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Abstract

Deep anomaly detection (AD) is perhaps the most controver-
sial of data analytic tasks as it identifies entities that are then
specifically targeted for further investigation or exclusion.
Also controversial is the application of AI to facial imaging
data. This work explores the intersection of these two areas to
understand two core questions: ”Who” these algorithms are
being unfair to and equally important ”Why”. Recent work
has shown that deep AD can be unfair to different groups
despite being unsupervised with a recent study showing that
for portraits of people: men of color are far more likely to
be chosen to be outliers. We study the two main categories
of AD algorithms: autoencoder-based and single-class-based
which effectively try to compress all the instances with those
that can not be easily compressed being deemed to be out-
liers. We experimentally verify sources of unfairness such as
the under-representation of a group (e.g. people of color are
relatively rare), spurious group features (e.g. men are often
photographed with hats), and group labeling noise (e.g. race
is subjective). We conjecture that lack of compressibility is
the main foundation and the others cause it but experimen-
tal results show otherwise and we present a natural hierarchy
amongst them.

Introduction
Anomaly detection (AD) is a central part of data analytics
and perhaps the most controversial given that it is employed
for high-impact applications that identify individuals for in-
tervention, policing, and investigation. Its use is prevalent
to identify unusual behavior in finance (transactions)(Huang
et al. 2018; Zamini and Hasheminejad 2019), social media
(posting and account creation)(Yu et al. 2016; Savage et al.
2014), and government services (medicare claims)(Zhang
and He 2017; Bauder and Khoshgoftaar 2017).

Perhaps one of the most controversial applications of AI
is to facial imaging. This is due to our faces being uniquely
identifying and personal. Further, the AI’s ability to identify
us and make decisions (without consent) crosses many cul-
tural and legal barriers (Garvie, Bedoya, and Frankle 2016).
Existing work on facial data has focused predominantly on
facial recognition, that is, given a large collection of peo-
ple in a known database, identify if any of them occur in

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an image. Though legislation and progress have been made
towards regulating facial recognition technology (Almeida,
Shmarko, and Lomas 2022) other technologies in particu-
lar AD involving facial images are starting to emerge which
gives rise to new ethical considerations and understanding.

Previous work (Zhang and Davidson 2021) has just be-
gun to explore the unfairness at the intersection of AD ap-
plied to facial imaging data. For example, our previous work
showed that applying AD to a collection of celebrity images
overwhelmingly showed the anomalies being people of color
and males (see Figure 1). However, our previous work was
mainly focused on making AD algorithms fairer. We recre-
ate our earlier results for not only the one-class AD method
and the celebrity image dataset the authors used but also for
the popular auto-encoder AD method and a more challeng-
ing dataset (Labeled Face In The Wild(Huang et al. 2007)).

Our experimental section attempts to address the “Who”
and “Why” questions. We create a measure of unfairness
(Disparate Impact Ratio (DIR)) which measures how over-
represented a protected group (or its complement) is in the
anomaly set. We then experimentally investigate who these
algorithms are being unfair to and more nuanced questions
such as is the same group always being treated unfairly re-
gardless of algorithm. We also explore why an unsupervised
algorithm can be biased. We conjecture four main founda-
tions of unfairness, propose metrics to measure them, and
outline a series of experiments to test a hypothesis on how
they are structured.

The contributions of this work as are as follows:
• We study the “Who” and ”Why” questions when

anomaly detection is applied to facial imaging data - a
topic to our knowledge has not been addressed before.

• Our experiments addressing the “Who” question show
that group-level unfairness is due to an interaction be-
tween the dataset and the algorithm.

• We conjecture four main reasons for the “Why” ques-
tion: i) incompressibility, ii) sample size bias (SSB), iii)
spurious feature variance (SFV) within a group, and iv)
attribute/group labeling noise (ALN).

• We postulate an intuitive structure to our conjectured rea-
sons, showing it is not empirically verified, but our exper-
imental results suggest an alternative structure.

We begin by discussing background and related work. We



Figure 1: Example of AD Being Unfair When Applied to Fa-
cial Imaging Data. Reproduced from (Zhang and Davidson
2021).

then introduce how we measure unfairness in AD and our
four proposed foundations of unfairness. Next, our experi-
mental results addressing the “Who” and “Why” questions
are presented after which we discuss and conclude our work.

Background and Related Work
Applications of AD to Facial Data. AD algorithms have
been used on imaging data for a variety of reasons. Perhaps
the most ubiquitous is for data cleaning where anomalies
are viewed as being “noise” (Ng and Winkler 2014) which
are removed and then a downstream supervised algorithm is
applied. However, if the AD algorithm is biased this creates
an under-representation in the down-stream training tasks.

