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Abstract—Parameter-efficient Fine-tuning (PEFT) methods
have emerged as powerful techniques for adapting pre-trained
Large Language Models (LLMs) to specific tasks with reduced
computational and memory overhead. However, despite their
promising potential, there remains a gap in understanding how
these methods perform in distributed computing settings. In
this paper, we present a comprehensive characterization of the
communication dynamics in distributed PEFT for LLMs. Our
study emphasizes the crucial role of communication efficiency
in the performance and scalability of PEFT methods when
utilized across GPU clusters. Through systematic analysis of
various PEFT techniques and LLM sizes, we have illustrated how
communication overhead can significantly impact throughput,
training time, and overall model performance. Our findings
indicate that PEFT methods inherently reduce communication
and computational burdens compared to full fine-tuning. These
improvements yield up to 1.75x speedup by using PEFT methods
such as Low-Rank Adaptation (LoRA) to fine-tune GPT-like bil-
lion parameter generative LLMs. We conduct this characteriza-
tion study on modern GPU clusters with InfiniBand interconnect
with up to 32 NVIDIA A100 GPUs. To the best of our knowledge,
this is the first effort that evaluates the performance of PEFT
methods in distributed computing environments. Ultimately, this
work strives to provide valuable insights into the efficacy and
practical implications of employing PEFT methods and facilitate
the development of scalable approaches for fine-tuning large-scale
models.

Index Terms—Parameter-efficient Fine-tuning, Distributed
Training, Large Language Models, GPU Clusters

I. INTRODUCTION

The recent development of Large Language Models
(LLMs) [1]–[3] represents a significant milestone in natural
language processing (NLP) [4] and artificial intelligence (AI).
These models [1]–[3], known for their massive scale and
impressive abilities, have transformed various NLP tasks [5]–
[10], including text generation [5], [6], translation [7], [8],
sentiment analysis [9], and question-answering [10]. In partic-
ular, transformer architectures [11] with billions of parameters
such as BERT [12], GPT [13], and T5 [14] have been trained
on extensive text data. This thorough pre-training allows
them to acquire complex and contextually nuanced language
representations.
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The pre-training phase of LLMs [15] is often followed
by fine-tuning on a downstream task [16]. Fine-tuning an
LLM is the process of adapting a pre-trained model to a
specific task or domain by continuing the training on a task-
specific dataset. Fine-tuning leverages pre-existing knowledge
and refines the model’s abilities using the task-specific dataset.
However, just like pre-training, as model size increases, fine-
tuning becomes computationally intensive due to the sheer
volume of parameters involved. Updating all these parameters
requires significant computational power and memory. This
highlights the need for efficient strategies to address compu-
tational constraints while leveraging the benefits of transfer
learning [17].

Parameter-efficient fine-tuning (PEFT) methods [18]–[22]
have proven to be substantial techniques in the realm of LLMs.
These methods, such as Low-Rank Adaptation (LoRA) [22],
focus on reducing the number of parameters that need to be
adjusted during fine-tuning. PEFT approaches not only make
the fine-tuning process more resource-efficient but also help
in maintaining the performance and generalization ability of
the original model, making it feasible to deploy sophisticated
LLMs in practical settings where computational resources may
be limited.

However, PEFT methods often necessitate a multi-node
setup to finish execution within a reasonable timeframe.
This is primarily because PEFT methods, while optimizing
the process by updating fewer parameters or incorporating
lightweight modules, still involve complex operations on a
large scale. These operations include forward propagation and
back propagation on the full model parameters, communica-
tion and synchronization, and parameter updating on the active
parameters. Furthermore, the scale of the datasets used for
fine-tuning LLMs means that even with reduced parameter
updates, the volume of data processed can be immense.

