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Abstract

On a variety of tasks, the performance of neural
networks predictably improves with training time,
dataset size and model size across many orders
of magnitude. This phenomenon is known as a
neural scaling law. Of fundamental importance is
the compute-optimal scaling law, which reports
the performance as a function of units of compute
when choosing model sizes optimally. We ana-
lyze a random feature model trained with gradient
descent as a solvable model of network training
and generalization. This reproduces many ob-
servations about neural scaling laws. First, our
model makes a prediction about why the scal-
ing of performance with training time and with
model size have different power law exponents.
Consequently, the theory predicts an asymmetric
compute-optimal scaling rule where the number
of training steps are increased faster than model
parameters, consistent with recent empirical ob-
servations. Second, it has been observed that early
in training, networks converge to their infinite-
width dynamics at a rate 1/widrh but at late time
exhibit a rate width™©, where ¢ depends on the
structure of the architecture and task. We show
that our model exhibits this behavior. Lastly, our
theory shows how the gap between training and
test loss can gradually build up over time due to
repeated reuse of data.

1. Introduction

Large scale language and vision models have been shown
to achieve better performance as the number of parameters
and number of training steps are increased. Moreover, the
scaling of various loss metrics (such as cross entropy or
MSE test loss) has been empirically observed to exhibit
remarkably regular, often power law behavior across several
orders of magnitude (Hestness et al., 2017; Kaplan et al.,
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2020). These findings are termed “neural scaling laws”.

Neural scaling laws play a central role in modern deep learn-
ing practice, and have substantial implications for the opti-
mal trade-off between model size and training time (Hoff-
mann et al., 2022), as well as architecture selection (Alab-
dulmohsin et al., 2023). Understanding the origin of such
scaling laws, as well as their exponents, has the potential to
offer insight into better architectures, the design of better
datasets (Sorscher et al., 2022), and the failure modes and
limitations of deep learning systems. Yet, many questions
about neural scaling laws remain open.

In this paper, we introduce and analyze a solvable model
which captures many important aspects of neural scaling
laws. In particular, we are interested in understanding the
following empirically observed phenomena:

Test Loss Scales as a Power-law in Training Time and
Model Size and Compute. In many domains of deep
learning, the test loss of a model with N trainable param-
eters trained for ¢ iterations has been found to scale as
L(t,N) ~ Lo+ ait™™ + ayN~" (Kaplan et al., 2020;
Hoffmann et al., 2022). These scaling law exponents 7, 7
generally depend on the dataset and architecture. We demon-
strate scaling laws on simple vision and language tasks in
Figure 1. The compute is proportional to the number of
steps of gradient descent times the model size C' o« Nt.
Setting N and ¢ optimally gives that test loss scales as a
power law in C'. This is the compute optimal scaling law.

Compute-Optimal Training Time and Model Size Scal-
ing Exponents Are Different. A discrepancy in expo-
nents r; and r is usually observed to some degree depdend-
ing on the data distribution and architecture Hoffmann et al.
(2022); Bachmann et al. (2024). The gap between expo-
nents would lead to asymmetric compute-optimal scaling of
parameters. For compute budget C', model size should scale
N oc C° and training time ¢ oc C'°2 with ¢o > ¢1. This
difference in exponents led to a change in the scaling rule
for large language models, generating large performance
gains.

Larger Models Train Faster. Provided feature learning
is held constant across model scales (i.e. adopting mean-
field or uP scaling), wider networks tend to train faster
(Yang et al., 2021) (Figure 1). If training proceeds in an
online/one-pass setting where datapoints are not repeated,
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Figure 1. Train and test losses (cross-entropy) as a function of training time ¢ and width /NV. For models trained online, we do not make
a distinction between training and test error because each new batch is drawn fresh and would have the same loss in expectation as an
independent test set. (a) The test loss of a residual CNN on CIFAR-5M is well described by a fit of the form £ ~ ¢~ + N7 in the
online training regime. (b) The compute optimal strategy requires scaling up both model size and training time simultaneously. (c)
Transformer training on wikitext with 100M tokens before data-repetition. Model performance is monotonic in width N. (d) Wikitext
with SM subsampled tokens. Larger width NV is not always better as wider models can overfit.

then the wider models will also obtain lower test loss at an
equal number of iterations. This observation has been found
to hold both in overparameterized and underparameterized
regimes (Bordelon & Pehlevan, 2023; Vyas et al., 2023).