Another common use of AD is to view the outliers as
“signal” and in doing so flag the outliers for extra attention.
Examples include using AD to identify facial expressions
to recognize emotions (Zhang et al. 2020) such as surprise.
However, if the AD is biased towards some groups this will
over-predict certain emotions for certain groups. Similarly,
AD can be used to identify aggressive behavior (Cao et al.
2021). However, if the AD has a bias towards some groups
this will incorrectly identify the group as being overly ag-
gressive.
Source of Bias. It has been well established that supervised
learning algorithms can have bias due to a variety of reasons.
In particular class labeling bias has been extensively studied
in the context of the Compas dataset (Angwin et al. 2016).
Even though features (e.g. race) associated with this bias are
removed, deep learning offers the ability to learn surrogates
(e.g. zip code)(Raghavan et al. 2020).

The work on fair AD starts in 2020 (Davidson and Ravi

2020; Abraham et al. 2021) and has shown that AD algo-
rithms can cause bias. Most work has focused on how to
correct unfairness for a certain algorithm. This involves un-
derstanding the limitations in the algorithm’s computation
and then correcting for it. This has been explored for clas-
sic density-based methods such as LOF (Abraham et al.
2021) and deep learning methods for autoencoder (Shekhar,
Shah, and Akoglu 2021), one class (Zhang and Davidson
2021) and multi-class deep AD methods. However, despite
this earlier body of work, there has been surprisingly little
work discussing what produces unfairness in unsupervised
anomaly detection.

Four Reasons for Unfairness And Their
Measurement

Here we outline our four premises for unfairness in AD and
explain them at a conceptual level using Figure 1. We then
describe how we measure them.

Incompressability of Data
We begin by discussing how AD methods work in particular
what causes an instance to be an outlier. Deep AD meth-
ods at their core employ compression either directly or indi-
rectly. Instances that cannot be compressed well are deemed
outliers and if a group is unusual in some sense it will be un-
fairly treated as it will be hard to compress and hence over-
whelmingly flagged as an outlier.

To understand this further, we present a common taxon-
omy of anomaly detection algorithms(Pang et al. 2021).
Autoencoder for Anomaly Detection. Let �e be the encod-
ing network which maps the data X into the compressed
latent space and �d be the decoding network which maps
the latent representation �e(X) back to the original feature
space(Hinton 1989). Given the network parameters ✓e, ✓d
the standard reconstruction objective to train the autoen-
coder is:

argmin✓
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n

nX
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kxi � �✓d(�✓e(xi))k2 +R
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(1)

The term R denotes the regularization to the encoder and
decoder. The anomaly score s(x) for instance x is calculated
from the reconstruction error:

s(x) = ||x� �✓d(�✓e(x))||
2 (2)

Here clearly an outlier is defined as being an instance that
the AE cannot easily compress and hence cannot easily re-
construct(Japkowicz, Myers, and Gluck 1995).
One-Class/Cluster Anomaly Detection Next, consider one
class anomaly detection which is still unsupervised. Given
the training data of instances X 2 Rn⇥d, one class AD
method such as the the popular deep SVDD (Ruff et al.
2018) network is trained to map all the n instances close
to a fixed center c. Denote function � as a neural network
with parameters ✓ the training objective function is:

argmin✓
1

n

nX

i=1

||�✓(xi)� c||2 +R (3)



Figure 2: A Diagrammatic view of the expected reasons be-
hind biased outlier detection.

where the term R represents the regularization function.
Then the anomaly score is naturally the distance to c.

s(x) = ||�✓(x)� c||2 (4)
Here the aim is to compress all points to map onto a cen-

tral point c and those that cannot be are deemed outliers.
Deep Clustering for Anomaly Detection Deep Embed-
ded Clustering (DEC) (Xie, Girshick, and Farhadi 2016) is
one of the earlier deep clustering methods that combines
representation learning with clustering using a clever self-
supervision approach. Recently this work was extended to
perform outlier detection (Song, Li, and Liu 2021).

The distance a point is from its closest centroid
{c1, ...cK} is naturally an anomaly score s(x):

s(x) =
mink2[1,K] ||�✓e(x)� ck||2

maxj2[1,n]^mj=k ||�✓e(xj)� ck||2
(5)

where mj = k denotes instance xj belongs to cluster ck, K
denotes the total number of clusters, and �✓e(xi) is the deep
learner embedding function.

The core idea here is an extension to the one-class AD
method mentioned earlier but extended to k clusters.

Causes Beyond Incompressibility
The above states that outliers are inherently points that the
deep learner cannot compress. Hence it is natural to consider
reasons why a deep learner cannot compress a group as be-
ing a key issue for unfairness. Here we conjecture three main
reasons with the view they are related to biased outliers as
shown in Figure 2.

Group Underrepresentation. Here we have a group that
is relatively rare in the dataset but has some unique prop-
erties so the deep learner cannot compress it well. For ex-
ample in Figure 1 many outliers are African Americans as
they only consist of under 15% of the dataset hence the deep
learner uses its limited encoding space to encode more pop-
ulous properties.

