
Differentiable Combinatorial Scheduling at Scale

Mingju Liu * 1 Yingjie Li * 1 Jiaqi Yin 1 Zhiru Zhang 2 Cunxi Yu 1

Abstract

This paper addresses the complex issue of

resource-constrained scheduling, an NP-hard

problem that spans critical areas including chip

design and high-performance computing. Tradi-

tional scheduling methods often stumble over scal-

ability and applicability challenges. We propose

a novel approach using a differentiable combina-

torial scheduling framework, utilizing Gumbel-

Softmax differentiable sampling technique. This

new technical allows for a fully differentiable

formulation of linear programming (LP) based

scheduling, extending its application to a broader

range of LP formulations. To encode inequality

constraints for scheduling tasks, we introduce con-

strained Gumbel Trick, which adeptly encodes

arbitrary inequality constraints. Consequently,

our method facilitates an efficient and scalable

scheduling via gradient descent without the need

for training data. Comparative evaluations on

both synthetic and real-world benchmarks high-

light our capability to significantly improve the

optimization efficiency of scheduling, surpassing

state-of-the-art solutions offered by commercial

and open-source solvers such as CPLEX, Gurobi,

and CP-SAT in the majority of the designs.

1. Introduction

Nowadays, the computer-aided scheduling techniques have

been widely used in various tasks, such as computing (Cong

& Zhang, 2006; Floudas & Lin, 2005; Davis & Burns, 2011;

Dhall & Liu, 1978; Steiner et al., 2022; Kathail, 2020; Babu

et al., 2021), operations research (Kolisch & Sprecher, 1997;

Laborie et al., 2018; Hartmann & Briskorn, 2022), auto-

mated systems (Booth et al., 2016a;b; Schmitt & Stuetz,

2016; Tran et al., 2017), transportation (Cappart & Schaus,

*Equal contribution 1University of Maryland, College
Park 2Cornell University. Correspondence to: Yingjie Li
<yingjiel@umd.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2017; Gedik et al., 2017; Kinable et al., 2016). Schedul-

ing plays a crucial role in optimizing time, resources, and

productivity, leading to better outcomes and improved effi-

ciency. For example, in the context of computing systems,

scheduling is a critical step in computing systems, ensuring

optimal performance in hardware synthesis by efficiently al-

locating resources and timing, and in compilers by determin-

ing the sequence of operations to optimize code execution

and resource usage.

However, resource- or time-constrained scheduling is a

known NP-hard problem. Despite an extensive body of prior

research and development on either exact or heuristic-based

scheduling methods, contemporary scheduling approaches

still have major limitations:

(1) Unfavorable speed-quality trade-off: Many con-

strained scheduling problems can be solved exactly us-

ing integer linear programming (ILP) (Hwang et al., 1991;

Floudas & Lin, 2005; Steiner et al., 2022; Yin et al., 2022),

satisfiability (SAT) (Steiner, 2010; Zhang et al., 2004;

Coelho & Vanhoucke, 2011), or constraint programming

(CP) formulations (Christofides et al., 1987; Laborie et al.,

2018; Baptiste et al., 2001; Cesta et al., 2002). However,

these approaches suffer from limited scalability. Conversely,

popular heuristic methods (Ahn et al., 2020; Paulin &

Knight, 1989; Graham, 1969; Blum & Roli, 2003; Brucker

et al., 1998) often yield suboptimal results while achieving

feasible run times. Notably, a heuristic method based on

system of difference constraints (SDC) provides an efficient

formulation to encode a rich set of scheduling constraints

in SDC and expresses the optimization objective in a lin-

ear function that can be solved as an LP problem (Cong &

Zhang, 2006; Dai et al., 2018).

(2) Insufficient utilization of modern parallel computing

devices: Existing scheduling algorithms and solvers are

primarily designed for single-threaded CPU execution and

are unable to exploit modern parallel computing devices

like GPUs (Sanders & Kandrot, 2010) and TPUs (Jouppi

et al., 2017).

Recently, machine learning (ML) has been used for com-

binatorial scheduling for compiler and hardware synthesis

to improve its runtime efficiency and explore the expanded

decision space (Bengio et al., 2021; Yu et al., 2018; Yu &

Zhang, 2019; Neto et al., 2022; Wu et al., 2023). There are

1

Differentiable Combinatorial Scheduling at Scale

mainly two categories: imitation learning (Baltean-Lugojan

et al., 2018; Gasse et al., 2019; Gagrani et al., 2022; Wang

et al., 2023), where the policy is learned through supervised

targets while suffering from difficult data collection and

poor model generalizability; reinforcement learning (Mas-

cia et al., 2014; Karapetyan et al., 2017; Chen & Shen,

2019; Yin et al., 2023; Yin & Yu, 2023; Yu, 2020; Neto

et al., 2022), where the policy is learned from the rewards

and potential to outperform the current policy with new dis-

coveries while suffering from limited problem scalability

and significant runtime overhead.

