
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Machine Intelligence, Tools, and Applications

Series Title

Chapter Title Mandelbug Classification Engine: Transfer Learning and NLP Approach
Copyright Year 2024
Copyright HolderName The Author(s), under exclusive license to Springer Nature Switzerland AG

Corresponding Author Family Name Biswal
Particle
Given Name Biswajit
Prefix
Suffix
Role
Division
Organization
Address 300 College Street NE, Orangeburg, SC, 29117, USA
Email bbiswaji@scsu.edu

Abstract Classifying bugs in software systems indeed often involves considering factors like severity, complexity
and reproducibility. More elusive and troublesome types of bugs in software development are Mandelbugs
which exhibit characteristics of being both complex and non-deterministic, making them exceptionally
challenging to reproduce and resolve. However, developers can perform a quick, inexpensive yet most
effective methods to identify Mandelbug root causes, and design targeted fault-tolerance mechanisms to
enhance system reliability and resilience. His work studied the distribution of Mandelbugs and proposed a
classification engine – machine learning, feature engineering, transfer learning and natural language
processing (NLP) approach to quickly and effectively categorize Mandelbugs. We evaluated our proposed
solution by extracting and processing the text descriptions of Mandelbugs obtained from four different
datasets which has 210 Mandelbug records. Our performance evaluation revealed that use of transfer-
learning approach has improved F1-scores as well as accuracy (30% - 65%) when compared to that of
baseline classifiers.

Keywords
(separated by '-')

Machine learning - feature engineering - transfer learning - mandelbugs - natural language processing



Mandelbug Classification Engine: Transfer
Learning and NLP Approach

Biswajit Biswal(B)

300 College Street NE, Orangeburg, SC 29117, USA
bbiswaji@scsu.edu

Abstract. Classifying bugs in software systems indeed often involves consider-
ing factors like severity, complexity and reproducibility. More elusive and trou-
blesome types of bugs in software development are Mandelbugs which exhibit
characteristics of being both complex and non-deterministic, making them excep-
tionally challenging to reproduce and resolve. However, developers can perform a
quick, inexpensive yet most effective methods to identify Mandelbug root causes,
and design targeted fault-tolerance mechanisms to enhance system reliability and
resilience. His work studied the distribution of Mandelbugs and proposed a clas-
sification engine – machine learning, feature engineering, transfer learning and
natural language processing (NLP) approach to quickly and effectively categorize
Mandelbugs.We evaluated our proposed solution by extracting and processing the
text descriptions of Mandelbugs obtained from four different datasets which has
210Mandelbug records. Our performance evaluation revealed that use of transfer-
learning approach has improved F1-scores as well as accuracy (30% - 65%) when
compared to that of baseline classifiers.

Keywords: Machine learning · feature engineering · transfer learning ·
mandelbugs · natural language processing

1 Introduction

Classification of software system faults are important for critical missions, [1–4] pre-
sented four different bug categories such as”Bohrbugs”,”Heisenbugs”,”Mandelbugs”,
and”Schroedinbug”; each bug category represents a different level of complexity and
unpredictability, requiring specific approaches and techniques for identification and
resolution.

Named after Benoît Mandelbrot, Mandelbugs bugs are characterized by their com-
plexity and unpredictability. Mandelbugs often involve intricate interactions between
different components or systems within the software. They exhibit non-linear behavior
and may be influenced by a myriad of factors, including concurrency, timing, and envi-
ronmental conditions. Mandelbugs are notoriously hard to reproduce and may require
extensive analysis and debugging to identify and resolve. According to Cotroneo et al.
Mandelbugs required more time to fix e.g. 230 h in Linux system and needed peculiar
approach to handle it [5]. This motivated us to study Mandelbugs.
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2 B. Biswal

Hard to find, Mandelbugs are classified into “aging related bugs” such as memory
leak, cursor leak, TCP aging, numeric overflow, Fragmentation, memory trampler and
“non-aging related bugs” such as race condition, lag, overload, limit, timeout, abort,
retry, uninitialized bit [6].

Indeed, developers could greatly benefit from tools that aid in for fast and cost-
effective bug analysis in assigning categories to bugs. Transfer learning is a solution
where models can be trained in one domain and tested with data from another domain
under the condition that domains must share some commonalities.