Spurious Features for Groups. In this situation, the
group has a property that is not critical for the outlier de-
tection task but is highly variable. For example in Figure 1

many groups who are over-represented in the outliers wear
different styles of hats.

Label Attribution Noise. Here the labeling of a group is
inaccurate and hence can be a reason a group is labeled as
being overly abundant in the outlier group. For example in
Figure 1 the second to the bottom line of outliers all have the
tag Male but this is erroneous.

Measurements of Unfairness and Four Properties
Before discussing our empirical results, we first define each
of the properties and how anomaly unfairness is measured.
Many of these metrics are the maximum between some ex-
pression and their reciprocal. This is because the presence
of a tag is equally important as the absence of a tag: for
example, disparate treatment of young people and disparate
treatment of old (i.e. not young) people are equally impor-
tant phenomena to study. We first describe how we measure
unfairness for anomalies and then how we measure our four
properties.
Anomaly DIR: The unfairness of an AD algorithm’s output
for particular group a is measured by the disparate impact
ratio (DIR), which is (Feldman et al. 2015):

DIR(X,AD, a) = max

 
P (AD(X) = 1|A = a)

P (AD(X) = 1|A = ¬a) ,

P (AD(X) = 1|A = ¬a)
P (AD(X) = 1|A = a)

!

(6)
Here X is the dataset the AD algorithm (AD) has made

predictions (normal vs anomaly) with AD(x) = 1 implying
x is an anomaly and AD(x) = 0 implying it is a normal
instance, and a is the group in question. This is a natural
choice for anomaly detection as it compares the rate at which
different attributes are flagged as anomalies, normalized by
how often the rest of the data is considered anomalous. It is
also the most widely used metric in fair unsupervised learn-
ing(Verma and Rubin 2018). The range for this metric is
[1,1) with the larger the number the more unfairly group
a is treated.
Incompressibility: To measure this feature, we extend the
typical measure of reconstruction error into the novel metric
of reconstruction ratio, which is defined:

RR(X, f, a) =max

 
LossMSE(X, f(X)|A = a)

LossMSE(X, f(X)|A = ¬a) ,

LossMSE(X, f(X)|A = ¬a)
LossMSE(X, f(X)|A = a)

! (7)

Here X and a are the data used for AD and group again,
with f being the autoencoder model (both encoder and de-
coder). The range of Equation 7 is therefore also [1,1),
where a higher number indicates that a group is harder to
compress than the rest of the data. For example, a RR of 2 in-
dicates that the attribute/group (or absence of the attribute/-
group) is twice as difficult to compress than the rest of the
data.



Sample Size Bias (SSB): SSB (sometimes referred to as
representation bias) is determined by the proportion of that
tag or lack in the dataset X and is measured as(Suresh and
Guttag 2021):

SSB(X, a) = max(P (A = a|X), P (A = ¬a|X)) (8)

Where X and a are again the data and the group in ques-
tion. Because all groups are binary (or encoded as one-hot
encoding), the range of this metric is [0.5, 1], with 0.5 indi-
cating perfect balance of the group (i.e. males and females
are equally likely) and 1 indicating that the group is always
on or always off. Most groups will fall between these two
extremes.
Spurious Feature Variance (SFV): SFV refers to the
amount of variance in the background objects in the image
and is measured as a proportion of the reconstruction error
of the image:

SFV (X, f, a, b) = 1�

max

 
LossMSE(X[b], f(X)[b]|A = a)

LossMSE(X, f(X)|A = a)
,

LossMSE(X[b], f(X)[b]|A = ¬a)
LossMSE(X, f(X)|A = ¬a)

!
(9)

Where X is the data, f is the autoencoder, a the tag, and
b is a bounding rectangle around the foreground/focus of
the image (i.e. the face), either provided by the data or es-
timated(Kumar et al. 2009). As the denominator is clearly
always greater than or equal to the numerator, SFV ranges
between [0, 1], where higher values indicate that more error
comes from spurious features.
Label Attribute Noise (LAN): This is a metric of how noisy
the labeling of a particular group is, as provided by the aca-
demic literature((Lingenfelter, Davis, and Hand 2022) for
CelebA and (Kumar et al. 2009) for LFW). Some groups
such as Gender tend to have very low LAN, whereas other
tags have very high LAN such as Blurry(Kumar et al. 2009).
We define LAN as:

ALN(X, a, a⇤) = 1� (P (a = a⇤|X) + P (¬a = ¬a⇤|X))
(10)

Where X is the data, a the group in question, and a⇤

the true label for the group. This property has a range [0, 1]
where the higher the value the less reliable the group label-
ing.

Experimental Results - Who Is AD Unfair To?
Here we answer the question: Who are the groups of indi-
viduals most adversely affected? Following this, we explore
more nuanced inquiries, such as whether the unfairness is at-
tributable solely to the data, the algorithm, or a combination
of both. In the subsequent section, we aim to investigate the
underlying reasons for the unfairness inherent in AD.