In this work, we introduce a scalable approach to differ-

entiable combinatorial scheduling based on SDC formula-

tions employing Gumbel-Softmax (Jang et al., 2016) for

the differentiation of scheduling variables and crafting con-

straints as differentiable distributions for variable discretiza-

tion. In contrast to existing learning-based approaches,

this allows for the customization of objective functions,

as well as models the optimization problem of scheduling

as a stochastic optimization problem that can be optimized

without training and labeled data collection. As a result,

our approach introduces an auto-differentiation process for

solving combinatorial scheduling without model training.

This new approach distinguishes itself from conventional

methods by its ability to scale global optimization through

parallel computing resources. Moreover, the proposed

technique seamlessly integrates with existing ML frame-

works like PyTorch, ensuring fast and practical implementa-

tion. Our experimental results demonstrate significant im-

provements in optimization efficiency over state-of-the-art

(SOTA) methods solved with commercial solvers CPLEX

(IBM, 2023), Gurobi (Gurobi Optimization, LLC, 2023) and

open-source CP-SAT solver (Perron & Didier; Perron et al.,

2023). Our experimental setups and implementations are

available at https://github.com/Yu-Maryland/

Differentiable_Scheduler_ICML24.

2. Preliminary

2.1. Scheduling and Problem Formulation

Scheduling is one of the most extensively studied combina-

torial problems with a wide range of real-world applications.

This work focuses on scheduling a dataflow graph, with

the input represented as a directed acyclic graph (DAG)

G(V,E). In the domain of computing systems, these graphs

consist of nodes V , representing tasks that execute specific

computations such as arithmetic, logical operations, or ML

operators. The edges E represent the flow of data between

these nodes. Additional cost metrics can be associated with

the nodes and/or edges of the graph in the form of weights.

Moreover, a set of scheduling constraints, such as timing

constraints and resource constraints, are often specified as

part of the formulation, depending on the target schedul-

ing problem. The goal of the optimization is to generate

a schedule S = s0, s1, ...si, i ≤ |V |, where si represents

the scheduled stage of node vi, in order to satisfy the given

constraints while minimizing or maximizing an objective

which is a function of S.

The targeted scheduling in this work is defined as follows:

Given a DAG G(V,E), where V is the list of nodes to be

scheduled, each associated with a per-node resource cost,

and E are weighted edges capturing dependency constraints

and edge costs. Latency L is the time-to-completion for

the entire graph, representing the time between the initi-

ation and completion of the computational task captured

by the DAG. The objective is to optimize the schedule

w.r.t the dependency constraints under a given latency L
while minimizing the cost. In other words, we are solving a

latency-constrained min-resource scheduling.

System of Difference Constraint (SDC) – An SDC is a

system of difference constraints in the integer difference

form, denoted as xi − xj ≤ cij , where cij is an inte-

ger constant, and xi and xj are discrete variables. SDC

scheduling has been deployed in multiple commercial and

open-source high-level synthesis (HLS) tools, such as AMD

Xilinx Vivado/Vitis HLS (Kathail, 2020; Cong et al., 2011)

and Google XLS (Babu et al., 2021). An SDC is feasible

if there exists a solution that satisfies all inequalities in the

system. Due to the restrictive form of these constraints,

the underlying constraint matrix of SDC is totally unimodu-

lar (Camion, 1965), enabling the problem (feasibility checks

or optimization) to be solvable in polynomial time with LP

solving while ensuring integral solutions. These constraints

can be incorporated with a linear objective to formulate an

optimization problem, which is leveraged in this work to

handle the dependency constraints (Section 3).

− ≤

− ≤

− ≤

− ≤

− ≤

Figure 1: Example of SDC-based scheduling — (left) A

DFG with two schedule stages l0 and l1 with latency L = 3;

(right) Dependence constraints and objective functions in-

cluding peak memory minimization and inter-stage commu-

nication minimization (the blue crosses)

We illustrate the SDC-based scheduling formulation with

a simple data flow graph (DFG) in Figure 1. To manage

the dependencies, SDC establishes a difference constraint

for each data edge from operation i to operation j within

2

Differentiable Combinatorial Scheduling at Scale

the DFG, denoted as si − sj ≤ 0. In our example, since

there is an edge from node v0 to node v4, SDC introduces

the difference constraint s0 − s4 ≤ 0, ensuring that v4
is scheduled no earlier than v0. Similar constraints are

formulated for other data-dependent edges. In this work,

we leverage SDC formulation with a new technique that

implements a fully differentiable SDC to handle dependency

constraints in scheduling.

Constraint Programming (CP) – CP is a paradigm for

solving combinatorial problems and is an effective method

for addressing scheduling problems by allowing both dis-

crete variables and non-linear constraints (Laborie et al.,

2018). Unlike LP, which focuses on optimizing a linear ob-

jective function and requires constraints to be linear, CP is

based on feasibility (finding a feasible solution) rather than

optimization (finding an optimal solution). It focuses on the

constraints and variables rather than the objective function,

which leads to its superiority in managing complex and log-

ical constraints. This makes it ideal for loosely constrained

discrete sequencing problems with disjunctive constraints.

