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Abstract—The importance of early Alzheimer’s Disease 

screening is becoming more apparent, given the fact that there is 

no way to revert the patient’s status after the onset. However, the 

diagnostic procedure of Alzheimer’s Disease involves a 

comprehensive analysis of cognitive tests, blood sampling, and 

imaging, which limits the screening of a large population in a short 

period. Preliminary works show that rich neurological and 

cardiovascular information is encoded in the patient’s eye. Due to 

the relatively fast and easy procedure acquisition, early-stage 

screening of Alzheimer’s Disease patients with eye images holds 

great promise. In this study, we employed a deep neural network 

as a framework to investigate the relationship between risk factors 

of Alzheimer’s Disease and retinal structures. Our result shows 

that the model not only can predict several risk factors above the 

baseline but also can discover the relationship between the retinal 

structures and risk factors to provide insights into the retinal 

imaging biomarkers of Alzheimer’s disease.  
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I. INTRODUCTION 

The importance of managing risk factors for Alzheimer’s 
Disease (AD) is increasingly acknowledged for the early 
screening of patients. The absence of a cure post-onset of AD 
and the increasing number of AD-related deaths coupled with 
the decreasing death rate of other major diseases underline the 
significance of risk management [1], [2]. The AD screening & 
diagnosis involve a series of tests from diverse domains. The 
domains include cognitive tests [3], blood assays [4], 
cerebrospinal fluid (CSF) [5], and magnetic resonance imaging 
[6]. Although the thorough examination of these risk factors 
contributes to the accurate diagnosis, each test requires a 
substantial amount of time for acquisition and analysis.  

Oculomics, which employs macro and microscopic image-
driven features from the retinal structures to analyze a patient’s 
health status, provides the means to overcome the limitations of 
the existing screening process [7]. To analyze health via 
oculomic features, there’s a need for a feature extraction tool 
that proficiently captures the characteristics of the retina. 
Previously, risk factor management was performed by the hand-
driven features from the ophthalmologists. While analysis 
through features measured by experts yielded clear results, it 
demanded supervision from ophthalmologists and a 

meticulously designed hypothesis to reveal the associations [8], 
[9]. In contrast to statistical approaches, deep learning technique 
holds promise on various fronts. It does not require specific 
parameter settings, or supervision from the experts to extract the 
retinal features related to the risk factors.  

In this study, we developed the deep learning model for risk 
factor prediction using only colored retinal fundus photography 
as an input. Our model was designed to capture the visual 
features from the retinal structures available in fundus 
photography and to effectively map the computed features for 
the prediction of risk factors. For evaluation, we not only 
performed a general model performance analysis but also 
analyzed how much the model utilized the retinal structures for 
correct prediction.  

II. METHODS  

A. Dataset 

Table. 1 shows the general information of our dataset used 
for the model development. We acquired our dataset from the 
UK Biobank, the comprehensive biomedical dataset retaining 
diverse information from more than 500,000 subjects from the 
UK. The technical details of how the acquisition of each data 
was performed are explained in this website 
(https://www.ukbiobank.ac.uk/). From the dataset, we obtained 
the colored fundus image and the list of risk factors (6 
categorical & 6 continuous). The risk factor list was based on 
the prior clinical studies which were found to be significantly 
correlated with the onset of Alzheimer’s Disease.  

To ensure the proper development of the model, 
preprocessing for both the image and the risk factor data was 
performed. For images, the resizing, and quality assessment 
were performed using an established pipeline [10]. We filtered 
out the low-quality images to acquire 62,874 images from 
37,254 subjects for the model development. All right fundus 
images were flipped horizontally for consistency. The 
augmentations of the fundus images were not performed to keep 
the local features of retinal structures during the model 
development. For risk factors, imputations were not performed 
for the missing data to maintain the distribution of the data as 
closely as possible. Instead, we excluded subjects if any 
variables were missing, and variables that couldn't be utilized as 
predictors (e.g. -1: Do not know, -3: Prefer not to answer).  



