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Abstract—The importance of early Alzheimer’s Disease
screening is becoming more apparent, given the fact that there is
no way to revert the patient’s status after the onset. However, the
diagnostic procedure of Alzheimer’s Disease involves a
comprehensive analysis of cognitive tests, blood sampling, and
imaging, which limits the screening of a large population in a short
period. Preliminary works show that rich neurological and
cardiovascular information is encoded in the patient’s eye. Due to
the relatively fast and easy procedure acquisition, early-stage
screening of Alzheimer’s Disease patients with eye images holds
great promise. In this study, we employed a deep neural network
as a framework to investigate the relationship between risk factors
of Alzheimer’s Disease and retinal structures. Our result shows
that the model not only can predict several risk factors above the
baseline but also can discover the relationship between the retinal
structures and risk factors to provide insights into the retinal
imaging biomarkers of Alzheimer’s disease.
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I. INTRODUCTION

The importance of managing risk factors for Alzheimer’s
Disease (AD) is increasingly acknowledged for the early
screening of patients. The absence of a cure post-onset of AD
and the increasing number of AD-related deaths coupled with
the decreasing death rate of other major diseases underline the
significance of risk management [1], [2]. The AD screening &
diagnosis involve a series of tests from diverse domains. The
domains include cognitive tests [3], blood assays [4],
cerebrospinal fluid (CSF) [5], and magnetic resonance imaging
[6]. Although the thorough examination of these risk factors
contributes to the accurate diagnosis, each test requires a
substantial amount of time for acquisition and analysis.

Oculomics, which employs macro and microscopic image-
driven features from the retinal structures to analyze a patient’s
health status, provides the means to overcome the limitations of
the existing screening process [7]. To analyze health via
oculomic features, there’s a need for a feature extraction tool
that proficiently captures the characteristics of the retina.
Previously, risk factor management was performed by the hand-
driven features from the ophthalmologists. While analysis
through features measured by experts yielded clear results, it
demanded supervision from ophthalmologists and a

meticulously designed hypothesis to reveal the associations [8],
[9]. In contrast to statistical approaches, deep learning technique
holds promise on various fronts. It does not require specific
parameter settings, or supervision from the experts to extract the
retinal features related to the risk factors.

In this study, we developed the deep learning model for risk
factor prediction using only colored retinal fundus photography
as an input. Our model was designed to capture the visual
features from the retinal structures available in fundus
photography and to effectively map the computed features for
the prediction of risk factors. For evaluation, we not only
performed a general model performance analysis but also
analyzed how much the model utilized the retinal structures for
correct prediction.

II. METHODS

A. Dataset

Table. 1 shows the general information of our dataset used
for the model development. We acquired our dataset from the
UK Biobank, the comprehensive biomedical dataset retaining
diverse information from more than 500,000 subjects from the
UK. The technical details of how the acquisition of each data
was  performed are explained in this  website
(https://www.ukbiobank.ac.uk/). From the dataset, we obtained
the colored fundus image and the list of risk factors (6
categorical & 6 continuous). The risk factor list was based on
the prior clinical studies which were found to be significantly
correlated with the onset of Alzheimer’s Disease.

To ensure the proper development of the model,
preprocessing for both the image and the risk factor data was
performed. For images, the resizing, and quality assessment
were performed using an established pipeline [10]. We filtered
out the low-quality images to acquire 62,874 images from
37,254 subjects for the model development. All right fundus
images were flipped horizontally for consistency. The
augmentations of the fundus images were not performed to keep
the local features of retinal structures during the model
development. For risk factors, imputations were not performed
for the missing data to maintain the distribution of the data as
closely as possible. Instead, we excluded subjects if any
variables were missing, and variables that couldn't be utilized as
predictors (e.g. -1: Do not know, -3: Prefer not to answer).