A. Motivation

The fine-tuning of LLMs in a distributed setting can lead
to significant communication overhead, which hampers the
overall training efficiency. When using data parallelism, the
gradients of the model need to be synchronized across multiple
nodes during backpropagation. This synchronization process
requires extensive data exchange over the network, resulting
in increased latency and potential bottlenecks as the size of



(a) Throughput/speedup (b) Iteration breakdown

Fig. 1: Throughput/speedup and iteration time breakdown
of the full fine-tuning method running on 1-32 NVIDIA
A100 GPUs [23] on a 1B parameters Transformer decoder
model [24].

the LLM grows. The network bandwidth and latency become
crucial factors, as insufficient bandwidth can slow down the
synchronization process, while high latency can cause delays
in gradient updates.

Figure 1 presents the throughput/speedup and iteration time
breakdown for fine-tuning a Transformer decoder-based model
with 1 billion parameters. The experiment is conducted on a
GPU cluster comprising compute nodes with 4 A100 GPUs
each and a 200G HDR InfiniBand cross-node interconnect.
When fine-tuning on up to 32 GPUs, we observe that scaling
out beyond a single node leads to degraded scaling efficiency.
Specifically, fine-tuning on 32 GPUs resulted in a scaling
efficiency of 81%. Additionally, we found that the scaling effi-
ciency could decrease to as low as 28% with mixed precision
training, as detailed later in the evaluation section V-C.

PEFT methods may offer better scaling efficiency compared
to full fine-tuning. Understanding how PEFT methods operate
in distributed computing environments, is crucial for unlocking
their full potential, especially if they require lower commu-
nication volumes compared to full fine-tuning methods. Yet,
the performance characteristics of PEFT methods in such dis-
tributed settings remain largely unexplored. Although several
studies [18]–[21] have examined the convergence and memory
savings of different PEFT methods, there remains a significant
gap in the literature regarding the communication overhead
and the potential overlap between computation and communi-
cation in multi-GPU and multi-node clusters. Therefore, in
this paper, we aim to bridge this gap by comprehensively
characterizing the performance of PEFT methods on modern
GPU clusters. Ultimately, this work strives to facilitate the
development of more efficient and scalable approaches for
fine-tuning large-scale models.

B. Challenges

In light of the earlier discussion on motivation, this paper
seeks to address the following overarching challenges:

• What is the impact of the communication overhead re-
sulting from the distribution of PEFT workloads across
multiple GPUs?

• How does the overlap between computation and commu-
nication influence the efficiency of PEFT workloads?

• How do PEFT methods perform when scaled on multiple
GPUs with different model sizes?

• How does scaling distributed PEFT workloads compare
to full fine-tuning approaches?

• What is the impact of mixed precision and quantized
training on the performance of PEFT methods?

• What are the memory requirements of PEFT methods in
comparison to full fine-tuning?

C. Contributions

To the best of our knowledge, this is the first effort which
evaluates the performance of PEFT methods in distributed
computing settings. The key contributions of this paper are
as follows:

• Conducting comprehensive evaluations on a modern GPU
system [25] with InfiniBand Interconnect, utilizing up to
32 NVIDIA GPUs [23].

• Characterizing the communication overhead and provid-
ing an in-depth analysis of the overlap between compu-
tation and communication for distributed PEFT work-
loads using four different methods: 1) LoRA [22], 2)
AdaLoRa [26], 3) LoHa [27], and 4) LoKr [28].

• Analyzing the performance of distributed PEFT with
varying model sizes: 160M, 410M, and 1B parame-
ters [24].

• Comparing the scalability of PEFT methods with full
fine-tuning as a baseline. We find that PEFT methods
yield 95-99% scaling efficiency compared to 80% for full
fine-tuning.

• Analyzing the impact of mixed precision [29] and quan-
tized training methods [30] on PEFT workloads. We find
that PEFT methods yield 84-90% scaling efficiency com-
pared to 27% for full fine-tuning using mixed precision.

• Comparing the memory requirements of different PEFT
methods with full fine-tuning as a baseline.

The remainder of this paper is organized as follows: Sec-
tion II provides a background on the necessary concepts.
Section III describes the proposed evaluation methodology.
Section IV details the experimental setup. Section V conducts
a comprehensive characterization and analysis study of using
PEFT methods in distributed environments. Section VI dis-
cusses related work and relevant studies. Finally, we conclude
the paper and discuss future work in section VII.