Models Accumulate Finite-Dataset and Finite-Width
Corrections. Early training can be well described by the
learning curves for stochastic gradient descent without reuse
of samples (termed the online/ideal limiting dynamics), how-
ever over time the effect of reusing data accumulates and
leads to worse test performance (Nakkiran et al., 2021b;
Mignacco et al., 2020; Ghosh et al., 2022; Muennighoff
et al., 2023). Similarly the gaps in model performance
across various model sizes also grow with training time
(Yang et al., 2021; Vyas et al., 2023). Figure 1 (d) shows
overfitting and reversal of “wider is better” phenomenon
due to data reuse.

Scaling Exponents are Task-Dependent at Late Training
Time, but not at Early Time. Prior works (Dyer & Gur-
Ari, 2020; Atanasov et al., 2023; Roberts et al., 2022; Bor-
delon & Pehlevan, 2023) predict early-time finite-width loss
corrections that go as 1/width near the infinite width limit
in either lazy or feature-learning regimes. Bahri et al. (2021)
et al provide experiments demonstrating the 1/width conver-

gence. However, finite-width models trained for a long time
exhibit non-trivial exponents with respect to model width
(Kaplan et al., 2020; Vyas et al., 2023). See Figure 1 for
examples of nontrivial scalings at late time on CIFAR-5M
and Wikitext.

Ensembling is Not the Same as Going Wider. Near the
limit of infinite width, finite models can be thought of as
noisy approximations of the infinite-width model with noise
that can be eliminated through ensembling (Dyer & Gur-Ari,
2020; Geiger et al., 2020; Atanasov et al., 2023). However
recent experiments (Vyas et al., 2023) indicate that ensem-
bling is not enough to match performance of larger models.

These phenomena are not unique to deep networks, but can
be observed in linear models, or linearized neural networks
operating in the lazy/kernel regime. Though this regime
does not capture feature learning, it has benefit of analytical
tractability. In this paper, we focus on such linearized mod-
els to attempt to gain insight into the dynamics of training.

To attempt to explain these phenomena, we develop a math-
ematically tractable model of neural scaling laws which
allows one to simultaneously vary time, model size, and
dataset size. Our contributions are as follows:
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1. We analyze the learning dynamics of a structured and
randomly projected linear model trained with gradient
flow, discrete time SGD, and momentum. In an asymp-
totic limit of the model, we obtain a dynamical mean
field theory (DMFT) description of the learning curve in
terms of correlation functions, which measure the cross-
time correlation of training and test errors, and response
functions which measure sensitivity of the dynamics to
small perturbations.

2. We solve for the response functions exactly in Fourier
domain. This solution reveals faster training for larger
models. The low frequency range of these functions
allow us to extract the long time limit of the loss.

3. We show that the model and data corrections to the dy-
namics accumulate over time. At early time, each of
these corrections has a universal scaling, consistent with
prior works (Bahri et al., 2021).

4. For power-law structured features we show that the
model exhibits power law scaling of test loss with time,
model size and dataset size. While the data and model
exponents are the same, the time and model exponents
are different in general. We show that this gives rise to
an asymmetric compute optimal scaling strategy where
training time increases faster than model size.

5. Our theory explains why ensembling is not compute op-
timal as it gives less benefit to performance than increase
in model size.

6. We observe in Section 5.1 that feature learning networks
can obtain better power law scalings, leading to a better
compute optimal frontier. We empirically study this
phenomenon in Appendix L.

