w(a) = 1/3, w(b) =
3/4, w(a) = 2/3, and w(b) = 1/4 and computing

WMC(ϕw) = 1/3 · 3/4 + 1/3 · 1/4 + 2/3 · 3/4. (5)

4) WMC for Probabilistic Algorithms: We can define a

WBF for any finite, discrete probabilistic algorithm A : Xn →
Y by ensuring that the probabilities of each WBF assignment

correspond with probabilities of input/output pairs of the

algorithm. More formally,

Definition 3 (WBF of a probabilistic algorithm). Given a

randomized algorithm A : Xn → Y with discrete, finite

Xn, Y , we say that (ϕ,w) is a WBF of A if ∀(x, y) ∈ Xn×Y ,

there exists exactly one assignment assn to (ϕ,w) such that

WMC((ϕ | assn), w) = Pr(A(x) = y)

We use a shorthand (ϕ | (x, y)) to indicate the WBF

instantiated with the assignment a for which WMC((ϕ |
assn), w) = Pr(A(x) = y).

For example, we consider binary randomized response for

n = 2 as described in Fig. 1. In the randomized response

algorithm, clients report a bit message (represented by x1

and x2 here) with probability 1 − λ, and flip this bit with

probability λ for some coin-flip parameter λ. More formally,

RR
2(x1, x2) = (y1, y2) such that y1 = x1 w.p. (1 − λ) else

1 − x1 and y2 = x2 w.p. (1 − λ) else 1 − x2. In this case,

the WBF for randomized response is the tuple (ϕRR2 , wRR2)
where ϕRR2 = y1 ↔ ((θ1 ∧ x1) ∨ (θ1 ∧ x1)) ∧ y2 ↔
((θ2 ∧ x2) ∨ (θ2 ∧ x2)) defined over x1, x2, y1, y2, θ1, θ2. We

define weight function w(θi) = 1− λ, or the probability that

the value of xi does not flip, and w(θi) = λ as the probability

that xi does flip for i ∈ {1, 2}. For all other literals, we set

w(·) = 1.

We can see that for all (x1, x2, y1, y2), WMC(ϕRR2 |
(x1, x2, y1, y2), wRR2) = Pr(RR2(x1, x2) = (y1, y2)). For ex-

ample, for (x1, x2, y1, y2) = (0, 0, 1, 0), WMC(ϕRR2 |
(0, 0, 1, 0), wRR2) = wRR2(θ1) · wRR2(θ2) = λ · (1 − λ) =
Pr(RR2(0, 0) = (1, 0)).

III. WEIGHTED MODEL COUNTING FOR SYNTHESIZING

TIGHT PRIVACY AND ACCURACY BOUNDS

We start by introducing the two main synthesis problems

we will address in this paper. Then, we describe how weighted

model counting can be used to efficiently perform probabilistic

inference in an exhaustive solution. In Section IV, we will

outline a framework for leveraging symmetries in the DP

algorithms to further improve on this solution.

A. Synthesis Problems

The first problem is the privacy bound synthesis problem.

We want to find the triple of neighboring input and output

values which maximize the likelihood ratio.

Problem 1 (Privacy Bound Synthesis). Given a randomized

algorithm A : Xn → Y with discrete, finite Xn, Y , find the

triple (x,x′, y) that maximizes
Pr(A(x)=y)
Pr(A(x′)=y) , where x, x′ are

neighboring inputs.

If we take solution (x,x′, y) to the privacy bound synthesis

problem to find eε = Pr(A(x)=y)
Pr(A(x′)=y) , we have a tight ε-DP bound

for algorithm A.

The second synthesis problem is the tight accuracy bound

synthesis problem. Here we want to find the input to A which

minimizes the accuracy probability with respect to a given α
bound.

Problem 2 (Accuracy Bound Synthesis). Given a randomized

algorithm A : Xn → Y with discrete, finite Xn, Y , and

α ≥ 0, find x which minimizes Pr(|A(x)− Vx| ≤ α) where

Vx is the target output value for input x.

If we take solution x from the Accuracy Bound Synthesis

problem to find 1 − β = Pr(|A(x)− Vx| ≤ α), we have a

tight (α, β)-accuracy bound for algorithm A.

B. WMC and Probabilistic Programming For Privacy Bound

Synthesis

We start by looking at the most straightforward solution

to the privacy bound synthesis problem, which is to iterate

through every input/neighbor/output triple and compute the

likelihood ratio for that set. In other words, we consider a

solution where, for A : Xn → Y we exhaustively compute
Pr(A(x)=y)
Pr(A(x′)=y) for each (x,x′, y) ∈ Xn × Xn × Y where x,x′

are neighbors. We will refine this solution further in Section

IV, but for now we use this simple solution to illustrate the

utility of WMC for probabilistic inference.

If we consider even this simple exhaustive solution, it is

immediately apparent that for a complex randomized algo-

rithm, A, it is necessary to perform probabilistic inference

(i.e. compute the probabilities Pr(A(x) = y)) for each input

and output pair.

The power of our technique comes from performing prob-

abilistic inference (computing the probability distributions of

the algorithm) by compiling a representation of the probabilis-

tic algorithm into a tractable circuit for which computing the

weighted model count can be performed efficiently [24], [26].

We consider our target data structure to be a binary decision

diagram (BDD). A BDD is a directed acyclic graph that rep-

resents boolean formulas. We prefer to use this data structure

for WMC computation because BDDs can leverage shared

structure in the encoding to simplify a complicated function

with many free variables into a compact, efficiently queryable

circuit. As we see in Fig. 1, a program with two inputs, two

outputs, and two weighted coin flip parameters can be encoded

into a BDD with only two internal nodes when the input is

fixed. When we compare this to other popular methods for

exact probabilistic inference such as Markov chains, we see

in Section VI that a BDD is able to scale much more efficiently

with the state size on static systems such as DP algorithms.

For example, prior work has used Markov chain model

checking for exact DP verification [22], [23]. This technique

requires an explicit Markov chain model of the probability

distribution, which is optimized for dynamic models with

small state space which model long-running services. In this

case, computation becomes inefficient quickly as state size

increases, as is the case in DP algorithms [28].

Using BDDs for WMC computation is therefore more

efficient for our problem space than in prior attempts, but

we also desire an expressive encoding method for the ran-

domized algorithm. To use WMC to perform inference on

the randomized algorithm, we must encode the algorithm as

a weighted Boolean formula with free variables that represent

the inputs, outputs, and coin flips/distributions, and craft a

weighting function to represent the randomness of the algo-

rithm. For some algorithms, this is straightforward and little

manual work is required to discover the right formula and

weighting function. We provide an example of this manual

process for randomized response in Section V. However, for

many algorithms, this manual process can be difficult, and the

resulting weighted Boolean formula can be unnecessarily large

or otherwise inefficient to work with.

In recent years, there has been a significant amount of work

on developing probabilistic programming languages that can

efficiently compile weighted Boolean formulas from proba-

bilistic programs [25]. Importantly, these weighted Boolean

formulas are optimized to efficiently compile into tractable

data structures such as BDDs that can be efficiently queried

to find the weighted model count. This means that we can write

our randomized algorithm as a probabilistic program in these

languages and to easily compile it into a WBF and perform

efficient WMC. We show an example of this full pipeline in

Fig. 1.

In summary, using WMC for performing probabilistic infer-

ence is a method of efficient computation of the probabilities

needed to find tight bounds. Furthermore, recently developed

probabilistic programming languages provide approachable

and intuitive methods for encoding DP algorithms. This is a

big improvement over prior work which required that the DP

algorithm be explicitly encoded as a Markov chain [22], [23].

C. WMC for Exhaustive Accuracy Bound Synthesis

Similarly to our exhaustive approach for solving the privacy

bound synthesis problem, we can also leverage the benefits

of WMC in an exhaustive approach for solving the accuracy

bound synthesis problem. Because the target value of the DP

algorithm (i.e. the value of the query with no added noise)

is non-probabilistic, we can formulate an optimization which

will directly use probabilistic inference to solve the accuracy

bound synthesis problem.

