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Abstract—Deep learning (DL) models based on the transformer
architecture have revolutionized many DL applications such
as large language models (LLMs), vision transformers, audio
generation, and time series prediction. Much of this progress
has been fueled by distributed training, yet distributed commu-
nication remains a substantial bottleneck to training progress.
This paper examines the communication behavior of transformer
models — that is, how different parallelism schemes used in
multi-node/multi-GPU DL Training communicate data in the
context of transformers. We use GPT-based language models
as a case study of the transformer architecture due to their
ubiquity. We validate the empirical results obtained from our
communication logs using analytical models. At a high level, our
analysis reveals a need to optimize small message point-to-point
communication further, correlations between sequence length,
per-GPU throughput, model size, and optimizations used, and
where to potentially guide further optimizations in framework
and HPC middleware design and optimization.

Index Terms—Neural Networks, DNN, MPI, GPU, Large Lan-
guage Models, Interconnects, Communication Characterization

I. INTRODUCTION

Large Language Models (LLMs) such as ChatGPT [1],
Gemini [2], and Llama [3] are revolutionizing multiple in-
dustries with their ability to perform a range of tasks from
customer service to creative content generation. LLMs are
typically pre-trained with internet-scale, pre-processed data
that allows them to learn the intricacies of human languages.
After pre-training, LLMs undergo a fine-tuning process in
a supervised setting that allows them to excel in down-
stream tasks like generation, summarization, translation, and
question/answering. Modern LLMs utilize a large number of
parameters that imply increased computational and memory
requirements during training. A higher number of parameters
allows the model to capture more intricate relationships and
nuances in language, leading to improved performance on a
range of downstream tasks.

A. Motivation
As an LLM’s size increases, training requires a large number

of GPUs for a considerable amount of time on modern HPC
systems, and it is significantly bottlenecked by how quickly
data can be exchanged between parallel training processes.
Here, the messaging stack including the communication fabric
plays a pivotal role. At large scales, such a bottleneck leads
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Fig. 1: 13-billion parameter model breakdown of communi-

cation and computation using ZeRO-1 and 8 tensor-parallel
stages (single iteration)
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Fig. 2: 20-billion parameter model breakdown of communi-
cation and computation using ZeRO-1 and 8 tensor-parallel
stages (single iteration)

to lower Model FLOPs Utilization (MFU) [4] for training.
For instance, MegaScale [5] reports a 55.2% MFU on 12,288
GPUs for training a 175-billion parameter model. To empha-
size this point, Figures 1 and 2 show how communication
begins to dominate computation at increasing scales for 13-
billion and 20-billion parameter GPT-2-based models. We are
motivated by this to conduct a thorough characterization study
to understand the communication stage during LLM training.

B. Problem Statement

Good communication performance is critical for scaling
LLM training on large HPC systems. This paper aims to study
and analyze communication strategies used by state-of-the-
art Deep Learning (DL) training frameworks on leading-class
supercomputers. Our objective is to learn the volume of data



exchanged—as well as communication primitives employed,
number of calls, and message sizes involved—between paral-
lel processes at different scales from various parallelization
strategies. This detailed analysis needs to be conducted in
the context of input datasets, model architectures, and model
sizes. This characterization study will aid the next generation
of communication runtimes to meet the performance require-
ments of LLM training workloads and increase the effective
utilization of large-scale systems.

C. Challenges

Figure 3 shows just how many combinations someone
must consider when characterizing LLM communication on
AI/HPC systems, from frameworks such as Megatron-LM [6],
Llama [7], and DeepSpeed [8] and parameter count/model
size, to choice of communication middleware [9], [10], [11],
to parallelism strategies [12], [13], [14], all the way down to
the hardware on which training/characterization takes place.
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Fig. 3: A non-exhaustive list of what must be considered when
characterizing LLM performance, scalability, and communica-
tion behavior.