1.1. Related Works

The learning curves for linear models with structured (non-
isotropic) covariates, including infinite-width kernel re-
gression, have been computed using tools from statistical
physics and random matrix theory (Bordelon et al., 2020;
Spigler et al., 2020; Canatar et al., 2021; Simon et al., 2021;
Bahri et al., 2021; Hastie et al., 2022). Mei & Montanari
(2022) analyzed a linear model with random projections
of isotropic covariates. There, they study the limiting ef-
fects of width and dataset size, and observe model-wise
and sample-wise double descent. In Adlam & Pennington
(2020a) a related model is used to study the finite-width
neural tangent kernel (NTK) (Jacot et al., 2018) of a given
network. Further, d’Ascoli et al. (2020) and Adlam & Pen-
nington (2020b) extend this analysis to understand the differ-
ent sources of variance in the predictions of random feature
models and the effect of ensembling and bagging on the test
loss. Other works have extended this to models where an
additional untrained projection is applied to the structured
covariates (Loureiro et al., 2021; 2022; Zavatone-Veth et al.,

2022; Atanasov et al., 2023; Maloney et al., 2022; Zavatone-
Veth & Pehlevan, 2023; Ruben & Pehlevan, 2023; Simon
et al., 2023). Within this literature, which considered fully
trained models, the works of (Bordelon et al., 2020; Spigler
et al., 2020) derived power-law decay rates for power-law
features which were termed resolution limited by Bahri et al.
(2021) and recovered by Maloney et al. (2022).

However, we also study the dependence on training time.
The t — oo limit of our DMFT equations recovers the final
losses computed in these prior works. While these prior
works find that the scaling exponents for model-size and
dataset-size are the same, we find that the test loss scales
with a different exponent with training time, leading to
a different (model and task dependent) compute optimal
scaling strategy.

DMFT methods have been used to analyze the test loss dy-
namics for general linear and spiked tensor models trained
with high-dimensional random data (Mannelli et al., 2019;
Mignacco et al., 2020; Mignacco & Urbani, 2022) and deep
networks dynamics with random initialization (Bordelon &
Pehlevan, 2022b; Bordelon et al., 2023). High dimensional
limits of SGD have been analyzed with Volterra integral
equations in the offline case (Paquette et al., 2021) or with
recursive matrix equations in the online case (Varre et al.,
2021; Bordelon & Pehlevan, 2022a). Random matrix ap-
proaches have also been used to study test loss dynamics in
linear regression with isotropic covariates by (Advani et al.,
2020) and for random feature models in (Bodin & Macris,
2021). In this work, we consider averaging over both the
disorder in the sampled dataset and the random projection
of the features simultaneously using DMFT.

Other models and hypotheses for scaling laws instead rely
on a discrete collection of subtasks or skills which are
learned as compute grows (Caballero et al., 2022; Arora
& Goyal, 2023; Michaud et al., 2023). Our theory instead
focuses on spectral components of a data distribution.

2. Setup of the Model

We consider a “teacher-student” setting, where data sampled
from a generative teacher model is used to train a student
random feature model. The teacher and student models
mismatch in a particular way that will be described below.
This mismatch is the key ingredient that leads to most of the
phenomena that we will discuss.

Teacher Model. Take z € R” to be drawn from a distri-
bution p(x) with a target function y () expressible in terms
of base features 1p(x) € R up to noise:

y(@) = —=w" - ¢(z) + oe(x). M



A Dynamical Model of Neural Scaling Laws

Here () play the role of the infinite-width NTK eigen-
functions, which form a complete basis for square-integrable
functions L?[p]. The e(z) function describes a component
of y with which is uncorrelated with ¢ (x). We work in the
eigenbasis of features as in (Bordelon et al., 2020), so the
covariance given by:

(Vr(2)Ve(T) gop(a) = e AR- )

The power law structure in the A, and w* entries will lead
to power law scalings for the test loss and related quantities.

Student Model. Our student model is motivated by a
scenario where a randomly initialized finite-width network
is trained in the linearized or lazy regime (Chizat et al.,
2019; Jacot et al., 2018). Such training can be described
through learning linear combinations of the finite-width
NTK features. These features will span a lower-dimensional
subspace of the space of square-integrable functions, and
relate to infinite-width NTK features in a complicated way.