For example, CP is used to solve the problem of execution

time minimization of compute graphs subject to a memory

budget (Laborie et al., 2018; Bartan et al., 2023). However,

while CP provides significant flexibility and powerful con-

straint satisfaction capabilities, it can also face challenges

with scalability and efficiency.

Learning-based Scheduling – ML approaches have been

explored for combinatorial scheduling, particularly in com-

piler optimization and hardware synthesis, to enhance the

Pareto frontier of runtime and quality. Topoformer (Gagrani

et al., 2022) introduces a novel attention-based graph neural

network architecture for topological ordering, focusing on

learning embeddings for graph nodes. While Topoformer

has provided significant insights and demonstrated poten-

tial in leveraging ML for scheduling, its generalizability

and scalability heavily depend on the availability and vol-

ume of data. Conversely, reinforcement learning (RL) with

graph learning-based schedulers (Chen & Shen, 2019; Yin

et al., 2023; Yin & Yu, 2023) aims to improve scalability

and generalizability by learning from action rewards, thus

eliminating the need for extensive data collection and model

generalization required by supervised learning. However,

these RL-based approaches still face challenges related to

problem scalability, generalizability, and substantial runtime

overhead in training.

Heuristic scheduling algorithms Heuristic scheduling al-

gorithms (Ahn et al., 2020; Graham, 1969; Paulin & Knight,

1989; Blum & Roli, 2003) play a critical role in scheduling

as well. Notable examples include list scheduling (Graham,

1969), a greedy algorithm that prioritizes tasks based on a

predefined order, and force-directed scheduling (Paulin &

Knight, 1989), which aims to balance tasks and resources it-

eratively to achieve latency-constrained, minimum-resource

scheduling. In addition, stochastic heuristic methods such

as evolutionary algorithms (Blum & Roli, 2003; Wall, 1996)

and simulated annealing (Van Laarhoven et al., 1992) are

particularly effective in escaping local optima in complex

scheduling spaces. While heuristic approaches mostly focus

on finding feasible solutions at low runtime costs, they often

fall short of reaching the optimal solution.

2.2. Gumbel-Softmax

Gumbel-Softmax is a continuous distribution on the sim-

plex which can be used to approximate discrete samples

(Maddison et al., 2016; Jang et al., 2016; Gumbel, 1954).

With Gumbel-Softmax, discrete samples can be differen-

tiable and their parameter gradients can be easily computed

with standard backpropagation. Let z be the discrete sample

with one-hot representation with k dimensions and its class

probabilities are defined as p1, p2, ..., pk. Then, according

to the Gumbel-Max trick proposed by (Gumbel, 1954), the

discrete sample z can be presented by:

z = one hot(argmax
i

[gi + logpi]) (1)

where gi are i.i.d samples drawn from Gumbel(0, 1). Then,

we can use the differentiable approximation Softmax to

approximate the one-hot representation for z, i.e., ∇pz ≈
∇py:

yi =
exp((log(pi) + gi)/τ)∑k
i=1

exp((log(pi) + gi)/τ)
(2)

where i = 1, 2, ..., k. The softmax temperature τ is in-

troduced to modify the distributions over discrete levels.

Softmax distributions will become more discrete and iden-

tical to one-hot encoded discrete distribution as τ → 0,

while at higher temperatures, the distribution becomes more

uniform as τ → ∞ (Jang et al., 2016). Gumbel-Softmax

distributions have a well-defined gradient ∂y
∂p

w.r.t the class

probability p. When we replace discrete levels with Gumbel-

Softmax distribution depending on its class probability, we

are able to use backpropagation to compute gradients.

Gumbel-Softmax provides solutions for the differentiation

of discrete scheduling and discrete design space explorations

in neural architecture search and quantization tasks (Wu

et al., 2019; 2018; He et al., 2020; Fu et al., 2021a;b; Baevski

et al., 2019). For instance, (Wang et al., 2023) leverages

the Gumbel trick as well as Sinkhorn iterations for combi-

natorial optimization and utilizes Sinkhorn to implement

the problem constraints. However, the study of constrained

discrete search and optimization through sampling methods,

such as the Gumbel-Softmax, has not been extensively ex-

plored, which is particularly critical in scheduling and many

other combinatorial optimization problems.

3

Differentiable Combinatorial Scheduling at Scale

3. Approach

We propose a novel differentiable approach that compactly

encodes our targeted scheduling problem defined in Section

2.1, which can also be applied to a variety of important

scheduling problems on dataflow graphs. Specifically, our

method is capable of modeling (1) scheduling constraints in

the SDC form and (2) an objective function for resource/cost

minimization, both in a differentiable manner. We further

introduce a novel constrained Gumbel Trick, enabling highly

parallelizable scheduling optimization through a sampling-

based process with gradient descent.