Theorem 1. Given randomized A : Xn → Y , with discrete,

finite Xn and Y , set of target values V , and α ≥ 0,

the x which minimizes
∑

y∈[Vx−α,Vx+α] Pr(A(x) = y) also

minimizes Pr(|A(x)− Vx| ≤ α)

Proof.

Pr(|A(x)− Vx| ≤ α)

= Pr(Vx − α ≤ A(x) ≤ Vx + α)

=
∑

y∈[Vx−α,Vx+α]

Pr(A(x) = y).

We can therefore also use weighted model counting for

the simple exhaustive approach for A : Xn → Y where we

compute
∑

y∈[Vx−α,Vx+α] Pr(A(x) = y) for each x ∈ Xn.

Again, in Section IV, we will show a further refinement of

this exhaustive algorithm.

IV. FRAMEWORK FOR LEVERAGING SYMMETRIES

Arguably the hardest problem when attempting to find

bounds for DP algorithms – explored in related works on

counterexample generation and proof synthesis – is handling

the multiple quantifiers over inputs, neighbors, and outputs.

Approaches like StatDP [10] and DP-Sniper [29] use a manu-

ally chosen heuristic to divide the input search space, then use

hypothesis testing or classifiers to find candidate outputs which

are likely DP violations. These techniques result in approxi-

mate solutions with little to no theoretical guarantees on their

correctness. On the other hand, all prior work which attempts

to find provably exact bounds has exhaustively searched the

space of inputs, neighbors, and outputs [21]–[23].

Because we want to provide theoretical evaluations of our

solution, we cannot use these manual heuristics for finding

candidate counterexamples. However, we also want to make

progress toward a solution that is more tractable than the

exhaustive search methods from prior work. Fortunately, many

differentially private algorithms have inherent symmetry. We

provide a framework for leveraging these symmetries to make

our WMC solutions more tractable by introducing algorithms

ExactDP and ExactAcc for computing the privacy and ac-

curacy bounds which use modular inference, privacy, and

accuracy sets for limiting the search space while maintaining

provable exactness of our solution.

While this step requires a manual process of finding these

symmetry sets, we believe it is still valuable to define this

framework so that we can explore this problem from a fresh

perspective of finding symmetries to reduce the search space.

This framework provides proof obligations for determining

a valid symmetry set, which can set guidelines for future

automated analysis. Automatically finding these symmetry sets

is an interesting open problem that we hope to explore in

future work by leveraging techniques for exploiting symmetry

in satisfiability or probabilistic inference [26], [30]–[32].

A. Inference Algorithm

Our refined solutions for privacy and accuracy bound syn-

thesis both use probabilistic inference via weighted model

counting as a subprocess. We provide an algorithm for pre-

computation of necessary probabilities to help with modular-

ization and simplification of the algorithm and analysis.

In Algorithm 1, we describe how we compute a matrix of

assignment probabilities for a given restricted inference set.

An inference set IA ⊆ X
n × Y for A : Xn → Y is a set of

input/output pairs on which to do probabilistic inference.

Algorithm 1 INFERENCE

Input: WBF (ϕ,w) of A : Xn → Y and inf. set I
Output: M a matrix of probabilities

1: Initialize M matrix

2: for (x, y) in I do

3: M(x, y)←WMC(ϕ | (x, y))
4: end for

5: return M

Algorithm 1 runs in O(WMC · |I|) where WMC is the

complexity of the WMC computation. We will show in Section

V that for some algorithms, we can reduce the size of the

inference set such that the complexity is linear in the length

input
[0,0] [1,0] [1,1]

output [0,0] (1− λ)2 λ · (1− λ) λ2

TABLE I: Output of Algorithm 1 for A = RR
2, IRR2 =

{([0, 0], [0, 0]), ([1, 0], [0, 0]), ([1, 1], [0, 0])}

of the input vector, multiplied by the complexity of the WMC

computation.

Returning to our example of binary randomized re-

sponse, an inference set for RR
2 could be IRR2 =

{([0, 0], [0, 0]), ([1, 0], [0, 0]), ([1, 1], [0, 0])}. Table I shows

the output of this computation. We show in Section V that

this table grows linearly in n, where n is the length of the

input list for randomized response.

B. Finding Tight Privacy Bound

Once we have computed the necessary probabilities using

weighted model counting, we can use these probabilities to

find the maximum likelihood ratio. Because we consider only

neighboring inputs, and due to the symmetries in differential

privacy algorithms, we do not have to enumerate all pairs of

inputs and all output events to cover all sufficient ratios. We

therefore define our algorithm over a set of inputs and outputs

which are a sufficient subset of all computable likelihood

ratios.

Definition 4 (Privacy Set). A privacy set C for A : Xn → Y
is a set of tuples of the form (xC ,x

′
C , yC) such that

1) (xC ,x
′
C , yC) ∈ X

n ×Xn × Y
2) ∀(x,x′, y) ∈ Xn × Xn × Y where x,x′ are neighbors,

there exists (xC ,x
′
C , yC) ∈ C such that

Pr(A(x) = y)

Pr(A(x′) = y)
=

Pr(A(xC) = yC)

Pr(A(x′
C) = yC)

.

We present the ExactDP algorithm for computing worst

case privacy bounds in Algorithm 2. We use the INFERENCE

algorithm (Algorithm 1) as a subprocess to compute exact

probabilistic inference via weighted model counting.

Algorithm 2 ExactDP

Input: WBF (ϕ,w) of A : Xn → Y , privacy set C, and

inference set I such that ∀(xC ,x
′
C , yC) ∈ C, (xC , yC) ∈ I

and (x′
C , yC) ∈ I

Output: Maximum likelihood ratio p and worst case assign-

ments c = (x,x′, y)
1: M ← INFERENCE(ϕ, I)
2: p← 0, c← ∅

3: for (x,x′, y) in C do

4: if
M(x,y)
M(x′,y) > p then

5: p← M(x,y)
M(x′,y)

6: c← (x,x′, y)
7: end if

8: end for

9: return p, c

Returning to our binary randomized response example, we

can use IRR2 = {([0, 0], [0, 0]), ([1, 0], [0, 0]), ([1, 1], [0, 0])},
and CRR2 = {([0, 0], [1, 0], [0, 0]), ([1, 0], [0, 0], [0, 0]),
([1, 0], [1, 1], [0, 0]), ([1, 1], [1, 0], [0, 0])} and set λ = 0.2.

In this case, the output of Algorithm 2 would be c =
([0, 0], [1, 0], [0, 0]), p = 4. This means that ([0, 0], [1, 0], [0, 0])
is the worst case assignment for RR

2 and eε = 4 is a tight

privacy bound.

1) Correctness and Complexity of Privacy Bound Synthesis

Algorithm: To verify correctness of ExactDP, we must show

that the maximal likelihood ratio found using the potentially

restricted inference and privacy set is the same as the maximal

likelihood ratio using exhaustive inference and privacy sets

(i.e. I = Xn × Y and C = Xn ×Xn × Y where all x, x′ are

neighbors).

Theorem 2. The output c of Algorithm 2 is a solution to the

Privacy Bound Synthesis problem.

Proof. Let WBF (ϕ,w) be the WBF of algorithm A : Xn →
Y with inference and privacy sets I, C. From the definition of

Algorithm 1, ∀(x, y) ∈ I, M(x, y) = Pr(A(x, y)). Therefore,

by the definition of Algorithm 2, output c maximizes
M(xC,yC)
M(x′

C
,yC)

over all (x,x′, y) ∈ C. By the definition of a privacy set, for

all (x,x′, y) ∈ Xn×Xn×Y , where x, x′ are neighbors, there

exists a (x,x′, y) ∈ C such that
Pr(A(x)=y)
Pr(A(x′)=y) = Pr(A(xC)=yC)

Pr(A(x′
C
)=yC)

.

