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Abstract—Deep learning (DL) models based on the transformer
architecture have revolutionized many DL applications such
as large language models (LLMs), vision transformers, audio
generation, and time series prediction. Much of this progress
has been fueled by distributed training, yet distributed commu-
nication remains a substantial bottleneck to training progress.
This paper examines the communication behavior of transformer
models — that is, how different parallelism schemes used in
multi-node/multi-GPU DL Training communicate data in the
context of transformers. We use GPT-based language models
as a case study of the transformer architecture due to their
ubiquity. We validate the empirical results obtained from our
communication logs using analytical models. At a high level, our
analysis reveals a need to optimize small message point-to-point
communication further, correlations between sequence length,
per-GPU throughput, model size, and optimizations used, and
where to potentially guide further optimizations in framework
and HPC middleware design and optimization.

Index Terms—Neural Networks, DNN, MPI, GPU, Large Lan-
guage Models, Interconnects, Communication Characterization

I. INTRODUCTION

Large Language Models (LLMs) such as ChatGPT [1],

Gemini [2], and Llama [3] are revolutionizing multiple in-

dustries with their ability to perform a range of tasks from

customer service to creative content generation. LLMs are

typically pre-trained with internet-scale, pre-processed data

that allows them to learn the intricacies of human languages.

After pre-training, LLMs undergo a fine-tuning process in

a supervised setting that allows them to excel in down-

stream tasks like generation, summarization, translation, and

question/answering. Modern LLMs utilize a large number of

parameters that imply increased computational and memory

requirements during training. A higher number of parameters

allows the model to capture more intricate relationships and

nuances in language, leading to improved performance on a

range of downstream tasks.

A. Motivation
As an LLM’s size increases, training requires a large number

of GPUs for a considerable amount of time on modern HPC

systems, and it is significantly bottlenecked by how quickly

data can be exchanged between parallel training processes.

Here, the messaging stack including the communication fabric

plays a pivotal role. At large scales, such a bottleneck leads

∗ denotes equal contribution

Fig. 1: 13-billion parameter model breakdown of communi-

cation and computation using ZeRO-1 and 8 tensor-parallel

stages (single iteration)

Fig. 2: 20-billion parameter model breakdown of communi-

cation and computation using ZeRO-1 and 8 tensor-parallel

stages (single iteration)

to lower Model FLOPs Utilization (MFU) [4] for training.

For instance, MegaScale [5] reports a 55.2% MFU on 12,288

GPUs for training a 175-billion parameter model. To empha-

size this point, Figures 1 and 2 show how communication

begins to dominate computation at increasing scales for 13-

billion and 20-billion parameter GPT-2-based models. We are

motivated by this to conduct a thorough characterization study

to understand the communication stage during LLM training.

B. Problem Statement

Good communication performance is critical for scaling

LLM training on large HPC systems. This paper aims to study

and analyze communication strategies used by state-of-the-

art Deep Learning (DL) training frameworks on leading-class

supercomputers. Our objective is to learn the volume of data



exchanged—as well as communication primitives employed,

number of calls, and message sizes involved—between paral-

lel processes at different scales from various parallelization

strategies. This detailed analysis needs to be conducted in

the context of input datasets, model architectures, and model

sizes. This characterization study will aid the next generation

of communication runtimes to meet the performance require-

ments of LLM training workloads and increase the effective

utilization of large-scale systems.

C. Challenges

Figure 3 shows just how many combinations someone

must consider when characterizing LLM communication on

AI/HPC systems, from frameworks such as Megatron-LM [6],

Llama [7], and DeepSpeed [8] and parameter count/model

size, to choice of communication middleware [9], [10], [11],

to parallelism strategies [12], [13], [14], all the way down to

the hardware on which training/characterization takes place.

Fig. 3: A non-exhaustive list of what must be considered when

characterizing LLM performance, scalability, and communica-

tion behavior.

Given these challenges, offering insights into communica-

tion behavior for transformer architectures while maintaining

a balance between the framework, system, and interconnect

choices, as well as generality, is not straightforward.