The remainder of this section will describe the formula-

tion of the targeted scheduling problem in the SDC form,

detailing the (1) definition of the search space, (2) mod-

eling of dependencies, and (3) cost metrics (optimization

objectives). Afterward, we will present our differentiable

approach, aligning it with these three key components.

3.1. Differentiable SDC

With our latency-constrained min-resource scheduling prob-

lem, we intend to schedule the node set V on L scheduling

stages while minimizing the cost objectives defined in Sec-

tion 3.2. Note that we allow node chaining, which means

two dependent nodes can be scheduled in the same stage,

but a node cannot be scheduled earlier than its predecessor.

As mentioned earlier, a critical aspect of scheduling is honor-

ing the dependencies between nodes, which can be specified

using SDC. Specifically, these dependencies are translated

into integer linear inequalities, which ensure that the re-

sulting schedule adheres to the necessary precedence and

resource constraints, maintaining the integrity of the data

flow. Specifically, the inequality constraints can be summa-

rized w.r.t the edges E,

∀e(i, j) ∈ E : si − sj ≤ cij (3)

where e(i, j) denotes an edge that connects node i to node

j. The term si and sj are the schedule variables for nodes i
and j, respectively. Given that we operate under a latency

constraint L, all schedule variables follow constraint ≤ L.

To fully encode the scheduling problem as a differentiable

model, our approach first addresses the vectorization of

the search space, i.e., the vectorization of SDC variables,

and then handles the integer inequality constraints with

differentiable modeling.

3.1.1. SEARCH SPACE VECTORIZATION

Given latency constraint L, a vector p in R
L represents the

probability vector of the scheduling decision −→s for a given

node, and the sampled decision −→s is generated via hard

Gumbel-Softmax −→s = GS(p). As Equation 1 indicates, −→s
is a one-hot vector, which contains a single ‘1’ in its tth

coordinate and zeros elsewhere, indicating the variable is

scheduled at the scheduling stage t, while p represents the

probability distribution of t falling into [0, L − 1]. There-

fore, for any scheduled variable vectorized as p in R
L, its

corresponding integer solution space can be defined as t
∈ [0, L− 1] and L is the latency upper bound.

Therefore, in the context of an SDC-encoded schedule, the

solution values for each variable can be defined within its

vector representation, i.e., −→si ∈ R
L, with argmax(−→si) ∈

[0, L − 1]. The search space can be fully vectorized by

defining all the schedule variables in SDC forms and captur-

ing their dependencies in SDC. Given a DAG G(V,E), our

differentiable approach will first define the schedule vari-

ables in vector representation, for all −→si ∈ R
L, i ∈ V . This

vectorization establishes a bijection between each integer

value and its corresponding one-hot vector. Considering

all schedule variables, the search space can be effectively

represented by the tensor product of these one-hot vectors.

As a result, the total optimizable parameters are in R
|V |×L.

3.1.2. DIFFERENTIABLE MODELING OF INEQUALITY

CONSTRAINTS

The next critical step is to ensure the dependency constraints

are met using the proposed approach. Specifically, our

differentiable scheduling aims to incorporate the depen-

dency constraints defined in E as input, following the in-

teger inequalities constraints in SDC, shown in Equation

3. To encode these inequalities in a differentiable manner,

we utilize the cumulative sum (cumsum) function. For a

schedule variable represented as a one-hot vector −→si , the

transformation using cumsum yields cumsum(−→si), con-

verting −→si into its cumulative sum representation. Gener-

ally, the cumulative sum of a vector v = [v0, v1, ..., vn] is

v′ = [v0, v0 + v1, ...,
∑n

i=0
vi]. For one-hot vectors, this

transformation indicates the feasible space for subsequent

Gumbel-softmax sampling operations.

Given an integer inequality constraint si − sj ≤ cij , we

express it in vector form as −→si
cij
−−→ −→sj , where −→si is the sam-

pled discrete solution of si, and we define a transformation

T≤ : Rn × R → R
n for the ”≤” constraint, where +̂ is an

operator that rolls the ’1’ to the right in the one-hot vector

by |cij | position(s):

T≤(
−→si , cij) = cumsum(−→si +̂|cij |) (4)

This transformation T≤(
−→si , cij) effectively constrains the

solution space for sj , represented as −→sj . Note that non-zero

cij can be used to capture additional timing constraints.

Example – We illustrate the differentiable integer inequality

modeling using the constraint s0 − s1 ≤ 0, with s0, s1 ∈
R

3. Let the initial sampling of −→s0 be [0, 1, 0], such that

s0 evaluates to ‘1‘. Then, T≤ evaluates to [0, 1, 1], which

implies that if s0 = 1, s1 can only be sampled as 1 or 2,

4

Differentiable Combinatorial Scheduling at Scale

which can be confirmed by the original integer inequality

constraint. If additional timing constraint is given, e.g.,

cij = −1, T≤ will be evaluated to [0, 0, 1] by rolling T≤ to

the right by one position, which results in s1 = 2 to satisfies

the additional timing constraint.

