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Abstract. Out-of-distribution (OOD) generalization poses a serious chal-
lenge for modern deep learning (DL). OOD data consists of test data that
is significantly different from the model’s training data. DL models that
perform well on in-domain test data could struggle on OOD data. Over-
coming this discrepancy is essential to the reliable deployment of DL.
Proper model calibration decreases the number of spurious connections
that are made between model features and class outputs. Hence, cal-
ibrated DL can improve OOD generalization by only learning features
that are truly indicative of the respective classes. Previous work proposed
domain-aware model calibration (DOMINO) to improve DL calibration,
but it lacks designs for model generalizability to OOD data. In this
work, we propose DOMINO++, a dual-guidance and dynamic domain-
aware loss regularization focused on OOD generalizability. DOMINO++
integrates expert-guided and data-guided knowledge in its regulariza-
tion. Unlike DOMINO which imposed a fixed scaling and regularization
rate, DOMINO++ designs a dynamic scaling factor and an adaptive reg-
ularization rate. Comprehensive evaluations compare DOMINO++ with
DOMINO and the baseline model for head tissue segmentation from mag-
netic resonance images (MRIs) on OOD data. The OOD data consists of
synthetic noisy and rotated datasets, as well as real data using a different
MRI scanner from a separate site. DOMINO++’s superior performance
demonstrates its potential to improve the trustworthy deployment of DL
on real clinical data.
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1 Introduction

Large open-access medical datasets are integral to the future of deep learning
(DL) in medicine because they provide much-needed training data and a method
of public comparison between researchers [20]. Researchers often curate their
data for DL models; yet, even the selection process itself may contain inherent
biases, confounding factors, and other “hidden” issues that cause failure on real
clinical data [1]. In DL, out-of-distribution (OOD) generalizability refers to a
model’s ability to maintain its performance on data that is independent of the
model’s development [23]. OOD generalizability represents a critical issue in DL
research since the point of artificial intelligence (AI) in medicine is to be capable
of handling new patient cases. However, this important aspect of DL is often not
considered. On the other hand, overcoming challenges such as scanner-induced
variance are critical in the success of neuroimaging studies involving AT [5].

We hypothesize that adaptable domain-aware model calibration that com-
bines expert-level and data-level knowledge can effectively generalize to OOD
data. DL calibration is correlated with better OOD generalizability [21]. Cali-
brated models may accomplish this by learning less spurious connections between
features and classes. This observation relates to how calibrated models reflect the
true likelihood of a data point for a class. A calibrated model may let a confusing
data point naturally lay closer to the class boundaries, rather than forcing tight
decision boundaries that over-fit points. Calibration affects decision-making such
that the models can better detect and handle OOD data [19].

In this work, we introduce DOMINO++, an adaptable regularization frame-
work to calibrate DL models based on expert-guided and data-guided knowledge.
DOMINO++ builds on the work DOMINO[18] with three important contribu-
tions: 1) combining expert-guided and data-guided regularization to fully exert
the domain-aware regularization’s potential. 2) Instead of using static scaling,
DOMINO++ dynamically brings the domain-aware regularization term to the
same order of magnitude as the base loss across epochs. 3) DOMINO++ adopts
an adaptive regularization scheme by weighing the domain-aware regularization
term in a progressive fashion. The strengths of DOMINO++’s regularization lie
in its ability to take advantage of the benefits of both the semantic confusability
derived from domain knowledge and data distribution, as well as its adaptive
balance between the data term and the regularization strength. This work shows
the advantages of DOMINO++ in a segmentation task from magnetic resonance
(MR) images. DOMINO++ is tested in OOD datasets including synthesized noise
additions, synthesized rotations, and a different MR scanner.