To model this key aspect, the student model uses a projection
of the v (x) features, Av(x) where A € RV*M_ These
projected features represent the finite-width (i.e. empirical)
NTK eigenfunctions. This is motivated by the fact that
finite width kernel’s features can be linearly expanded in
the basis of infinite-width features, because infinite-width
kernel eigenfunctions are complete.

Our learned function then has the form:

1
fx) = &Y AY(x). ©)

Here, we will interpret NV as the model size with the N —
oo limit recovering original kernel. Similar models were
studied in (Maloney et al., 2022; Atanasov et al., 2023).

We will focus on the setting where the elements of A are
drawn iid from a distribution of mean zero and variance one.
See Appendix B for details on the technical assumptions.
The motivations for this choice are (1) tractability and (2) it
satisfies the constraint that as N — oo the student’s kernel
approaches the infinite-width kernel v». In more realistic
settings, such as when projecting the eigenfunctions of an
infinite-width NTK to a finite-width NTK, the form of the
A matrix is generally not known.

Training. The model is trained on a random dataset D =
{@,,y,}F_, of size P with gradient flow on MSE loss

0

\/M P
Ew(t) = m Mz::l(y(mu) - f(xu’t))Aw(m;t)' (4)

We explore extensions (momentum, discrete time, one-pass
SGD in Appendix K). We track the test and train loss

L(t) = Ea[(f(x,t) — y(2))],

P
£ = 5 3 Uul) ~ ) ©

In small size systems, these losses depend on the precise
realization of the data D and matrix A. These two quantities
can be viewed as the disorder. For large systems, these
losses approach a well-defined limit independent of the
specific realization of D, A. We will use this fact in the next
section when analyzing the model.

3. DMFT for Scaling Laws

We next describe a theoretical approach for characterizing
the learning curves for this model. The full details of this
approach is detailed in Appendices A, B.

We derive a mean field theory for M, N, P large. We
analyze both the (1) proportional regime where N/M =
v,P/M = aand M, N, P — oo, and (2) non-proportional
regime where M — oo first and N, P > 1. The theories
derived in these limits are structurally identical (App. G). !

Let ¥ € RPXM with @1 = o (x"). Also define A;j =
Ai0i;. The discrepancy between the target weights and the
model’s effective weights is

1
0 _— ., % T
vV=w"— —A wt). 6
L ATw() ©)
The test loss is then given by £(t) = 47 >, Awvi(t)?. The
v vector has the following dynamics:

G0 =-(yaa) (peie)en. o

Already, we can see that generalization can be limited if
AT A or &' W are low rank as the dynamics will be frozen
in the nullspace of (%ATA) (%‘I’Tlll). Using DMFT,
we characterize this limit by tracking v together with the
following random vectors:

o' (t) = \/Lﬂxpuo(t), o2 (t) = a\}M\PTUI(t),
(®)
W3 (t) = \/LMA#@), vh(t) = V\}MATUS(@.

The key summary statistics (also called order parameters)

'While the proportional limit is exact, the finite size N, P
theory will also contain fluctuations across realizations of disorder.
When relevant, we show these in experiments by plotting standard
deviations over draws of data and projection matrices A. This
variance decays as O(1/P + 1/N).
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are the correlation functions:

Colt,s) = —v°(t) T AvO(s), Ci(t,s) =

1
Mvz (t) - v*

as well as the response functions:

Cay(t,s) = (s), Cs(t,s) = —

o el ()
- 880t - 828,

Here gng )) is the response of v(t) to a kick in the dynamics

of v/ at time s. See appendix B.2.1 for details.

The test loss £ and train loss £ are related to the time-time
diagonal of Cy(t, s) and C1 (¢, s) respectively

L(t) = Co(t,t) + 0%, L(t) = Ci(t,1). )
These collective quantities concentrate over random draws
of the disorder (Sompolinsky & Zippelius, 1981). We show
that these correlation and response functions satisfy a closed
set of integro-differential equations which depend on «, v
which we provide in the Appendices A.2.