Given these challenges, offering insights into communica-
tion behavior for transformer architectures while maintaining
a balance between the framework, system, and interconnect
choices, as well as generality, is not straightforward.

D. Proposed Solution

Given the complexity and importance of understanding
communication in emergent transformer-based workloads, we
adopt a systematic approach that combines empirical results
with analytical modeling to study communication behavior for
various parallelism schemes and sequence lengths. Through
this, we aim to give an in-depth understanding of the com-
munication overheads associated with parallelism schemes
commonly used in transformer models, which form the foun-
dational architecture of LLMs. Our analysis covers a range of
model optimizers, including ZeRO-1, ZeRO-2, ZeRO-3, and
ZeRO++, as well as Data Parallelism, Pipeline Parallelism,
and Tensor Parallelism for up to 13B parameter models. In

line with the adopted analytical models, we present system-
agnostic measurements for each parallelism scheme. Measure-
ments include 1) the collective communication type 2) the
data volumes per collective 3) the proportions, frequency, and
message sizes for each collective. We also examine the impact
of sequence length on communication volumes per collective
pattern for Data-Parallel and Model-Parallel environments.
This technique is particularly valuable for researchers and
developers of collective communication libraries, as it provides
insights into which collectives to enhance and which mes-
sage ranges to target to improve LLM training performance.
Additionally, we conduct interconnect-specific evaluations,
measuring latency for particular collectives on AMD Infinity
Fabric and HPC-Slingshot 11 GPU and node interconnects.
This aims to understand the communication overhead for the
underlying calls at the OMB microbenchmark level, using the
same communication backend as employed by our training
framework of choice, GPT-NeoX][15].

E. Contributions
Our contributions are as follows:

1) We combine empirical results with analytical models to
study communication behavior for various parallelism
schemes and sequence lengths.

2) We provide an in-depth understanding of the communica-
tion overheads associated with Data, Pipeline, and Tensor
parallelism schemes commonly used in transformer mod-
els.

3) We present system-agnostic and system-specific mea-
surements for each parallelism scheme, including col-
lective communication types, data volumes, proportions,
frequency, and message sizes.

4) We examine the impact of sequence length on commu-
nication volumes per collective pattern for Data-Parallel
and Model-Parallel environments.

5) We conduct interconnect-specific evaluations, measuring
latency and bandwidth for the particular collectives used
by the studied LLM models. The analysis is conducted
on AMD Infinity Fabric and HPE-Slingshot 11 GPU and
node interconnects.

To the best of our knowledge, this is the first study to
systematically characterize communication for distributed
transformer models across multiple parallelism schemes
and sequence lengths, providing detailed insights into
collective communication types, data volumes, and distri-
butions, and combining these results with the interconnect-
specific collective communication benchmarking on the
Frontier supercomputer.

F. Paper Breakdown

The rest of this paper is broken down as follows. Section
IT explains the background of LLMs and parallelism schemes
used to train them and other DL models on HPC clusters.
Section IIT details the set of equations used to model com-
munication volume for each parallelism scheme used in this
paper. Sections IV and V break down our experimental results



and how they relate to our performance model. Section VI
details related work in LLM characterization from its behavior
to system-level performance. Section VII will conclude this
paper and offer our suggestions and insights.

II. BACKGROUND
A. Transformer Architecture

The current trend in Natural Language Processing (NLP)
favors transformer models [16] for their exceptional accu-
racy and computational efficiency. The original transformer
architecture is designed for machine translation and contains
two main components: an Encoder and a Decoder. Modern
adaptations of transformers for language modeling utilize
either the Encoder or Decoder depending on the specific task,
such as BERT [17] and GPT-2 [18].

A transformer layer is structured with a self-attention block
followed by a two-layer multi-layer perceptron (MLP), com-
posed of two GEMMs and a GeLU non-linearity (ReLU for the
original version [16]). Each encoder or decoder block includes
multiple such layers, each featuring multi-head attention, MLP,
normalization, and residual connections.