D. Proposed Solution

Given the complexity and importance of understanding

communication in emergent transformer-based workloads, we

adopt a systematic approach that combines empirical results

with analytical modeling to study communication behavior for

various parallelism schemes and sequence lengths. Through

this, we aim to give an in-depth understanding of the com-

munication overheads associated with parallelism schemes

commonly used in transformer models, which form the foun-

dational architecture of LLMs. Our analysis covers a range of

model optimizers, including ZeRO-1, ZeRO-2, ZeRO-3, and

ZeRO++, as well as Data Parallelism, Pipeline Parallelism,

and Tensor Parallelism for up to 13B parameter models. In

line with the adopted analytical models, we present system-

agnostic measurements for each parallelism scheme. Measure-

ments include 1) the collective communication type 2) the

data volumes per collective 3) the proportions, frequency, and

message sizes for each collective. We also examine the impact

of sequence length on communication volumes per collective

pattern for Data-Parallel and Model-Parallel environments.

This technique is particularly valuable for researchers and

developers of collective communication libraries, as it provides

insights into which collectives to enhance and which mes-

sage ranges to target to improve LLM training performance.

Additionally, we conduct interconnect-specific evaluations,

measuring latency for particular collectives on AMD Infinity

Fabric and HPC-Slingshot 11 GPU and node interconnects.

This aims to understand the communication overhead for the

underlying calls at the OMB microbenchmark level, using the

same communication backend as employed by our training

framework of choice, GPT-NeoX[15].

E. Contributions

Our contributions are as follows:

1) We combine empirical results with analytical models to

study communication behavior for various parallelism

schemes and sequence lengths.

2) We provide an in-depth understanding of the communica-

tion overheads associated with Data, Pipeline, and Tensor

parallelism schemes commonly used in transformer mod-

els.

3) We present system-agnostic and system-specific mea-

surements for each parallelism scheme, including col-

lective communication types, data volumes, proportions,

frequency, and message sizes.

4) We examine the impact of sequence length on commu-

nication volumes per collective pattern for Data-Parallel

and Model-Parallel environments.

5) We conduct interconnect-specific evaluations, measuring

latency and bandwidth for the particular collectives used

by the studied LLM models. The analysis is conducted

on AMD Infinity Fabric and HPE-Slingshot 11 GPU and

node interconnects.

To the best of our knowledge, this is the first study to

systematically characterize communication for distributed

transformer models across multiple parallelism schemes

and sequence lengths, providing detailed insights into

collective communication types, data volumes, and distri-

butions, and combining these results with the interconnect-

specific collective communication benchmarking on the

Frontier supercomputer.

F. Paper Breakdown

The rest of this paper is broken down as follows. Section

II explains the background of LLMs and parallelism schemes

used to train them and other DL models on HPC clusters.

Section III details the set of equations used to model com-

munication volume for each parallelism scheme used in this

paper. Sections IV and V break down our experimental results
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and how they relate to our performance model. Section VI

details related work in LLM characterization from its behavior

to system-level performance. Section VII will conclude this

paper and offer our suggestions and insights.

II. BACKGROUND

A. Transformer Architecture

The current trend in Natural Language Processing (NLP)

favors transformer models [16] for their exceptional accu-

racy and computational efficiency. The original transformer

architecture is designed for machine translation and contains

two main components: an Encoder and a Decoder. Modern

adaptations of transformers for language modeling utilize

either the Encoder or Decoder depending on the specific task,

such as BERT [17] and GPT-2 [18].

A transformer layer is structured with a self-attention block

followed by a two-layer multi-layer perceptron (MLP), com-

posed of two GEMMs and a GeLU non-linearity (ReLU for the

original version [16]). Each encoder or decoder block includes

multiple such layers, each featuring multi-head attention, MLP,

normalization, and residual connections.

We consider a single encoder or decoder with multiple

transformer layers. Initially, input tokens are processed through

a word embedding table and combined with positional em-

beddings, resulting in a 3-D tensor of size (sequence length ×

micro-batch size × hidden dimension) [19]. Each transformer

layer processes this tensor through a self-attention block with

multiple attention heads and a two-layer MLP that quadru-

ples the hidden size and then reduces it back. The output

size remains consistent across layers, and the final output is

projected back to the vocabulary dimension for cross-entropy

loss calculation.