Therefore, we introduce the constrained Gumbel Trick, en-

abling our model to handle inequality constraints. We use

T≤ in conjunction with Gumbel distribution sampling to

ensure that the sampling always satisfies the constraints:

y′i =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

·T≤, g ∼ Gumbel(0, 1)

(5)

Lemma 3.1. For the inequalities si−sj ≤ cij , the transfor-

mation T≤ ensures any sampled vector space for sj satisfies

the inequality.

Proof. Consider any arbitrary constraint si − sj ≤ cij . The

transformation T≤ applied to −→si restricts the feasible vector

space for −→sj . Any vector −→sj sampled from this space will

satisfy the inequality when converted back to integer values

via the bijection.

3.2. Optimization Process and Objectives

Targeting latency-constrained min-resource scheduling, the

optimization process aims to search for the best possible

scheduling solutions with the given latency and dependency

constraints, guided by a loss function that minimizes re-

source costs.

3.2.1. OPTIMIZATION PROCESS

As discussed in Section 3.1, the latency constraint is mod-

eled via our vectorization process of schedule variables,

and the dependency constraints are ensured via differen-

tiable inequality modeling. The core of this process is the

constrained Gumbel Trick, where we employ vectorized rep-

resentations of scheduling decisions. Firstly, we calculate

the logits for each scheduling decision, then we incorporate

these logits into the GS function with our constraint trans-

formations to obtain the sampling probabilities. The process

can be mathematically formulated as follows:

Let −→s be the vector representation of a schedule variable.

We make use of the GS function with the constrained Gum-

bel Trick in Equation 5 to obtain the sampling probability:

P = GS(T≤(
−→s , c); τ), (6)

where P ∈ R
L and P i ∈ [0, 1] for each i ∈ [0, L − 1]

with L being the scheduling depth upper bound. Here, T≤

represents the transformation for inequality constraints and

GS(·; τ) is the GS function with temperature τ .

The probability of selecting a scheduling solution can be

calculated by considering both the conditional probabili-

ties under the constraints and the overall probability of the

solution being feasible. For a scheduling solution k, the

probability P (i) for a node i can be computed as:

P (i) = P (i|k) · P (k) (7)

= P (i|k) · p(cl(i)) (8)

where P (i|k) is the conditional probability of choosing node

i given the scheduling solution k, and p(cl(i)) represents

the probability of the scheduling class cl(i) being feasible

under the given constraints.

3.2.2. DIFFERENTIABLE COST MODELS

Finally, we introduce a differentiable loss function that inte-

grates the target objectives. As discussed in Section 2.1, we

target the scheduling problem of minimizing two cost objec-

tives associated with the nodes and edges of the graph in the

form of weights: 1) maximum memory resource utilization

calculated with weights of the nodes, and 2) cross-stage

communication cost with the weights of the edges.

Specifically, we illustrate the two targeted optimization ob-

jectives and metrics using the example in Figure 1. Consid-

ering a schedule where v0, v1, and v2 execute in the first

stage, while v5 executes in the last stage, the communica-

tion cost is then calculated as the sum of all data transferred

between stages I0 and I1. As for the memory cost, peak

memory refers to the maximum memory used across all

stages. Note that the cost metrics can be assessed uniquely

w.r.t a given schedule.

To enable parallelizable optimization using gradient descent

w.r.t the target objectives, we integrate a differentiable cost

function L based on the scheduling result. To minimize

memory usage under a latency constraint, we define the

memory loss function Le, which includes the entropy of

scheduled nodes over L stages:

Le = −

L−1∑

i=0

Ni

M
log

Ni

M
(9)

where Ni represents the memory of all nodes at the i-th
stage, and M is the total memory of all nodes. Assuming

uniform memory requirements for each node, Ni is equiva-

lent to the number of nodes at the i-th stage, and M = |V |,
the total node count. Minimizing Le aims to evenly dis-

tribute the required memory across stages, which correlates

to minimizing the peak memory resource cost. The effective-

ness of this entropy-based approach for scheduling resource

minimization is originally proven in (Wang et al., 2010).

Furthermore, to account for the minimization of commu-

nication cost, we add Lc into the loss functions. In this

5

Differentiable Combinatorial Scheduling at Scale

Acknowledgement

This work is supported in part by National Science Foun-

dation (NSF) awards #2047176, #2019306, #2019336,

#2008144, #2229562, #2403134, #2403135, and ACE, one

of the seven centers in JUMP 2.0, a Semiconductor Research

Corporation (SRC) program sponsored by DARPA.

Impact Statement

This paper aims to advance the field of Machine Learning

through the development of a novel differentiable combina-

torial scheduling algorithm. Our work has many potential

societal implications, including enhanced efficiency over

industrial SOTA methods. Finally, this work does not raise

any ethical concerns that need to be addressed at this time.