We consider a single encoder or decoder with multiple
transformer layers. Initially, input tokens are processed through
a word embedding table and combined with positional em-
beddings, resulting in a 3-D tensor of size (sequence length x
micro-batch size x hidden dimension) [19]. Each transformer
layer processes this tensor through a self-attention block with
multiple attention heads and a two-layer MLP that quadru-
ples the hidden size and then reduces it back. The output
size remains consistent across layers, and the final output is
projected back to the vocabulary dimension for cross-entropy
loss calculation.

B. Parallelism Techniques

Larger models are more sample-efficient given a fixed
compute budget [20], [21], leading to a massive increase
in model parameter count. Training billion/trillion-parameter
transformer models is a memory-intensive task since it requires
efficient distribution of multiple training parameters (model
weights, optimizer states, gradients, and activations).

In Data Parallelism [22], a training mini-batch is divided
among multiple workers and each worker maintains a full
model replica. Data parallelism can achieve near-linear scaling
in training data throughput by increasing the mini-batch size
in proportion to the number of available workers. Typically,
an Allreduce on all the workers is required to synchronize
the gradients before updating the model weights on each local
replica. Data Parallelism is communication-bound since the
achievable bandwidth and latency of the Allreduce greatly
affect iteration time given a worker’s memory is consumed
by the model and other training parameters. However, data
parallelism requires that model size must fit in the limited GPU
memory and additional optimizer and hyper-parameter tuning
to ensure convergence with large global batch size [23].

Pipeline Parallelism mainly focuses on distributing layers
of models among GPU workers and executes these layers in a

pipeline order. Since activation computation relies on depen-
dencies between different layers, inevitable GPU idle times,
known as pipeline bubbles are present in this paradigm, there
have been various research efforts in reducing such bubbles
[24], [25]. In terms of communication, pipeline parallelism
involves point-to-point GPU communication to pass along
activations between layers.

Tensor Parallelism [26] aims at exploiting the inherent
parallelism inside GEMM operations and distribute these com-
putations along specific directions (rows, columns) and use
synchronization among workers to gather the results, thus en-
suring correctness. State-of-the-art implementations distribute
the MLP blocks and Self-Attention blocks [26]. Results are
collected and aggregated using Allreduce and Allgather. It is
a common practice to limit tensor parallelism degree within
a compute node since intra-node bandwidth is typically larger
than inter-node bandwidth [27].

Figure 4 demonstrates 3D Parallelism, which combines
Data Parallelism, Pipeline Parallelism and Tensor Parallelism.
This synergy has been a widely adopted approach to scale up
transformer training to thousands of workers. It has the benefit
of preventing global batch size from growing atrociously but
requires effort to implement and prototype.

Mini-Batch 0 =) AGather Mini-Batch 1
¢==) Alw-Reduce
@ 4= point-to-Point @
Data Parallel 0 Data Parallel 1
PP stage 0 PP stage 1 PP stage 0 PP stage 1
GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

Layer1...N/2 Layer 1+N/2...N Layer 1... N/2 Layer 1+N/2... N

T T
Fig. 4: An illustration of 3D parallelism with 2 Data-Parallel
ranks, 2 Pipeline-Parallel stages and 2 Tensor-Parallel ranks.
Each Pipeline-Parallel stage holds half of the total layers.