Our experiments consist of two core AD algorithms: A
reconstruction based autoencoder anomaly detection algo-
rithm (hereby referred to as AE) and Deep one-class SVDD

(Ruff et al. 2018). As mentioned earlier, clustering-based
AD is a generalization of one-class algorithms and the AE
methods. Our datasets consist of the CelebFaces Attributes
Dataset(Liu et al. 2015) (the 50,000 instance version to re-
duce compute) which consists primarily of popular individ-
uals in the movies, music, or arts whilst our Labeled Faces
in the Wild(Huang et al. 2007) consists of approximately
13,000 instances and includes a wider variety types of pop-
ular individuals such as politicians, sports stars, and crimi-
nals. Attribution for CelebA is given and attribution for LFW
is provided by(Kumar et al. 2009). These two datasets were
chosen as they are well-annotated, including analyses of la-
beling error, and have been extensively studied. Among all
of our datasets, we test a total of 63,233 facial images cov-
ering 111 attribute tags. We examine each algorithm indi-
vidually for a total of 222 data points on fairness. Both the
CelebA and LFW data sets are publicly available.

For each dataset and algorithm, we determine the unfair-
ness of each group using the Anomaly DIR. Results are col-
lected over five random-initializations of the network and
the median results for each property are reported. The list of
all raw results is in the appendix, below we outline some key
insights.
The Algorithms are Overwhelming Fair to Most Groups.
In total amongst both the two algorithms and two datasets
there are 222 groups and a frequency distribution shows that
overwhelmingly the algorithms are fair with respect to over
70% of the groups as shown in Figure 3. A score of less
than 1.2 indicates that the occurrence of the group in the
anomalies is not more than 20% greater than the rate of all
other groups (together) being labeled anomalies.

However, there are significant examples of unfairness
whose properties we now discuss.

Figure 3: A frequency distribution of the Anomaly DIR
score versus how often it occurs across all algorithms and
datasets.

Few Groups Are Always Treated Unfairly. We found that
there are several groups that are always (regardless of al-
gorithm or dataset) treated unfairly but they are relatively
rare. These include the groups centered around weight hav-
ing the annotations Chubby, Double-Chin and those
centered around very unusual image properties such as
Wearing-Hats. This is not unexpected given a very rare



CelebA LFW

AE
Beard (3.244)
Senior (N/A)
Gray Hair (1.053)
Unattractive (1.075)

Beard (1.061)
Senior (1.8)
Gray Hair (1.028)
Unattractive(1.158)

SVDD
Beard (1.267)
Senior (N/A)
Gray Hair (2.449)
Unattractive (1.094)

Beard (1.0876)
Senior (1.0018)
Gray Hair (1.197)
Unattractive (1.566)

Table 1: Examples of groups treated unfairly only for a par-
ticular algorithm and dataset interaction. The Fairness DIR
is reported in parentheses and indicates the relative over-
abundance of the group in the anomalies. The tag being
treated unfairly in these cases is in bold. For example, people
with a Beard are 3.224 times more likely to be an anomaly
than a normal instance for the AE algorithm applied to the
CelebA dataset, though people with beards are treated rel-
atively fairly otherwise. Not that ”Senior” is not a tag in
CelebA and is therefore absent from the in these cells, and
”Unattractive” in LFW is labeled ”Unattractive Male”.

group with unusual properties (not shared by other groups)
are unlikely to be well compressed. In total less than 2% of
all groups are treated unfairly all the time.
Unfairness Varies Due to Both Algorithm and Dataset. A
more likely occurrence is that some groups are treated very
unfairly but only for some datasets and some algorithms. Ta-
ble 1 shows in bold groups treated unfairly (the Anomaly
DIR is shown in parentheses) but only for that dataset and
algorithm combination. For other algorithm-dataset combi-
nations, they are treated fairly as the Table shows. This result
is surprising and shows the strong interaction between the al-
gorithm and the data. Consider that the AE method labeled
¬No Beard (reported as ”Beard”) in the CelebA dataset
at a rate over 3 times greater than the other groups. Yet, the
SVDD algorithm on the very same dataset produced just a
1.27 DIR for the Beard group, and in the LFW dataset both
algorithms the DIR was below 1.2.
The More Focused The Dataset The More Likely Un-
fairness Can Occur. When we aggregated all fairness DIR
scores (see Appendix) for each group and all algorithms we
found that the CelebA dataset (Mean DIR = 1.4) causes sig-
nificantly more unfairness than the LFW dataset (Mean DIR
= 1.13).