Therefore, c maximizes
Pr(A(x)=y)
Pr(A(x′)=y) over all (x,x′, y) ∈ Xn×

Xn×Y where x, x′ are neighbors and is therefore a solution

to the Privacy Bound Synthesis problem.

Algorithm 2 runs in O(WMC · |I|+ |C|). Again, in Section

V, we will show a case where the privacy set can be restricted

such that |I| and |C| are linear in n.

When we concretely define the inference set I and privacy

set C for a specific algorithm, we must prove two things:

1) C satisfies the definition of a valid privacy set in Def. 4,

and

2) All the neighboring assignments in C are present in I,

i.e. ∀(xC ,x
′
C , yC) ∈ C, (xC , yC) ∈ I and (x′

C , yC) ∈ I.

We provide an example of one such instantiation for ran-

domized response in Section V.

C. Finding Tight Accuracy Bound

In the case of accuracy bound synthesis, we can also limit

the number of values we need to compute to leverage sym-

metries in the problem to reduce the runtime of the accuracy

computation. We introduce the accuracy set as follows.

Definition 5 (Accuracy Set). An accuracy set A for A : Xn →
Y is a set A such that

1) A ⊆ Xn

2) ∀x ∈ Xn, there exists xA ∈ A such that
∑

y∈[V[x]−α,V[x]+α]

Pr(A(x) = y) =

∑

y∈[V[xA]−α,V[xA]+α]

Pr(A(xA) = y).

where V[x] is the target output for input x.

We present our solution in Algorithm 3. Again, use the

INFERENCE algorithm (Algorithm 1) as a subprocess to

compute exact probabilistic inference via WMC.

Algorithm 3 ExactAcc

Input: WBF (ϕ,w) of A : Xn → Y , accuracy set A, vector

of target outputs V , accuracy parameter α, and inference

set I that contains all (x, y) pairs such that x ∈ A and

y ∈ [Vx − α,Vx + α]
Output: Minimal probability p and worst case input acc

1: M ← INFERENCE(ϕ, I)
2: p←∞, acc← ∅

3: for x in (IXn) do

4: if
∑

y∈[Vx−α,Vx+α] M [x, y] < p then

5: p←
∑

y∈[Vx−α,Vx+α] M [x, y]
6: acc← x

7: end if

8: end for

9: return p,acc

Again, we return to our binary randomized response exam-

ple. Since we are considering accuracy, we have to wrap the

raw output to compute some quantifiable query. For example,

we can add a counting query wrapper, such that the output

of RRcount
2(x1, x2) = sum(RR2(x1, x2)). Here we set

α = 1, λ = 0.2, IRRcount2 = {([0, 0], 0), ([1, 1], 0), ([0, 0], 1),
([1, 0], 1), ([1, 1], 1), ([1, 0], 2), ([1, 1], 2)}, and ARRcount2 =
{[0, 0], [1, 0], [1, 1]} where V[0,0] = 0,V[1,0] = 1,V[1,1] = 2. In

this case, the output of Algorithm 3 would be acc = [0, 1],
p = .96. This means that [1, 0] is the worst case accuracy

assignment for RRcount2 and 1− β = .96 is a tight accuracy

bound.

1) Correctness and Complexity of Accuracy Bound Synthe-

sis: To verify correctness of ExactAcc, we must show that

the minimal accuracy probability found using the potentially

restricted inference and accuracy set is the same as the minimal

accuracy probability using exhaustive inference and accuracy

sets.

Theorem 3. The output acc of Algorithm 3 is a solution to

the Accuracy Bound Synthesis problem.

Proof. Let WBF (ϕ,w) be the WBF of A : Xn → Y , V
be a vector of target outputs of A, α ≥ 0 and let I, A be

inference and accuracy sets of A such that I contains all

(xA, y) where xA ∈ A and y ∈ [V[xA]− α,V[xA] + α]. We

know that acc minimizes
∑

y∈[V[xA]−α,V[xA]+α] M [xA, y]
by the definition of Algorithm 3, and that M [xA, y] =
Pr(A(xA) = y) by the definition of Algorithm 1. Therefore,

acc minimizes Pr(A(xA) = y) over xA ∈ A. By the def-

inition of an accuracy set, for all x ∈ Xn, there exists

a x ∈ A such that
∑

y∈[V[x]−α,V[x]+α] Pr(A(x) = y) =∑
y∈[V[xA]−α,V[xA]+α] Pr(A(xA) = y). Therefore, c maxi-

mizes
Pr(A(x)=y)
Pr(A(x′)=y) over all (x,x′, y) ∈ Xn×Xn×Y . By The-

orem 1, this means that acc minimizes Pr(|A(x)− Vx| ≤ α)

over all x ∈ Xn and is therefore a solution to the Accuracy

Bound Synthesis problem.

Algorithm 3 runs in O(WMC · |I|+ |A| · α).
Like with the privacy algorithm, there are two main proof

requirements when we design a concrete inference set I
and accuracy set A to use in the accuracy bound synthesis

algorithm. These requirements are:

1) A satisfies the definition of a valid accuracy set in

Definition 5 and

2) all necessary input/output assignments are present in I,

i.e. ∀x ∈ A and y ∈ [V[x]− α,V[x] + α], (x, y) ∈ I.

V. RANDOMIZED RESPONSE CASE STUDY

We have been using an example of binary randomized

response for n = 2. In this section, we generalize this solution

to any n and provide a detailed explanation of how to utilize

these tools for a tractable solution to the tight privacy and

accuracy bound problem.

Algorithm 4 Randomized Response (RR)

Input: Bit array x of true client messages.

Output: Bit array y of randomized client messages.

1: Initialize bit array y of length |x|
2: for i ∈ {1, . . . , |x|} do

3: y[i]← 1− x[i] with probability λ, otherwise x[i].
4: end for

5: return y

In this section, we provide a WBF for RR and show the

complexity of ExactDP and ExactAcc for RR with exhaustive

search space. We then analyze the correctness of ExactDP with

restricted search space that leverages the inherent symmetries

in RR that runs linearly in n (multiplied by WMC). We also

provide an instantiation of ExactAcc with restricted search

space that runs in time quadratic in n (again multiplied by

WMC).

A. Weighted Boolean Formula for RR

We can manually craft a WBF (ϕ,w) for randomized

response where n is the number of clients. We set

ϕ =

n∧

i=1

yi ↔ ((θi ∧ xi) ∨ (θi ∧ xi)) (6)

where each xi corresponds to the bit value in the input vector

of RR, and the yi’s likewise correspond with the output

vectors. The θ values correspond with the coin flips in the

randomized portion of the algorithm.

We set the weighting function to be w(θi) = 1− λ, or the

probability that the value of xi does not flip, and w(θi) = λ
as the probability that xi does flip. For all other literals, we

set w(·) = 1.

Theorem 4. (ϕ,w) is a valid WBF of RR.

Proof. Let (x,y) ∈ Xn×Yn. For each i ∈ {1, . . . , n} assign

the xi and yi literals in ϕ the values of x[i] and y[i], and

xi = 1 − x[i]. If x[i] = y[i], then for yi ↔ ((θi ∧ xi) ∨
(θi ∧ xi)) to be satisfied, θi = 0. If x[i] 6= y[i], then for

yi ↔ ((θi ∧ xi) ∨ (θi ∧ xi)) to be satisfied, θi = 1.

This is the only satisfying assignment of ϕ for x, y assigned

as described, therefore there is only one model, and the

weighted model count is therefore
∏

`∈m w(`).
The product of weights of literals is w(xi) ·w(yi) ·w(θi) =

1 · 1 · (1−λ) for i s.t. x[i] = y[i] and w(xj) ·w(yj) ·w(θj) =
1 · 1 · λ for i s.t. x[i] 6= y[i], so WMC((ϕ,w)) = (1 −
λ)#i s.t. x[i]=y[i]λ#i s.t. x[i] 6=y[i] = Pr(RR(x) = y).

We provide this analysis to demonstrate what a valid WBF

for RR would look, however, as discussed in Section III, this is

not necessarily the best WBF for computing the WMC of RR.