2 Dynamic Framework for DL Regularization

2.1 DL backbone

U-Net transformer (UNETR) [10] serves as the DL backbone. UNETR is in-
spired by the awe-inspiring results of transformer modules in Natural Language
Processing [22]. These modules use self-attention-based mechanisms to learn
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Fig. 1: The flowchart for the DOMINO++-HCCM pipeline

language range sequences better than traditional fully convolutional networks
(FCNs). UNETR employs a transformer module as its encoder, whereas its de-
coder is an FCN like in the standard U-Net. This architecture learns three-
dimensional (3D) volumes as sequences of one-dimensional (1D) patches. The
FCN decoder receives the transformer’s global information via skip connections
and concatenates this information with local context that eventually recovers
the original image dimensions. The baseline model does not include advanced
calibration. However, basic principles to improve OOD generalizability are still
incorporated for a more meaningful comparison. These principles include stan-
dard data augmentations like random Gaussian noise, rotations along each axis,
and cropping. The model includes 12 attention heads and a feature size of 16.

2.2 DOMINO++ Loss Regularization

Derivation The original DOMINO’s loss regularization is as follows:
L(y,9) + ByT W, where W = Wy or We (1)

where £ can be any uncalibrated loss function (e.g., DiceC'E which is a hybrid
of cross-entropy and Dice score [12]). y and § are the true labels and model
output scores, respectively. 8 is an empirical static regularization rate that ranges
between 0-1, and s is a pre-determined fixed scaling factor to balance the data
term and the regularization term. The penalty matrix W has dimensions N x N,
where N is the number of classes. Wy and Wep, represent the hierarchical
clustering (HC)-based and confusion matrix (CM)-based penalty matrices.

We improved its loss function to DOMINO++’s dual-guidance penalty matrix
with adaptive scaling and regularization rate as follows:

(1= P)L(y,9) + By" (sWrcom)d (2)

where [ dynamically changes over epochs. s is adaptively updated to balance
the data and regularization terms. Wyccoas is the dual-guidance penalty matrix.

Combining expert-guided and data-guided regularization DOMINO-
HC regularizes classes by arranging them into hierarchical groupings based on
domain. DOMINO-HC is data-independent and thus immune to noise. Yet, it
becomes less useful without clear hierarchical groups. DOMINO-CM calculates
class penalties using the performance of an uncalibrated model on a held-out
dataset. The CM method does not require domain knowledge, but it can be
more susceptible to messy data. Overall, DOMINO-HC is expert-crafted and
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DOMINO-CM is data-driven. These approaches have complementary advantages
and both perform very well on medical image segmentation [18]. Hence, this work
combines these methods to learn from experts and data.

The combined regulation (a.k.a. DOMINO-HCCM) requires first replicating
DOMINO-HC. For this step, we recreate the exact hierarchical groupings from
the DOMINO paper [18]. A confusion matrix is generated using DOMINO-HC
on an additional validation set for matrix penalty. Next, the confusion matrix is
normalized by the number of true pixels in each class. The normalized terms are
subtracted from the identity matrix. Finally, all diagonals are set to 0’s. Next, a
second DL model trains using the resulting penalty matrix in its regularization.
This process differs from DOMINO-CM because DOMINO-HC was used to gen-
erate the final model’s matrix penalty. The uncalibrated model may produce a
matrix penalty that is susceptible to variable quality depending on the model’s
training data. In comparison, the initial regularization term adds an inductive
bias in the first model that encodes more desirable qualities about the class map-
pings [13]. Namely, the initial model contains information about the hierarchical
class groupings that drives the generation of the second model’s matrix penalty.
The final model can now use a regularization term that is more based on task
than dataset. Figure 2 displays the final DOMINO++HCCM matrix.

Dynamic Scaling Term DOMINO++
adds a domain-aware regularization
term to any standard loss. The result-
ing loss function combines the stan-
dard loss’s goal of increasing accu-
racy with DOMINO++’s goal of re-
weighing the importance of differ-
ent class mix-ups when incorrect. DL
models are at risk of being dominated
by a specific loss during training if
the losses are of different scales [14].
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ison, DOMINO++ updates the scal-
ing on the regularization term to be
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within the same scale as the current
epoch standard loss. Specifically, the
scaling is computed based on the clos-
est value to the baseline loss on the
log scale. For example, an epoch with
L=13 will have a scaling factor S=10.