Further, we show in Appendix A.3 that the response
functions possess a time-translation invariance property
R(t,s) = R(t — s) This enables exact analysis in the
Fourier domain R(r f dw iR (w). These response
functions can then be used to solve for the correlation func-
tions {C(), Cy,Cs, Cg}

To understand the convergence of the learned function f
along each eigenfunction of the kernel, we introduce the
) — 0
transfer function” for mode k., Hy(t) = 50x (v2(t)). Our
key result is that the Fourier transform of Hj, can be simply

expressed in terms of the Fourier transforms of R;, Rs:

1

Hk(w) = w+ AR (w)Rs(W) .

(10)

These functions satisfy the self-consistent equations:

- < /\k'R1 (w)
Rilw) =1- Z W+ )\kR1( R

3(
AR (w)Rs(w)
Rs(w _1_7214;.)—:)\;@731((*1) Rs(

w)’

(1)

w)’

From these solved response functions R, R3, we can
compute local solutions to the correlation functions’ two-
variable Fourier transform C(w, w’) which are independent

There are dynamical analogues of the mode errors in (Borde-
lon et al., 2020; Canatar et al., 2021) or learnabilities in (Simon
et al., 2021).

equations for each pair of w, w’. Information about the early
dynamics can be extracted from high frequencies w > 1
while information about the late-time limit of the system
can be extracted from w,w’ — 0 (App. C, D). For example,
for the final test loss,

lim L(t, a,v) =

t—o00

lim (iw)(iw') Co(w,w’).  (12)
w,w’—0

The full temporal trajectory can be obtained with an inverse
Fourier transform of Cy(w, w’). See Appendix A.4.

4. Results

Our results hold for any \;, and w}, and we provide some
simple analytically solvable examples in Appendix I. How-
ever, based on empirical observations of NTK spectral de-
compositions on realistic datasets (Bordelon & Pehlevan,
2022a; Spigler et al., 2020; Bordelon & Pehlevan, 2022a;
Babhri et al., 2021; Maloney et al., 2022), here, we focus on
the case of power law features. In this setting, eigenvalues
and target coefficients decay as a power law in the index &

(wi)*Xg ~ k™%, A ~ k70 (13)
We will refer to a as the task-power exponent and b as

the spectral decay exponent®. See Figure 7 (a)-(b) for an
example with a Residual CNN on CIFAR-5M.

Test loss power laws. For power law features, the test
loss will generally be bottlenecked by either training time ¢
(steps of gradient descent), the size of the training set P, or
the size of the model N. We can derive bottleneck scalings
from our exact expressions for £(t, P, N) (Appendix J)*:

t—(@=1/b P N — 0o, (Time)

p-min{a—1.2b} "4 N _y o | (Data)

, t, P — oo, (Model)
(14)

L(t,P,N) =~
N— min{a—1,2b}

A consequence of this is an asymmetry in exponent between
the model and data bottlenecks compared to the time bottle-
neck. We verify this asymmetry in Figure 2.

Bottlenecks as Rank-Constraints All three of the bottle-
neck scalings arise due to rank constraints in the effective
dynamics. Heuristically, finite training time or the subsam-
pling of data/features leads to an approximate projection
of the target function onto the top k. (¢, P, V) eigenspace
of the infinite-width kernel. The components of the target

3These power-law decay rates are also known as source and
capacity conditions in the kernel literature (Caponnetto & Vito,
2005; Cui et al., 2021)

*The alternative scaling exponents £ ~ N =2, P=2% occur for
very easy tasks which satisfy a > 2b + 1, but this condition is
rarely satisfied in natural data (Appendix J).
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function in the null-space of this projection are not learned.
This leads to an approximate test loss of the form
LY wi)he by, (15)

k>k,

For model and data bottlenecks we have that k, o< N and
k. o< P respectively (App. J). On the other hand, k, for
the time bottleneck also depends on the structure of the
features through the exponent b. This is because the k-th
eigenfeature is learned at a timescale 7, ~ k°. At time ¢,
we have learned the first k, ~ t1/® modes and the variance
in the remaining modes gives ~ ¢t~ (@=1/b_ In the limit
of ¢ — oo our data and model bottleneck scalings agree
with the resolution and variance-limited scalings studied
in (Bahri et al., 2021) as well as prior works on kernels
and random feature models (Bordelon et al., 2020; Maloney
et al., 2022).