This is likely due to the CelebA dataset having a much
more focused selection bias as it is limited to people
who are overwhelmingly in the arts (film, television, mu-
sic) whereas the LFW dataset consists of a larger repre-
sentation of popular people. Hence, the definition of nor-
mality learned is very specific and there are many ways
to deviate from the norm. Examples of groups that are
found to be unfairly treated in the CelebA dataset but
NOT the LFW dataset are: Wearing Hat, Big Nose,

Eye-Glasses, Goatee, Wavy-Hair.
The More Focused The Algorithm The More Likely Un-
fairness Can Occur.

Figure 4: A frequency distribution of the Anomaly DIR
score by algorithm. We see that the AE with a more flexi-
ble definition of normality is more fair.

Similarly, the way the algorithm defines normality is in-
fluential in who it identifies as an anomaly. The SVDD algo-
rithm has the strictest definition of normality as it attempts
to find just one group of normal instances (centered around
c see equation 3) whereas the AE algorithm with k encoding
nodes can in practice (assuming perfect disentanglement)
find at least k definitions of normality. Hence not surpris-
ingly the SVDD algorithm is more unfairer than the AE al-
gorithm as shown by the histogram of unfairness for both
algorithms in Figure 4.

Experimental Results - Why is AD Unfair
Here we attempt to experimentally answer the following
questions:
• How strong are our four properties correlated to unfair-

ness?
• How are our four properties related to each other and in

particular is there a hierarchical structure to them?
• How can these properties be combined to create a model

to explain unfairness in anomaly detection?

Relationship between Unfairness and Each
Property
Our experiments (see Figure 5) demonstrate strong (Pear-
son) correlations and moderate to strong RSQ (R-squared
values of the regression trendline) for each of the properties
studied. Each plot shows the results for two datasets (CelebA
and LFW) with each data point representing a group of indi-
viduals. A positive trend line indicates positive Pearson cor-
relation (see sub-titles of plots for exact values) and we see
that incompressability is the most strongest property corre-
lated with unfairness, then Spurious features, then Attribute
label noise, and finally Sample Size Bias. This is an inter-
esting result as earlier seminal results showed that AD using
facial images (Zhang and Davidson 2021) was unfair due to
an under-representation of African Americans and Males in
the underlying datasets.

However, it is also clear that no individual property ex-
plains unfairness completely by itself. This is shown as each



(a) Corr: 0.568, RSQ: 0.334 (b) Corr: 0.523, RSQ:0.273

(c) Corr: 0.220, RSQ:0.114 (d) Corr: 0.251, RSQ:0.128

(e) Corr: 0.337, RSQ:0.148 (f) Corr: 0.473, RSQ:0.224

Figure 5: (Figure continues on next page)
.



(g) Corr: 0.261, RSQ:0.167 (h) Corr: 0.328, RSQ:0.108

Figure 5: Plot of different properties against their DIR (unfairness) with the larger the value the more of the property/unfairness.
Trendlines are created by minimizing R2 values. Each mark represents one group. Color denotes algorithm (blue for the AE
anomaly detector and orange for the SVDD anomaly detector) and mark denotes dataset (circle for CelebA, triangle for LFW).

graph has points that not only do not fit the trendline, but are
contradictory to the relationship implied by the overall data.
Further investigation (see next subsection) reveals that when
one property fails to explain why that attribute is anomalous,
another one typically will.

For example, the group Bags Under Eyes (from
CelebA) under the AE model has a reconstruction ratio of
only 1.077 (it is easy to compress), but a DIR of 1.31 (it is
treated unfairly). Following the trend, the expected recon-
struction ratio at a group with this DIR would be approxi-
mately 1.17. Further, this group has only 20.1% representa-
tion, though looking at the DIR one would expect only half
that. This group’s treatment, however, is explained by the
spurious feature variance, as it sits nearly perfectly on the
trendline. Similarly, the group Gray Hair (from LFW)
under Deep SVDD was towards the far end of spurious fea-
ture variance at 0.180, but has extremely low anomaly DIR
score at 1.04 (i.e. was treated fairly), though it sits just above
the trendline for attribute label noise at 1.05.

A full list of these attributes and their squared error for all
trendlines is available in the Appendix, and one can see that
every tag can be explained by at least one of these properties
with high fidelity, with the average sum of square errors be-
ing only 0.00351 (std 0.006498), supporting our claim that
unfairness in anomaly detection setting can be typically ex-
plained by one of these four properties. This claim is rigor-
ously tested in Section .

Relationship between Multiple Properties
We also examine the correlation between the different prop-
erties. This analysis is useful in examining potential redun-
dancies and creating our model of unfairness for anomaly
detection. Figure 6 examines these relationships. Some fea-
tures are, indeed, positively correlated with each other,
though none have high enough correlation to suggest that
they are redundant with each other. In the subsequent sub-

Figure 6: Correlation matrix for all four properties of the
model. Pearson correlation is written in each box and is con-
sistent with color (yellow is large, purple is small).

section, we examine this claim more rigorously via a hy-
pothesis test.