In Section VI we use a probabilistic programming language

to find the WBF, compile to a compact BDD, and efficiently

query the WMC.

B. Exhaustive Solution

It is evident that for ExactDP and ExactAcc, setting IRR =
Xn × Y , CRR = Xn × Xn × Y , and ARR = Xn gives the

correct bounds for both privacy and accuracy because we are

optimizing the bounds over all possible inputs and outputs.

However, because |Xn| = 2n and |Y| = 2n for randomized

response, when we analyze this solution, we see that the

runtime of the inference algorithm is O(WMC · |IRR|) =
O(WMC · 4n), the runtime of ExactDP is O(WMC · |IRR| ·
|C|) = O(WMC · 4n + 16n) and the runtime of ExactAcc

is O(WMC · |IRR| + |ARR| · α) = O(WMC · 4n + 2n · α).
We therefore need to find a way to improve this runtime for

randomized response.

C. Leveraging Symmetries for Finding Privacy Bound

Because of the independence properties between different

clients responses, there are many inherent symmetries in this

algorithm. In this section, we identify an inference and privacy

set which satisfy the coverage properties from the previous

section, and reduce the complexity by orders of magnitude.

1) Counting Flips: We identify one significant symmetry

in RR which is the number of clients whose bit flips. In other

words, we can find a representative input/output pair for each

number of bit flips that occurs.

Lemma 1. Given i ∈ {1, . . . , n}, ∀x ∈ Xn and y ∈
Yn such that count(x ⊕ y) = i, Pr(A(x) = y) =
Pr(A(1i0n−i) = 0n).

Proof. Let x ∈ Xn and y ∈ Yn such that count(x⊕ y) = i.
This means that there are i entries such that x[i] 6= y[i]. There-

fore, Pr(RR(x) = y) = (1−λ)#i s.t. x[i]=y[i]λ#i s.t. x[i] 6=y[i] =
Pr(A(1i0n−i) = 0n).

We also identify a key fact about the relationship between

the number of bit flips in neighboring inputs, specifically that

a neighboring input has either one more or one less bit flip

with respect to the output.

Lemma 2. For neighboring inputs x,x′ ∈ Xn, count(x′ ⊕
y) = count(x⊕ y) + 1 or count(x⊕ y)− 1.

Lemma 2 follows directly from the definition of neighboring

inputs.

2) Constructing Privacy Set: Because we have these inher-

ent symmetries in the number of flips between each input/out-

put pair, we can define the privacy set to be

CRR ={(1i0n−i, 1i+10n−(i+1), 0n)}i∈{0,...,n−1}∪ (7)

{(1i0n−i, 1i−10n−(i−1), 0n)}i∈{1,...,n}. (8)

We note that |CRR| = 2n.

Theorem 5. CRR is a valid privacy set for RR.

Proof. Let (x,x′,y) ∈ Xn × Xn × Yn such that x,x′ are

neighbors.

If count(x′ ⊕ y) = count(x ⊕ y) + 1, then by Lemma

1 with count(x ⊕ y) = i and count(x′ ⊕ y) = i +

1,
Pr(A(x)=y)
Pr(A(x′)=y) = Pr(A(1i0n−i)=0n)

Pr(A(1i+10n−(i+1))=0n)
. By definition,

(1i0n−i, 1i+10n−(i+1), 0n) is in CRR.

If count(x′ ⊕ y) = count(x ⊕ y) − 1, then by Lemma

1 with count(x ⊕ y) = i and count(x′ ⊕ y) = i −

1,
Pr(A(x)=y)
Pr(A(x′)=y) = Pr(A(1i0n−i)=0n)

Pr(A(1i−10n−(i−1))=0n)
. By definition,

(1i0n−i, 1i−10n−(i−1), 0n) is in CRR.

By Lemma 2, this covers all possible cases, and by defini-

tion of CRR, ∀(x,x′,y) ∈ CRR, (x,x′,y) ∈ Xn × Xn × Y .

Therefore CRR is a valid privacy set.

We can now build a smaller inference set that computes all

necessary probabilities that are used in the privacy set. In this

case we define

IRR = {(1i0n−i, 0n)}i∈{0,...,n}. (9)

Theorem 6. ∀(xCRR
,x′

CRR
, yCRR

) ∈ CRR, (xCRR
, yCRR

) ∈ IRR
and (x′

CRR
, yCRR

) ∈ IRR

Proof. Let (xCRR
,x′

CRR
, yCRR

) ∈ CRR and i ∈ {0, 1, . . . , n}.

By the definition of CRR, x is (1i0n−i, 1i+10n−(i+1), 0n) or

(1i0n−i, 1i−10n−(i−1), 0n). Therefore, (xCRR
, yCRR

) ∈ IRR and

(x′
CRR

, yCRR
) ∈ IRR as desired.

By the previous theorems, ExactDP is correct for IRR and

CRR.

3) Complexity: Since |IRR| = n + 1 and |CRR| = 2n, the

inference algorithm (Algorithm 1) runs in O(WMC · n) time

and ExactDP (Algorithm 2) runs in O(WMC ·n) time as well.

D. Computing Accuracy

For accuracy computation, we consider the counting query

on RR. Here, we take the output vector yi of RR and compute

the number of 1’s in that vector. In this case, the input space

is Xn = {0, 1}n and output space is {0, 1, . . . , n}. We refer

to this counting version of RR as RRcount. Here, the set V
is equivalent to the counting function over Booleans, count :
{0, 1}n → {0, . . . , n}.

Here too we have a key lemma about the symmetries.

Lemma 3. Given i ∈ {0, . . . , n}, ∀y ∈ {0, . . . , n}, for any x

such that count(x) = i, it is true that Pr(RRcount(x) = y) =
Pr(RRcount(1i0n−i) = y).

Proof. Let x ∈ Xn, y ∈ Y such that count(x) = i.
By the definition of RRcount, Pr(RRcount(x) = y) =∑

yRR s.t. count(yRR)=y Pr(RR(x) = yRR) =

Pr(RRcount(1i0n−i) = y).

1) Constructing A: We define the accuracy set to be

ARRcount = {1
i0n−i}i∈{0,...,n} (10)

Theorem 7. ARRcount is an accuracy set for RRcount.

Proof. Let x ∈ Xn and count(x) = i. By Lemma

3, Pr(RRcount(x) = y) = Pr(RRcount(1i0n−i) = y).
Since count(x) = count(1i0n−i),∑

y∈[count(x)−α,count(x)+α] Pr(RRcount(x) = y) =∑
y∈[count(1i0n−i)−α,count(1i0n−i)+α] Pr(RRcount(xA) = y).
By definition, ∀x ∈ ARRcount, x ∈ X

n. Therefore CRRcount
is a valid accuracy set.

We define the inference set to accommodate all necessary

values.

IRRcount =
⋃

i∈[0,n]

⋃

j∈[i−α,i+α]

{(1i0n−i, j)} (11)

Theorem 8. IRRcount contains all (x, y) pairs such that x ∈
ARRcount and y ∈ [V[x]− α,V[x] + α]

Proof. Let x ∈ ARRcount such that count(x) = i. By definition

of ARRcount, x = 1i0n−i. By definition of IRRcount, ∀y ∈
[i− α, i+ α], (1i0n−i, y) as desired.

By these theorems, ExactAcc with this inference and accu-

racy set is correct.

2) Complexity: We have |IRRcount| = n · 2α and

|ARRcount| = (n + 1) · α. Therefore, inference (Algorithm

1) and accuracy bound synthesis (Algorithm 3) both run in

O(WMC · nα) (or O(WMC · n2) time since 2α ≤ n).

VI. EVALUATION

We have shown that our method is theoretically sound. In

this section we demonstrate how our implemented method far

outperforms prior methods even for the exhaustive case. We

also show how the expressiveness of probabilistic program-

ming can be leveraged to easily implement new algorithms

with more complex input and output spaces, a feat which

would be difficult using prior techniques for exact verification.

