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Abstract

Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state tracking”
(DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue by taking
into account the past dialogue moves and history. Less studied but just as important to dialogue modeling, however,
is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants in a
task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a
method for automatically identifying the current set of shared beliefs and “questions under discussion” (QUDs) of a
group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech
transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features for
use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade into a
set of formal closure rules derived from situated evidence and belief axioms and update operations. We empirically
assess the contribution of each feature type toward successful construction of common ground relative to ground
truth, establishing a benchmark in this novel, challenging task.

Keywords: common ground, multimodality, belief updating

1. Introduction

In the context of increasingly sophisticated interac-
tions involving natural language dialogues with an
AI, there is considerable attention being spent on
“Dialogue State Tracking” (DST), which is the abil-
ity to update the representations of the speaker’s
(user’s) needs at each turn in the dialogue, by tak-
ing into account the past dialogue moves and his-
tory. In this paper, we address the related but less-
studied problem of Common Grounding Tracking
(CGT), which identifies the shared belief space held
by all of the participants in a task-oriented dialogue.
We describe the procedure for training CGT models
to both identify the current set of beliefs, as well as
determine the level of evidence for each, to con-
dition where the dialogue will go (the “questions
under discussion”, or QUDs). The goal is to pro-
vide a more informative snapshot of the dialogue
situation, after each action in the task, to develop
a policy incorporating shared beliefs in addition to
past dialogue history.

A major challenge facing the development of
computational models for multimodal interactions
involves tracking the intentions, goals, and attitudes
of the participants (Cassell et al., 2000; Foster,
2007; Kopp and Wachsmuth, 2010; Marshall and
Hornecker, 2013; Scha�er and Reithinger, 2019;
Wahlster, 2006). For task-oriented dialogues, just
as important is the problem of identifying and track-
ing the common ground between participants (Clark
and Brennan, 1991; Traum, 1994; Asher, 1998; Dil-
lenbourg and Traum, 2006).

In this work, we specifically: (a) identify both
communicative expressions (speech, gesture) and
jointly perceived actions in a multi-party dialogue,
in order to convert them into propositional con-
tent; and (b) add them to a dynamic data struc-
ture we call the Common Ground Structure (CGS).
This consists of three parts: FBank, a set of facts
that are assumed to be known by the group; an
EBank, a set of evidences available to the group;
and QBank, the “questions under discussion", a
set of topics remaining to be discussed in order to
solve the task.

In total, this work encompasses three novel con-
tributions:

• A challenging new task: multimodal common
ground tracking, with a formal model of com-
mon ground in a shared, situated task;

• A novel incorporation of the formal model into
an automated pipeline that tracks the evolution
of group common ground over time;

• An augmentation of the Weights Task Dataset
(Khebour et al., 2023) with gesture, action, and
common ground annotations, to enable the
operationalization of our formal model.

Our code may be accessed at
https://github.com/csu-signal/Common-Ground-
detection

2. Related Work

The present work draws on several diverse areas
of research, from modeling common ground in HCI
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Figure 1: Sample still from the Weights Task
Dataset showing communication with multiple
modalities. The accompanying utterance at this
time is “Put the twenty on there; take o� a ten”.

and HHI, and Dialogue State Tracking, to the role
of gesture in multimodal interactions.

When engaged in dialogue, our shared under-
standing of both utterance meaning (content) and
the speaker’s meaning in a specific context (in-
tent), involves the ability to link these two in the
act of situationally grounding meaning to the local
context, what is typically referred to as “establish-
ing the common ground" between speakers (Grice,
1975; Clark and Brennan, 1991; Stalnaker, 2002;
Asher, 1998; Traum and Larsson, 2003). The con-
cept of common ground refers to the set of shared
beliefs among participants in a Human-Human in-
teraction (HHI) (Markowska et al.; Traum, 1994;
Hadley et al., 2022), as well as HCI (Krishnaswamy
and Pustejovsky, 2019; Ohmer et al., 2022) and
HRI interactions (Kruij� et al., 2010; Fischer, 2011;
Scheutz et al., 2011). Del Tredici et al. (2022) have
recently employed the notion of common ground
operationally to identify and select relevant informa-
tion for conversational QA system design. Stewart
et al. (2021) and Bradford et al. (2023) both study
human-human collaboration through the lens of an
AI agent.

Dialogue state tracking (DST) aims to estimate
the current dialogue state or belief state of the users
during the conversation (Budzianowski et al., 2018;
Liao et al., 2021; Jacqmin et al., 2022). Current
DST models can be categorized into three types:
fixed ontology (Henderson et al., 2014; MrköiÊ et al.,
2017; Chen et al., 2020), open vocabulary (Gao
et al., 2019; Hosseini-Asl et al., 2022; Wu et al.,
2019) and hybrid methods (Goel et al., 2019;
Zhang et al., 2020a; Heck et al., 2020). Recently,
pretrained language models have been widely used
to model slot relations, while Graph attention net-
works (GATs) have been used to model the hierar-
chical structure of DST, enabling the incorporation
of semantic compositionality, cross-domain knowl-
edge sharing and coreference (Lin et al., 2021; Li
et al., 2021; Cheng et al., 2020).