Hypothesis Testing of Relationship Claims In order to
test our claims, we create four hypotheses that we verify
through hypothesis significance-testing. Those are:
• H1: No individual property is sufficient to always explain

unfairness.
• H2: The properties, when combined into a multiple re-

gression, are sufficient to explain unfairness.
• H3: No properties of the multiple regression are redun-

dant and all are needed.
• H4: The results of H2 are significant in that when one

property fails to predict unfairness, another does.



Null hypothesised H10 �H40 are constructed straightfor-
wardly. To create the significance test for H1, we perform an
F-test on individual regression models crafted from the rela-
tionship between each property and DIR. The results of this
F-Test (visualized in Figure 7) indicate that individual prop-
erties are reasonable though comparably weak predictors of
unfairness, with P-values ranging from 0.0137-0.0986 for
the AE model and 0.0279-0.0571 for Deep SVDD. There-
fore, we reject the null hypothesis H10 and validate hypoth-
esis H1.

To test hypotheses H2 and H3, we construct a multiple-
regression model. Specifically, this is a stacked multiple re-
gression where the meta-function selects the best individ-
ual model for the datum. To validate H2, we create such
a multiple-regression using all four of the properties (the
”full” model). This yields P-Values of 0.00589 for the AE
model and 0.0127 for Deep SVDD, significantly lower than
those of the respective single-regression models, and indi-
cating that using all four properties is sufficient to explain
how unfairness occurs. We reject the null hypothesis H20
and validate hypothesis H2.

For H3, we conduct a similar experiment except we leave
one property out. In every case, the resulting multiple re-
gression models were worse than the full model, with P-
Values ranging from 0.00674-0.0109 for the AE model and
0.0138-0.0164 for Deep SVDD, all greater than that of the
full model, indicating that every property is necessary and
none are redundant. We reject the null hypothesis H30 and
validate hypothesis H3.

One may object to the multiple-regression models used
above, given that the model as described will monotonically
increase in predictive power given more properties. It is im-
portant to note that this model matches the central claim
of this paper - that unfairness with respect to a group oc-
curs because of one of the four properties described, though
one may still be wary of the statistical significance of the
reported results given the technique. To resolve these con-
cerns, we demonstrate that our model is not just combining
the predictive power of four different already powerful pre-
dictors, but rather when one model fails it is because it is
explained by one of the other properties.

To validate this claim, we construct fabricated distribu-
tions similar to those of Figure 5. Specifically, unfairness is
kept the same, and we create distributions of random fake
data which has the same correlation and RSQ as all of those
shown. This is accomplished by, for each property, finding
random points (sampled across a uniform distribution) along
the X-axis, giving them fabricated values perfectly in line
with the correlation, and then adding noise such that the cor-
relation is maintained and the RSQ matches that of the actual
measured properties. Then, we create the same full model of
the multiple regression and measure the P-value. We repeat
this process 10,000 times to get 10,000 such distributions.

The distributions therefore should be statistically similar
to our real data, but there is no reason to believe that when
one of the fabricated models fails, another will explain the
unfairness. To validate hypothesis H4, we measure the num-
ber of times the fake distributions produce P-values under
that of the real data. If the statically similar fabricated data

Figure 7: P-Values for the hypotheses H1-H3. The leftmost
bar demonstrates that, when all properties are considered,
unfairness can be predicted with a very high degree of preci-
sion, rejecting the null hypothesis H20. The next three rows
demonstrate that the model is not as powerful if one prop-
erty was left out, rejecting the null hypothesis H30. Finally,
the higher P-values for the simple regressors indicate that no
single feature can be used as a model of unfairness, rejecting
null hypothesis H10.

cannot match the predictive performance of our models, this
would validate hypothesis H4.

In the case of the AE model, the fabricated data averaged
a P-value of 0.0194 with a standard deviation of 0.00629 and
never beat the full model’s P-value of 0.00589. Similarly, the
model simulating Deep SVDD’s data yielded an average P-
value of 0.0173 with a standard deviation of 0.00304. Out
of the 10,000 trials, only 5 yielded lower P-values. There-
fore, we reject the null hypothesis H40 and validate hypoth-
esis H4. Our model does not simply take four independent
good predictors of anomaly and get good statistical results
but rather holds the property that when one fails, another
property explains it.

A Proposed Model Of Unsupervised Unfairness
Relationships
Given the resulting hypothesis tests, we craft our model
of unfairness in unsupervised learning. Figure 8 provides a
graphical representation of this model. Edges between prop-



erties indicate a relationship (binarized to be correlated at
� 0.15). This is supported by the high correlation between
each of these properties and unfairness (Figure 5), the re-
sult that the properties together form a uniquely powerful
multiple-regression to explain unfairness (H2, H4), that no
single feature could do this alone (H1), and that no property
is redundant (H3).

Figure 8: Our model of unfairness determined from our
stacked multi-regression model. Compare with the expected
model without any analysis in Figure 2.