In this work, we propose a natural language processing and transfer learning solution
to categorizes Mandelbugs into categories: LAG, ENV, TIM, and SEQ in a fast and cost-
effective way. Our objective is to label a Mandelbug into one of those categories based
on the Mandelbug text description given in the corresponding bug record. We then
evaluated our proposed method on four benchmark datasets [7] such as Mysql-RDBMS,
AXIS-Systems, Apache-Server, and Linux-Kernel.

The rest of the sections are arranged as follows. We have described the related works
in Sect. 2. Section 3 outlines the overall framework solution. Section 4 narrates Feature
Engineering. Transfer learning (TL) is presented in Sect. 5. Experimental results in
Sect. 6. Section 7 narrates conclusions and future work.

2 Related Works

2.1 Categorization and Bug Prediction

Numerous studies had been done onbug types prediction [5, 8–12].Authors of [5] studied
software bugs, and concluded that specific strategies required to handle Mandelbugs as
it takes longer time to fix. Gegick et al. studied software bugs to determine if a bug was
related to security or not using text mining techniques [8]. Arshad et al. developed a
tool ConfGauage to address software system configuration based issues such as type of
problem, time of problem, problemmanifestation and source of problem [9]. Zaman et al.
provided a comparative study between performance and security bugs.According to their
findings performance bugs needed more files to be modified to fix, while the later can be
fixed through extra time [10]. Xia et al. studied external interface bugs while developing
softwares applications on different software building tools [11]. Thung et al. studied three
bug classes such as structural, nonfunctional, and contral-data flow. Then they developed
a method to classify those bug reports automatically [12]. Authors of [13] studied and
developed a method to classify configuration bugs using feature selection and data-
mining techniques. Our proposed method best aligned with above studies and integrates
transfer learning, feature engineering and natural language processing to categorize an
unlabeled-bug as a Mandelbug subcategory.

2.2 Natural Language Mining

Textmining studies on software engineering had been reported bymany researchers [14–
19]. The surveys reported here by us are randomly selected from the scholarly articles
published, related to our work and has no bias towards any articled. Wu et al. proposed
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Mandelbug Classification Engine 3

a link retrieval technique to detect duplicate bugs and their corresponding changes [14].
Authors of the articles [15–17] had studied and proposed text mining techniques to
accurately identify duplicated bug reports. Marcus and Maletic developed an indexing
technique named Latent Semantic Indexing (LSI) for duplicate bugs by tracing down
links between source code documentations [18]. Haiduc et al. used a text summarization
automation process to understand software code succinctly [19]. Zhou et al. developed
a relevancy method by taking in a bug report and the returned source code files are then
further processed to find a likely input bug report [20].

2.3 Research gaps in studying Mandelbugs

Fig 1, represnts a Mandelbug example in AXIS engine. It describes a bug that causes a
concurrency issue with web service implementation class. Themain source of this defect
was the activation timing of inputs and operations. Occasional occurance of this bug is
hard to reproduce. Thus, this bug is categorized as a Mandelbug subcategory TIM [5].

Fig. 1. Mandelbug example with AXIS engine

3 Framework Overview

We present here a feature engineering and transfer learning approach (FETLA) frame-
work as shown in Fig. 2, to categorizeMandelbugs by transferring the knowledge learned
from known bugs. Features are extracted from textual data through feature engineering
process. Generally in machine learning, training and testing datasets are used alternate
terms source domain and target domain respectively. In this research the source domain
and the target domain datasets consist of differentMandelbug subcategory records. Thus,
in our example the labeled bugs are from source domain, while the unlabeled bugs are
from target domain. To differentiate the unlabeled bugs in target domain from labeled
bugs in source domain the transfer learning technique is used.
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4 B. Biswal

Fig. 2. Feature Engineering and Transfer Learning Framework

The source domain and target domain represent the different system environments
but have same Mandelbug types with heterogeneous features. Here heterogeneous fea-
tures means that the source and target domains are having different features but same
number of observations unlike binary classification. For example, the source domain
includes Apache and Linux kernel bugs related to TIM category while target domain
includes Axis bugs related to TIM subcategory. So, the FETLA framework allows us
to add new features to the target domain and this is absolutely possible in any criti-
cal operational environment where sophisticated system operations may change due to
evolvingMandelbugs, which results in identifying new features. This justify the different
Mandelbug feature distributions in the source and target domains.