This operation was performed separately for categorical and 
continuous risk factors. As a result of the operation, the data 
from 26,794 (Development Set: 21,435 & Validation Set: 5,439) 
subjects for classification and 24,410 (Development Set: 19,528 
& Validation Set: 4,882) subjects for regression were 
determined for model development and validation. Thus, we 
acquired left and right fundus images for model development 
(classification=36,310 & regression=32,868) and validation 
(classification=9,042 & regression=8,211). After the 
finalization of the development and validation set, we applied 
additional transforms to some variables that required refinement. 
For continuous risk factors, the 2 measures of blood pressure 
values were averaged to a single value. In addition, we 
normalized the factors with mean and standard deviation, 
obtained from the development set to prevent data leakage. For 
categorical variables, the smoking status was modified for 
classification variables as a binary variable, representing a 
‘current smoker’. In addition, the depression was also modified 
as a binary classification problem, representing a possibility of 
‘recurrent major depression’.  

B. Model Development 

In this study, we used a Swin-Transformer [20], a well-
recognized vision transformer model developed for computer 
vision, as a foundation model (Swin-L model). To efficiently 
train the model, we performed transfer learning with parameters 
pretrained with the ImageNet dataset. Since vision transformer-
base models require a sizable dataset for desirable performance, 
transfer learning allowed us to build a model with decent 

performance using a comparatively small dataset size. For 
model architecture, only the last fully connected layer of the 
network was replaced with the fully connected layers designed 
for either classification or regression tasks. Thus, we trained 2 
different models for each task.  

To find the best parameters for each task, we used an 
AdamW optimizer [21] with a learning rate of 1e-4. The training 
objective of the model was to minimize the loss determined for 
each task, which is categorical cross-entropy loss for 
classification, and mean squared error for the regression task. In 
specific, the loss of each risk factor was computed separately 
and aggregated as a single loss term for the backpropagation. 
During 100 training epochs, the parameters with the best result 
in internal validation were chosen to test on the clinical 
validation set. We chose the maximum batch size that our 
hardware could withhold, which was 16 in our experiment. The 
model was trained using HiPerGator AI, with 32 NVIDIA DGX 
A100 GPUs.   

C. Model Evaluation & Analysis 

We computed the different evaluation metrics for each task. 
For classification, accuracy, and area under the receiver 
operating characteristics curve (AUROC) was computed. In the 
regression task, the coefficient of determination (R2 Score) was 
computed to assess the model’s ability to accurately predict 
continuous values. To provide the confidence intervals for the 
metric, we performed bootstrapping; images were sampled 
equal to the number in the validation set with replacement and 

TABLE I.  BASELINE CHARACTERISTICS OF SUBJECTS IN DEVELOPMENT AND VALIDATION SETS AFTER PROCESSING 

Risk Factors 

Dataset Reference 

Development set Validation set  

Classification(n=21,435) Regression(n=19,528) Classification(n=5,359) Regression(n=4,882)  

Gender: male % 47.47  n/a 47.70  n/a [2], [11], [12] 

Age: mean years 

(s.d.) 
n/a 56.38 (8.18) n/a 56.31 (8.29)  [2], [11], [13] 

Education: mean 

years (s.d.) 
n/a 16.99 (2.40) n/a 16.94 (2.33)  [2], [11], [14] 

Sleeplessness: % 

28.10 Never/Rarely 

47.00 Sometimes 

24.90 Usually 

n/a 

28.40 Never/Rarely 

45.46 Sometimes 

26.14 Usually 

n/a [2], [15] 

Current Smoker: % 8.83  n/a 9.40  n/a [2], [16] 

Alcohol Use: %  

21.70, Daily/Almost daily 

24.59, 3~4 times a week 

24.88, 1~2 times a week 

11.29, 1~3 times a month 

10.69, Special Occasions  

6.84, Never 

n/a 

21.18, Daily/Almost daily 

23.89, 3~4 times a week 

24.86, 1~2 times a week 

11.48, 1~3 times a month 

11.42, Special Occasions 

7.18, Never 

n/a [2], [17] 