Conclusion, Limitations, and Future Work
We study the intersection of the controversial deep AD al-
gorithm with facial imaging data to address the “Who” and
“Why” questions. We found that overwhelmingly both auto-
encoder and one-class deep AD algorithms are fair to most
groups. However, due to the compression-based focus, they
are unfair to some sub-groups.

With regard to the “Who” question we found that it was
rare to be consistently unfair to the one group and instead
unfairness was due to the interaction of the data and the al-
gorithm. In particular, the more focused the dataset and al-
gorithm the more unfairness was found.

Our study of the “Why” question aimed at developing a
deeper understanding on the effect of data related factors
on the fairness as well as detection performance of OD al-
gorithms. We postulated four hypotheses and found all to
be statistically significant by rejecting the null hypothesis.
The first hypothesis is that no single property alone is suffi-
cient to explain unfairness. The second hypothesis is when
combined the properties can explain unfairness. The third
hypothesis is that all properties are relevant and none are
redundant and finally, the fourth hypothesis is that the com-
bination of properties is meaningful beyond the predictive
power of each individual property.
Limitations. The use of groups may have varying degrees
of applicability to real-world fairness scenarios. For ex-
ample, some groups such as Male, Black and Young

correspond to legally recognized protected classes (88th
United States Congress 1964; 90th United States Congress
1967), while others such as Goatee, Wearing Hat and
attractive may not. However, we believe that this study
still provides meaningful insights into the mechanism of un-

fairness with respect to different people. Real-world pro-
tected attributes may be of varying degrees of visibility, as
do our groups, and our analysis reflects this.
Future work. Remediation strategies to improve fairness
are left out of scope of our investigation. We briefly dis-
cuss them here. Fairness interventions are typically grouped
into three: pre-, post-, and in-processing strategies, which re-
spectively, modify the input data, modify the output scores
or decisions, and account for fairness during model training.

As we showed, AD unfairness can stem from algorith-
mic bias alone in the face of natural heterogeneities in the
data among or within groups. When this is the case, pre-
processing strategies become voided as it is not clear how to
modify organic, unbiased data. Post-processing could select
different thresholds for each group separately, as in (Corbett-
Davies et al. 2017; Menon and Williamson 2018), where the
group-specific thresholds could either be “natural” cut-off
values, or selected to optimize demographic parity if it is a
desired fairness metric. Note that metrics that involve true
labels cannot be optimized due to lack of any ground truth
during training. In-processing techniques are also limited to
only enforcing demographic parity, which as we showed, re-
mains susceptible to unfairness. One such strategy that has
not been applied to OD is decoupling, as in (Dwork et al.
2018; Ustun, Liu, and Parkes 2019), where a different detec-
tor is trained for each group, while optimizing a joint loss.

We remark that post-processing and decoupling exhibit
treatment disparity as they both assume it to be ethical and
legal to use the sensitive attribute at test (decision) time -
in particular, to select which threshold or detector to em-
ploy on a given new sample. When there are differences
among groups, coming to terms with treatment disparity
might be the only get-around to mitigating disparate impact,
as argued previously (Lipton, McAuley, and Chouldechova
2018). These solutions, however, do not address unfair-
ness against heterogeneous subpopulations within groups,
i.e. within-group discrimination. Here, one direction is to
explore clustering-based OD algorithms. Alternatively, es-
tablishing a more nuanced or granular sensitive attribute, la-
beling each subpopulation differently.

Acknowledgements. This work was supported by NSF
Grant 2310481, “IIS-III: Small Towards Fair Outlier Detec-
tion”