We then go on to discuss how our method computes accuracy

and demonstrate the importance of also having access to

accuracy analysis when evaluating private algorithms.

We implement the weighted model counting solution with

BDDs by running programs in the Dice probabilistic pro-

gramming language [25]. We compare with a discrete time

Markov chain (DTMC) model checking solution using the

Storm probabilistic model checker [33] and with DiPC, an

implementation of the decision procedure described in [21].

All experiments are written in Python and use the solver (Dice

or Storm) as a subprocess. We implement INFERENCE (Al-

gorithm 1), ExactDP (Algorithm 2), and ExactAcc (Algorithm

3) in Python. In the case of DiPC, we use the published

code without modification. To easily compare performance

on different parameters, we also develop a tool to generate

Dice programs and Storm models for different DP algo-

rithms, input/output spaces, and randomization parameters.

Experiments are run on a 16 core AMD EPYC with 64GB

of RAM and code for the experiments can be found here:

https://github.com/lisaoakley/wmc for privacy and accuracy.

A. Comparison to Markov Chain Model Checking

The heart of our method is using weighted model counting

on tractable circuits to vastly improve both the size of the

models and the implementation runtime. In our experiments,

we use the Dice probabilistic programming language to model

and compute tight privacy bounds for the randomized response

algorithm as explained in Section V for variable number of

clients n.

Prior work on inference for exact DP verification uses

model checking on discrete time Markov chains (DTMCs)

to perform exact inference [22], [23]. The examples in these

papers are limited and require adaptation to solve our synthesis

problem. We compare our solution with a similar Markov

chain model checking technique and confirm that our WMC

solution outperforms the Markov chain solution in model size,

number of solver runs, and inference time.

In Table II, we see that, for various n, ExactDP finds an

extremely compact BDD for randomized response, where the

model size is n + 2. This contrasts with the Markov chain

solution where the models are size 7n. This is because every

state in the Markov chain represents a possible setting of

every free variable in the model. With each client added in

randomized response, we multiply the number of free variables

in the Markov chain, which causes an exponential increase in

the number of states. These tools were developed to handle

dynamic programs for small state spaces, and are therefore

not intended to handle problems with large numbers of free

variables and little to no notion of dynamics over time. BDDs,

however, are exactly optimized for this kind of problem.

The Markov chain solution also requires a manually crafted

Markov chain which means that the Markov chains used in

our experiments might not be the optimal encoding of this

algorithm. However, finding an optimal encoding is a hard

problem and requires technical knowledge on the internals

of the model checking process. A benefit of our solution is

that the Dice program is almost identical to the randomized

response pseudocode, and the optimization of the BDD size

is handled automatically.

Another benefit of inference via WMC on BDDs demon-

strated in Table II is that Dice is able to compute the entire

output distribution of the program for a given input in one run,

whereas the Markov chain model checking solution requires

a run for each input/output pair. As shown in Table II we

have to run Storm 4n times in the exhaustive case, but even

in the exhaustive case we only have to run Dice 2n times. We

leverage the symmetries in the randomized response algorithm

such that for the Dice restricted solution, we only have to run

Method n BDD Size # States # Trans. # Solver Runs Inf. Time (s) Synth. Time (s) Build Time (s)

DTMC
(Exhaustive)

2 - 49 100 16 0.0104 < 0.0001 0.0001
4 - 2401 8488 256 0.8877 0.0007 0.0005
6 - TO TO TO TO TO TO

ExactDP
(Exhaustive)

2 4 - - 4 0.152 0.0001 0.0005
4 6 - - 16 0.4128 0.0011 0.0015
6 8 - - 64 1.5683 0.0226 0.008
8 10 - - 256 8.097 0.5285 0.024
10 12 - - 1024 63.1988 11.016 0.0917

DTMC
(Restricted)

5 - 16807 73054 32 1.371 0.0001 0.0001
10 - TO TO TO TO TO TO

ExactDP
(Restricted)

5 7 - - 1 0.0239 < 0.0001 0.0001
10 12 - - 1 0.0518 0.0001 0.0001
15 17 - - 1 1.2864 0.0001 0.0001
20 22 - - 1 53.9282 0.0002 0.0001

TABLE II: Comparison of state space and runtimes for a BDD weighted model counting solution (ExactDP) and a Markov

chain model checking solution (DTMC). Model size for ExactDP is the number of nodes in the BDD (BDD size) and for

DTMC is the number of states and transitions in the Markov chain. TO means that the experiment timed out on probabilistic

inference. For ExactDP and DTMC we provide results for both the exhaustive solution and restricted solution which uses

symmetry sets as described in Section V. Model size is independent of the symmetry sets, e.g. the model size for n = 10 is

12 for both ExactDP exhaustive and ExactDP restricted. # Solver Runs indicates the number of calls to the solver required

to compute the necessary probabilities. Inf. and Synth. time are the the total times in seconds for running implementations of

the Inference and Privacy Bound Synthesis algorithms including subprocess times. Build time is the time it takes to build the

program or model sent to the solver.

the solver once, compared with Storm where we still have to

run it 2n times.

The outcome of these factors is that the Storm solution times

out for n = 6 in the exhaustive case and n = 10 in the

restricted case, while our solution with a Dice solver can find

a tight bound in around a minute for n = 10 in the exhaustive

case, and less than a minute for n = 20 in the restricted case

as can be seen in Table II.

B. Comparison to DiPC

In [21], Barthe et. al provide a decision procedure for

exactly verifying DP for a class of algorithms that can be

encoded as DTMCs. The implementation of their decision

procedure, DiPC, exhaustively computes the likelihood ratio

by generating Wolfram Mathematica® scripts for a subset of

the class of programs on which they prove decidability.

In Table III, we provide an empirical comparison of Ex-

actDP vs. DiPC for randomized response with varying num-

bers of clients, n. DiPC is primarily an implementation to

illustrate the decision procedure, and therefore is not optimized

for fast probabilistic inference. As expected, we see that our

tool outperforms DiPC as the number of clients increases.

C. Expressiveness and the Geometric Above Threshold

We have shown that our method outperforms Markov chain

model checking for computing tight privacy bounds both for

the exhaustive and restricted solutions in the case of binary

randomized response. We now demonstrate the expressiveness

of our solution using the truncated geometric above threshold

mechanism.

The geometric above threshold takes as input a length

n list of integers in {0, 1, . . . , k}, and outputs an integer

n DiPC [21]
ExactDP
(Exhaustive)

ExactDP
(Restricted)

2 0s 0s 0s
4 0s 0s 0s
6 1s 2s 0s
8 7s 9s 0s
10 149s 74s 0s
12 2841s 1965s 0s

TABLE III: Runtime comparison between DiPC [21] and Ex-

actDP with exhaustive and restricted search spaces (rounding

to the nearest second to match the granularity reported by

DiPC). For n > 8, ExactDP outperforms DiPC even without

using any symmetry optimizations.

representing the index of the first value in the list that exceeds

the threshold. We provide the complete pseudocode and an

example Dice program for the randomized (private) above

threshold algorithm in Appendix A. For methods like model

checking with Markov chains, this would be a very difficult

algorithm to encode as it has multiple invocations of the

geometric mechanism and multiple growth dimensions which

would require many explicit states and transitions to encode

as a Markov chain.

We encode this algorithm as a simple 2n + 3 line Dice

program and run our exhaustive privacy verification bound

algorithm on it. We see in Fig. 2 that, even with the exhaustive

solution, we are able to easily encode compact, computable

BDDs for a variety of list lengths and max int values.

Not only does Dice provide a simple encoding, but we see

that the optimized BDDs are extremely reasonably sized. Even

2 3 4 5 6
List Length

1
2

3M
ax

 In
t S

ize

8 9 16 18 21

18 21 41 47 56

28 33 66 76 91

Fig. 2: BDD sizes for the truncated geometric above threshold

algorithm for various maximum integer sizes (k) and list

lengths (n).