Our FETLA framework operates on three core phases: (1) Raw text data processing,
(2) Feature engineering, and (3) Feature-based Transfer Learning. First, feature sets are
extracted from the raw text data. Second, a good working heterogeneous feature space
dataset is generated through feature-engineering process. Third, through TL method a
new common latent feature space is learned from the source and target domain datasets
[21]. The newly learned feature representations are then classified using baseline clas-
sifiers such as decision trees, SVM, Naive Bayes, KNN and random forest trees. These
classifiers are trained using known samples of one category and then try to predict the
newly learned samples from another different category.
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Mandelbug Classification Engine 5

4 Feature Engineering

In our work, the bug reports include technical words making the feature construction
process complex to work with because available dictionaries don’t include technical
words. For example,”httpd”,”SIGKILL”,”free-proc chain”,”mod CGI”,”SSL”, etc. So,
we have extracted technical words by processing through dictionary and selecting non-
dictionary words as technical words.

4.1 Advanced Text Processing

Preprocessing of the textual-description of bugs are done in four steps: tokenization,
stemming, typos, and strikeouts.

Tokenization. First weak correlations are reomoved from the bug reports by per-
forming removal of symbols, punctuationmarks and numbers. Then tokens are produced
by breaking text streams into meaningful phrases or words.

Stemming.Second, awell known stemming tool stemmer7 is used to remove derived
words and replaced with the base word. For example, the words “driving”, “driver”, and
“drived” all would be replaced with base word “drive”.

Typos. Third, we have used NLTK [22] and python to correct any typos.
Strikeouts. This step is done during the collection of textual data. We wrote a

program to detect strikeouts on html pages and remove it completely.

4.2 Feature Extraction

The bug report dataset have fields such as “Summary”, “Description”, and “Comments”
all are in text based. Thus, in our feature extraction process, word tokens are extracted
as features from the summary, description, and comments fields of a bug report. The
extracted features are represented in terms of numerical values which are truly the
frequency of word tokens in the bug report.

4.3 Tf-Idf

Term frequency - inverse document frequency highlights importance of frequently
occured words in a given record, while reducing importance of frequently occured words
in many documents at the same time.

5 Classifier Engine

5.1 Baseline Classifier

Now the bug dataset has the features such as bud-ID, Label, tf-idf, bug status, product
name that produced the bug, hardware, component, and importance of that bug.We need
to perform data preprocessing of the dataset to fit the baseline classifiers. We then follow
the steps below to make our text dataset is appropriately converted to numericals:
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6 B. Biswal

• Apply label encoder to each column such as Status, Product, Component, and
Hardware in our dataset – label encoder object knows how to understand word labels.

• Assign values to column “Importance” based on the importance of the bug. So, we
assign higher numerical values to bugs with higher importance. E.g. P3 has higher
importance than P2 and then P1. Table 1 shows a snapshot of assigned values.

Next, we performed baseline classification on the dataset and the results of baseline
classification are shown in Table 2. Baseline classifiers didn’t capture the mandelbug
data properly as we can see it from the classification accuracy and F1-score. This can
be multiple reasons for low accuracy and F1-scores such as discarding multiple useful
features from the raw text, improper label encoding from text to numbers etc. As we
don’t have control over label encoding methods, an alternative solution is to include all
the raw text data as features with different feature space. One such solution is the spectral
transformation where all features are projected to a new common latent subspace with
similar distribution of mandelbugs.