Fig.2: Raw matrix penalty (W) for the
combined method DOMINO-HCCM.
Abbreviations - BG: Background, WM:
White Matter, GM: Grey Matter, CSF:
Cerebrospinal Fluid, CaB: Cancellous
Bone, CoB: Cortical Bone.
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2.3 Adaptive Regularization Weighting

Multiple loss functions must be balanced properly [6]. Most studies linearly bal-
ance the separate loss terms using hyper-parameters. Hyper-parameter selection
is nontrivial and can greatly alter performance. Indeed, the timing of regulariza-
tion during training is critical to the final performance [8]. Hence, the current
work investigates the role of regularization timing in the final model perfor-
mance. Equation 2 is similar to the original DOMINO equation [18]; however,
the equation is modified to include a weighting term (e.g., 1 — ) on the standard
loss function. In DOMINO, the § term was simply set at a constant value of 1.
As shown in Equation 3, DOMINO++ weighs the loss regularization to decay
(8) across epochs, while the standard loss is scaled reversely with regard to the
regularization term (see Equation 2).

CurrentEpoch

—1-
B Total Epochs

(3)

3 Experiments and Results

3.1 Dataset

Data Source The data in this study is from a Phase III clinical trial that tests
transcranial direct current stimulation to augment cognitive training for cogni-
tive improvement. All participants are cognitively healthy older adults between
65-89 years old. The trial was approved by the Institutional Review Boards at
both study sites. Both institutions collected structural T1-weighted magnetic
resonance images (T1-MRIs) from all participants. One site (“Site A”) used a
3-Tesla Siemens Magnetom Prisma scanner with a 64-channel head coil and the
other site (“Site B”) used a 3-Tesla Siemens Magnetom Skyra scanner with a
32-channel head coil. Both locations used the following MPRAGE sequence pa-
rameters: repetition time = 1800 ms; echo time = 2.26 ms; flip angle = 8°; field
of view = 256 x 256 x 256 mm; voxel size = 1 mm?. The proper permissions
were received for use of this dataset in this work. A total of 133 participants
were included, including 123 from Site A and 10 participants from Site B.

Reference Segmentations The T1 MRIs are segmented into 11 different
tissues, which include grey matter (GM), white matter (WM), cerebrospinal
fluid (CSF), eyes, muscle, cancellous bone, cortical bone, skin, fat, major artery
(blood), and air. Trained labelers performed a combination of automated seg-
mentation and manual correction. Initially, base segmentations for WM, GM,
and bone are obtained using Headreco [16], while air is generated in the Statis-
tical Parametric Mapping toolbox [2]. Afterward, these automated outputs are
manually corrected using ScanIP Simpleware™. Thresholding and morphological
operations are employed to differentiate between the bone compartments. Eyes,
muscle, skin, fat, and blood are manually segmented in Simpleware. Finally, CSF
is generated by subtracting the ten other tissues from the whole head.
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Out-of-Domain (OOD) Testing Data Most DL work selects a testing set by
splitting a larger dataset into training and testing participants. This work also
incorporates “messy” or fully independent data. Thus, three additional testing
datasets are used along with the traditional testing data (Site A - Clean).

Site A Noisy - MRI noise may be approximated as Gaussian for a signal-to-
noise ratio (SNR) greater than 2 [9]. Therefore, this work simulates noisy MRI
images using Gaussian noise of 0 mean with a variance of 0.01.

Site A Rotated - Rotated MRI data simulates other further disturbances or
irregularities (e.g., head tilting) during scanning. The rotation dataset includes
random rotation of 5- to 45 degrees clockwise or counter-clockwise with respect
to each 3D axis. The rotation angles are based on realistic scanner rotation [15].

Site B - Site A uses a 64-channel head coil and Site B uses a 32-channel head
coil. The maximum theoretical SNR of an MRI increases with the number of
channels [17]. Hence, this work seeks to test the performance of a model trained
exclusively on a higher channel scanner on a lower channel testing dataset. Thus,
the Site A data serves as the exclusive source of the training and validation data,
and Site B serves as a unique and independent testing dataset.