Understanding the role of nonverbal behavior
in multimodal communication has long been a re-
search interest in HCI, but has recently taken on
new interest within CL and the broader AI com-
munity. Gestures o�er an array of unique dimen-
sions in communication, ranging from denoting sit-
uational references to indicating specific spatial
locations or even conveying manner and orienta-
tion (Rohrer et al., 2020; Efthimiou and Kouroupet-
roglou, 2011; Kong et al., 2015; Kendon, 1997,
2004; Mcneill, 2005). Gesture AMR (GAMR) (Brutti
et al., 2022) considers gestures that convey the
same propositional content and intentionality as
speech acts. Gesture may have meaning on its
own, or it may enhance the meaning provided by
the verbal modality (Goldin-Meadow, 2003; Krish-
naswamy and Pustejovsky, 2020). Also critical to
multimodal dialogue is human action, which in ad-
dition to communicating deictic and bridging infor-
mation can also make lasting changes to the world,
a�ecting the common ground (Tam et al., 2023).
Much work has been done to facilitate action iden-
tification from video (Sigurdsson et al., 2016) (Gu
et al., 2018) (Li et al., 2020) as well as to annotate
specific semantic roles (Sadhu et al., 2021).

Di Maro et al. (2021) implement dynamic belief
sets as graphs, which we do not do explicitly. How-
ever, such an approach is theoretically and compu-
tationally compatible with ours, as the result (post-
condition) of a public announcement or observed
action can act as the preconditions for promoting
QUDs to evidence, or evidenced propositions to
strong beliefs, leading to a natural interpretation of
common ground tracking as a graph.

3. Dataset

The Weights Task (Khebour et al., 2023) is a col-
laborative problem-solving task in which groups
of three work together to deduce the weights of
di�erently-colored blocks by making comparisons
of block weights using a balance scale. In this activ-
ity, the group has a balance scale and five blocks of
various colors, sizes, and weights. They are told the
weight of one block and must identify the weights of
the remaining blocks and, eventually, the algebraic
relation between them, which is an instance of the
Fibonacci Sequence (Sigler, 2002; Bonacci, 1202).
Due to the co-situated nature of the task and its
inclusion of physical objects and reasoning about
their properties, this task involves communication
in multiple modalities, such as language, gesture,
and action (see Fig. 1), meaning that knowledge
is shared using multiple communicative channels.
The Weights Task Dataset (WTD) comes with au-
tomatic and human transcriptions of the speech,
as well as gesture annotated using Gesture-AMR
(GAMR) (Brutti et al., 2022), and collaborative prob-
lem solving (CPS) indicators according to the frame-



work of Sun et al. (2020). All groups successfully
deduce the correct block weights, giving a consis-
tent end state against which to assess our models.

3.1. Example Dialogue

Figure 2: Example dialogue. Participant 3 (right)
says “looks like they’re fairly equal" after placing
the red and blue blocks on di�erent sides of the
scale. We refer back to this example elsewhere in
the paper.

In the WTD, participants are canonically indexed
from 1–3, left to right. In Fig. 2, Participant 3 makes
a statement that the red and blue blocks are “fairly
equal”, which is interepreted as an assertion of
belief that red = blue. Participant 1 give a quali-
fied assent to this through the utterance “yeah, I
suppose,” meaning that at this point, red = blue
and other necessarily entailed propositions can be
considered part of the common ground (for exam-
ple, if we had established that red < yellow, then
blue < yellow also becomes part of the common
ground).

4. Common Ground in Dialogue

Here we assume the context of a multi-participant,
task-oriented conversation, involving communica-
tion by multiple content-generating modalities (lan-
guage, gesture) and mutually interpretable non-
verbal behaviors (e.g., actions) (Kruij� et al., 2010;
Pustejovsky and Krishnaswamy, 2021). To this
end, we need a data structure representing the
common ground in such a context, that can be dy-
namically updated throughout the dialogue. We
adopt a version of a Dialogue Game Board (DGB),
as developed in Ginzburg (2012).

Because of the evolving and dynamic nature of
co-interactive dialogue and situated actions, follow-
ing van Benthem et al. (2014) and Pacuit (2017),
we adopt an evidence-based model of belief, where
our commitments to propositions describing situa-
tions or facts are not binary, but are graded, where
they can weaken or strengthen depending on avail-
able evidence for them as the dialogue progresses.

First, however, we define the minimal structure
of a task-oriented interaction as a sequence, D,
of dialogue steps, where each move in the dia-
logue takes it into another situation or state. Let
P = {p1, p2, p3}, be the participants in our dialogue.
From any situation sk, we define a D move, mi, as
mi = (pj , Cj , sk+1): participant pj performs a com-
municative act Cj , bringing the multimodal dialogue
into situation sk+1. The D can be defined as the
sequence of these moves: D = m1, . . . ,mn.

Here our interest is in tracking the situation con-
tent resulting from each move: the set of proposi-
tions that captures the current state of the world,
the current progress towards a goal, or the status of
a task. In addition, it captures the current questions
under discussion and beliefs in the dialogue.

Given these considerations, we identify three
components for tracking common ground in dia-
logue: a minimal static model of degrees of belief;
a data structure distinguishing the elements of the
agents’ common ground that are being tracked; and
a dynamic procedure which updates this structure,
when new information and evidence is available
to the agents. We consider each of these in turn
below.