B. Parallelism Techniques

Larger models are more sample-efficient given a fixed

compute budget [20], [21], leading to a massive increase

in model parameter count. Training billion/trillion-parameter

transformer models is a memory-intensive task since it requires

efficient distribution of multiple training parameters (model

weights, optimizer states, gradients, and activations).

In Data Parallelism [22], a training mini-batch is divided

among multiple workers and each worker maintains a full

model replica. Data parallelism can achieve near-linear scaling

in training data throughput by increasing the mini-batch size

in proportion to the number of available workers. Typically,

an Allreduce on all the workers is required to synchronize

the gradients before updating the model weights on each local

replica. Data Parallelism is communication-bound since the

achievable bandwidth and latency of the Allreduce greatly

affect iteration time given a worker’s memory is consumed

by the model and other training parameters. However, data

parallelism requires that model size must fit in the limited GPU

memory and additional optimizer and hyper-parameter tuning

to ensure convergence with large global batch size [23].

Pipeline Parallelism mainly focuses on distributing layers

of models among GPU workers and executes these layers in a

pipeline order. Since activation computation relies on depen-

dencies between different layers, inevitable GPU idle times,

known as pipeline bubbles are present in this paradigm, there

have been various research efforts in reducing such bubbles

[24], [25]. In terms of communication, pipeline parallelism

involves point-to-point GPU communication to pass along

activations between layers.

Tensor Parallelism [26] aims at exploiting the inherent

parallelism inside GEMM operations and distribute these com-

putations along specific directions (rows, columns) and use

synchronization among workers to gather the results, thus en-

suring correctness. State-of-the-art implementations distribute

the MLP blocks and Self-Attention blocks [26]. Results are

collected and aggregated using Allreduce and Allgather. It is

a common practice to limit tensor parallelism degree within

a compute node since intra-node bandwidth is typically larger

than inter-node bandwidth [27].

Figure 4 demonstrates 3D Parallelism, which combines

Data Parallelism, Pipeline Parallelism and Tensor Parallelism.

This synergy has been a widely adopted approach to scale up

transformer training to thousands of workers. It has the benefit

of preventing global batch size from growing atrociously but

requires effort to implement and prototype.

Layer 1… N/2 Layer 1+N/2… N Layer 1… N/2 Layer 1+N/2… N

Fig. 4: An illustration of 3D parallelism with 2 Data-Parallel

ranks, 2 Pipeline-Parallel stages and 2 Tensor-Parallel ranks.

Each Pipeline-Parallel stage holds half of the total layers.

C. Zero Redundancy Optimizer

Data parallel training requires each rank to hold a copy of all

model optimizer states, gradients, and parameters. [28] Zero

Redundancy Optimizer (ZeRO) reduces memory constraints

by removing redundant information, and partitioning model

data across data parallel ranks. ZeRO is divided into three

stages, ZeRO-1, ZeRO-2, and ZeRO-3. Given a certain de-

Layer 1…N

…

Layer N…1

…

Fig. 5: An illustration of ZeRO-3 with 4 Data-Parallel ranks

and N layers. Between each layer, an Allgather is needed to

collect the parameters from all the workers.

gree of data parallelism, each ZeRO stage partitions different
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training parameters. ZeRO-1 partitions optimizer states across

workers. Each worker only needs to store and update its

partitions. At the end of each training step, an allgather is

required to collect the fully updated model weights. ZeRO-2

further partitions gradients and reduces them to only update

the corresponding parameters. After gradient reduction, the

memory can be released immediately, which will further alle-

viate memory pressure on a worker. Such a process requires

Reduce-Scatter to distribute and reduce the gradients. ZeRO-1

and ZeRO-2 produce the same communication volume as stan-

dard data parallelism [28]. ZeRO-3 applies model parameter

partitioning on top of optimizer states and gradients. However,

stage 3 requires an extra allgather to collect parameters from

all other processes as needed in forward and backward com-

putation which typically incurs 1.5x communication volume

compared to data parallelism baseline (Figure 5).