2 4 6 8
n

10

20

30

40

50

60

M
ax

 B
DD

 S
ize

Priv.
Acc.

(a) BDD Sizes

2 4 6 8
n

10 1

100

101

102

Ex
pe

rim
en

t D
ur

at
io

n
(s

) Priv.
Acc.
Priv. (Exh.)
Acc. (Exh.)
Acc. (Exh.) TO

(b) Experiment Durations

Fig. 3: BDD sizes and experiment durations for accuracy

bound synthesis with ExactAcc for randomized response with

counting over various numbers of clients n and λ = 0.2.

for integers between 0 and 3 and list lengths up to 6 (which

means 64 = 1296 possible inputs and two invocations of the

geometric distribution over 4 values each), we see that the

generated BDD is able to represent this with only 91 nodes.

This is still less than the number of states in the Markov chain

for the much simpler randomized response algorithm for n = 3
when looking at the Storm solution. This means that exact

inference, even for more complex DP algorithms can be orders

of magnitude more efficient than previously believed.

D. Accuracy

A key benefit of our method is its ability to compute tight

accuracy bounds. We see in Fig. 3a that having large integral

output space (for example an output space of {1 . . . n + 1}
as is the case for the randomized response algorithm with a

counting wrapper) causes the BDD sizes to grow more quickly

than in privacy computation. As we noted in the theoretical

portion of the paper, finding accuracy bounds also has larger

time complexity due to the range of outputs bounded by α.

However, we are still able to compute accuracy bounds for

small n in under 4 minutes, as shown in Fig. 3b.

0.1 0.2 0.3 0.4 0.5

2.5

5.0

7.5

10.0

12.5

15.0

17.5

e

Priv. Bound

(a) Privacy Bound (RR)

0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1

Acc. Bound

(b) Accuracy (RR counting)

Fig. 4: Tight Accuracy and privacy bounds over varying coin

flip parameters, λ, for binary randomized response with n = 8.

Generated using the ExactDP and ExactAccimplementations

with restricted search space.

Input 1− β

00000000 0.9437184
11111111 0.9437184
01111111 0.9723904
00000001 0.9723904

TABLE IV: 4 inputs for which 1−β is lowest for randomized

response counting with n = 8 and λ = 0.2. Generated using

ExactAccimplementation with restricted search space.

Even though we are only able to perform tight accuracy

bound synthesis on small examples, we begin to see the utility

of our program as a tool in the algorithm design process. For

example, in Fig. 4 we use our tool to find tight privacy and

accuracy bounds for noise parameters. We see that noise is

not linearly related to privacy or accuracy, as often implicitly

assumed when algorithm designers minimize noise as a proxy

for accuracy, as is done for differentially private synthesis as

in [20]. Using such a proxy algorithm will result in an inexact

outcome, and it is important to have a more detailed view of

accuracy, even if n is small.

Our method goes beyond bound synthesis. We can run a

variation of ExactAcc and get each example for which there

is a unique 1 − β, sorted by their values. We show a result

generated by our tool of 4 inputs for which 1 − β is lowest

for randomized response with n = 8 and λ = 0.2 in Table

IV. An algorithm designer can use this information to inform

which examples have the greatest impact on accuracy.

VII. RELATED WORKS

A. Exact Methods

There are a few closely related works on exact differen-

tial privacy verification. In [22], [23], Liu et. al provide a

probabilistic model checking approach for exactly solving

the differential privacy verification problem. We provide a

comparison with this approach in Section VI.

In [21] Barthe et. al, provide theoretical grounding for a

class of algorithms for which exact DP verification is decid-

able. This class of programs, namely DiPWhile programs, are

looping programs in which each real and integer variable can

be assigned a bounded number of times during program exe-

cution. Here, the authors propose a similar decision procedure

to our exhaustive algorithm, however, they do not discuss the

method for performing exact probabilistic inference except to

prove that the probabilities are computable because DiPWhile

programs can be encoded as DTMCs (Lemma 7.1). In contrast,

our work has a focus on the computational gains we can

achieve if we use weighted model counting for this inference

step.

Along with theoretical analysis, [21] presents an implemen-

tation of their decision procedure which solves the differential

privacy verification problem for a subset of DiPWhile pro-

grams, including randomized response, by generating Wolfram

Mathematica® scripts to perform probabilistic inference. As

shown in Section VI, our tool outperforms DiPC for random-

ized response, even in the exhaustive case where we do not

restrict the search space at all.

In [21], the authors also present results for solving the (ε, δ)-
DP problem for a very small example. Our technique could

also be immediately applied to verify (ε, δ)-DP by checking

every subset of output events rather than each individual

output. This straightforward, exhaustive solution has an even

larger computation explosion than the exhaustive solution for

ε-DP, as you have to run inference and validation for the

power set of the output space. As is mentioned in [21],

this is not practical for exhaustive automated techniques.

Further exploration into symmetry-finding for the (ε, δ)-DP

case remains an interesting open problem.

B. Finding Proofs and Counterexamples

Other works which are closely related to ours are works

on finding counterexamples to differential privacy or finding

proofs of differential privacy. In [10], Ding et. al develop a

statistical procedure for finding a candidate counterexample to

differential privacy in probabilistic algorithms. In [29], Bichsel

et. al present a similar technique which uses the same heuristic

for limiting the search space as in [10], but replace hypothesis

testing with trained classifiers.

Implicitly, our method for finding symmetries is similar to

the technique of Ding et. al [10]. They manually choose a

heuristic for segmenting the input space, for example using

a representative pair of neighboring inputs that represent a

class of “one below” pairs, where x′ has a single entry

which is one unit smaller than its corresponding entry in x
(e.g. x = [1, 1, 1, 1, 1] and x′ = [0, 1, 1, 1, 1]). In our paper,

however, we formalize this logic and provide proof obligations

to show that these representative inputs cover the whole search

space, which allows us to introduce more formality and make

provable statements about the exactness of our solutions.

In [11], Wang et. al develop a tool for finding counterexam-

ples or proofs of validation of privacy in implementations of

DP algorithms. In [12], Bichsel et. al use a sampling approach

to find counterexamples to differential privacy. In [13], Zhang

et. al use interpreters to find counterexamples to differential

privacy.

C. Type Systems and Program Synthesis

There is significant work on developing type systems and

program logics for differential privacy algorithms. This work

begins with [34] in which Reed et. al develop a type system

for differential privacy. Following this, [35]–[39] present other

type systems and program logics for differential privacy. There

is a related line of work which develops and implements

a Hoare logic approach and uses probabilistic couplings to

mechanize proofs of differential privacy via the apRHL logic

and EasyCrypt [5]–[9]. In [40], Albarghouthi et. al propose

a technique to automate these proofs. In [41], Barthe et. al

develop a probabilistic programming framework which uses

inference for writing verifiable DP programs.

There are also works on program synthesis for DP programs

[20], [42], [43]. Our techniques could be used in these synthe-

sis approaches for verifying intermediate programs, and as a

more exact method of ensuring high accuracy while satisfying

DP properties.

In a more theoretical approach, Gaboardi et. al [44] find

complexity bounds for exact verification of DP in non-looping

programs. In follow-up work to this, Bun et. al [45] extend

this analysis to looping programs.

D. Privacy Auditing

Privacy auditing provides empirical methods to estimate the

privacy leakage of an ML algorithm by mounting privacy

attacks. Privacy auditing can be performed with membership

inference attacks [46] or data poisoning [14], [15], but initial

techniques developed for auditing require training thousands

of ML models to provide confidence intervals for the estimated

lower bound on the privacy parameter. Recent techniques

showed how to rigorously perform estimation of the privacy

parameter while using multiple randomized canaries [18] and

eventually training a single ML model [16], [19].

E. Accuracy Verification

To our knowledge, there is very little work on theoretical

or applied formal verification or bound synthesis for accuracy

of DP algorithms. In [47], Barthe et. al provide theoretical

analysis on the decidability of accuracy different classes of

probabilistic computations. In [48], Lobo-Vesga et. al develop

a programming framework for estimating accuracy bounds.