4.1. Evidence-based Belief

Pacuit (2017) provides a model for evidence-based
belief, where agents obtain evidence in favor of a
proposition, ', and can , to eventually believe '.
We adopt a simplified model of the evidence-based
Dynamic Epistemic Logic (EB-DEL) as developed
in van Benthem et al. (2014) and Pacuit (2017). We
define a model as a tuple, M = (W,E, V ), where

(1) a. W is a non-empty set of worlds;
b. E ✓ W ⇥ }(W ) is an evidence relation;
c. V : At ! }(W ), is a valuation function.

Let E(w) denote the set {X | wEX}, the worlds
accessible to w through the evidencing relation, E.
The evidence-based epistemic language, L, will
be the set of formulas generated by the grammar
below:

(2) p | ¬' | ' ^  | [E]' | [B]' | [A]'

We distinguish the situation where an agent has
“evidence in favor of" a proposition ', as [E]'. Be-
cause an agent can have evidence for propositions
that convey contradictory information, she can con-
sider both [E]' and [E]¬'. This corresponds to
an agent having multiple neighborhoods, X, that
are each evidenced in their unique way by w. How-
ever, consider the set of non-contradictory worlds
as a unique subset of X, one which has what van
Benthem and Pacuit (2011) refer to as the finite
intersection property (fip). This property allows us
to identify a neighborhood of accessible worlds with
non-contradictory propositional content. When this



occurs, we say an agent has belief in a proposition,
[B]'. Finally, the universal modality is considered
“knowledge" of a proposition, [A]'.

4.2. Common Ground Structure

Capturing situational state information in a task-
oriented dialogue is critical for reflecting current
common ground as well as predicting future dia-
logue moves (Traum and Larsson, 2003; Schlangen
and Skantze, 2011; Zhang et al., 2020b; Jacqmin
et al., 2022). For our present purpose, we adopt
the notion of a Dialogue Game Board (Ginzburg,
1996, 2012), modified to reflect the varying degrees
of evidence associated with propositions under dis-
cussion. A Common Ground Structure, cgs, is a
triple, (QB,EB,FB), consisting of:

(3) a. Questions Under Discussion (QB���): set
of topics or unknowns that need to be an-
swered to solve the task;
b. Evidence (EB���): set of propositions for
which there is some evidence they are true;
c. Facts (FB���): set of propositions believed
as true by all participants.

The task begins with a set of unknowns referred
to as the “Questions under Discussion” (QUDs).
For this implementation, we create a finite model,
including a finite model of questions. For all objects
in the domain relating to the task, questions are
generated for each relation implicated in the task
for that object. For example, in the Weights Task,
the goal is to identify the weights of five distinct
blocks, and then the algebraic relation between
them, i.e., the Fibonacci sequence. The weight of
a block ranges between 10 and 50 grams, in 10
gram intervals. Hence, for each block in B, where
B = {red, blue, yellow, green, purple}, we have five
possible values, expressed as yes/no questions.
Hence, initialization of the QBank results in the
following set:

(4) QBank =
{Eq(r, 10)?, . . . , Eq(r, 50)?, . . . , Eq(p, 10)?,
. . . Eq(p, 50)?}

At the outset of our dialogue, we set both EBank
and FBank to nil, since no task-relevant propo-
sitions have been established as commonly evi-
denced or believed. In the next section, we ad-
dress the task of determining how information is
updated in the dialogue, thereby changing the com-
mon ground.

4.3. Updating the Common Ground

Given the epistemic logic presented above, we in-
troduce the mechanisms that update the informa-
tion state within a dialogue. Following Plaza (1989)
and subsequent developments of Public Announce-
ment Logic (Baltag et al., 2016), we introduce a new

operator to the model, the announcement opera-
tor, !. Public announcements are statements that
are made to all agents, and after the announce-
ment, all agents know that the statement has been
announced and that it is true.

If [!'] represents the act of announcing ', then
[!'] means “after ' is announced, then  is be-
lieved to be the case."

In order to distinguish evidence for ' from belief
in ', we relativize the impact of a statement to the
context within which it is uttered. Let us interpret
[!'] as follows.

(5) a. Update with Evidence:
[!'][E] : Given the announcement of ',
there is evidence for  ;

b. Update with Belief:
[E]' ! [!'][B] : Belief in ' is condition-
alized on '’s announcement in the prior
context of evidence for '.

Semantically, an update represents the state of
a�airs after an announcement. This entails trans-
forming the current model by removing all states
where the announced formula is false. With evi-
dence distinguished from belief/knowledge, we also
update the evidence function, where [!']:

(6) a. Updates the worlds: W 0 = W \ '
b. Updates the Evidence function: E0(w) =
E(w) \ '
c. (M,w) |= ' implies (M |', w) |= [E] 

This update actually changes the underlying ev-
idence sets themselves. The announcement is
taken as a piece of direct evidence. Hence, to
capture that the announcement of ' becomes ev-
idence and not just belief, the evidence sets for
each agent get restricted (or updated) to reflect the
worlds where ' is true. Subsequently, the belief
function will then naturally adjust based on the new
evidence sets.

Operationally, after (5a) is run, the model is rel-
ativized to evidencing neighborhoods, where ' is
true. This corresponds to moving a proposition
from QBank to the EBank. Then, if the same propo-
sition is “announced" again, as with an ACCEPT
move, then (5b) promotes that proposition from the
EBank to the FBank.