ZeRO++ applies various optimizations towards ZeRO-3,

aiming at reducing communication volume and featuring a

bandwidth-aware partitioning strategy. Specifically, ZeRO++

integrates blocked-based quantization kernels [29] into model

weights and gradient communications to drastically reduce

message size. It also keeps a secondary parameter partition

within a compute node so that high-latency inter-node All-

gather can be avoided due to low interconnect bandwidth [30].

III. PERFORMANCE MODEL

a Number of attention heads s Sequence length
b Microbatch size t Tensor-parallel size
h Hidden dimension size V Vocabulary size
L Number of transformer layers p Pipeline-parallel size
d Number of training devices

TABLE I: Variable names.

This section breaks down each component that makes up

our performance model.

A. Data Parallelism and ZeRO

To calculate the total parameters in a transformer, we have

the embedding and unembedding blocks of size V ×h each. If

embedding and unembedding parameters are tied (i.e. shared),

this leads to a total of V × h parameters from embeddings.

Since all configurations in this paper use untied embeddings,

we have 2V × h embedding parameters. We also have the

position embeddings of size sh. The attention matrices are

four separate matrices of dimension h × h, leading to 4h2

attention parameters per layer. Multilayer perceptron (MLP)

blocks for our models are composed of two fully-connected

linear projections of size h × xh and xh × h, where x is

the expansion factor. For GPT-NeoX model architectures, the

conventional projection factor is 4 [31], so we have 2xh2 =
8h2 MLP parameters per layer. We then have a layernorm

each layer with both gains and biases on each of the Q,K, V
and the first MLP linear projection, leading to 8h layernorm

parameters per layer. Finally, we add the final layernorm of

size 2h to get a total number of parameters in Equation 1

below.

param count = 2V h+ sh+ L(12h2 + 8h) + 2h (1)

Considering a message size of m, the communication vol-

ume for the Allreduce collective is 2×m(d−1

d
). The commu-

nication volume for Allgather, Reduce scatter, and Reduce is

simply m(d−1

d
).

The communication volume per iteration for distributed data

parallelism (DDP) just comes from the gradient Allreduce,

which gives the total volume per iteration given in Equation

2 below. ZeRO-1 and ZeRO-2 simply replace this Allreduce

call with separate Reduce scatter and Allgather calls [28], so

they have the same communication volume as DDP. Therefore,

the communication volume (in units of parameters) from DP

(Allreduce), ZeRO-1, and ZeRO-2 (Allgather/Reduce scatter)

is given by:

2 ∗ param count ∗ (
d− 1

d
) (2)

The communication volume for ZeRO-3 is 50% higher due

to an extra Allgather of parameters, which is necessary before

the forward pass because parameters are now also sharded

across ranks (See II-C and [28]). Therefore, the ZeRO-3

communication volume (in units of parameters) is given by:

3 ∗ param count ∗ (
d− 1

d
) (3)

B. Model Parallelism

The communication volume for pipeline parallelism comes

from the point-to-point communication of forward activations

and backward gradients. The send or receive between two

pipeline stages is of size bsh, therefore the aggregate commu-

nication volume across all stages in a single training iteration is

given in Equation 4 below (in units of parameters and where d
is the number of devices, or GPUs, used in training). Notably,

the first stage doesn’t have to receive activations and the last

GPU doesn’t have to send activations (and vice-versa with

gradients), so we multiply by p− 1 instead of p.

2bsh× (p− 1) (4)

The communication volume per iteration for tensor paral-

lelism comes from 6 Allreduce operations per layer (2 in the

forward pass, 2 for activation recomputation, 2 in the backward

pass). Further, an additional Allreduce operation is performed

at the embedding. Each Allreduce incurs a volume of 2m,

leading to a total of (12L+2) volume for messages of size bsh.

Since these Allreduce operations are across t ranks, they’re

multiplied by a factor of t−1

t
.