Recurrent 

Depression: % 

positive 

27.29 n/a 27.08  n/a [2], [16], [18] 

Economic 

Status: % 

17.72, Less than 18k £ 

23.18, 18k~31k £ 

26.55, 31k~52k £ 

24.28, 52k~100k £ 

8.27, > 100k £ 

n/a 

18.72, Less than 18k £  

23.68, 18k~31k £ 

26.31, 31k~52k £ 

23.18, 52k~100k £ 

8.12, > 100k £ 

n/a [11], [19] 

BMI: mean (s.d.) n/a 27.62 (4.74)  n/a 27.61 (4.82) [2], [11], [14] 

Diastolic BP: mean 

mmHg (s.d.) 
n/a 82.12 (10.00)  n/a 82.01 (10.28) [2], [12], [16] 

Systolic BP: mean 

mmHg (s.d.) 
n/a 137.60 (18.35)  n/a 137.56 (18.70) [2], [12], [16] 

HbA1C: mean 

mmol/mol (s.d.) 
n/a 36.05 (6.64)  n/a 36.06 (6.81) [2], [16] 

 



TABLE II.  MODEL PERFORMANCE ON PREDICTING RISK FACTORS OF 

ALZHEIMER'S DISEASE 

Risk Factors  
Prediction Result 

Metric Performance  Random 

Gender 
Accuracy 0.8584 (0.8556, 0.8612) 0.5 

AUROC 0.9353 (0.9334, 0.9371) 0.5 

Age R2  0.6701 (0.6653, 0.6747) 0 

Education R2  0.1034 (0.0897, 0.1170) 0 

Sleeplessness 
Accuracy 0.4503 (0.4462, 0.4544) 0.3333 

AUROC 0.5468 (0.5433, 0.5502) 0.5 

Current Smoker 
Accuracy 0.9078 (0.9054, 0.9101) 0.5 

AUROC 0.6503 (0.6427 0.6582) 0.5 

Alcohol Use 
Accuracy 0.2624 (0.2589, 0.2611) 0.1667 

AUROC 0.5888 (0.5857, 0.5917) 0.5 

Depression 
Accuracy 0.7157 (0.7120, 0.7194) 0.5 

AUROC 0.5646 (0.5593 0.5699) 0.5 

Economic 

Status 

Accuracy 0.3076 (0.3038, 0.3113) 0.2 

AUROC  0.6281 (0.6253, 0.6311) 0.5 

BMI R2  0.2442 (0.2324, 0.2564) 0 

Diastolic BP R2  0.3159 (0.3064, 0.3258) 0 

Systolic BP R2  0.2025 (0.1916, 0.2131) 0 

HbA1C R2  0.3301 (0.3139, 0.3468) 0 

repeated 2000 times. To determine the retinal structures 
employed by the DL model for prediction, we acquired the 
saliency map through class activation mapping (CAM) [22]. 
Specifically, we selected the first normalization layer in the last 
Swin Transformer block and acquired 12 different saliency 
maps for each risk factor. Moreover, we computed the extent to 
which retinal structures contributed to the model's prediction (r). 
Equation (1) shows how we performed this computation. We 
initially obtained the binary segmentation map (Mi,j) of the 

artery, vein, optic cup, and disc (s) from the existing 
segmentation algorithm [10]. Subsequently, we applied a 
threshold of 0.5 to binarize the saliency map (Si,j), considering 
that the maps were generated as a normalized value ranging 
from 0 to 1. After computing the overlap region between the 
segmentations of the retinal structures and the binarized saliency 
map, we obtained the ratio of retinal structures contributing to 
the model prediction.  