In Section 6.4, we illustrate how these updates
are applied when running over the output of the
move classifier, in order to determine the content
of the current common ground.

5. Annotation

We augmented the existing WTD annotations with
dual annotation of GAMR, and participant actions
using VoxML (Pustejovsky and Krishnaswamy,



2016). Finally, we also tracked the group’s col-
lective surfacing of evidence and acceptance of
task-relevant facts by supplying another layer of
“common ground annotations” (CGA):

Annotation in the dialogue involves identifying
categories relating to the cognitive state of partic-
ipants to actions and knowledge, concerning the
task. This includes the following categories: (a)
OBSERVATION: participant Pi has perceived an
action, a; (b) INFERENCE: deduction from '; (c)
STATEMENT : announcement of evidence '; (d)
QUESTION: introducing role interrogative relating
to'; (e) ANSWER; supplying filler to question about
'; (f) ACCEPT : agree with evidence '; (g) DOUBT :
disagree with evidence for '.

In the example from Sec. 3.1, Participant 3’s
utterance would be considered a STATEMENT of
the proposition red = blue while Participant 1’s
utterance would be an ACCEPT of that proposition.
Participant 3 subsequently says “that’s 20, these
two [referring to the red and blue blocks] are 10”
(STATEMENT of proposition red = 10 ^ blue = 10),
to which Participant 1 says “wait, let’s see” signaling
a DOUBT in red = 10^blue = 10. Therefore at this
stage of the dialogue, red = blue can be considered
an agreed-upon fact (element of FBank), but none
of the participants have accepted that red = 10 ^
blue = 10, so that proposition is still only an element
of EBank. This example illustrates the subtleties
captured through the annotation.

GAMR, action, and common ground annota-
tions were all dually-annotated. GAMR annotations
achieved a SMATCH-F1 score of 0.75. Action an-
notation achieved an F1 score of 0.67 and Cohen’s
 of 0.59. CGA achieved F1 of 0.54 and Cohen’s
 of 0.50. Each was adjudicated by an expert to
produce the gold standard.

6. Experiments: Modeling Common

Ground Tracking

Our experimental pipeline consists of 3 primary
components: a move classifier, which predicts
which cognitive state is being expressed in an ut-
terance (Sec. 5); a propositional extractor, which
may either consult a dictionary of expressed propo-
sitions that is collected from the annotated data
with all modalities considered, or may automatically
extract the propositional content of an utterance
through vector-similarity methods; and a set of clo-
sure rules that unify the cognitive state and propo-
sitional content and update the status of QBank,
EBank, and FBank.

Our primary metric for the entire pipeline is
Sørensen-Dice coe�cient (DSC) (Sørensen, 1948;
Dice, 1945). DSC indicates how much the set of
propositions extracted by the model matches the
set of propositions in the ground truth. It also nor-
malizes for the size of the samples being compared,

as the cardinality of the di�erent banks may fluctu-
ate widely as the task proceeds. DSC can also be
evaluated as a group proceeds through the task,
or averaged over a single group. Since the groups
have di�erent numbers of utterances, and hence
moves, when aggregating across groups to calcu-
late DSC over time, we pad the length of the shorter
groups out to the maximum length by copying the
final state of the banks, assuming a “steady state”
in the common ground once the task is finished.

6.1. Preprocessing

We first mapped the annotated data to the “or-
acle” (manually-segmented) utterances in the
WTD (Terpstra et al., 2023). If more than one anno-
tation for a given modality was present in the same
utterance, we used the one that had the biggest
overlap with the oracle utterance.

We encoded the manually transcribed utterances
in the WTD into embedding vectors using BERT
(base-uncased) (Devlin et al., 2019), and ex-
tracted the 768D [CLS] token embedding from the
final encoder layer. Following Bradford et al. (2023),
we processed the audio into 88D prosodic features
using openSMILE (Eyben et al., 2010). The CPS
indicators for an utterance were transformed into
their corresponding high-level facets according to
the Sun et al. (2020) framework, and encoded as
3D one-hot vectors.

GAMR representations were featurized as k-
hot encodings of size 81. The first 4 components
describe the gesture type (icon, gesture-unit, deixis
and emblem) along with a fifth component that rep-
resents and in cases where 2 types are annotated.
Following this is one hot encoding of the GAMR
ARG0 (gesturer), then a k-hot encoding vector of
components of the GAMR ARG1 (gesture content,
such as object of deixis). Given the vocabulary of
items in the data, this comprises 68 dimensions.
Finally, GAMR ARG2 (gesture recipient) was repre-
sented by a one-hot encoding of size 5 (group/re-
searcher/1 of 3 participants). As more than one
participant can have a GAMR annotated for them
over the same utterance, we allow for 1 GAMR
feature vector per participant, resulting in a total
GAMR feature size of 243.

Action annotations comprise scale actions,
which were vectorized as a one-hot representa-
tion of the scale status (left/balanced/right), and
participant actions. Participant actions comprise
a 2D representation of “lift” vs. “put”, a one hot
encoding for the block being acted upon, a 2D one
hot encoding of “in” and/or “on”, and a 2nd one-
hot object representation of block, scale, or table
(the destination of the action, where applicable). A
participant’s action vector is of size 25 (⇥ 3 for 3
participants), resulting in a total action feature size
of 78, including the scale actions.