TABLE L

BASELINE CHARACTERISTICS OF SUBJECTS IN DEVELOPMENT AND VALIDATION SETS AFTER PROCESSING

Dataset Reference
Risk Factors Development set Validation set
Classification(n=21,435) Regression(n=19,528) Classification(n=5,359) Regression(n=4,882)
Gender: male % 47.47 n/a 47.70 n/a [2], [11],[12]
ég(f') mean years | 56.38 (8.18) n/a 56.31 (8.29) [2], [11], [13]
sg;za(t;"é‘) R 16.99 (2.40) n/a 16.94 (2.33) [2], [11], [14]
28.10 Never/Rarely 28.40 Never/Rarely
Sleeplessness: % 47.00 Sometimes n/a 45.46 Sometimes n/a [2], [15]
24.90 Usually 26.14 Usually
Current Smoker: % | 8.83 n/a 9.40 n/a [2],[16]
21.70, Daily/Almost daily 21.18, Daily/Almost daily
24.59, 3~4 times a week 23.89, 3~4 times a week
24.88, 1~2 times a week 24.86, 1~2 times a week
Aleohol Use: % | 199 1.3 times a month | ™2 1148, 1~3 times amonth | ™2 (2), [17]
10.69, Special Occasions 11.42, Special Occasions
6.84, Never 7.18, Never
Recurrent
Depression: % | 27.29 n/a 27.08 n/a [2], [16], [18]
positive
17.72, Less than 18k £ 18.72, Less than 18k £
Economic 23.18, 18k~31k £ 23.68, 18k~31k £
Status: % 26.55,31k~52k £ n/a 26.31, 31k~52k £ n/a [11],[19]
24.28, 52k~100k £ 23.18, 52k~100k £
8.27,> 100k £ 8.12,> 100k £
BMI: mean (s.d.) n/a 27.62 (4.74) n/a 27.61 (4.82) [2], [11], [14]
gﬁi‘;ﬁﬁi‘ mean | g 82.12 (10.00) na 82.01 (10.28) 21, [12], [16]
;ﬁﬁg‘ﬁg B A 137.60 (18.35) n/a 137.56 (18.70) [2], [12], [16]
z‘r’rﬁ) {/friol (S.(Ii‘f)ean n/a 36.05 (6.64) n/a 36.06 (6.81) [2], [16]

This operation was performed separately for categorical and
continuous risk factors. As a result of the operation, the data
from 26,794 (Development Set: 21,435 & Validation Set: 5,439)
subjects for classification and 24,410 (Development Set: 19,528
& Validation Set: 4,882) subjects for regression were
determined for model development and validation. Thus, we
acquired left and right fundus images for model development
(classification=36,310 & regression=32,868) and validation
(classification=9,042 & regression=8,211). After the
finalization of the development and validation set, we applied

additional transforms to some variables that required refinement.

For continuous risk factors, the 2 measures of blood pressure
values were averaged to a single value. In addition, we
normalized the factors with mean and standard deviation,
obtained from the development set to prevent data leakage. For
categorical variables, the smoking status was modified for
classification variables as a binary variable, representing a
‘current smoker’. In addition, the depression was also modified
as a binary classification problem, representing a possibility of
‘recurrent major depression’.

B. Model Development

In this study, we used a Swin-Transformer [20], a well-
recognized vision transformer model developed for computer
vision, as a foundation model (Swin-L model). To efficiently
train the model, we performed transfer learning with parameters
pretrained with the ImageNet dataset. Since vision transformer-
base models require a sizable dataset for desirable performance,
transfer learning allowed us to build a model with decent

performance using a comparatively small dataset size. For
model architecture, only the last fully connected layer of the
network was replaced with the fully connected layers designed
for either classification or regression tasks. Thus, we trained 2
different models for each task.

To find the best parameters for each task, we used an
AdamW optimizer [21] with a learning rate of 1e-4. The training
objective of the model was to minimize the loss determined for
each task, which is categorical cross-entropy loss for
classification, and mean squared error for the regression task. In
specific, the loss of each risk factor was computed separately
and aggregated as a single loss term for the backpropagation.
During 100 training epochs, the parameters with the best result
in internal validation were chosen to test on the clinical
validation set. We chose the maximum batch size that our
hardware could withhold, which was 16 in our experiment. The
model was trained using HiPerGator AL, with 32 NVIDIA DGX
A100 GPUs.

C. Model Evaluation & Analysis

We computed the different evaluation metrics for each task.
For classification, accuracy, and area under the receiver
operating characteristics curve (AUROC) was computed. In the
regression task, the coefficient of determination (R? Score) was
computed to assess the model’s ability to accurately predict
continuous values. To provide the confidence intervals for the
metric, we performed bootstrapping; images were sampled
equal to the number in the validation set with replacement and



TABLE II. MODEL PERFORMANCE ON PREDICTING RISK FACTORS OF

ALZHEIMER'S DISEASE
. Prediction Result
Risk Factors Metric Performance Random
Gender Accuracy 0.8584 (0.8556, 0.8612) 0.5
AUROC 0.9353 (0.9334, 0.9371) 0.5
Age R? 0.6701 (0.6653, 0.6747) 0
Education R? 0.1034 (0.0897, 0.1170) 0
Sleepl Accuracy 0.4503 (0.4462, 0.4544) 0.3333
ceplessness AUROC 0.5468 (0.5433, 0.5502) 0.5
Current Smoker Accuracy 0.9078 (0.9054, 0.9101) 0.5
4 AUROC 0.6503 (0.6427 0.6582) 0.5
Accuracy 0.2624 (0.2589, 0.2611) 0.1667
Alcohol Use AUROC 0.5888 (0.5857, 0.5917) 0.5
Depression Accuracy 0.7157 (0.7120, 0.7194) 0.5
P AUROC 0.5646 (0.5593 0.5699) 0.5
Economic Accuracy 0.3076 (0.3038, 0.3113) 0.2
Status AUROC 0.6281 (0.6253, 0.6311) 0.5
BMI R? 0.2442 (0.2324, 0.2564) 0
Diastolic BP R? 0.3159 (0.3064, 0.3258) 0
Systolic BP R? 0.2025 (0.1916, 0.2131) 0
HbA1C R? 0.3301 (0.3139, 0.3468) 0