References

Ahn, B. H., Lee, J., Lin, J. M., Cheng, H.-P., Hou, J., and Es-

maeilzadeh, H. Ordering chaos: Memory-aware schedul-

ing of irregularly wired neural networks for edge devices.

Proceedings of Machine Learning and Systems, 2:44–57,

2020.

Amarú, L., Gaillardon, P.-E., and De Micheli, G. The

epfl combinational benchmark suite. In Proceedings of

the 24th International Workshop on Logic & Synthesis

(IWLS), number CONF, 2015.

Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu,

Q., Goyal, N., Singh, K., von Platen, P., Saraf, Y.,

Pino, J., et al. Xls-r: Self-supervised cross-lingual

speech representation learning at scale. arXiv preprint

arXiv:2111.09296, 2021.

Baevski, A., Schneider, S., and Auli, M. vq-wav2vec: Self-

supervised learning of discrete speech representations.

arXiv preprint arXiv:1910.05453, 2019.

Baltean-Lugojan, R., Misener, R., Bonami, P., and Tramon-

tani, A. Strong sparse cut selection via trained neural nets

for quadratic semidefinite outer-approximations. Imperial

College, London, Tech. Rep, 2018.

Baptiste, P., Le Pape, C., and Nuijten, W. Constraint-based

scheduling: applying constraint programming to schedul-

ing problems, volume 39. Springer Science & Business

Media, 2001.

Bartan, B., Li, H., Teague, H., Lott, C., and Dilkina, B.

Moccasin: Efficient tensor rematerialization for neural

networks, 2023.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning

for combinatorial optimization: a methodological tour

d’horizon. European Journal of Operational Research,

290(2):405–421, 2021.

Blum, C. and Roli, A. Metaheuristics in combinatorial opti-

mization: Overview and conceptual comparison. ACM

computing surveys (CSUR), 35(3):268–308, 2003.

Booth, K. E., Nejat, G., and Beck, J. C. A constraint pro-

gramming approach to multi-robot task allocation and

scheduling in retirement homes. In Principles and Prac-

tice of Constraint Programming: 22nd International Con-

ference, CP 2016, Toulouse, France, September 5-9, 2016,

Proceedings 22, pp. 539–555. Springer, 2016a.

Booth, K. E., Tran, T. T., Nejat, G., and Beck, J. C. Mixed-

integer and constraint programming techniques for mo-

bile robot task planning. IEEE Robotics and Automation

Letters, 1(1):500–507, 2016b.

Brucker, P., Knust, S., Schoo, A., and Thiele, O. A branch

and bound algorithm for the resource-constrained project

scheduling problem. European journal of operational

research, 107(2):272–288, 1998.

Camion, P. Characterization of totally unimodular matrices.

Proceedings of the American Mathematical Society, 16

(5):1068–1073, 1965.

Cappart, Q. and Schaus, P. Rescheduling railway traffic

on real time situations using time-interval variables. In

Integration of AI and OR Techniques in Constraint Pro-

gramming: 14th International Conference, CPAIOR 2017,

Padua, Italy, June 5-8, 2017, Proceedings 14, pp. 312–

327. Springer, 2017.

Cesta, A., Oddi, A., and Smith, S. F. A constraint-based

method for project scheduling with time windows. Jour-

nal of Heuristics, 8:109–136, 2002.

Chen, H. and Shen, M. A deep-reinforcement-learning-

based scheduler for fpga hls. In 2019 IEEE/ACM In-

ternational Conference on Computer-Aided Design (IC-

CAD), pp. 1–8, 2019. doi: 10.1109/ICCAD45719.2019.

8942126.

Christofides, N., Alvarez-Valdés, R., and Tamarit, J. M.

Project scheduling with resource constraints: A branch

and bound approach. European journal of operational

research, 29(3):262–273, 1987.

Coelho, J. and Vanhoucke, M. Multi-mode resource-

constrained project scheduling using rcpsp and sat solvers.

European Journal of Operational Research, 213(1):73–

82, 2011.

Cong, J. and Zhang, Z. An efficient and versatile scheduling

algorithm based on sdc formulation. In Proceedings of

the 43rd annual Design Automation Conference, pp. 433–

438, 2006.

10

Differentiable Combinatorial Scheduling at Scale

Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K.,

and Zhang, Z. High-level synthesis for fpgas: From pro-

totyping to deployment. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 30(4):

473–491, 2011.

Dai, S., Liu, G., and Zhang, Z. A scalable approach to exact

resource-constrained scheduling based on a joint sdc and

sat formulation. In Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays, pp. 137–146, 2018.

Davis, R. I. and Burns, A. A survey of hard real-time

scheduling for multiprocessor systems. ACM computing

surveys (CSUR), 43(4):1–44, 2011.

Dhall, S. K. and Liu, C. L. On a real-time scheduling

problem. Operations research, 26(1):127–140, 1978.

Floudas, C. A. and Lin, X. Mixed integer linear program-

ming in process scheduling: Modeling, algorithms, and

applications. Annals of Operations Research, 139:131–

162, 2005.