To facilitate propositional extraction, we decon-
textualized each utterance from the dialogue con-
text, inspired by the dense paraphrasing method
(Tu et al., 2022, 2023) that rewrites a textual ex-
pression to reduce ambiguity and make explict the
underlying semantics. We filtered the utterances
containing at least one pronoun from a predefined
set, and had annotators identify the blocks denoted
by the pronouns, if any, based on the aligned ac-
tions and video frames. Utterances were dually
annotated (Cohen’s  = 0.88) and adjudicated by
an expert. Utterances were paraphrased by replac-
ing the pronouns with the adjudicated annotation
of the block colors (e.g., they [red block and blue
block] are probably equal).

The annotated dataset presents a number of
challenges related to sparsity, imbalance, and
cross-group diversity. The individual feature chan-
nels either capture a single communicative modality
or cross-cut two or more (viz. prosodic and CPS
features). For input to the model, we concatenate
the features of each utterance to the w previous ut-
terances. We remove utterances with no CGA, un-
less they fall within the w-utterance context window
of an utterance with CGA. Of the 1,822 utterances
in the dataset, only 271 have any common ground
annotation, and these annotations are heavily bi-
ased toward the STATEMENT class (195, vs. 61
ACCEPTs and 15 DOUBTs).

6.2. Move Classifier

The move classifier is a multimodal LSTM-based
model, intended to capture contextual information
that conditions the sequence of cognitive states in
a dialogue. Each utterance, including a prior con-
text of w = 3 previous utterances, was processed
through two linear layers (256 and 512 units) fol-
lowed by ReLU activation and an LSTM block of 512
units. The final hidden states of the LSTM block
for each modality of interest were concatenated
and passed through a 512-unit linear layer, tanh,
another 512-unit linear layer, and SiLU before the
classification layer. Fig. 3 shows this architecture.

We optimized for the detection of STATEMENT,
ACCEPT, and DOUBT. To alleviate imbalance
during training, we augmented the data with
SMOTE (Chawla et al., 2002). We trained using
Kaiming initilization with a uniform distribution (He
et al., 2015). All layers except the classification
layer are trained using a triplet loss with a margin of
1 (Balntas et al., 2016) for 200 epochs and a learn-
ing rate of 10�4. Subsequently the entire model
was trained using cross-entropy loss and a learn-
ing rate of 10�3 for 100 epochs, and for 200 further
epochs with a learning rate of 10�4. Hyperparame-
ters were fixed using a search with one group held
out as validation and one group as test, after which
each group was held out in turn while an instance
of the model is trained on the other 9 groups, for

Figure 3: Move classifier architecture.

evaluation on the held-out test group. We ended
up with ten trained instances of the archicture, one
for each group.

6.3. Propositional Extractor

In additional to the cognitive state expressed by
the utterance, we also needed to retrieve the task-
relevant propositional content expressed relative to
the QUDs. We used two methods for this: 1) CGA

(Common Ground Annotation): We automatically
mapped the statement IDs to the propositions ex-
pressed as captured in the common ground anno-
tation. Upon move prediction, we consulted this
mapping to retrieve the propositional content to be
associated with the move in the common ground up-
date. Because annotators had access to the video
channel and all other modalities when annotating
the propositions expressed, this method is a multi-
modally-informed method of propositional extrac-
tion. 2) DP (Dense Paraphrase): We encoded the
dense paraphrase of the input utterance through
BERT (base-uncased). Stop words were filtered
out before encoding. The stop words came from a
standard list, augmented with words that occured in
the transcriptions in 5 or fewer bigrams and are not
number words, color words, or words describing
equality or inequality. BERT vectors were com-
puted by summing over the last 4 encoder layers
and taking the average of the [CLS] token vector
and all individual token vectors in the utterance.



Upon move prediction, we chose the proposition
whose similarly-encoded BERT vector had the high-
est cosine similarity to the utterance embedding.
Only text and a language model were used in this
method, making it unimodal. However, it is im-
portant to note that the annotators of the dense
paraphrased utterance still had access to the video
channel when determining which objects were the
denotata of demonstrative pronouns, meaning that
is some distant signal from the multimodal data
reflected here.

These two methods provide an additional axis of
comparison when computing the common ground
and allow us to measure the performance gain pro-
vided a targeted annotation that directly takes into
account all modalities vs. a method using only text
and a language model.

6.4. Closure Rules

In order to determine the contents of the CG banks
after each utterance, we developed a set of clo-
sure rules consistent with the epistemic model pre-
sented in Section 4. These rules describe how
utterances (specifically, STATEMENTs and AC-
CEPTs) a�ect what is known about the weights
of the blocks, and whether certain possibilities are
more or less likely than others. When the task
begins, the set of possibilities for each block is ini-
tialized to {10, 20, 30, 40, 50}, with no evidence for
or against any of those possibilities (i.e., the evi-
dence_for and evidence_against sets are empty).