3.2 Implementation details

This study implements UNETR using the Medical Open Network for Artifi-
cial Intelligence (MONAI-1.1.0) in Pytorch 1.10.0 [4]. The Site A data is split
from 123 MRIs into 93 training / 10 validation / 10 held-out validation (ma-
trix penalty) / 10 testing. 10 images from Site B serve as an additional testing
dataset. Each DL model requires 1 GPU, 4 CPUs, and 30 GB of memory. Each
model is trained for 25,000 iterations with evaluation at 500 intervals. The mod-
els are trained on 256 x 256 x 256 images with batch sizes of 1 image. The
optimization consists Adam optimization using stochastic gradient descent. All
models segment a single head in 3-4 seconds during inference.

3.3 Analysis Approach

This section compares the results of 11 tissue head segmentation on each of the
datasets using the baseline model, the best performing DOMINO approach, and
the best performing DOMINO++ approach. The results are evaluated using Dice
score [3] and Hausdorff Distance [11,7]. The Dice score represents the overlap of
the model outputs with the true labels. It is better when greater and is optimally
1. Hausdorff distance represents the distance between the model outputs with
the true labels. It is better when lesser and is optimally 0.

3.4 Segmentation Results

Qualitative Comparisons Figure 3 features segmentation of one example slice
from the Site A MRI dataset with Gaussian Noise. DOMINO substantially ex-
aggerates the blood regions in this slice. In addition, DOMINO entirely misses
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Fig. 3: Visual comparison of segmentation performance on a noisy MRI image
from Site A. The yellow rectangular regions show areas where DOMINO++ im-
proves the segmentation. The orange regions show areas that DOMINO and
DOMION++ improve the segmentation over the baseline model.

a section of white matter near the eyes. However, DOMINO can also capture
certain regions of the white matter, particularly in the back of the head, better
than the baseline model. In general, all outputs have noisy regions where there
appear to be “specks” of an erroneous tissue. For instance, grey matter is incor-
rectly identified as specks within the white matter. This issue is far more common
in the DOMINO output compared to the baseline or DOMINO++ outputs.

Quantitative Comparisons Tables 1 and 2 show that DOMINO++ achieves
the best Dice scores and Hausdorff Distances across all test sets, respectively. As
such, DOMINO++ produces the most accurate overall segmentation across tis-
sue types. The supplementary material provides individual results across every
dataset and tissue type. So far, DOMINO++ improves the model generalizability
to the noisy and rotated datasets the most. These improvements are impor-
tant in combating realistic MR issues such as motion artifacts. Future work will
build off of DOMINO++’s improvements on different scanner data to yield even
better results. Table 3 displays the Hausdorff Distances for every tissue across
Site B’s test data. Site B is highlighted since that this is real-world OOD data.
DOMINO++ performs better in most tissues and the overall segmentation. GM,
cortical bone, and blood show the most significant differences with DOMINO++.
This is highly relevant to T1 MRI segmentation. Bone is difficult to differenti-
ate from CSF with only T1 scans due to similar contrast. Available automated
segmentation tools use young adult heads as reference, whereas the bone struc-
ture between older and younger adults is very different (e.g., more porous in
older adults). Hence, DOMINO++ is an important step in developing automated
segmentation tools that are better suited for older adult heads.

Ablation Testing The supplementary material provides the results of ablation
testing on DOMINO++. These results compare how Wyccewm, $, and g individu-
ally contribute to the results. Interestingly, different individual terms cause the
model to perform stronger in specific datasets. Yet, the combined DOMINO++
still performs the best across the majority of datasets and metrics. These ob-
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Table 1: Average Dice Scores. The data is written as meantstandard deviation.
* Denotes Significance using multiple comparisons tests.