II. BACKGROUND

A. Data Parallel Deep Neural Network Training

The process of training Deep Neural Networks (DNNs) can
be divided into two main phases: the forward pass and the
backward pass. During the forward pass, the input data is
passed through the layers of the DNN to make predictions.
These predictions are then compared to the actual values to
calculate the training loss. In the backward pass, the training
loss is propagated back through the network to calculate the
gradients. These gradients are then used to update the model
weights. In distributed data parallelism, the data samples are
distributed across multiple computing devices. Each device
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trains on its portion of the data using a local replica of the
model weights. Initially, the DNN weights are communicated
using a Broadcast operation, and then an Allreduce operation
is used to synchronize the gradients for every training iteration
to obtain the global gradients and use them for updating the
model weights.

B. Parameter-efficient Fine-tuning

Parameter-efficient Fine-tuning (PEFT) is a method used
in transfer learning, where a pre-trained model is used for
training on a new dataset. Instead of training the entire DNN,
only a portion of the model weights is updated, while the
rest are frozen. This approach is particularly useful as model
sizes grow, saving computing resources for tuning on specific
downstream tasks. PEFT approaches are mainly categorized as
additive [31], [32], selective [33], and reparameterized [22],
[26]–[28] fine-tuning. Additive fine-tuning involves training
only the added fully connected layers [31]. Selective fine-
tuning trains specific model layers while freezing the rest [33].
Reparameterized fine-tuning minimizes the number of DNN
trainable parameters using low-rank representation. LoRA is
one of the most widely used PEFT methods [22]. It decom-
poses the weight matrix into two low-rank matrices and only
updates these low-rank representations. There are multiple
variants of the LoRA methods such as AdaLoRA [26], which
transforms the weight matrix using singular value decompo-
sition, Low-rank hadamard product (LoHa) [27], which com-
bines low-rank matrices with Hadamard product, and Low-
rank Kronecker product (LoKr) [28] use Kronecker product
as matrix multiplication.

C. Mixed Precision and Quantized Training

The mixed precision training methods [29] can significantly
speed up operations by executing them in half-precision for-
mat. In mixed precision training, two copies of the model
parameters are saved in FP32 and FP16. The FP16 copy is used
in the forward and backward passes, while the gradients are
aggregated in FP32 and used to update the FP32 copy of the
model weights. On the other hand, quantization is a technique
used to compress a model by reducing the bit width of the
model weights. This is achieved by scaling the input data to
fit within a smaller range of data types through normalization
based on the absolute maximum of the input data. To avoid
large input data magnitudes, the input data is divided into
blocks [34], and these blocks are quantized independently. Pre-
trained model weights typically follow a zero-centered normal
distribution with a standard deviation.

III. PROPOSED EVALUATION METHODOLOGY

To comprehensively characterize the performance of PEFT
methods on modern GPU clusters, we propose a systematic
evaluation methodology that encompasses key performance
metrics and experimental framework.

Fig. 2: Workflow of reparametrization-based PEFT approaches
using distributed data parallelism on two GPUs.

A. Understanding the Workflow of Distributed PEFT Methods

We first examine the communication and computation work-
flow of PEFT methods, specifically reparametrization-based
approaches such as LoRA. Figure 2 illustrates the workflow
of distributed data parallelism iteration for the LoRA method
on two GPUs. The workflow is divided into three phases:

1) Data loading and augmentation: In this phase, the CPU
randomly selects samples from the datasets and creates
a tokenized minibatch for each GPU.

2) Forward and backward propagation: During this
phase, pre-trained model weights are frozen, and a
reparametrization of the weights is represented by ma-
trices A and B. The forward pass uses all model weights
to calculate the model activations. Subsequently, the
loss is computed and propagated back to generate the
gradients for the active weights. It’s important to note
that, according to the chain rule, in order to calculate
the gradients for the frozen weights, the gradients of
the activations are required for all preceding model
parameters. At the end of this phase, a copy of the local
gradients for the active weights only is created.