Connection to Online Learning with SGD Many mod-
ern deep learning models are trained in an online learning
setting where each step of training uses a fresh batch of data
to estimate the gradient of the population loss and batches
are not reused over multiple steps. Our theoretical methods

can also handle this regime. At each step ¢ a fresh minibatch
of B examples is used to estimate the gradient. In discrete
time with learning rate 7 this leads to the following DMFT
description of v} (¢)

Rt +1) = vR(t) — nui(t)
=Y Ry(t,s)[ui(s) + Aevi(s)]

s<t

(16)

where u(t), u} (t) are zero-mean Gaussian variables with
known covariance (see Appendix K.3). The response func-
tion Rs(t, s) satisfies a discrete time analog of Equation
(11). The most important observation about this regime is
that there is no longer a data bottleneck regime. Rather,
the bias component of the test error can only be limited by
either training time or model size. The finite batch B intro-
duces SGD noise which introduces an additional variance
component to the test loss. We illustrate these results in
Figure 3. The N — oo limit recovers the results of Borde-
lon & Pehlevan (2022a) which study online SGD without
averaging over a random projection. The continuous time
limit of the above expressions obtained from evaluating the
theory for small 7 exactly matches the P — oo limit of our
gradient flow theory presented in the previous section. We
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compute optimal scaling depends does depend on b.

will therefore use this limiting behavior to analyze compute
optimal tradeoffs of model size and training time.

Asymmetric Compute Optimal Scaling Strategy We
now consider the regime where the total amount of data does
not limit performance, but rather training is bottlenecked by
time or model size. This could arise in the offline model
with very large P or in one-pass SGD with sufficiently small
learning rate or sufficiently large batch size (App. K.3). In
either case, time and model size should scale differently
with compute budget C = Nt and m = min{a — 1,2b}

t~ O | N ~ Tt — e

a7

For the regime of interest where m = min{a — 1,20} =

a— 1 this gives £L*(C) ~ C'~ 1% . We obtain the above scal-
ing by approximating the loss as a sum of the three terms in

— L*(C) ~ O™ a =T,

equation (14) and a constant as in (Hoffmann et al., 2022),
see Appendix N. This analysis suggests that for features that
have rapid decay in their eigenspectrum, it is preferable to
allocate greater resources toward training time rather than
model size as the compute budget increases. This is con-
sistent with the small asymmetries observed in (Hoffmann
et al., 2022) for language models and the larger asymmetries
in MLPs on vision from (Bachmann et al., 2024). In the
limit as b — 1, the time and parameter count should be
scaled linearly together. We verify this scaling rule and its
b-dependence in Figure 4.

Wider is Better Requires Sufficient Data Larger models
are not always better in terms of test loss for all time ¢, as we
showed in Figure 1 (c), especially if the dataset is limited.
In Figure 5, we illustrate that larger N can improve conver-
gence to a data-bottlenecked loss for power law features.
However, the loss may still be non-monotonic in training
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loss will eventually decay at exponential rate which depends on IV, despite the test loss saturating. (c) The train and test losses gradually

separate at a rate which depends on P.

time, motivating regularization or early stopping.

Gradual Buildup of Overfitting Effects The exact gap
between train and test losses can exactly be expressed in
terms of the DMFT order parameters:

t
L) — £(t) = —% /0 dt’ Ros(t,t)Ci (1)
(18)

1 t t
52 / / dt'ds'Roa(t,t")Ro2(t, s )C1(t', s").
0o Jo

We derive this relation in the Appendix E. At early time this
gap goes as O(1/P) (App. D, E). At late time, however, this
picks up a nontrivial task-dependent scaling with P as we
show in Figure 2 (e)-(f) and App. C. In Figure 5 (c) we show
this gradual accumulation of finite data on the test-train loss
gap. For larger datasets P it takes longer training time to
begin overfitting (App. E).