C. Zero Redundancy Optimizer

Data parallel training requires each rank to hold a copy of all
model optimizer states, gradients, and parameters. [28] Zero
Redundancy Optimizer (ZeRO) reduces memory constraints
by removing redundant information, and partitioning model
data across data parallel ranks. ZeRO is divided into three
stages, ZeRO-1, ZeRO-2, and ZeRO-3. Given a certain de-
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Fig. 5: An illustration of ZeRO-3 with 4 Data-Parallel ranks
and N layers. Between each layer, an Allgather is needed to
collect the parameters from all the workers.

gree of data parallelism, each ZeRO stage partitions different



training parameters. ZeRO-1 partitions optimizer states across
workers. Each worker only needs to store and update its
partitions. At the end of each training step, an allgather is
required to collect the fully updated model weights. ZeRO-2
further partitions gradients and reduces them to only update
the corresponding parameters. After gradient reduction, the
memory can be released immediately, which will further alle-
viate memory pressure on a worker. Such a process requires
Reduce-Scatter to distribute and reduce the gradients. ZeRO-1
and ZeRO-2 produce the same communication volume as stan-
dard data parallelism [28]. ZeRO-3 applies model parameter
partitioning on top of optimizer states and gradients. However,
stage 3 requires an extra allgather to collect parameters from
all other processes as needed in forward and backward com-
putation which typically incurs 1.5x communication volume
compared to data parallelism baseline (Figure 5).

ZeRO++ applies various optimizations towards ZeRO-3,
aiming at reducing communication volume and featuring a
bandwidth-aware partitioning strategy. Specifically, ZeRO++
integrates blocked-based quantization kernels [29] into model
weights and gradient communications to drastically reduce
message size. It also keeps a secondary parameter partition
within a compute node so that high-latency inter-node All-
gather can be avoided due to low interconnect bandwidth [30].

III. PERFORMANCE MODEL

Number of attention heads s
Microbatch size t
Hidden dimension size Vv
Number of transformer layers p
Number of training devices

TABLE I: Variable names.

Sequence length
Tensor-parallel size
Vocabulary size
Pipeline-parallel size

UL~ Q

This section breaks down each component that makes up
our performance model.

A. Data Parallelism and ZeRO

To calculate the total parameters in a transformer, we have
the embedding and unembedding blocks of size V' x h each. If
embedding and unembedding parameters are tied (i.e. shared),
this leads to a total of V x h parameters from embeddings.
Since all configurations in this paper use untied embeddings,
we have 2V x h embedding parameters. We also have the
position embeddings of size sh. The attention matrices are
four separate matrices of dimension h x h, leading to 4h?2
attention parameters per layer. Multilayer perceptron (MLP)
blocks for our models are composed of two fully-connected
linear projections of size h X xh and xzh X h, where z is
the expansion factor. For GPT-NeoX model architectures, the
conventional projection factor is 4 [31], so we have 2zh? =
8h? MLP parameters per layer. We then have a layernorm
each layer with both gains and biases on each of the @, K,V
and the first MLP linear projection, leading to 8h layernorm
parameters per layer. Finally, we add the final layernorm of
size 2h to get a total number of parameters in Equation 1
below.

param_count = 2Vh + sh + L(12h* +8h) +2h (1)

Considering a message size of m, the communication vol-
ume for the Allreduce collective is 2 x m(952). The commu-
nication volume for Allgather, Reduce_scatter, and Reduce is
simply m(%32).

The communication volume per iteration for distributed data
parallelism (DDP) just comes from the gradient Allreduce,
which gives the total volume per iteration given in Equation
2 below. ZeRO-1 and ZeRO-2 simply replace this Allreduce
call with separate Reduce_scatter and Allgather calls [28], so
they have the same communication volume as DDP. Therefore,
the communication volume (in units of parameters) from DP
(Allreduce), ZeRO-1, and ZeRO-2 (Allgather/Reduce_scatter)

is given by: do1

2 * param_count * ( ) ()
The communication volume for ZeRO-3 is 50% higher due
to an extra Allgather of parameters, which is necessary before
the forward pass because parameters are now also sharded
across ranks (See II-C and [28]). Therefore, the ZeRO-3
communication volume (in units of parameters) is given by:

—1
) (3)

3 * param_count * (

B. Model Parallelism

The communication volume for pipeline parallelism comes
from the point-to-point communication of forward activations
and backward gradients. The send or receive between two
pipeline stages is of size bsh, therefore the aggregate commu-
nication volume across all stages in a single training iteration is
given in Equation 4 below (in units of parameters and where d
is the number of devices, or GPUs, used in training). Notably,
the first stage doesn’t have to receive activations and the last
GPU doesn’t have to send activations (and vice-versa with
gradients), so we multiply by p — 1 instead of p.