Given a STATEMENT or ACCEPT, we first
parsed the propositional content of the utterance
into one or more atomic propositions, p 2 At,
where an atomic proposition consists of a block
name, a relation (=, <, >, or 6=), and a right-hand
side. The right-hand side can either be a weight
2 {10, 20, 30, 40, 50}, a block name, or a set of block
names connected by +. Atomic propositions gen-
erally update knowledge about the block on the
left-hand side of the relation; the exception is if
there is a single block on the right-hand side, and
less is known about the right-hand-side block (as
measured by the relative sizes of the possibility and
evidence sets), in which case that block’s possibili-
ties are updated instead.

Then for each atomic proposition, we updated
the knowledge associated with the relevant block,
according to the move type:

STATEMENTs add evidence for or against cer-
tain weights. Statements of propositions “block =
weight" directly add that weight to the evidence_for
set; e.g., [!Eq(b, 10)][E]Eq(b, 10). For other state-
ments, we compute the set of weights inconsis-
tent with that statement, and add them to the evi-
dence_against set.

ACCEPTs remove weights (specifically, those
inconsistent with the proposition) from the set of
possibilities (and both evidence sets).

Then, from the contents of the possibility and
evidence sets for each block, we generated the
contents of the CG banks:

If there was only one possibility for the weight
of a block, “block = weight" was added to FBank;
e.g., [E]Eq(b, 10) ! [!Eq(b, 10)][B]Eq(b, 10).

Otherwise, for those weights in the block’s ev-
idence_for set, we added “block = weight" to
EBank. Similarly, for those weights in the block’s
evidence_against set, we added “block 6= weight"
to EBank. Inequalities for which evidence existed
also were added to EBank.

For the remaining weights (not in either evidence
set) in the set of possibilities for the block, we added
“block = weight?" to QBank.

Considering the example in Sec. 3.1, since the
group already knows that red = 10 at that point,
once red = blue is accepted as a fact, the closure
rules also elevate blue = 10 to the same epistemic
status as red = 10. All other possibilities for blue
block’s weight are also removed from both evidence
sets.

The ground truth contents of the CG banks were
computed by running the closure rules directly over
the annotated data.

7. Results

Averaged across all groups, the move classification
model achieves a weighted F1 of 0.61. Most mis-
classifications are confusions of STATEMENTs and
ACCEPTs, which a�ect the level of evidence as-
signed to extracted propositions but not the propo-
sitions themselves.

Table 1 shows average DSC per group, for each
bank, with propositional extraction using the Com-
mon Ground Annotation (CGA) method (Sec. 6.3).
We also assess the union of the fact bank and ev-
idence bank, to assess how di�erent modalities
contribute to the extraction of propositional content
and elevation to either status. We compare the
performance using all modalities to using language
features only, in the form of BERT vectors.

We find that in most cases, our common ground
tracker has trouble not with retrieving the right
propositions with the multimodal CGA method, but
with assigning the right level of evidence. This
is seen in the values for the union of FBank and
EBank, which remain high across all groups, even
when the Sørensen-Dice coe�cients of the indi-
vidual FBank or EBank are comparatively lower.
This also tracks the misclassifications made by the
move classifier, as an ACCEPT will elevate a propo-
sition to a fact, while a STATEMENT will keep it in
evidence without removing the corresponding QUD
from QBank.

Incorprating multiple modalities into the move
classifier model usually helps assign propositions
to the correct level of common ground and maintain



Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10

All modalities
QBank 0.777 0.663 0.811 0.841 0.575 0.868 0.845 0.834 0.987 0.551
EBank 0.250 0.574 0.709 0.926 0.391 0.734 0.793 0.063 0.985 0.250
FBank 0.425 0.480 0.418 0.348 0.318 0.315 0.637 0.574 0.000 0.794
F [ E 1.000 0.864 0.939 0.866 0.875 0.880 1.000 0.600 0.996 0.903

Language only
QBank 0.767 0.911 0.829 0.817 0.514 0.868 0.972 0.834 0.987 0.392
EBank 0.344 0.713 0.712 0.812 0.335 0.691 0.904 0.049 0.985 0.262
FBank 0.000 0.528 0.501 0.045 0.165 0.372 0.825 0.526 0.000 0.000
F [ E 1.000 0.922 0.925 0.832 0.959 0.799 0.967 0.585 0.996 0.827

Table 1: Average DSC per group over all CG banks, comparing multimodal features and language only
features. Propositions are extracted using the CGA method.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10

All 1.000 0.864 0.939 0.866 0.875 0.880 1.000 0.600 0.996 0.903
BERT 1.000 0.922 0.925 0.832 0.959 0.799 0.967 0.585 0.996 0.827
openSMILE 1.000 0.922 0.900 0.832 0.880 0.839 1.000 0.947 0.996 0.827
CPS 1.000 0.922 0.900 0.832 0.880 0.815 0.000 0.947 0.996 0.827
Action 1.000 0.922 0.900 0.832 0.880 0.873 0.571 0.947 0.996 0.827
GAMR 1.000 0.922 0.900 0.832 0.880 0.731 0.658 0.947 0.996 0.827

Table 2: Average DSC per group over FBank [ EBank, comparing multimodal features and each individual
modality. Propositions are extracted using the CGA method.

Figure 4: DSC for each bank aggregated across groups, plotted vs. utterance, using all modalities
in the move classifier. [L]: propositional extraction performed using the multimodal CGA method. [R]:
propositional extraction performed using the language-only Dense Paraphrase (DP) method.

greater overlap in the retrieved QUDs relative to
ground truth. However, there is great variety across
groups. For example, Group 2 performs better us-
ing only language, while in Group 9 non-linguistic
features do not change the result. These di�er-
ences can be attributed to how di�erent groups use
di�erent modes of communication to complete the
task (see Sec. 8).