Table 1. Assigning values to feature named Importance

P3 Normal = 3.0 P2 Normal = 2.0 P1 Normal = 1.0

P3 Blocking = 3.05 P2 Blocking = 2.05 P1 Blocking = 1.05

P3 low = 3.1 P2 low = 2.1 P1 low = 1.1

P3 High = 3.2 P2 High = 2.2 P1 High = 1.2

P3 Major = 3.3 P2 Major = 2.3 P1 Major = 1.3

P3 Critical = 3.4 P2.Critical = 2.4 P1.Critical = 1.4

P3 Normal = 3.0 P2 Normal = 2.0 P1 Normal = 1.0

P3 Blocking = 3.05 P2 Blocking = 2.05 P1 Blocking = 1.05

Table 2. Baseline classification results

Model Name Accuracy F1-Score

Decision Tree 0.39 0.39

SVM Norm 0.39 0.39

Naive Bayes 0.23 0.23

KNN 0.31 0.31

Random Forest 0.36 0.36

5.2 Problem Formulation

Mandelbug classification is modeled as a multi-class classification problem, assigning
a bug to a subcategory of Mandelbug type. The task here is to distinguish a bug subtype
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Mandelbug Classification Engine 7

from another. Thus, our multi-class classification problem is divided intomultiple binary
classification problem such as One-vs-One (OvO) heuristic approach. For example, our
multi-class classification problem with four classes:’TIM’,’ENV’,’LAG’, and’SEQ’ are
divided into six binary classification problems by OvO approach as follows:

1: TIM vs. ENV
2: TIM vs. LAG
3: TIM vs. SEQ
4: ENV vs. LAG
5: ENV vs. SEQ
6: LAG vs. SEQ
For the test dataset, a probability score for each class is calculated from each binary

classifier model and the final class label is derived from the argmax of the sum of the
scores (class with the largest sum score).

5.3 Transfer Learning Method vIA Spectral Transformation

Each binary classification problem can be learned through transfer learning method
where one class is considered as source and other class as target. Let’s assign our training
examples to source domain training A = −→xi ,−→x ∈ Rm with class labels LA = yi, and
target domain data B = −→u ,

−→u ∈ Rn. The vector −→x is the extracted features from
source domain data and −→u is the extracted features from target domain data. Both −→x ,
and −→u have different distributions PA(x) �= PB(x), and different dimensions Rm �= Rn.
The main objective of our framework is to classify class labels of target domain (B)
accurately.

In our work, datasets A and B corresponds to source and target data respectively.
Next, A and B are projected into new k-dimensional latent subspace using spectral
transfomation, where instances from one category are homogeneous and instances from
other categories are discriminative. The new optimal projections of A andB areVA,VA ∈
Rk and VB,VB ∈ Rk respectively. Now, the objective is to optimize the VA and VB as
follows:

min
VA,VB

ψ(VA,A) + ψ(VB,B) + β.�(VA,VB) (1)

where ψ(∗, ∗) is a distortion function that estimates the difference between the original
data and projected data. �(VA,VB) is the difference between the projected datasets
VA, and VB. β is a similarity contolling-parameter between the datasets VA, and VB.

We rewrite ψ(VA,A),ψ(VB,B) as follows:

ψ(VA,A) = ‖A − VAPA‖2,ψ(VB,B) = ‖B − VBPB‖2 (2)

whereVA, andVB are estimated by a linear transformation. ‖∗‖2 is the Euclidian norm of
amatrix or matrix trace norm. The projected datasets A and B into a k-dimensional space
denoted as PA

T ∈ Rm×k and PB
T ∈ Rn×k respectively. Indeed, the source and target can

be represented as linear mapping matrices PA ∈ Rk×m and PB ∈ Rk×n respectively.
Next, We represent �(VA,VB) in terms of ψ(∗, ∗) as:

�(VA,VB) = ψ(VA,VB) (3)
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8 B. Biswal

Rewritting (1) by substituting (2) and (3) into (1) i.e. minimizing w.r.t
VA,VB,PA, andPB, we obtain:

min
VT
A VA=I ,VBTVB=I

G(VA,VB,PA,PB) = min
VT
A VA=I ,VT

B VB=I
‖A − VAPA‖2

+ ‖B − VBPB‖2 + β.
(
‖VB − VA‖2

)
(4)

As (4) is not a convex problem, globalminima can be obtained using gradient descent
method. Taking the derivative w.r.t VB (i.e. solving VB, fix VA,PB,PA):

∂G

∂VB
= 2

(
VBPBP

T
B − BPT

B + β(VB − VA)
)

(5)

Similarly, solving VA, fix VB,PB,PA; solving PB, fix VA,VB, andPA; solving PA, fix
VB,VA, andPB; we obtain

∂G

∂VA
= 2

(
VAPAP

T
A − APT

A + β(VA − VB)
)

(6)

∂G

∂PB
=

(
VB

TVB

)−1
VT
B B (7)

∂G

∂PA
=

(
VA

TVA

)−1
VT
AA (8)

6 Results

Here, we represented the evaluation of our proposed method using benchmark Mandel-
bug datasets.