2bsh x (p — 1) “4)

The communication volume per iteration for tensor paral-
lelism comes from 6 Allreduce operations per layer (2 in the
forward pass, 2 for activation recomputation, 2 in the backward
pass). Further, an additional Allreduce operation is performed
at the embedding. Each Allreduce incurs a volume of 2m,
leading to a total of (12L42) volume for messages of size bsh.
Since these Allreduce operations are across t ranks, they’re
multiplied by a factor of 1.

t—1
(12L + 2) * bsh * (

) &)

For 3D parallelism, one simply updates the tensor paral-
lelism equation to be L — L/p. This implies that the total
communication volume here is additive.



CPU AMD Epyc 7713 “Trento” 64 core 2 GHz
GPU 4 x AMD MI-250X
Interconnect HPE Slingshot 11 (4 NICS/Node)
ROCm Version Used 5.6.0
CPU/GPU-Interconnect AMD Infinity Fabric
PyTorch Version Used 2.1.2
DeepSpeed Version Used 0.14
GPT-NeoX Version Used commit 4bc667031d8
Dataset Used enwik8

TABLE II: Experiment Setup Specifications

Infinity Fabric GPU-GPU
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Fig. 6: Topology of a compute node on Frontier

IV. SYSTEM SETUP

This section explains the experiments run, and insights
gained from our results. All experiments were run on the
OLCEF Frontier supercomputer. See Table II for more informa-
tion on hardware and software specifics. For details on Frontier
compute node topology, please refer to Figure 6. Regarding
the use of Microsoft’s DeepSpeed: we would like to note that
communication/compute overlap is not possible when logging
is turned on, which allowed us to obtain communication results
featured in Section V with the following profiling numbers.

To facilitate easier training of the models involved, we
utilize EleutherAI’s “GPT-NeoX” framework[15] and its con-
figuration files for 19-million, 125-million, 1.3-billion, and 13-
billion parameter models. The “enwik8” dataset used features
a vocabulary size of 50304 after padding to help with reducing
performance runtime anomalies.

V. PERFORMANCE CHARACTERIZATION
A. Data-Parallel Experiments (DDP, ZeRO-1/2/3)

Here, we explore the communication behavior of different
Data-Parallel schemes such as pure data parallelism or dif-
ferent levels of DeepSpeed’s ZeRO[28]. Per the cost models
referenced in Section III, DDP and ZeRO-1 and 2 should
approximately achieve a volume proportional to twice the
parameter count, and ZeRO-3 should achieve a communication
volume equal to three times that of the parameter count.

1) Breakdown of Communication Volume: ZeRO differences

Figure 8 shows communication breakdowns of each selected
model size using one of ZeRO-1/2/3 (run on one node for
all models except the 13B-parameter model due to memory
errors. The models, as shown later still accurately hold up
regardless of scale for a given model size). We want to note
that Broadcast is included as a notion to the start-of-training
parameter broadcast/distribution required, as this still incurs

a level of overhead during initialization. Allreduce is still a
significant portion of the communication in ZeRO-1/2 thanks
to the fact that, aside from the 13B-parameter model, all other
models can easily fit onto one of Frontier’s MI250X GPUs
with DDP. We would also like to note the general trend of
decreasing broadcast impact as the model size increases, and
this is also shown in Figure 7, where each breakdown is them
modeled as a percentage of the total communication volume.