                          rs = Ms
∩S / Ms                        (1) 

III. RESULTS 

A. Model Performance of Risk Factor Prediction 

We assessed our model’s performance in predicting AD risk 
factors solely based on colored fundus images. Table. 2 shows 
the model performance for each risk factor variable. In the 
regression task, the DL model demonstrated high confidence 
predictions for age. Furthermore, the performance of the other 
continuous variables including diastolic BP, systolic BP, BMI, 
and HbA1C was better than the baseline. However, the model 
faced challenges in accurately predicting the age of completing 
full-time education and performing less effectively compared to 
other risk factors. In the classification task, the model excelled 
in predicting the gender of the subjects. For the alcohol use, and 
economic status, the model achieved accuracy above the 
baseline, but the low AUROC suggests that the model had 
difficulties predicting minority classes for each risk factor. 
While the classification model faced challenges in predicting 
positive samples for current smokers and depression due to the 
limited number of such samples, high accuracy gives a promise 
that DL models hold the potential for 

TABLE III.  MODEL’S INFERENCE OF THE RELATIONSHIP BETWEEN 

RETINAL STRUCTURES AND AD RISK FACTORS 

Risk Factors  
Model’s Inference (%) 

Artery Vein Optic cup Optic disc 

Gender 4.26 6.47 79.28 100 

Age 35.66 30.01 100 100 

Education 11.39 11.04 0 0 

Sleeplessness 2.92 6.1 0 0 

Current Smoker 19.86 17.63 100 100 

Alcohol Use 8.37 9.76 0 0 

Depression 1.44 1.28 0 0 

Economic Status 0.29 0.72 24.37 2.75 

BMI 29.43 28.2 58.56 27.19 

Diastolic BP 15.99 22.37 0 0 

Systolic BP 9.10 10.00 0 0 

HbA1C 14.74 16.7 93.08 100 

accurate prediction of the smoking and depression status 
when enough data is available.  

B. Model's Inference of Correlation Between the Retinal 

Structures and Alzheimer's Disease Risk Factors 

Fig. 1 illustrates the saliency map generated by the DL 
during the prediction of each risk factor. The visualization of the 
saliency indicates that the model makes predictions not by 
randomly selecting features, but by extracting the information 
from the retinal structures in the input. Table. 3 presents the 
model’s inference of the relationship between retinal structure 
and AD risk factor calculated using the saliency map. The 
inference percentage suggests that retinal arteries and veins have 
an akin relationship with age, BMI, and blood pressure. The 
percentage for optic cups and discs indicates these structures 
encode information related to gender, age, smoking status BMI, 
and HbA1C. For risk factors without correlation to artery, vein, 
optic cup, and disc (e.g. sleeplessness, economic status, alcohol 
use), the model’s saliency map indicates the focus was made in 
the macula region. 

IV. DISCUSSION 

The model’s performance in both classification and 
regression tasks demonstrated the robust prediction ability of 
DL models related to gender and age. While the model could 
predict other risk factors more than the baseline, the 
improvement was not significant. While the model’s 
performance may not have been notable for certain risk factors, 
assessing the capability of DL models only based on a metric 
like AUROC and R2 underestimates the capability as a tool to 
study the relationship between the AD and fundus images.  

The visualization of the model’s class activation map and 
subsequent analysis of the model’s inference regarding the 
contribution of retinal structures to prediction demonstrates that 
the model could identify the relationship between retinal 
structures and risk factors without any prior background 
information or supervision. This outcome suggests that DL 
models can serve as a tool for uncovering the underlying 
relationship between the retinal images and risk factors that may 
not be easily correlated with existing rationale and hypothesis. 
Hence, in future research, we aim to extend this analysis to other 
risk factors such as CSF biomarkers and brain measures. This 
will explicitly show the effectiveness of the DL model in 
identifying correlations between risk factors and associated 
retinal structures.  
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Fig. 1. Visualization of the saliency map for each risk factor. The results of the classification tasks are presented in the first row and regression tasks are 

presented in the second. For each risk factor, the subject’s ground truth and the model’s prediction are provided. 
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