Fu, Y., Zhang, Y., Li, C., Yu, Z., and Lin, Y. A3c-s: Auto-

mated agent accelerator co-search towards efficient deep

reinforcement learning. In 2021 58th ACM/IEEE Design

Automation Conference (DAC), pp. 13–18. IEEE, 2021a.

Fu, Y., Zhang, Y., Zhang, Y., Cox, D., and Lin, Y. Auto-nba:

Efficient and effective search over the joint space of net-

works, bitwidths, and accelerators. In International Con-

ference on Machine Learning, pp. 3505–3517. PMLR,

2021b.

Gagrani, M., Rainone, C., Yang, Y., Teague, H., Jeon, W.,

Hoof, H. V., Zeng, W. W., Zappi, P., Lott, C., and Bon-

desan, R. Neural topological ordering for computation

graphs, 2022.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,

A. Exact combinatorial optimization with graph convolu-

tional neural networks. Advances in neural information

processing systems, 32, 2019.

Gedik, R., Kirac, E., Milburn, A. B., and Rainwater, C. A

constraint programming approach for the team orienteer-

ing problem with time windows. Computers & Industrial

Engineering, 107:178–195, 2017.

Graham, R. L. Bounds on multiprocessing timing anomalies.

SIAM journal on Applied Mathematics, 17(2):416–429,

1969.

Gumbel, E. J. Statistical theory of extreme values and some

practical applications: a series of lectures, volume 33.

US Government Printing Office, 1954.

Gurobi Optimization, LLC. Gurobi Optimizer Reference

Manual, 2023. URL https://www.gurobi.com.

Hartmann, S. and Briskorn, D. An updated survey of vari-

ants and extensions of the resource-constrained project

scheduling problem. European Journal of operational

research, 297(1):1–14, 2022.

He, C., Ye, H., Shen, L., and Zhang, T. Milenas: Efficient

neural architecture search via mixed-level reformulation.

In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 11993–12002,

2020.

Hwang, C.-T., Lee, J.-H., and Hsu, Y.-C. A formal approach

to the scheduling problem in high level synthesis. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 10(4):464–475, 1991.

IBM, I. I. Ibm(r) ilog(r) cplex(r) interactive optimizer

22.1.1.0. 2023.

Jang, E., Gu, S., and Poole, B. Categorical repa-

rameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,

G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,

A., et al. In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th annual inter-

national symposium on computer architecture, pp. 1–12,

2017.

Karapetyan, D., Punnen, A. P., and Parkes, A. J. Markov

chain methods for the bipartite boolean quadratic pro-

gramming problem. European Journal of Operational

Research, 260(2):494–506, 2017.

Kathail, V. Xilinx vitis unified software platform. In Pro-

ceedings of the 2020 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, pp. 173–174,

2020.

Kinable, J., van Hoeve, W.-J., and Smith, S. F. Optimization

models for a real-world snow plow routing problem. In

Integration of AI and OR Techniques in Constraint Pro-

gramming: 13th International Conference, CPAIOR 2016,

Banff, AB, Canada, May 29-June 1, 2016, Proceedings

13, pp. 229–245. Springer, 2016.

Kolisch, R. and Sprecher, A. Psplib-a project scheduling

problem library: Or software-orsep operations research

software exchange program. European journal of opera-

tional research, 96(1):205–216, 1997.

Laborie, P., Rogerie, J., Shaw, P., and Vilı́m, P. Ibm ilog cp

optimizer for scheduling: 20+ years of scheduling with

constraints at ibm/ilog. Constraints, 23:210–250, 2018.

11

Differentiable Combinatorial Scheduling at Scale

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete

distribution: A continuous relaxation of discrete random

variables. arXiv preprint arXiv:1611.00712, 2016.

Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., and

Stützle, T. Grammar-based generation of stochastic lo-

cal search heuristics through automatic algorithm con-

figuration tools. Computers & operations research, 51:

190–199, 2014.

Neto, W. L., Li, Y., Gaillardon, P.-E., and Yu, C. End-

to-end automatic logic optimization exploration via

domain-specific multi-armed bandit. arXiv preprint

arXiv:2202.07721, 2022.

Paulin, P. G. and Knight, J. P. Force-directed scheduling

for the behavioral synthesis of asics. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 8(6):661–679, 1989.

Perron, L. and Didier, F. Cp-sat. URL https:

//developers.google.com/optimization/

cp/cp_solver/.

Perron, L., Didier, F., and Gay, S. The cp-sat-lp solver. In

Yap, R. H. C. (ed.), 29th International Conference on

Principles and Practice of Constraint Programming (CP

2023), volume 280 of Leibniz International Proceedings

in Informatics (LIPIcs), pp. 3:1–3:2, Dagstuhl, Germany,

2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

ISBN 978-3-95977-300-3. doi: 10.4230/LIPIcs.CP.2023.

3. URL https://drops.dagstuhl.de/opus/

volltexte/2023/19040.