3) Communication and aggregation of gradients: In this
phase, local gradients are communicated and aggregated
across different GPUs, resulting in the obtainment of
global gradients. The communication and computation
can be overlapped for different model layers. The global
gradients are then used for updating the model weights
and proceeding to the next training iteration.

According to this workflow, PEFT methods only require a
small subset of the gradients to be communicated and aggre-
gated across devices. Therefore, we expect to see significantly
reduced communication volumes and latencies compared to
full fine-tuning methods.
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Fig. 3: Layered Architecture of the Distributed Fine-tuning
Environment

B. Architecture of the Experimental Setup

Next, we will explain the layered architecture and the
various hardware and software components involved in the
fine-tuning process of LLMs. Figure 3 illustrates the layered
representation of this architecture. The bottom layer depicts a
modern HPC system containing compute nodes, each equipped
with multiple CPU cores and GPU devices. These nodes
are interconnected and linked to a distributed shared system.
The next layer displays the toolkits and libraries required to
facilitate computation and communication across GPUs and
nodes. To perform distributed deep learning, a middleware
layer is necessary to implement the data parallel primitives.
The subsequent layer shows the different deep learning frame-
works that implement LLM training and fine-tuning. This ex-
perimental architecture also requires profiling tools to analyze
performance at different hardware and software levels.

C. Key Evaluation Metrics

We aim to assess the performance of PEFT methods based
on several key metrics, including:

1) Speedup factor: The ratio of training time with mul-
tiple GPUs/nodes to the training time with a single
GPU/node.

2) Scaling efficiency: The ratio of actual speedup to the
ideal linear speedup when increasing the number of
GPUs/nodes.

3) Model throughput: The number of tokens processed per
second during fine-tuning.

4) Training iteration time: The elapsed time from the start
of a training iteration with data loading until completion
with model weights updating.

5) Training iteration breakdown: The computation, commu-
nication, and overlap times in a training iteration.

6) Pure Communication Latency: The latency needed to
transfer a message of a certain size over multiple devices
on a given HPC system.

7) Communication volume and latencies: The volume of
data that needs to be transferred each training iteration
and the total latency introduced for such transfer. The
theoretical communication volume V can be calculated
by multiplying the number of trainable parameters P

by the size of the communicated datatype in bytes S as
shown in equation 1.

V = S × P (1)

Finally, while the convergence behavior is also a critical factor
for evaluating fine-tuning methods, we refer to several studies
conducted in this direction later in the related works section.

IV. EXPERIMENTAL SETUP

A. System Configurations

Our evaluations are performed on the Ascend [25] system at
the Ohio Supercomputer Center (OSC). The cluster includes
24 PowerEdge XE8545 nodes and NVIDIA 200G HDR Infini-
Band interconnect. Each node has 2 AMD EPYC 7643 2.3-
GHz processors with 921GB of RAM, and 4 NVIDIA A100
graphics cards with 80GB of HBM.

B. Software Packages

NCCL version 2.18.1 is used for backend communication
with MVAPICH2 2.3.7 as a job launcher for multi-node exe-
cution. NVIDIA CUDA Toolkit 12.1 [35] and cuDNN library
8.9.0 [36] are used for GPU support. PyTorch [37] version
2.1.0 is used for DNN training along with torch.distrubted
as a distributed DL middleware. HuggingFace [38] version
4.35.2 is used to obtain the pre-trained LLM architectures
and their weights. HF PEFT is used for running the fine-
tuning experiments along with HF Accelerate for distributed
execution.

C. Models and Datasets

We use Pythia-160M, Pythia-410M, and Pythia-1B [24]
to evaluate fine-tuning methods with different model sizes.
The Pythia model architecture is built using GPT-NeoX trans-
former blocks. We fine-tune these models on a subset of
the CodeParrot [39] dataset with 3320 samples and a max
sequence length of 128.