(12L+ 2) ∗ bsh ∗ (
t− 1

t
) (5)

For 3D parallelism, one simply updates the tensor paral-

lelism equation to be L → L/p. This implies that the total

communication volume here is additive.
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CPU AMD Epyc 7713 “Trento” 64 core 2 GHz
GPU 4 x AMD MI-250X

Interconnect HPE Slingshot 11 (4 NICS/Node)
ROCm Version Used 5.6.0

CPU/GPU-Interconnect AMD Infinity Fabric
PyTorch Version Used 2.1.2

DeepSpeed Version Used 0.14
GPT-NeoX Version Used commit 4bc667031d8

Dataset Used enwik8

TABLE II: Experiment Setup Specifications

Fig. 6: Topology of a compute node on Frontier

IV. SYSTEM SETUP

This section explains the experiments run, and insights

gained from our results. All experiments were run on the

OLCF Frontier supercomputer. See Table II for more informa-

tion on hardware and software specifics. For details on Frontier

compute node topology, please refer to Figure 6. Regarding

the use of Microsoft’s DeepSpeed: we would like to note that

communication/compute overlap is not possible when logging

is turned on, which allowed us to obtain communication results

featured in Section V with the following profiling numbers.

To facilitate easier training of the models involved, we

utilize EleutherAI’s “GPT-NeoX” framework[15] and its con-

figuration files for 19-million, 125-million, 1.3-billion, and 13-

billion parameter models. The “enwik8” dataset used features

a vocabulary size of 50304 after padding to help with reducing

performance runtime anomalies.

V. PERFORMANCE CHARACTERIZATION

A. Data-Parallel Experiments (DDP, ZeRO-1/2/3)

Here, we explore the communication behavior of different

Data-Parallel schemes such as pure data parallelism or dif-

ferent levels of DeepSpeed’s ZeRO[28]. Per the cost models

referenced in Section III, DDP and ZeRO-1 and 2 should

approximately achieve a volume proportional to twice the

parameter count, and ZeRO-3 should achieve a communication

volume equal to three times that of the parameter count.

1) Breakdown of Communication Volume: ZeRO differences

Figure 8 shows communication breakdowns of each selected

model size using one of ZeRO-1/2/3 (run on one node for

all models except the 13B-parameter model due to memory

errors. The models, as shown later still accurately hold up

regardless of scale for a given model size). We want to note

that Broadcast is included as a notion to the start-of-training

parameter broadcast/distribution required, as this still incurs

a level of overhead during initialization. Allreduce is still a

significant portion of the communication in ZeRO-1/2 thanks

to the fact that, aside from the 13B-parameter model, all other

models can easily fit onto one of Frontier’s MI250X GPUs

with DDP. We would also like to note the general trend of

decreasing broadcast impact as the model size increases, and

this is also shown in Figure 7, where each breakdown is them

modeled as a percentage of the total communication volume.
2) Breakdown of Message Sizes and Frequency

As the model size increases, more message sizes for each

communication call will be utilized, and to varying frequency

levels. Figure 9 showcases 2-Node, 8 GCDs/Node experiments

for 19-million, 1.3-billion, and 13-billion parameter models

while using ZeRO-3. More verbose logging from DeepSpeed

shows how message sizes get grouped into different categories

for different functions; in the case of the 1.3-billion parameter

model, many of the smaller messages (on the order of kilo-

bytes) are used for parameter exchange among each process.

Larger messages — from 10s to 100s of megabytes — are used

for gradient aggregation (instead of an Allreduce as done in

pure data parallelism). The main takeaway: Even though DL

models such as LLMs operate using massive message sizes,

optimizations at smaller message sizes should be treated

as equally important.

3) Comparison to Performance Model

Figure 10 shows how the 19M, 125M, 1.3B, and 13B-

parameter models match up to the predicted communication

volumes based on the Data-Parallel and ZeRO-based formulas

from Section III. In general, our prediction aligns well with

the communication volume observed across all model sizes

and all parallelism schemes (DDP, ZeRO-1/2/3). Note that

we are able to predict 13B communication volume under a

Distributed Data-Parallel scenario but training parameters will

exceed worker memory in action, causing an OOM error.

B. Model Parallelism Communication Volume Analysis (Ten-

sor and Pipeline)

This section explores the differing communication behaviors

for tensor/pipeline parallelism and a combination of them in

parallel (model parallelism).