VIII. CONCLUSION AND FUTURE WORK

We believe that our novel approach for synthesizing tight

privacy and accuracy bounds has a lot of promise for devel-

oping techniques for computing accuracy and privacy prop-

erties in a wide range of differential privacy applications.

Our approach uses state-of-the-art techniques for probabilistic

inference via weighted model counting, and can benefit from

ongoing advances in artificial intelligence and automated rea-

soning.

Though we are able to vastly improve automation from

prior work by leveraging expressive probabilistic programming

languages, one limitation is the manual step of identifying

symmetries to define the inference, comparison, and accuracy

sets. While there is room for improvement, in our experiments

we demonstrate how the power of our WMC solution provides

advances and utility, even for the exhaustive approach. In

future work, we plan to investigate techniques from SAT

solving and symmetry breaking to improve automation.

In future work, we can also extend this framework to

other definitions of differential privacy including Rényi and

approximate (or (ε, δ)) differential privacy [27]. Additionally,

we can look at more complex systems with more complicated

probability distributions such as randomized response with

amplification by shuffling [49].

Our work opens the door for further automation and

accessibility of using probabilistic programming languages

techniques for verification and synthesis of DP algorithms

using state-of-the-art inference tools.

ACKNOWLEDGMENT

We would like to thank Professors Marco Gaboardi and

Jon Ullman for their technical guidance and input on differ-

ential privacy case studies. Thanks also to Lydia Zakynthinou,

Konstantina Bairaktari, Ludmila Glinskih, Minsung Cho, and

LaKyah Tyner for discussions about approaches and theoret-

ical analysis. This work has been supported by NSF grant

CNS-2247484.

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” Journal of Privacy and Confiden-

tiality, vol. 7, no. 3, 2016.

[2] I. Mironov, “On significance of the least significant bits for differential
privacy,” in Proceedings of the 2012 ACM conference on Computer and

communications security, 2012, pp. 650–661.

[3] F. Tramer, A. Terzis, T. Steinke, S. Song, M. Jagielski, and N. Carlini,
“Debugging differential privacy: A case study for privacy auditing,”
arXiv preprint arXiv:2202.12219, 2022.

[4] T. Stevens, I. C. Ngong, D. Darais, C. Hirsch, D. Slater, and J. P. Near,
“Backpropagation clipping for deep learning with differential privacy,”
arXiv preprint arXiv:2202.05089, 2022.

[5] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Zanella-Beguelin,
“Verified computational differential privacy with applications to smart
metering,” in 2013 IEEE 26th Computer Security Foundations Sympo-

sium. IEEE, 2013, pp. 287–301.

[6] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Beguelin, “Probabilistic
relational reasoning for differential privacy,” in Proceedings of the 39th

annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, 2012, pp. 97–110.

[7] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, C. Kunz, and P.-Y.
Strub, “Proving differential privacy in hoare logic,” in 2014 IEEE 27th

Computer Security Foundations Symposium. IEEE, 2014, pp. 411–424.

[8] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub, “Proving
differential privacy via probabilistic couplings,” in Proceedings of the

31st Annual ACM/IEEE Symposium on Logic in Computer Science,
2016, pp. 749–758.

[9] J. Hsu, Probabilistic couplings for probabilistic reasoning. University
of Pennsylvania, 2017.

[10] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting
violations of differential privacy,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018,
pp. 475–489.

[11] Y. Wang, Z. Ding, D. Kifer, and D. Zhang, “Checkdp: An automated and
integrated approach for proving differential privacy or finding precise
counterexamples,” in Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security, 2020, pp. 919–938.

[12] B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. Vechev,
“Dp-finder: Finding differential privacy violations by sampling and
optimization,” in Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, 2018, pp. 508–524.

[13] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth, “Testing
differential privacy with dual interpreters,” Proceedings of the ACM on

Programming Languages, vol. 4, no. OOPSLA, pp. 1–26, 2020.

[14] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially
private machine learning: How private is private SGD?” in
Proceedings of Advances in Neural Information Processing

Systems, ser. NeurIPS, vol. 33, 2020, pp. 22 205–22 216.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf

[15] M. Nasr, S. Song, A. Thakurta, N. Papernot, and N. Carlini, “Adversary
instantiation: Lower bounds for differentially private machine learning,”
in 42nd IEEE Symposium on Security and Privacy, SP 2021, San

Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 866–882.
[Online]. Available: https://doi.org/10.1109/SP40001.2021.00069

[16] G. Andrew, P. Kairouz, S. Oh, A. Oprea, H. B. McMahan, and
V. Suriyakumar, “One-shot empirical privacy estimation for federated
learning,” CoRR, vol. abs/2302.03098, 2023.

[17] M. Nasr, J. Hayes, T. Steinke, B. Balle, F. Tramèr, M. Jagielski,
N. Carlini, and A. Terzis, “Tight auditing of differentially private
machine learning,” in Proceedings of the 32nd USENIX Conference on

Security Symposium, ser. SEC ’23. USA: USENIX Association, 2023.

[18] K. Pillutla, G. Andrew, P. Kairouz, H. B. McMahan, A. Oprea,
and S. Oh, “Unleashing the power of randomization in auditing
differentially private ML,” in Thirty-seventh Conference on Neural

Information Processing Systems, 2023. [Online]. Available: https:
//openreview.net/forum?id=mlbes5TAAg

[19] M. J. Thomas Steinke, Milad Nasr, “Privacy auditing with one (1)
training run,” in Thirty-seventh Conference on Neural Information

Processing Systems, 2023. [Online]. Available: https://openreview.net/
forum?id=mlbes5TAAg

[20] S. Roy, J. Hsu, and A. Albarghouthi, “Learning differentially private
mechanisms,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 852–865.

[21] G. Barthe, R. Chadha, V. Jagannath, A. P. Sistla, and M. Viswanathan,
“Deciding differential privacy for programs with finite inputs and
outputs,” in Proceedings of the 35th Annual ACM/IEEE Symposium on

Logic in Computer Science, 2020, pp. 141–154.

[22] D. Liu, B.-Y. Wang, and L. Zhang, “Model checking differentially
private properties,” in Asian Symposium on Programming Languages

and Systems. Springer, 2018, pp. 394–414.

[23] ——, “Verifying pufferfish privacy in hidden markov models,” in
International Conference on Verification, Model Checking, and Abstract

Interpretation. Springer, 2022, pp. 174–196.

[24] M. Chavira and A. Darwiche, “On probabilistic inference by weighted
model counting,” Artificial Intelligence, vol. 172, no. 6-7, pp. 772–799,
2008.

[25] S. Holtzen, G. Van den Broeck, and T. Millstein, “Scaling exact
inference for discrete probabilistic programs,” Proceedings of the ACM

on Programming Languages, vol. 4, no. OOPSLA, pp. 1–31, 2020.

[26] S. Holtzen, T. Millstein, and G. Van den Broeck, “Generating and
sampling orbits for lifted probabilistic inference,” in Uncertainty in

Artificial Intelligence. PMLR, 2020, pp. 985–994.

[27] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[28] S. Holtzen, S. Junges, M. Vazquez-Chanlatte, T. Millstein, S. A. Seshia,
and G. Van den Broeck, “Model checking finite-horizon markov chains
with probabilistic inference,” in Proceedings of the 33rd International

Conference on Computer-Aided Verification (CAV), July 2021.

[29] B. Bichsel, S. Steffen, I. Bogunovic, and M. Vechev, “Dp-sniper: Black-
box discovery of differential privacy violations using classifiers,” in 2021

IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 391–
409.

[30] G. Van den Broeck, K. Kersting, S. Natarajan, and D. Poole, An

Introduction to Lifted Probabilistic Inference. MIT Press, 2021.

[31] A. Sabharwal, “Symchaff: exploiting symmetry in a structure-aware
satisfiability solver,” Constraints, vol. 14, pp. 478–505, 2009.