Table 2 shows average DSC per group over
FBank [ EBank, comparing each individual modal-
ity vs. all modalities.

We see here that often, each individual modality
performs similarly or identically, but in 4 out of 10
groups, using all multimodal features results in the
highest performance. However, in other groups,
multimodal features may make no di�erence, or
some other individual feature type is the strongest
predictor of performance. Compare Group 1 and
Group 9, where all modalities perform identically,
with Groups 6 and 7, where they all perform di�er-
ently but multimodal features perform the highest.
This supports the previous observation: di�erent

groups may adopt radically di�erent modal combi-
nations to communicate equivalent information.

Fig. 4 shows the progression of DSC over time,
aggregated across all groups, using all modalities
in the move classifier, but comparing and contrast-
ing the multimodal Common Ground Annotation
(CGA) and language model-based Dense Para-
phrase (DP) methods for proposition extraction.
Including multimodal information improves the re-
trieval of the correct propositions independent of the
level of evidence or factuality assigned to them—as
shown by the consistently high DSC of FBank [
EBank in the left plot.

8. Discussion

Some specific examples show how the language
model-based DP method struggles to extract propo-
sitions from complex utterances. Table 3 shows
how vector comparison over only linguistic infor-
mation tends to struggle with propositions involv-
ing multiple objects. Certain groups, like Group
1, tended to speak full propositions aloud, while



others, like Group 10, mixed modalities (“ten and
ten” is accompanied by gesture and action, which
are accounted for directly by Common Ground An-
notations but not Dense Paraphrases).

Group Utterance (DP) Proposition (Correct?)

1 red block’s ten so then red = 10 (3)
1 yeah ok so now we know that blue blue = 10 (3)block is also ten
5 so red block, blue block are both ten red = 20 and green = 40

in theory ten ten twenty and purple = 10 (7)
5 so the green we think is twenty ok so green = 20 (3)let’s see we can use our hands as well
10 i guess green block is like twenty and red = 50 and green = 20

red block, blue block is like ten and ten and purple = 10 (7)

Table 3: Utterances and propositions retrieved us-
ing DP method.

This reflects Table 2 where, even using the mul-
timodal CGA extraction method, Group 1 achieves
perfect overlap of FBank [ EBank with ground truth
using just language, while the model has to com-
bine modalities to reach its best performance for
Group 10. That Group 1 performance over FBank [
EBank is also perfect using each individual modal-
ity alone suggests that their utterances are strongly
aligned with their non-verbal behavior. Meanwhile,
Group 6 stands out as a particular case where each
individual modality is contributing something dis-
tinct.

Misclassifications of STATEMENTs as ACCEPTs,
or vice versa, may elevate the utterances of cer-
tain participants to fact status, or leave elements in
the Questions Under Discussion when they have
already been resolved. This could also lead to a
certain participant having more apparent influence
over the dialogue. One participant’s beliefs may
update the common ground of the group, and leave
other participants’ beliefs unconsidered. Table 4
shows some examples from Group 10, and demon-
strates how a�rmative language like “yeah” may
be indicative of ACCEPTs elsewhere in the training
data, while “okay” or restatements of propositional
content are typically indicative of STATEMENTs
even when in context they indicate acceptance of
a previously-stated proposition.

Timestamp Utterance Label Prediction

117.46-118.87 yeah they’re together. STATEMENT ACCEPT
217.89-219.78 thirty one thirty two so thirty ACCEPT STATEMENT
218.23-219.00 so okay ACCEPT STATEMENT

Table 4: Sample of utterances from Group 10 mis-
classified by move classifier.

9. Conclusion and Future Work

In this paper we have presented a challenging novel
task: multimodal common ground tracking, and
a novel benchmark over the challenging Weights
Task Dataset. We presented a formal model of com-
mon ground over a shared task and augmented

the WTD with additional gesture, action, and com-
mon ground annotations. We performed a set of
experiments to evaluate the contributions of dif-
ferent modalities toward modeling the cognitive
states of the group, extracting the propositions ex-
pressed, and building common ground structures
as the group proceeds through the task. Our model
will be particularly useful for AI systems deployed
in environments such as classrooms, where they
can track the collective knowledge of a group and
facilitate productive collaborations.

Certain modalities may be more prone to mis-
classifications based on the speaker. For instance,
future work could examine how prosidic features
could be used to detect power dynamics that may
bias the construction of common ground toward
certain people or assertions. Giving the common
ground model additional separate banks for each
speaker would allow an agent to facilitate knowl-
edge sharing and collaboration if it seems like a
subgroup has arrived at a belief not shared by the
whole group. In a task-based environment, the
agent could use the model of common ground to
make task-relevant inferences itself, such as the
algebraic relationship between the block weights
here, allowing it to learn from watching and inter-
acting with the group. Finally, because there is a
one-to-many mapping between propositions and
potential ways to phrase or express them in utter-
ances, the dense paraphrase method for proposi-
tional extraction could benefit from a cross-encoder
approach, as used in coreference research.