2) Breakdown of Message Sizes and Frequency

As the model size increases, more message sizes for each
communication call will be utilized, and to varying frequency
levels. Figure 9 showcases 2-Node, 8 GCDs/Node experiments
for 19-million, 1.3-billion, and 13-billion parameter models
while using ZeRO-3. More verbose logging from DeepSpeed
shows how message sizes get grouped into different categories
for different functions; in the case of the 1.3-billion parameter
model, many of the smaller messages (on the order of kilo-
bytes) are used for parameter exchange among each process.
Larger messages — from 10s to 100s of megabytes — are used
for gradient aggregation (instead of an Allreduce as done in
pure data parallelism). The main takeaway: Even though DL
models such as LLLMs operate using massive message sizes,
optimizations at smaller message sizes should be treated
as equally important.

3) Comparison to Performance Model

Figure 10 shows how the 19M, 125M, 1.3B, and 13B-
parameter models match up to the predicted communication
volumes based on the Data-Parallel and ZeRO-based formulas
from Section III. In general, our prediction aligns well with
the communication volume observed across all model sizes
and all parallelism schemes (DDP, ZeRO-1/2/3). Note that
we are able to predict 13B communication volume under a
Distributed Data-Parallel scenario but training parameters will
exceed worker memory in action, causing an OOM error.

B. Model Parallelism Communication Volume Analysis (Ten-
sor and Pipeline)

This section explores the differing communication behaviors
for tensor/pipeline parallelism and a combination of them in
parallel (model parallelism).

1) Breakdown of Communication Volume

Figures 12 shows how differing levels of tensor and pipeline
parallelism can affect communication volume'. The first im-
mediate observation is the domination of Allgather operations
despite the use of point-to-point operations in any config-
uration utilizing a mix of pipeline and tensor parallelism.
Only pure pipeline parallelism avoids this with the next-largest
bottleneck being calls to Allreduce?.

Returning to the figures in Section I-A we noted that
pipeline parallelism has an interesting anomaly: the receive op-
eration is the only one to suffer from cold-cache performance,

'We saw large Allreduce operations show up in the pure pipeline parallelism
case that we suspect are internal to the DeepSpeed framework rather than
inherent to the parallelism scheme

2We saw a larger communication volume than predicted for tensor paral-
lelism, which we believe to be due to DeepSpeed internals
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Fig. 7: ZeRO-1/2/3 communication percentage breakdown for models of size 19M, 125M, 1.3B, and 13B.
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particularly in small message sizes (first iteration receive
operations can cause on overhead on the order of thousands of
milliseconds). While raw performance modeling is outside the
scope of this paper, it is important to note that this anomaly
becomes a concern as model size increases and pipeline
parallelism is used. This goes back to the takeaway at the
end of the previous subsection: Small message optimization is
as important as large message optimization.

across model sizes 19M, 125M, 1.3B, and 13B

2) Comparison to Performance Model

Figure® 13* shows how the 19M, 125M, 1.3B, and 13B-
parameter models perform and match up to the predicted
communication volumes based on the Tensor and Pipeline
Parallelism formulas from Section III. Here, we are primarily

3We note that send operations contain up to an extra eight megabytes. We
believe this to be extra metadata being transferred on behalf of the sender

4We note that the 125M-parameter model fails to run with pure tensor
parallelism due to the number of attention heads not being appropriately
divisible by the number of tensor stages.
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interested in the send/receive volume (pipeline parallelism-
related) and/or Allreduce communication (tensor parallelism).

C. Sequence Length Experiments

This section examines how sequence length impacts com-
munication behavior for Data-Parallel and Model-Parallel en-
vironments. Experiments here were all run on 2 Nodes, 8
GCDs/Node with the 1.3B-parameter model.

Figure 14a shows the Allgather communication volume
(where applicable) for both data and model parallelism. To
reduce redundancy, we will note that this does not change
across increasing sequence length values, from 512 to 4096 or
higher. However, we do note that optimizations and sequence
length do have an impact on throughput. Figure 14b shows
how different levels of ZeRO impact throughput. While we
see an approximate 2-2.5x increase in TFlops per GPU, ZeRO
optimizations will more often than not result in a decrease of
flops for the given sequence length.