6.1 Dataset

We used open-source software project hosted at tera-Promise data portal as benchmark
dataset [7] and the dataset is in “.arff” format. The dataset contains bug reports from 4
projects such as OS-kernel (Linux), RDBMS (MySQL), HTTPD web server (Apache),
and AXIS WS.

Our data columns represents the bug ID, bug type and bug subcategory type.
We then run a script to filter out Mandelbug only (e.g. 2123, NAM, NAU). Further,
we used the bug IDs on the on-line bug repositories of the open-source projects(for
example, by putting the ID in the search field)to get more details about that bug.
The repositories are available on the following urls: https://bugzilla.kernel.org/(Lin
uxkernel), https://bugs.mysql.com/search.php(MySQL), https://bz.apache.org/bugzilla/
(ApacheHTTPD), https://issues.apache.org/jira/secure/Dashboard.jspa (Apache AXIS).
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Mandelbug Classification Engine 9

6.2 Experimental Settings

Mandelbug prediction is modeled as a binary classification problem to distinguish one
Mandelbug type from another type To evaluate our approach, we arrange the source
and target domain datasets in different settings such as TIM → SEQ, LAG → ENV,
etc., where the arrow head points to the target domain data. Transfer learning approach
allows to classifying the Mandelbugs with different feature spaces but same number of
observations.

Transfer learning via spectral transformation approach and the baseline classifiers
are implemented using python programming language (python version 3).

6.3 Evaluation

Our approach is evaluated by comparing the accuracy and F1-Score metrices of baseline
classifiers with transfer learning approach. The baseline classifiers used in our work
are Support Vector Machine (SVM), Decision Tree, Naive Bayes, KNN and Random
Forests. Using results from Tables 3 and 4, one can observe that the using TL approach
has significant improvement in accuracy (30% - 65%) and F1-score when compared
with that of baseline classifiers.

Table 3. Accuracy of Mandelbug

Accuracy

Datasets DT SVM NB KNN RF

TIM → ENV 0.57 0.64 0.64 0.85 0.57

TIM → LAG 0.85 0.89 0.89 0.89 0.89

TIM → SEQ 0.91 0.91 0.91 0.91 0.91

LAG → ENV 0.90 0.85 0.85 0.85 0.82

LAG → ENV 0.8 0.8 0.8 0.8 0.8

Table 4. F1-Score of Mandelbug

F1-Score

Datasets DT SVM NB KNN RF

TIM → ENV 0.7 0.73 0.71 0.87 0.7

TIM → LAG 0.33 0.29 0.53 0.29 0.29

TIM → SEQ 0.16 0.0 0.0 0.0 0.0

LAG → ENV 0.93 0.9 0.9 0.9 0.88

LAG → ENV 0.89 0.89 0.89 0.89 0.89
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10 B. Biswal

7 Conclusion

Our work has developed and implemented a framework using feature engineering, NLP
and transfer learning to categorize types of mandelbugs. Performance evaluation of our
transfer learning approach in comparison with baseline classifiers shows that our app-
roach has an enhanced accuracy of 30% to 65% in classifying variants of mandelbug
compared to baseline classifiers. Also, it supports different feature spaces compared to
baseline classifiers. In our future work, we’ll investigate other available models to see
how well the natural language data are captured and if possible to have improved classi-
fication accuracy. Furthermore, we’ll also investigate all the possibilities of cyberattacks
exploited by attackers in the presence of software bugs with a special case study of
Mandelbug exploitation.

Acknowledgements. Thisworkwas partly supported byTargeted InfusionProject: Cybersecurity
for Everybody - A Multi-Tier Approach to Cybersecurity Education, Training, and Awareness in
the Undergraduate Curriculum by the National Science Foundation (NSF award #1912284).
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