1) Breakdown of Communication Volume

Figures 12 shows how differing levels of tensor and pipeline

parallelism can affect communication volume1. The first im-

mediate observation is the domination of Allgather operations

despite the use of point-to-point operations in any config-

uration utilizing a mix of pipeline and tensor parallelism.

Only pure pipeline parallelism avoids this with the next-largest

bottleneck being calls to Allreduce2.

Returning to the figures in Section I-A we noted that

pipeline parallelism has an interesting anomaly: the receive op-

eration is the only one to suffer from cold-cache performance,

1We saw large Allreduce operations show up in the pure pipeline parallelism
case that we suspect are internal to the DeepSpeed framework rather than
inherent to the parallelism scheme

2We saw a larger communication volume than predicted for tensor paral-
lelism, which we believe to be due to DeepSpeed internals
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(a) 19M (b) 125M (c) 1.3B (d) 13B

Fig. 7: ZeRO-1/2/3 communication percentage breakdown for models of size 19M, 125M, 1.3B, and 13B.

(a) 19M (b) 125M (c) 1.3B (d) 13B

Fig. 8: ZeRO-1/2/3 total communication volume for models of size 19M, 125M, 1.3B, and 13B.

(a) Allgather-message frequency breakdown,
19M-parameter model

(b) Allgather-message frequency break-
down, 1.3B-parameter model

(c) Allgather-message frequency breakdown,
13B-parameter model

Fig. 9: Message size breakdown for Allgather in three different model sizes utilizing ZeRO-3

(a) 19M (b) 125M (c) 1.3B (d) 13B

Fig. 10: Communication volume for ZeRO-1/2/3 across model sizes 19M, 125M, 1.3B, and 13B

particularly in small message sizes (first iteration receive

operations can cause on overhead on the order of thousands of

milliseconds). While raw performance modeling is outside the

scope of this paper, it is important to note that this anomaly

becomes a concern as model size increases and pipeline

parallelism is used. This goes back to the takeaway at the

end of the previous subsection: Small message optimization is

as important as large message optimization.

2) Comparison to Performance Model

Figure3 134 shows how the 19M, 125M, 1.3B, and 13B-

parameter models perform and match up to the predicted

communication volumes based on the Tensor and Pipeline

Parallelism formulas from Section III. Here, we are primarily

3We note that send operations contain up to an extra eight megabytes. We
believe this to be extra metadata being transferred on behalf of the sender

4We note that the 125M-parameter model fails to run with pure tensor
parallelism due to the number of attention heads not being appropriately
divisible by the number of tensor stages.

6



(a) Pipeline Parallelism (b) Tensor Parallelism

Fig. 11: Tensor and Pipeline Parallel total communication volume for our four selected model sizes.

(a) Pipeline Parallelism (b) Tensor Parallelism

Fig. 12: Tensor and Pipeline Parallel Communication Breakdown for our four selected model sizes.

(a) Pipeline Parallelism (b) Tensor Parallelism

Fig. 13: Tensor and Pipeline Parallel Communication comparison to theory for our four selected model sizes.

interested in the send/receive volume (pipeline parallelism-

related) and/or Allreduce communication (tensor parallelism).

C. Sequence Length Experiments

This section examines how sequence length impacts com-

munication behavior for Data-Parallel and Model-Parallel en-

vironments. Experiments here were all run on 2 Nodes, 8

GCDs/Node with the 1.3B-parameter model.

Figure 14a shows the Allgather communication volume

(where applicable) for both data and model parallelism. To

reduce redundancy, we will note that this does not change

across increasing sequence length values, from 512 to 4096 or

higher. However, we do note that optimizations and sequence

length do have an impact on throughput. Figure 14b shows

how different levels of ZeRO impact throughput. While we

see an approximate 2-2.5x increase in TFlops per GPU, ZeRO

optimizations will more often than not result in a decrease of

flops for the given sequence length.