D. Fine-tuning Method

We use LoRA [22], AdaLoRA [26], LoHa [27], and
LoKr [28] as representative PEFT methods for evaluation. We
use the full fine-tuning method as the baseline for comparision.
Table I shows the number of DNN trainable parameters for
the fine-tuning methods. In Table I, we show the number of
trainable parameters for these different fine-tuning methods
with the different model sizes. Finally, we use QLoRA [30]
for quantized fine-tuning of LLMs.

TABLE I: The number of DNN trainable parameters for the
fine-tuning methods.

Pythia-160M Pythia-410M Pythia-1B
Full FT 162 Million 405 Million 1011 Million
LoRA 0.13 Million 0.36 Million 0.48 Million

AdaLoRA 0.54 Million 1.45 Million 1.93 Million
LoHa 0.07 Million 0.19 Million 0.26 Million
LoKr 0.01 Million 0.03 Million 0.03 Million
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Fig. 4: Throughput of the full fine-tuning, LoRA, AdaLoRA,
LoHa, and LoKr methods on a single GPU with the 160M,
410M, and 1B model sizes.

V. PERFORMANCE CHARACTERIZATION AND ANALYSIS

In this section, we aim to provide a comprehensive analysis
of PEFT methods compared to full fine-tuning as a baseline in
distributed environments. We conduct our experiments in the
following order:

• In V-A, we start with a study of the performance of
different fine-tuning methods (LoRA, AdaLoRA, LoHA,
and LoKr) on 3 model sizes (160M, 410M, and 1B
parameters) on a single NVIDIA A100 GPU. This is
intended to establish a baseline for the scalability study.

• In V-B, we conduct an in-depth analysis of the communi-
cation, computation, and overlap, and their effect on the
throughput of different fine-tuning methods on up to 32
NVIDIA A100 GPUs.

• In V-C, we look into the effect of using mixed precision
and quantization training techniques in both single and
multi-GPU settings.

• In V-D, we examine the peak memory requirements for
different model sizes using the full fine-tuning and LoRA
methods.

A. Throughput and Iteration time Breakdown on Single GPU

This section aims to establish a fundamental understanding
of single GPU execution before conducting scalability studies.

1) Varying the Model Size and Fine-tuning Method: We
examine the performance of full fine-tuning and PEFT meth-
ods with different model sizes on a single GPU. Figure 4
shows the throughput of 160M, 410M, and 1B models training
on a single GPU using Full FT, LoRA, AdaLoRA, LoHa,
and LoKr. We have chosen the optimal batch size for all the
different combinations to maximize throughput. As observed,
PEFT methods provide higher throughput compared to full-
fine tuning for all model sizes. With LoRA see an increase of
35%, 37%, and 44% for model sizes 160M, 410M, and 1B
respectively.

2) Breakdown of a Single Training Iteration: To identify
the source of this improvement, we have broken down the time
of a single training iteration for full fine-tuning and LoRA
in Figure 5. A single training iteration takes 2.56 and 1.76
seconds for full fine-tuning and LoRA respectively. While

(a) Full FT (b) LoRA

Fig. 5: Breakdown of a single training iteration on 1 GPU
using the full fine-tuning and LoRA methods on the 1B model
size. The figures show percentages of computation, overlap,
and miscellaneous operations.

the forward passes times remain almost the same for both
methods (around 825ms), the backward pass for the LoRA
method is significantly shorter at 914ms compared to 1686ms
for the full fine-tuning method. This improvement is attributed
to the freezing of most of the model weights, leading to
reduced gradient calculations. The backward pass requires
propagating only the activations gradients back to the active
weights, meaning that gradients for the frozen weights are not
needed. In addition to reducing the backward pass time, PEFT
methods spend less time on the model weights update step as
the number of trainable parameters to be updated is only a
small fraction compared to the full fine-tuning method.

B. Scalability and Communication Analysis in Multi-GPU and
Multi-node Environments

This section presents a detailed analysis of the scalability
and communication performance of the PEFT methods in
comparison to full fine-tuning as a baseline.