Reagen, B., Adolf, R., Shao, Y. S., Wei, G.-Y., and Brooks,

D. Machsuite: Benchmarks for accelerator design and

customized architectures. In 2014 IEEE International

Symposium on Workload Characterization (IISWC), pp.

110–119. IEEE, 2014.

Sanders, J. and Kandrot, E. CUDA by example: an intro-

duction to general-purpose GPU programming. Addison-

Wesley Professional, 2010.

Schmitt, M. and Stuetz, P. Perception-oriented cooperation

for multiple uavs in a perception management framework:

System concept and first results. In 2016 IEEE/AIAA 35th

Digital Avionics Systems Conference (DASC), pp. 1–10.

IEEE, 2016.

Steiner, B., Elhoushi, M., Kahn, J., and Hegarty, J. Olla:

Decreasing the memory usage of neural networks by opti-

mizing the lifetime and location of arrays. arXiv preprint

arXiv:2210.12924, 2022.

Steiner, W. An evaluation of smt-based schedule synthesis

for time-triggered multi-hop networks. In 2010 31st IEEE

Real-Time Systems Symposium, pp. 375–384. IEEE, 2010.

Tran, T. T., Vaquero, T., Nejat, G., and Beck, J. C. Robots

in retirement homes: Applying off-the-shelf planning

and scheduling to a team of assistive robots. Journal of

Artificial Intelligence Research, 58:523–590, 2017.

Van Laarhoven, P. J., Aarts, E. H., and Lenstra, J. K. Job

shop scheduling by simulated annealing. Operations

research, 40(1):113–125, 1992.

Wall, M. B. A genetic algorithm for resource-constrained

scheduling. PhD thesis, Massachusetts Institute of Tech-

nology, 1996.

Wang, R., Shen, L., Chen, Y., Yang, X., and Yan, J. Towards

one-shot neural combinatorial solvers: Theoretical and

empirical notes on the cardinality-constrained case. In

ICLR, 2023.

Wang, X., Gao, L., Zhang, C., and Shao, X. A multi-

objective genetic algorithm based on immune and en-

tropy principle for flexible job-shop scheduling problem.

The International Journal of Advanced Manufacturing

Technology, 51:757–767, 2010.

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., and Keutzer,

K. Mixed precision quantization of convnets via dif-

ferentiable neural architecture search. arXiv preprint

arXiv:1812.00090, 2018.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,

Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardware-

aware efficient convnet design via differentiable neural

architecture search. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 10734–10742, 2019.

Wu, N., Li, Y., Hao, C., Dai, S., Yu, C., and Xie, Y.

Gamora: Graph learning based symbolic reasoning for

large-scale boolean networks. Design Automation Con-

ference (DAC’23), 2023.

Xu, X., Shah, N., Evans, A., Sinha, S., Cline, B., and

Yeric, G. Standard cell library design and optimization

methodology for asap7 pdk. In 2017 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD),

pp. 999–1004. IEEE, 2017.

Yin, J. and Yu, C. Accelerating exact combinatorial op-

timization via rl-based initialization – a case study in

scheduling, 2023.

Yin, J., Zhang, Z., and Yu, C. Exact memory-and

communication-aware scheduling of dnns on pipelined

edge tpus. In 2022 IEEE/ACM 7th Symposium on Edge

Computing (SEC), pp. 203–215. IEEE, 2022.

Yin, J., Li, Y., Robinson, D., and Yu, C. Respect: Reinforce-

ment learning based edge scheduling on pipelined coral

edge tpus. arXiv preprint arXiv:2304.04716, 2023.

12

Differentiable Combinatorial Scheduling at Scale

Yu, C. Flowtune: Practical multi-armed bandits in boolean

optimization. In Proceedings of the 39th International

Conference on Computer-Aided Design, pp. 1–9, 2020.

Yu, C. and Zhang, Z. Painting on placement: Forecasting

routing congestion using conditional generative adver-

sarial nets. In Proceedings of the 56th Annual Design

Automation Conference 2019, pp. 1–6, 2019.

Yu, C., Xiao, H., and De Micheli, G. Developing synthesis

flows without human knowledge. In Proceedings of the

55th Annual Design Automation Conference, pp. 1–6,

2018.

Zhang, H., Li, D., and Shen, H. A sat based scheduler for

tournament schedules. In SAT, 2004.

Zhang, Y., Ren, H., Sridharan, A., and Khailany, B. Gatspi:

Gpu accelerated gate-level simulation for power improve-

ment. In Proceedings of the 59th ACM/IEEE Design

Automation Conference, pp. 1231–1236, 2022.

Zhou, Y., Gupta, U., Dai, S., Zhao, R., Srivastava, N., Jin,

H., Featherston, J., Lai, Y.-H., Liu, G., Velasquez, G. A.,

et al. Rosetta: A realistic high-level synthesis benchmark

suite for software programmable fpgas. In Proceedings

of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 269–278, 2018.

13