Compared to data parallelism and ZeRO, there is more

variation in the “key” components tensor/pipeline/model par-

allelism. While pure tensor parallelism makes sole use of

Allreduce, pure pipeline parallelism and model parallelism

make use of point-to-point operations as well, and contrary

to the above, these volumes increase with token size (see

Sections III and V-B). Figure 15b shows an approximate

doubling/slightly-larger-than-2x increase in communication

volume with increasing sequence-length values while Figure

15a directly shows a 2x increase with increasing sequence-

length values. Similar to the data-parallel results, we also

see an increase in throughput as shown in figure 15c. For

brevity, we only show when we have two pipeline stages or a

tensor parallelism value of two. Ultimately, the use of tensor

parallelism will allow for a higher TFLOP-per-GPU count over

pipeline parallelism (up to almost 2x more), though this has an

inverse relationship with point-to-point communication (where

applicable as pure tensor parallelism does not use point-to-

point) in communication volume.
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(a) Allgather Comm Volumes for Data/-
Model Parallelism Schemes

(b) How Sequence Length Impacts Data
Parallelism Throughput

Fig. 14: Sequence Length Impacts on Allgather, Allreduce, and DP and ZeRO-based throughput

(a) Sequence Length Study: Ten-
sor/Pipeline Parallelism Recv Vol-
umes

(b) Sequence Length Study: Ten-
sor/Pipeline Parallelism Send Vol-
ume

(c) How Sequence Length Impacts Tensor
and Pipeline Parallelism Throughput

Fig. 15: Sequence Length Impacts on Send/Recv Communication (Communication Volume and Throuhgput)

VI. RELATED WORK

Many papers have analyzed LLMs and characterized them

through bias and truthfulness. The authors of [32] develop

“CoMPosT” to characterize LLM simulations that result in

caricatures: misrepresentations of the models/workloads being

simulated. Our work performs analysis at a system level to

show the impact of communication on these models. [33]

focuses on LLMs as a data generator and characterizes the

diversity and bias of the data it generates post-training.

Research has been done to characterize the performance of

DNNs on HPC clusters. [34] and [14] characterized DNN per-

formance, first in the context of CPU/GPU-based architectures

and later with the PyTorch and TensorFlow frameworks. The

authors of [35] evaluated DNN performance in the context of

CUDA-aware MPI libraries.

More recently, LLMs have been analyzed from a sys-

tem/performance perspective. The authors of [31] analyze

different LLM architectures on the current5 world’s fastest

supercomputer Frontier and answer the question of how dif-

ferent model architectures impact performance. The authors

of [36] explored the impact of LLMs on large-scale sys-

tems, namely hardware limitations and capabilities. They note

communication overheads as part of some performance skew

and degradation but ultimately do not do in-depth commu-

nication analysis. Even more recently, the authors of [5] de-

signed, developed, and characterized the performance of their

“MegaScale” framework to allow for easy training/deployment

5As of May 2024, Frontier ranks first in the Top500 list with an Rpeak of
1.7 exaFLOPS.

of LLMs for scales at and beyond ten thousand GPUs, with

a focus on software/hardware co-design for efficiency and

stability. A more recent work ([27]) looks at characterizing

LLM performance at scale on NVIDIA DGX clusters with an

emphasis on 200Gb/s network utilization. Their work differs

from ours in that they look at performance characteriza-

tion concerning scale, not directly in communication volume

and behavior. They also do not evaluate model, tensor, or

pipeline parallelism and how a combination of sequence length

and parallelism scheme impacts communication volume and

throughput.

VII. CONCLUSIONS

We have presented a characterization of LLM communi-

cation behavior on the Frontier supercomputer. This has been

done by combining a rigorous performance model for multiple

parallelism schemes and multiple experiments utilizing cur-

rent state-of-the-art training frameworks with precise profiling

of communication and compute. We have provided insights

into potential optimizations for communication middleware

for small-message communication. For future pending work,

given that the Frontier system represents one combination, we

would like to examine further parallelism schemes here such

as multi-dimensional parallelism and expert parallelism. We

would also like to examine how all the schemes presented here

might change on current and upcoming systems with new or

maturing communication and software stacks such as Aurora

at Argonne National Lab (Intel GPUs and Intel CPUs) or

8



the upcoming Vista cluster at the Texas Advanced Computing

Center (NVIDIA Grace Hopper).
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