Method Site A clean | Site A noisy |Site A rotated Site B
Base 0.808+0.014 | 0.781+0.015 0.72740.041 0.73040.028
DOMINO 0.8264+0.014 | 0.79140.018 0.777+£0.023 0.750£0.026
DOMINO++|0.842+0.0127(0.812+0.016 | 0.789+0.23" [0.765+0.027

Table 2: Average Hausdorff Distances. The data is written as meantstandard
deviation. * Denotes Significance using multiple comparisons tests.
Method Site A clean | Site A noisy |Site A rotated Site B
Base 0.651+0.116 | 0.669+0.085 2.266+1.373 1.699+0.414
DOMINO 0.5254+0.090 | 0.565+0.149 1.284+0.500 1.782+0.669
DOMINO++0.461+0.077 |0.457+0.076" | 1.185+0.411" |1.228+0.414

Table 3: Hausdorff Distances on Site B data. The data is written as
mean+standard deviation. * Denotes Significance using multiple comparisons
tests. Abbreviations - CaB: Cancellous Bone. CoB: Cortical Bone.

Tissue WM |GM |Eyes |CSF |Air Blood |CaB |CoB |Skin |Fat Muscle

Base 0.215+(0.266+[1.089+|0.506+2.28148.5344(1.5814(2.203+(0.610£|0.95840.363+
0.063 [0.107 [0.881 |0.226 |1.426 |2.564 |0.626 |1.279 [0.424 |0.751 [0.159

DOMINO [0.260+£(0.221+£|1.600+|0.564+|2.0704|9.9344(1.456+41.331+|0.811£|1.040£{0.320+
0.117 ]0.048 [4.108 [0.198 [1.380 [4.025 |(0.672 [0.827 [0.838 |0.987 [0.234

DOMINO++|0.189+40.17140.149+0.46241.446+6.260451.996+/0.95040.57041.060+|0.308+
0.042 |0.036 |0.047 [0.106 [1.057 [2.195 [0.960 [0.705 [0.369 |0.935 |0.165

servations suggest that each term has strengths on different data types that can
strengthen the overall performance.

Training Time Analysis DOMINO-HC took about 12 hours to train whereas
DOMINO-CM and DOMINO++ took about 24 hours to train. All models took
3-4 seconds per MR volume at the inference time. A task that has very clear hi-
erarchical groups may still favor DOMINO-HC for the convenient training time.
This might include a task with well-documented taxonomic levels (e.g., animal
classification). However, medical data is often not as clear, which is why models
that can learn from the data are valuable. DOMINO++ makes up for the longer
training time by learning more specific class similarities from the data. Tasks that
benefit from DOMINO++ over DOMINO-HC are those that only have loosely-
defined categories. Tissue segmentation falls under this domain because tissues
largely occur in similar anatomical locations (strength of DOMINO-HC) but the
overall process is still variable with individual heads (strength of DOMINO-CM).
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4 Conclusions

DOMINO [18] established a framework for calibrating DL models using the se-
mantic confusability and hierarchical similarity between classes. In this work, we
proposed the DOMINO++ model which builds upon DOMINO’s framework with
important novel contributions: the integration of data-guided and expert-guided
knowledge, better adaptability, and dynamic learning. DOMINO++ surpasses the
equivalent uncalibrated DL model and DOMINO in 11-tissue segmentation on
both standard and OOD datasets. OOD data is unavoidable and remains a piv-
otal challenge for the use of artificial intelligence in clinics, where there is great
variability between different treatment sites and patient populations. Overall,
this work indicates that DOMINO++ has great potential to improve the trust-
worthiness and reliability of DL models in real-life clinical data. We will release
DOMINO++ code to the community to support open science research.
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1 Additional visual results

DOMINO++

)

Fig. 1. Segmentation results on a Site A rotated testing image. The yellow squares
highlight areas where DOMINO++improves the performance. DOMINO-CM is used
for DOMINO in all comparisons because it performs better than DOMINO-HC.

Reference Segmentation

Base Model DOMINO DOMINO++

22 YR A el 1§ sl
Fig. 2. Segmentation results on a Site B testing image. The
areas where DOMINO++ improves the performance.