Compared to data parallelism and ZeRO, there is more
variation in the “key” components tensor/pipeline/model par-
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allelism. While pure tensor parallelism makes sole use of
Allreduce, pure pipeline parallelism and model parallelism
make use of point-to-point operations as well, and contrary
to the above, these volumes increase with token size (see
Sections III and V-B). Figure 15b shows an approximate
doubling/slightly-larger-than-2x increase in communication
volume with increasing sequence-length values while Figure
15a directly shows a 2x increase with increasing sequence-
length values. Similar to the data-parallel results, we also
see an increase in throughput as shown in figure 15c. For
brevity, we only show when we have two pipeline stages or a
tensor parallelism value of two. Ultimately, the use of tensor
parallelism will allow for a higher TFLOP-per-GPU count over
pipeline parallelism (up to almost 2x more), though this has an
inverse relationship with point-to-point communication (where
applicable as pure tensor parallelism does not use point-to-
point) in communication volume.
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VI. RELATED WORK

Many papers have analyzed LLMs and characterized them
through bias and truthfulness. The authors of [32] develop
“CoMPosT” to characterize LLM simulations that result in
caricatures: misrepresentations of the models/workloads being
simulated. Our work performs analysis at a system level to
show the impact of communication on these models. [33]
focuses on LLMs as a data generator and characterizes the
diversity and bias of the data it generates post-training.

Research has been done to characterize the performance of
DNNs on HPC clusters. [34] and [14] characterized DNN per-
formance, first in the context of CPU/GPU-based architectures
and later with the PyTorch and TensorFlow frameworks. The
authors of [35] evaluated DNN performance in the context of
CUDA-aware MPI libraries.

More recently, LLMs have been analyzed from a sys-
tem/performance perspective. The authors of [31] analyze
different LLM architectures on the current’ world’s fastest
supercomputer Frontier and answer the question of how dif-
ferent model architectures impact performance. The authors
of [36] explored the impact of LLMs on large-scale sys-
tems, namely hardware limitations and capabilities. They note
communication overheads as part of some performance skew
and degradation but ultimately do not do in-depth commu-
nication analysis. Even more recently, the authors of [5] de-
signed, developed, and characterized the performance of their
“MegaScale” framework to allow for easy training/deployment

5As of May 2024, Frontier ranks first in the Top500 list with an Rpeak of
1.7 exaFLOPS.

of LLMs for scales at and beyond ten thousand GPUs, with
a focus on software/hardware co-design for efficiency and
stability. A more recent work ([27]) looks at characterizing
LLM performance at scale on NVIDIA DGX clusters with an
emphasis on 200Gb/s network utilization. Their work differs
from ours in that they look at performance characteriza-
tion concerning scale, not directly in communication volume
and behavior. They also do not evaluate model, tensor, or
pipeline parallelism and how a combination of sequence length
and parallelism scheme impacts communication volume and
throughput.

VII. CONCLUSIONS

We have presented a characterization of LLM communi-
cation behavior on the Frontier supercomputer. This has been
done by combining a rigorous performance model for multiple
parallelism schemes and multiple experiments utilizing cur-
rent state-of-the-art training frameworks with precise profiling
of communication and compute. We have provided insights
into potential optimizations for communication middleware
for small-message communication. For future pending work,
given that the Frontier system represents one combination, we
would like to examine further parallelism schemes here such
as multi-dimensional parallelism and expert parallelism. We
would also like to examine how all the schemes presented here
might change on current and upcoming systems with new or
maturing communication and software stacks such as Aurora
at Argonne National Lab (Intel GPUs and Intel CPUs) or



the upcoming Vista cluster at the Texas Advanced Computing
Center (NVIDIA Grace Hopper).
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