References
88th United States Congress, T. 1964. Civil Rights Act of
1964. Public Law 88-352, 78 Stat. 241.
90th United States Congress, T. 1967. Age Discrimination
in Employment Act of 1967. Public Law 90-202, 81 Stat.
602.
Abraham, S. S.; et al. 2021. Fairlof: fairness in outlier de-
tection. Data Science and Engineering, 6(4): 485–499.
Almeida, D.; Shmarko, K.; and Lomas, E. 2022. The
ethics of facial recognition technologies, surveillance, and
accountability in an age of artificial intelligence: a compara-
tive analysis of US, EU, and UK regulatory frameworks. AI
and Ethics, 2(3): 377–387.
Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016.
Machine Bias. ProPublica.
Bauder, R. A.; and Khoshgoftaar, T. M. 2017. Multivari-
ate anomaly detection in medicare using model residuals
and probabilistic programming. The Thirtieth International
Flairs Conference.
Cao, R.; Liu, X.; Zhou, J.; Chen, D.; Peng, D.; and Chen,
T. 2021. Outlier detection for spotting micro-expressions.
2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 3006–3011.
Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. Proceedings of the 23rd acm sigkdd interna-
tional conference on knowledge discovery and data mining,
797–806.
Davidson, I.; and Ravi, S. S. 2020. A framework for deter-
mining the fairness of outlier detection. ECAI 2020, 2465–
2472.
Dwork, C.; Immorlica, N.; Kalai, A. T.; and Leiserson, M.
2018. Decoupled classifiers for group-fair and efficient ma-
chine learning. Conference on fairness, accountability and
transparency, 119–133.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and Remov-
ing Disparate Impact. 259–268.
Garvie, C.; Bedoya, A.; and Frankle, J. 2016. The Perpetual
Line-Up: Unregulated Police Face Recognition in America.
Hinton, G. E. 1989. Connectionist Learning Procedures. Ar-
tificial Intelligence, 40(1-3): 185–234.
Huang, D.; Mu, D.; Yang, L.; and Cai, X. 2018. CoDetect:
Financial Fraud Detection With Anomaly Feature Detection.
IEEE Access, 6: 19161–19174.
Huang, G. B.; Ramesh, M.; Berg, T.; and Learned-Miller, E.
2007. Labeled Faces in the Wild: A Database for Studying
Face Recognition in Unconstrained Environments. Techni-
cal Report 07-49, University of Massachusetts, Amherst.
Japkowicz, N.; Myers, C.; and Gluck, M. A. 1995. A Nov-
elty Detection Approach to Classification. 518–523.
Kumar, N.; Berg, A. C.; Belhumeur, P. N.; and Nayar, S. K.
2009. Attribute and Simile Classifiers for Face Verification.
2009 IEEE 12th International Conference on Computer Vi-
sion, 365–372.

Lingenfelter, B.; Davis, S.; and Hand, E. 2022. A Quan-
titative Analysis of Labeling Issues in the CelebA Dataset.
Advances in Visual Computing. ISVC 2022. Lecture Notes in
Computer Science, 13598.
Lipton, Z.; McAuley, J.; and Chouldechova, A. 2018. Does
mitigating ML’s impact disparity require treatment dispar-
ity? Advances in neural information processing systems, 31.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep Learn-
ing Face Attributes in the Wild. Proceedings of the IEEE
International Conference on Computer Vision (ICCV).
Menon, A. K.; and Williamson, R. C. 2018. The cost of
fairness in binary classification. Conference on Fairness,
accountability and transparency, 107–118.
Ng, H.-W.; and Winkler, S. 2014. A data-driven approach to
cleaning large face datasets. 2014 IEEE international con-
ference on image processing (ICIP), 343–347.
Pang, G.; Shen, C.; Cao, L.; and Hengel, A. V. D. 2021.
Deep learning for anomaly detection: A review. ACM com-
puting surveys (CSUR), 54(2): 1–38.
Raghavan, M.; Barocas, S.; Kleinberg, J.; and Levy, K. 2020.
Mitigating bias in algorithmic hiring: evaluating claims and
practices. 469–481.
Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Sid-
diqui, S. A.; Binder, A.; Müller, E.; and Kloft, M. 2018.
Deep One-Class Classification. PMLR 80: 4393–4402.
Savage, D.; Zhang, X.; Yu, X.; Chou, P.; and Wang, Q. 2014.
Anomaly detection in online social networks. Social net-
works, 39: 62–70.
Shekhar, S.; Shah, N.; and Akoglu, L. 2021. Fairod:
Fairness-aware outlier detection. Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, 210–220.
Song, H.; Li, P.; and Liu, H. 2021. Deep clustering based fair
outlier detection. Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 1481–
1489.
Suresh, H.; and Guttag, J. 2021. A Framework for Under-
standing Sources of Harm throughout the Machine Learning
Life Cycle.
Ustun, B.; Liu, Y.; and Parkes, D. 2019. Fairness without
harm: Decoupled classifiers with preference guarantees. In-
ternational Conference on Machine Learning, 6373–6382.
Verma, S.; and Rubin, J. 2018. Fairness definitions ex-
plained. 1–7.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
Deep Embedding for Clustering Analysis.
Yu, R.; Qiu, H.; Wen, Z.; Lin, C.; and Liu, Y. 2016. A survey
on social media anomaly detection. ACM SIGKDD Explo-
rations Newsletter, 18(1): 1–14.
Zamini, M.; and Hasheminejad, S. M. H. 2019. A com-
prehensive survey of anomaly detection in banking, wireless
sensor networks, social networks, and healthcare. Intelligent
Decision Technologies, 13(2): 229–270.
Zhang, G.; Luo, T.; Pedrycz, W.; El-Meligy, M. A.; Sharaf,
M. A. F.; and Li, Z. 2020. Outlier processing in multimodal
emotion recognition. IEEE Access, 8: 55688–55701.



Zhang, H.; and Davidson, I. 2021. Towards fair deep
anomaly detection. Proceedings of the 2021 ACM con-
ference on fairness, accountability, and transparency, 138–
148.
Zhang, W.; and He, X. 2017. An anomaly detection method
for medicare fraud detection. 2017 IEEE International Con-
ference on Big Knowledge (ICBK), 309–314.