1) Model Throughput and Scaling Speedup: Figure 6 il-
lustrates the throughput in tokens per second of the full fine-
tuning, LoRA, AdaLoRA, LoHa, and LoKr methods scaling
on up to 32 GPUs with the 1B parameters model. We observe
improved scalability for the PEFT methods compared to full
fine-tuning. The speedup from 1 to 32 GPUs is 25.8× (81% ef-
ficiency) for full fine-tuning and up to 31.8× (99% efficiency)
for the PEFT methods. While full fine-tuning demonstrates
steady scaling on up to 4 GPUs, the rate of improvement
drops after training across nodes (8 GPUs and up). On the
other hand, PEFT methods exhibit near-linear scalability both
intra- and inter-node.

2) Communication, Computation, and Overlap: To get a
better understanding of the throughput and scaling trends,
we profile a single training iteration for both full fine-tuning
and LoRA in Figure 7. The single GPU baseline shows
lower execution time for LoRA due to the reasons explained
earlier in section V-A. As we increase the number of GPUs
within the same node (up to 4 GPUs), the iteration time
remains almost the same for both full fine-tuning and LoRA.
While full fine-tuning spends more time on communication, it
mostly overlaps with computation for single-node execution.
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Fig. 6: Throughput of the full fine-tuning, LoRA, AdaLoRA,
LoHa, and LoKr methods scaling on up to 32 GPUs with the
1B parameters model.

Fig. 7: Breakdown of a single training iteration on 1-32
GPUs comparing the full fine-tuning and LoRA methods
on the Pythia-1B model. The figure shows the breakdown
of computation, communication, overlap, and miscellaneous
operations.

However, as we increase the number of GPUs beyond the one
node (8-32 GPUs), we observe an increased iteration time
for full fine-tuning but the same iteration time for LoRA.
Although there is a significant portion of communication
overlapped with computation for full fine-tuning, there is an
extra communication overhead of 473ms, 509ms, and 523ms
for 8, 16, and 32 GPUs respectively. This is compared to only
8.5ms, 17.7ms, and 18.6ms for the LoRA method.

3) Training Iteration Breakdown: In Figure 8, we further
break down the iteration time in terms of percentages for
the 32 GPUs run. The full fine-tuning iteration takes 3.16
seconds with 41.7%, 16.6%, and 40.8% spent on computation,
communication, and overlap respectively. Whereas the LoRA
iteration takes 1.81 seconds with 96.6% spent on computation.
This shows that the LoRA iteration is 75% faster compared
to the full fine-tuning iteration. The lower iteration time is
partially due to a significant decrease in the communication
latency and volume.

4) Total Allreduce Latency per Training Iteration: Figure 9
shows the total latency of the Allreduce operation for a single
training iteration on 2-32 GPUs. As expected, the total time
spent increases significantly from 151ms (single node) to

(a) Full FT (b) LoRA

Fig. 8: Breakdown of a single training iteration on 32 GPUs
using the full fine-tuning and LoRA methods on the Pythia-
1B model. The figures show percentages of computation,
communication, overlap, and miscellaneous operations.

Fig. 9: Total latency of the Allreduce operation for a single
training iteration on 2-32 GPUs using the full fine-tuning and
LoRA methods with the Pythia-1B model.

1800ms (inter-node) for full fine-tuning. On the other hand,
the Allreduce latencies for the LoRA runs only increase from
14ms to 34ms when going from 2 GPUs to 32 GPUs.

5) Communication Volume, Number of Calls, and Aver-
age Message Size: The decrease in latency for the PEFT
methods is attributed to the lower communication volume
due to communicating the gradients for the active parameters
only. Table II shows the Allreduce communication volume,
number of calls, and average message size for a single training
iteration. The full fine-tuning method requires communicating
3.9GB for the 1B model divided into 50 calls with an average
message size of 77MB. The PEFT methods, on the other
hand, only require communicating 1.88MB, 7.38MB, 1MB,
and 0.13MB for LoRA, AdaLoRA, LoHa, and LoKr respec-
tively. These empirical results match the expected theoretical
communication volume calculated by equation 1.