2 Performance on all Datasets

Table 1. Performance comparison across tissues using Dice Scores on Site A clean
data. Abbreviations - CaB: Cancellous Bone. CoB: Cortical Bone.

Tissue WM | GM | Eyes | CSF Air [Blood| CaB | CoB | Skin Fat |Muscle
Base 0.9301 | 0.8899 | 0.8253 | 0.8424 | 0.8249 | 0.3751 | 0.7113 | 0.7679 | 0.8737 | 0.9325 | 0.9104
DOMINO 0.9429 | 0.9021 | 0.8402 | 0.8424 [0.8472| 0.4634 | 0.7370 | 0.7962 | 0.8742 | 0.9291 | 0.9152
DOMINO++(0.9453(0.9046(0.8623|0.8558| 0.8457 [0.5363(0.7607(0.8028(0.8926|0.9363| 0.9202
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Table 2. Performance comparison across tissues using Dice Scores on Site A with
Gaussian Noise. Abbreviations - CaB: Cancellous Bone. CoB: Cortical Bone.

Tissue WM | GM | Eyes | CSF Air |Blood| CaB | CoB | Skin Fat |Muscle
Base 0.8779 | 0.8279 | 0.8249 | 0.8069 | 0.8108 | 0.3731 | 0.6825 | 0.7533 | 0.8497 | 0.8992 | 0.8851
DOMINO |0.8872|0.8376|0.8237 | 0.8075 |0.8345| 0.4331 | 0.6845 | 0.7693 | 0.8387 | 0.8958 | 0.8830
DOMINO++|{0.9062(0.8509(0.8545|0.8212| 0.8323 [{0.5164(0.7104(0.7805(0.8584|0.9021| 0.8949

Table 3. Performance comparison across tissues using Dice Scores on Site A with
Rotations. Abbreviations - CaB: Cancellous Bone. CoB: Cortical Bone.

Tissue WM | GM | Eyes | CSF Air [Blood| CaB | CoB | Skin Fat |Muscle
Base 0.9094 | 0.8610 | 0.6821 | 0.7900 | 0.7357 | 0.1302 | 0.6102 | 0.6839 | 0.8226 | 0.9112 | 0.8579
DOMINO |0.9290 | 0.8825 | 0.8033 | 0.8110 | 0.7952 | 0.2721 | 0.6598 | 0.7554 | 0.8372| 0.9148 | 0.8858
DOMINO++0.9306|0.8848|0.8181{0.8217|0.7986|0.3296|0.6857(0.7555|0.8464|0.9187| 0.8909

3 Ablation Testing

Table 4. Performance comparison using average Dice Score across sites. DOMINO-CM
is used as the base matrix penalty for DOMINO++ w/o [HCCM] instead of DOMINO-
HC due to higher quantitative performance. S: adaptive scaling term. R: dynamic
regularization weighting

Method Site A clean|Site A noisy|Site A rotated|Site B
DOMINO++ 0.8421 0.8116 0.7891 0.7653
DOMINO++ w/o [HCCM] 0.8348 0.7980 0.7887 0.7563
DOMINO++ w/o [R] 0.8330 0.8069 0.7873 0.7593
DOMINO++ w/o [S] 0.8367 0.7944 0.7828 0.7568

Table 5. Performance comparison using average Hausdorff Distance across sites.
DOMINO-CM is used as the base matrix penalty for DOMINO++ w/o [HCCM] in-
stead of DOMINO-HC due to higher quantitative performance. S: adaptive scaling
term. B: dynamic regularization weighting.

Method Site A clean|Site A noisy|Site A rotated|Site B
DOMINO++ 0.4609 0.4565 1.1853 1.2279
DOMINO++ w/o [HCCM] 0.5265 0.5402 1.1497 1.7052
DOMINO++ w/o [R] 0.5332 0.5149 1.2195 1.4990
DOMINO++ w/o [S] 0.4902 0.5212 1.2317 1.5640
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