TABLE IIL MODEL’S INFERENCE OF THE RELATIONSHIP BETWEEN
RETINAL STRUCTURES AND AD RISK FACTORS

9 o,
Risk Factors Model’s Inference (%)

Artery Vein Optic cup Optic disc
Gender 4.26 6.47 79.28 100
Age 35.66 30.01 100 100
Education 11.39 11.04 0 0
Sleeplessness 2.92 6.1 0 0
Current Smoker 19.86 17.63 100 100
Alcohol Use 8.37 9.76 0 0
Depression 1.44 1.28 0 0
Economic Status 0.29 0.72 24.37 2.75
BMI 29.43 28.2 58.56 27.19
Diastolic BP 15.99 22.37 0 0
Systolic BP 9.10 10.00 0 0
HbAIC 14.74 16.7 93.08 100

repeated 2000 times. To determine the retinal structures
employed by the DL model for prediction, we acquired the
saliency map through class activation mapping (CAM) [22].
Specifically, we selected the first normalization layer in the last
Swin Transformer block and acquired 12 different saliency
maps for each risk factor. Moreover, we computed the extent to
which retinal structures contributed to the model's prediction (7).
Equation (1) shows how we performed this computation. We
initially obtained the binary segmentation map (M;;) of the
artery, vein, optic cup, and disc (o) from the existing
segmentation algorithm [10]. Subsequently, we applied a
threshold of 0.5 to binarize the saliency map (Si;), considering
that the maps were generated as a normalized value ranging
from 0 to 1. After computing the overlap region between the
segmentations of the retinal structures and the binarized saliency
map, we obtained the ratio of retinal structures contributing to
the model prediction.

7 =M°NS / M? (1)

III. RESULTS

A. Model Performance of Risk Factor Prediction

We assessed our model’s performance in predicting AD risk
factors solely based on colored fundus images. Table. 2 shows
the model performance for each risk factor variable. In the
regression task, the DL model demonstrated high confidence
predictions for age. Furthermore, the performance of the other
continuous variables including diastolic BP, systolic BP, BMI,
and HbA1C was better than the baseline. However, the model
faced challenges in accurately predicting the age of completing
full-time education and performing less effectively compared to
other risk factors. In the classification task, the model excelled
in predicting the gender of the subjects. For the alcohol use, and
economic status, the model achieved accuracy above the
baseline, but the low AUROC suggests that the model had
difficulties predicting minority classes for each risk factor.
While the classification model faced challenges in predicting
positive samples for current smokers and depression due to the
limited number of such samples, high accuracy gives a promise
that DL models hold the potential for

accurate prediction of the smoking and depression status
when enough data is available.

B. Model's Inference of Correlation Between the Retinal
Structures and Alzheimer's Disease Risk Factors

Fig. 1 illustrates the saliency map generated by the DL
during the prediction of each risk factor. The visualization of the
saliency indicates that the model makes predictions not by
randomly selecting features, but by extracting the information
from the retinal structures in the input. Table. 3 presents the
model’s inference of the relationship between retinal structure
and AD risk factor calculated using the saliency map. The
inference percentage suggests that retinal arteries and veins have
an akin relationship with age, BMI, and blood pressure. The
percentage for optic cups and discs indicates these structures
encode information related to gender, age, smoking status BMI,
and HbA1C. For risk factors without correlation to artery, vein,
optic cup, and disc (e.g. sleeplessness, economic status, alcohol
use), the model’s saliency map indicates the focus was made in
the macula region.

1V. DISCUSSION

The model’s performance in both classification and
regression tasks demonstrated the robust prediction ability of
DL models related to gender and age. While the model could
predict other risk factors more than the baseline, the
improvement was not significant. While the model’s
performance may not have been notable for certain risk factors,
assessing the capability of DL models only based on a metric
like AUROC and R? underestimates the capability as a tool to
study the relationship between the AD and fundus images.

The visualization of the model’s class activation map and
subsequent analysis of the model’s inference regarding the
contribution of retinal structures to prediction demonstrates that
the model could identify the relationship between retinal
structures and risk factors without any prior background
information or supervision. This outcome suggests that DL
models can serve as a tool for uncovering the underlying
relationship between the retinal images and risk factors that may
not be easily correlated with existing rationale and hypothesis.
Hence, in future research, we aim to extend this analysis to other
risk factors such as CSF biomarkers and brain measures. This
will explicitly show the effectiveness of the DL model in
identifying correlations between risk factors and associated
retinal structures.
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Fig. 1. Visualization of the saliency map for each risk factor. The results of the classification tasks are presented in the first row and regression tasks are

presented in the second. For each risk factor, the subject’s ground truth and the model’s prediction are provided.
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