TABLE II: Allreduce communication volume, number of calls,
and average message size for a single training iteration with
different fine-tuning methods.

Fine-tuning
method

Communication
Volume (MB) #Calls Average Message

Size (MB)
Full-FT 3859.64 50 77.19
LoRA 1.88 2 0.94

AdaLoRa 7.38 2 3.69
LoHa 1.00 1 1.00
LoKr 0.13 1 0.13

6



Fig. 10: GPU Allreduce latency for message sizes 128K-
128MB on 1-8 GPU nodes. Each node is equipped with 4
NVIDIA A100 GPUs (32 GPUs for 8 nodes).

Fig. 11: Throughput with FP32, FP16, and BF16 training on
one GPU using the full fine-tuning, LoRA, AdaLoRA, LoHa,
and LoKr methods on the 1B parameters model.

6) Pure Communication Performance for Intra- and Inter-
node: In Figure 10, we run pure Allreduce communica-
tion benchmarks to measure the latency with message sizes
between 128KB and 128MB and 2-32 GPUs. The latency
for intra-node communication (4 GPUs and below) remains
as low as 2ms for the largest message size. However, for
inter-node communication (8-32 GPUs), we see a significant
increase in latency as we increase the message size beyond
2MB. These findings are consistent with the previous results
that show the minimal communication overhead for PEFT
methods due to the small communication volume, message
size, and number of calls. They also explain the increased
total Allreduce latency, increased iteration time, and decreased
throughput for the full fine-tuning method.

C. Impact of Mixed Precision and Quantization Techniques

1) Mixed Precision Distributed Training with FP16 and
BF16: In Figure 11, we analyze the throughput on a single
GPU using FP32, FP16, and BF16 data types for full fine-
tuning and PEFT methods on a 1B parameter model. We
observe improvements of up to 6× using FP16 and BF16
compared to FP32. We also notice a slight decrease in peak
memory usage.

Figure 12 shows the throughput and speedup with FP32,
FP16, and BF16 training on 1-32 GPUs using the full fine-
tuning and LoRA methods on the 1B parameter model. As
observed, full fine-tuning exhibits poor scalability with FP16

Fig. 12: Throughput with FP32, FP16, and BF16 training on
1-32 GPUs using the full fine-tuning and LoRA methods on
the 1B parameters model.

and BF16 training achieving only 8.8× (28% efficiency) and
8.2× (26% efficiency) speedup, respectively, when scaled on
32 GPUs. On the other hand, the LoRA method achieves
28.8× (90% efficiency) and 28.6× (89% efficiency) with FP16
and BF16, respectively. While this is a reasonable speedup,
especially with high throughput of the one GPU baseline, the
mixed precision scaling efficiency does not match the one for
FP32.

Although computations may be performed in FP16 or BF16
for speed and memory efficiency, gradients are converted to
FP32 before communication. This is necessary to prevent
significant precision loss during gradient accumulation and
ensure accurate updates to model parameters. Most deep
learning frameworks follow this practice.

Figure 13 shows the breakdown of a single training it-
eration on 32 GPUs with FP32, FP16, and BF16 for full
fine-tuning and LoRA. We observed that the communication
latency remains constant for different data types since the
gradients are always communicated in FP32. Therefore, as
the computation time decreases when using FP16 or BF16,
the overall communication percentage increases in the training
iteration. This explains the difference in speedup from 31.8×
to 28.8× when using mixed precision with LoRA as the
small communication overhead becomes more critical. This
also explains the poor scalability with full fine-tuning when
using mixed precision training.

2) Quantized PEFT Methods: Figure 14 depicts a com-
parison of throughput between LoRA with FP32, FP16, and
BF16 methods and its quantized version (QLoRA) using a 1B
parameters model. The experiment using a single GPU shows
a 19% improvement for QLoRA over LoRA, along with a
decrease in peak memory consumption.