[32] F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient symmetry
breaking for boolean satisfiability,” IEEE Transactions on Computers,
vol. 55, no. 5, pp. 549–558, 2006.

[33] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker storm,” International Journal on Software

Tools for Technology Transfer, pp. 1–22, 2021.

[34] J. Reed and B. C. Pierce, “Distance makes the types grow stronger:
a calculus for differential privacy,” in Proceedings of the 15th ACM

SIGPLAN international conference on Functional programming, 2010,
pp. 157–168.

[35] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce,
“Linear dependent types for differential privacy,” in Proceedings of

the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 2013, pp. 357–370.

[36] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and
P.-Y. Strub, “Higher-order approximate relational refinement types for
mechanism design and differential privacy,” ACM SIGPLAN Notices,
vol. 50, no. 1, pp. 55–68, 2015.

[37] D. Zhang and D. Kifer, “Lightdp: Towards automating differential
privacy proofs,” in Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages, 2017, pp. 888–901.

[38] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang,
N. Somani, M. Zhang, N. Sharma, A. Shan et al., “Duet: an expressive
higher-order language and linear type system for statically enforcing dif-
ferential privacy,” Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 1–30, 2019.

[39] M. Fredrikson and S. Jha, “Satisfiability modulo counting: A new
approach for analyzing privacy properties,” in Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer

Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sympo-

sium on Logic in Computer Science (LICS), 2014, pp. 1–10.

[40] A. Albarghouthi and J. Hsu, “Synthesizing coupling proofs of differ-
ential privacy,” Proceedings of the ACM on Programming Languages,
vol. 2, no. POPL, pp. 1–30, 2017.

[41] G. Barthe, G. P. Farina, M. Gaboardi, E. J. G. Arias, A. Gordon,
J. Hsu, and P.-Y. Strub, “Differentially private bayesian programming,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 68–79.

[42] C. Smith and A. Albarghouthi, “Synthesizing differentially private
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. ICFP, pp. 1–29, 2019.

[43] Y. Wang, Z. Ding, Y. Xiao, D. Kifer, and D. Zhang, “Dpgen: Automated
program synthesis for differential privacy,” in Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 393–411.

[44] M. Gaboardi, K. Nissim, and D. Purser, “The complexity of ver-
ifying loop-free programs as differentially private,” arXiv preprint

arXiv:1911.03272, 2019.

[45] M. Bun, M. Gaboardi, and L. Glinskih, “The complexity of verifying
boolean programs as differentially private,” in 2022 IEEE 35th Computer

Security Foundations Symposium (CSF). IEEE, 2022, pp. 396–411.

[46] S. Zanella-Beguelin, L. Wutschitz, S. Tople, A. Salem, V. Rühle,
A. Paverd, M. Naseri, B. Köpf, and D. Jones, “Bayesian estimation
of differential privacy,” in Proceedings of the 40th International

Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 23–29 Jul 2023, pp.
40 624–40 636. [Online]. Available: https://proceedings.mlr.press/v202/
zanella-beguelin23a.html

[47] G. Barthe, R. Chadha, P. Krogmeier, A. P. Sistla, and M. Viswanathan,
“Deciding accuracy of differential privacy schemes,” Proceedings of the

ACM on Programming Languages, vol. 5, no. POPL, pp. 1–30, 2021.

[48] E. Lobo-Vesga, A. Russo, and M. Gaboardi, “A programming framework
for differential privacy with accuracy concentration bounds,” in 2020

IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 411–
428.

[49] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Dis-
tributed differential privacy via shuffling,” in Advances in Cryptology–

EUROCRYPT 2019: 38th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Darmstadt, Ger-

many, May 19–23, 2019, Proceedings, Part I 38. Springer, 2019, pp.
375–403.

[50] V. Balcer and S. Vadhan, “Differential privacy on finite computers,”
arXiv preprint arXiv:1709.05396, 2017.

APPENDIX A

TRUNCATED GEOMETRIC ABOVE THRESHOLD

The above threshold algorithm takes as input an array of

values and a thresholding value T and outputs the index of the

first value in the input array that exceeds T . The DP version

of this algorithm adds noise both to each entry and to the

threshold T [27].

Algorithm 5 Truncated Geometric Above Threshold

Input: Array of input integers X , threshold value T , random-

ness parameters λ1 and λ2

Output: Index i
1: T̂ ← T +Geom(λ1)
2: for xi ∈ X do

3: ri ← Geom(λ2)
4: if xi + ri ≥ T̂ then

5: return i
6: end if

7: end for

8: return y

We use a discrete, finite variation of this DP algorithm

which is defined over integer-valued input arrays, integer-

valued T , and uses the truncated geometric mechanism for the

added noise [50]. We provide the pseudocode for this variation

in Algorithm 5, and an example of the Dice program generated

by our ExactDP tool in Fig. 5. In our experiments, we set

randomness parameters λ1 = λ2 for simplicity.

l e t t n o i s y = d i s c r e t e (0 .006692850924284843 ,0 .9866142981514303 ,0 .006692850924284843) i n

l e t x 0 n o i s y = d i s c r e t e (4 .5096074800597685 e −05 ,0 .006647754849484246 ,0 .9933071490757152) i n

l e t x 1 n o i s y = d i s c r e t e (0 .9933071490757152 ,0 .006647754849484246 ,4 .5096074800597685 e −05) i n

l e t x 2 n o i s y = d i s c r e t e (0 .006692850924284843 ,0 .9866142981514303 ,0 .006692850924284843) i n

l e t x 3 n o i s y = d i s c r e t e (4 .5096074800597685 e −05 ,0 .006647754849484246 ,0 .9933071490757152) i n

l e t answ = i f x 0 n o i s y > t n o i s y t h e n i n t (3 , 0) e l s e i n t (3 , 4) i n

l e t answ = i f answ == i n t (3 , 4) && x 0 n o i s y > t n o i s y t h e n i n t (3 , 0) e l s e answ i n

l e t answ = i f answ == i n t (3 , 4) && x 1 n o i s y > t n o i s y t h e n i n t (3 , 1) e l s e answ i n

l e t answ = i f answ == i n t (3 , 4) && x 2 n o i s y > t n o i s y t h e n i n t (3 , 2) e l s e answ i n

l e t answ = i f answ == i n t (3 , 4) && x 3 n o i s y > t n o i s y t h e n i n t (3 , 3) e l s e answ i n

Fig. 5: Sample Dice program generated from ExactDP implementation for above threshold for lists of length 4 and maximum

integer value 2 with X = [2, 0, 1, 2] and T = 1.

	Introduction
	Preliminaries
	Differential Privacy
	Accuracy
	Weighted Model Counting
	Model Counting
	Weighted Boolean Formula (WBF)
	Weighted Model Counting (WMC)
	WMC for Probabilistic Algorithms

	Weighted Model Counting for Synthesizing Tight Privacy and Accuracy Bounds
	Synthesis Problems
	WMC and Probabilistic Programming For Privacy Bound Synthesis
	WMC for Exhaustive Accuracy Bound Synthesis

	Framework for Leveraging Symmetries
	Inference Algorithm
	Finding Tight Privacy Bound
	Correctness and Complexity of Privacy Bound Synthesis Algorithm

	Finding Tight Accuracy Bound
	Correctness and Complexity of Accuracy Bound Synthesis

	Randomized Response Case Study
	Weighted Boolean Formula for RR
	Exhaustive Solution
	Leveraging Symmetries for Finding Privacy Bound
	Counting Flips
	Constructing Privacy Set
	Complexity

	Computing Accuracy
	Constructing A
	Complexity

	Evaluation
	Comparison to Markov Chain Model Checking
	Comparison to DiPC
	Expressiveness and the Geometric Above Threshold
	Accuracy

	Related Works
	Exact Methods
	Finding Proofs and Counterexamples
	Type Systems and Program Synthesis
	Privacy Auditing
	Accuracy Verification

	Conclusion and Future Work
	References
	Appendix A: Truncated Geometric Above Threshold