Limitations

Although our work addresses a novel and challeng-
ing problem, scaling the pipeline to other use cases
confronts some (surmountable) limitations. For a
given task, the relevant propositions that may popu-
late the common ground need to be determined and
enumerated. The number of propositions scales
naturally to increased cardinality of items, attributes,
and relations within a similar domain (e.g., by com-
puting the Cartesian product of items, attributes,
and binary relations, and subsequently the power-
set of atomic propositions to account for conjunc-
tions like red = 10 ^ blue = 10). Therefore the
complexity of proposition construction is subject
to the complexity of the task and number of task
items. Enumerating the closure rules is straightfor-
ward once the propositions are determined. The
move classifier itself should require no changes
unless there is a change in input modalities. Imbal-
ance within the data categories presents a further
challenge that needs to be addressed. In this pa-
per we used data augmentation approaches like
SMOTE, but precise handling would need to be
determined on a task-specific basis.
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A. Group-wise Move Classifier

Performance

Table 5 shows the performance of the 10 classifiers
with each being trained on 9 di�erent groups, and
evaluated on the remaining 10th.

B. Annotation Procedures and IAA

ELAN (Brugman and Russel, 2004) was the tool
used for most annotation, supplemented by collat-
ing annotations in spreadsheets. As we can see in
Fig. 5, this tool allows annotators to visualize the
data at any point in the videos, and also see all
other annotated modalities. The data is then fea-
turized and used as input for the move classifier.

Tables 6–8 show inter-annotator agreement (IAA)
metrics for the Common Ground, action, and
GAMR annotation per group. Because gestures
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Group

1

Group

2

Group

3

Group

4

Group

5

Group

6

Group

7

Group

8

Group

9

Group

10

Accuracy 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Micro F1 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro F1 0.564 0.360 0.621 0.235 0.512 0.375 0.271 0.389 0.652 0.203
Weighted F1 0.605 0.680 0.768 0.412 0.706 0.737 0.453 0.509 0.791 0.342
Micro Precision 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro Precision 0.583 0.369 0.611 0.200 0.525 0.382 0.288 0.355 0.912 0.167
Weighted Precision 0.604 0.654 0.796 0.350 0.687 0.837 0.526 0.473 0.863 0.281
Micro Recall 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro Recall 0.567 0.365 0.650 0.286 0.516 0.462 0.298 0.433 0.625 0.259
Weighted Recall 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
AUROC 0.500 0.539 0.500 0.563 0.500 0.501 0.476 0.669 0.500 0.531

Table 5: Group-wise performance of the move classifier using hold-one-group-out evaulation method.

Figure 5: Still of annotation procedure using ELAN.

are individualized, GAMR annotations are also bro-
ken down by participant. Means are also provided.

Group F1 score Cohen’s 

1 0.520 0.359
2 0.454 0.295
3 0.492 0.356
4 0.411 0.267
5 0.471 0.503
6 0.639 0.603
7 0.678 0.572
8 0.522 0.712
9 0.575 0.564
10 0.645 0.772
mean 0.541 0.500

Table 6: IAA on Common Ground Annotations.

Group F1 score Cohen’s 

1 0.557 0.464
2 0.651 0.666
3 0.750 0.688
4 0.719 0.654
5 0.804 0.689
6 0.737 0.798
7 0.761 0.660
8 0.583 0.466
9 0.519 0.432
10 0.629 0.458
mean 0.671 0.597

Table 7: IAA on action annotations.



Group Participant F1 Precision Recall

1 1 0.921 0.953 0.890
1 2 0.943 0.917 0.971
1 3 0.899 0.912 0.886
1 µ 0.921 0.927 0.915
2 1 0.846 0.798 0.902
2 2 0.947 0.938 0.957
2 3 0.895 0.850 0.944
2 µ 0.896 0.862 0.934
3 1 0.686 0.720 0.656
3 2 0.809 0.796 0.824
3 3 0.793 0.775 0.811
3 µ 0.763 0.763 0.763
4 1 0.791 0.837 0.750
4 2 0.658 0.807 0.556
4 3 0.817 0.779 0.859
4 µ 0.755 0.808 0.722
5 1 0.824 0.836 0.813
5 2 0.693 0.642 0.754
5 3 0.835 0.853 0.817
5 µ 0.784 0.777 0.795
6 1 0.697 0.704 0.691
6 2 0.628 0.667 0.594
6 3 0.480 0.462 0.500
6 µ 0.602 0.611 0.595
7 1 0.865 0.874 0.857
7 2 0.736 0.724 0.748
7 3 0.667 0.662 0.671
7 µ 0.756 0.753 0.759
8 1 0.782 0.725 0.850
8 2 0.745 0.710 0.784
8 3 0.907 0.925 0.891
8 µ 0.812 0.787 0.841
9 1 0.846 0.846 0.846
9 2 0.600 0.525 0.700
9 3 0.800 0.818 0.783
9 µ 0.749 0.730 0.776
10 1 0.386 0.810 0.254
10 2 0.487 0.631 0.396
10 3 0.584 0.444 0.851
10 µ 0.749 0.730 0.776
µ 1 0.765 0.754 0.806
µ 2 0.738 0.712 0.752
µ 3 0.768 0.789 0.761
µ µ 0.752 0.752 0.773

Table 8: IAA on Gesture-AMR (GAMR) annotation.
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