Figure 15 compares the scaling performance of LoRA and
QLoRA on up to 32 GPUs with the 1B parameters model. The
best throughput for QLoRA reaches 7031 tokens per second
on 32 GPUs, while LoRA achieves 6264 tokens per second.
However, the speedup for QLoRA is 26.9× (84% efficiency),
compared to 28.8× for LoRA with FP16. This decrease in
speedup efficiency is attributed to the reasons explained earlier
in section V-C1.
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Fig. 13: Breakdown of a single training iteration on 32 GPUs
using the full fine-tuning and LoRA methods on the Pythia-1B
model with FP32, FP16, and BF16 training. The figure shows
the stacked latencies of computation, overlap, communication,
and miscellaneous operations.

Fig. 14: Throughput of LoRA using the mixed precision
methods and QLoRA on a single GPU with the 1B parameters
model.

Fig. 15: Throughput of LoRA using the mixed precision
methods and QLoRA on 1-32 GPUs with the Pythia-1B model.

D. Peak Memory Analysis

Figure 16 illustrates the peak GPU memory usage for
different batch sizes and model sizes, comparing the full fine-
tuning and LoRA methods. We observed that LoRA requires
less memory across all batch and model sizes. For a batch size
of one, full fine-tuning consumes 4GB, 8.6GB, and 20.1GB,
while LoRA only consumes 1.3GB, 2.4GB, and 4.7GB for
model sizes 160M, 410M, and 1B respectively. When the
batch size is 128, full fine-tuning consumes 31GB, 56.9GB,
and 73.8GB, whereas LoRA consumes 24.9GB, 42.4GB, and
52.4GB for model sizes 160M, 410M, and 1B respectively.
This significant reduction in peak GPU memory, especially
for small batch sizes, gives PEFT methods an advantage when
attempting to fit the entire model within the GPU’s memory.

Fig. 16: Peak GPU memory for different batch sizes using the
full fine-tuning and LoRA methods with the 160M, 410M, and
1B parameters models.

VI. RELATED WORK

Although several studies have examined the convergence
and memory savings of different PEFT methods, the perfor-
mance characteristics of these methods in distributed envi-
ronments remain largely unexplored. Han et al. [19] provide
a comprehensive survey on PEFT methods and examine the
additional computational overhead for PEFT methods. Hu et
al. [18] evaluate the accuracy of adapter-based PEFT methods
on 14 datasets from arithmetic reasoning and commonsense
reasoning. Lialin et al. [20] compared storage, memory, and
computational efficiency, and provided a summary of the
model size and the number of DNN trainable parameters. Xu
et al. [21] explain that PEFT methods reduce the number of
DNN trainable parameters and memory usage compared to full
fine-tuning. They conduct evaluations with different number
of trainable parameters and analyze the accuracy and peak
memory using full fine-tuning and different PEFT methods.
Xin et al. [40] provide an analysis of PEFT methods with
vision models. Particularly, they study the performance of
vision transformers on visual downstream tasks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we thoroughly examined the communica-
tion dynamics involved in distributed parameter-efficient fine-
tuning (PEFT) for large language models (LLMs). Our study
emphasizes the crucial role of communication efficiency in the
performance and scalability of PEFT methods when utilized
across GPU clusters. Through systematic analysis of various
PEFT techniques, we have illustrated how communication
overhead can significantly impact throughput, training time,
and overall model performance. Our findings indicate that
PEFT methods inherently reduce communication and com-
putational burdens compared to full fine-tuning. While this
study mostly focused on data parallelism, in future research,
we aim to explore more advanced parallelization strategies,
such as Fully Sharded Data Parallel (FSDP) [41] training
and 3D parallelism [42], for out-of-core models that do not
fit in the memory of a single GPU. Overall, this study
sheds light on the intricate interplay between communication
and computation in PEFT, laying the groundwork for more
efficient and scalable approaches to fine-tuning large-scale
models in various application domains.
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