Ensembling is Not Always Compute Optimal Ensem-
bling a set of models means averaging their predictions over
the same datasets but with different intitialization seeds.
This reduces test loss by reducing the variance of the model
output f due to initialization. This improvement can be
predicted from an extension of our DMFT (App. H). Anal-
ogously, bagging over B datasets reduces variance due to
sampling of data.

One might imagine that ensembling many finite sized mod-
els would allow one to approach the performance of an
infinite sized model (N — o0). If this were possible, the
compute optimal strategy could involve a tradeoff between
ensemble count and model size. However, recent experi-
ments show that there is a limited benefit from ensembling
on large datasets when compared to increasing model size
(Vyas et al., 2023). We illustrate this in Figure 6 (a). Our

theory can explain these observations as it predicts the ef-
fect of ensembling E times on the learning dynamics as we
show in App. H. The main reason to prefer increasing N
rather than increasing F is that larger /N has lower bias in
the dynamics, whereas ensembling only reduces variance.
The bias of the model B has the form

B(t,N,P) =Y Xe(w})*Hi(t,N,P)?,  (19)
k

which depend on transfer function Hy, that we illustrate for
power-law features in Figure 6 (b). Since Hy(¢) depend on
N, P, we see that ensembling/bagging cannot recover the
learning curve of the N, P — oo system since the bias is
limited by finite IV, P.

5. Tests on Realistic Networks

We now move beyond synthetic power-law datasets and
consider realistic image datasets and architectures. We take
the CIFAR-5M dataset introduced in (Nakkiran et al., 2021a)
and consider the task of classfiying animate vs inanimate
objects. We plot the spectra of the finite-width NTK at
initialization across different widths for a Wide ResNet
(Zagoruyko & Komodakis, 2016) in Figure 7 a). Here the
width parameter corresponds to the number of channels in
the hidden layers. Following (Canatar et al., 2021), we
define C'(k) as the fraction of the task captured by the top &
kernel eigenmodes:

Zigk /\i(w;‘k)z
> Ai(w))?

Then 1 — C(k) is the portion of the task left unexplained.
We plot this for the initial NTKs across widths in Figure
7 b). We extract the spectral decay exponent b and the the
task power exponent a from these two curves. Together,
these give the learning scaling laws of the linearized neural

C(k) = (20)
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network model on this dataset. We plot the compute optimal
scaling laws of these linearized models in Figure 7 c). We
also plot the predicted scaling law C'~(¢=1/(1+b) jp plue
and find excellent agreement.

5.1. The Role of Feature Learning

We also compare these scalings to those of the compute
optimal learning curves for feature-learning networks. We
train several networks with different widths and initializa-
tion seeds for 64 epochs through the dataset. We observe
substantially different compute-optimal scaling exponents
in the dotted curves of Figure 7 c¢). This means that although
our random feature model does capture the correct linearized
scaling trends, which have all of the qualities observed in
realistic scaling laws, more is needed to capture the accelera-
tion of scaling induced by feature learning. Further analyses
of the after-kernels of feature learning networks are per-
formed in Appendix L. We see that the kernels continue to
evolve substantially throughout training. This indicates that

a full explanation of the compute optimal scaling exponents
will require something resembling a mechanistic theory of
kernel evolution (Long, 2021; Fort et al., 2020; Atanasov
et al., 2022; Bordelon & Pehlevan, 2022b).

6. Conclusion

We have presented a model that recovers a wide variety of
phenomena observed in more realistic deep learning settings.
Our theory includes not just model size and dataset size as
parameters but also explicitly treats the temporal dynamics
of training. We observe different scaling exponents for per-
formance in terms of model size and number of time steps.
Future work to incorporate kernel evolution into this model
could further shed insight into the improved scaling laws in
the feature-learning regime. Overall, our results provide a
theoretical interpretation of compute-optimal scaling as a
competition between the training dynamics of the infinite
width/infinite data limit and finite model-size bottleneck.
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A. Derivation of Dynamical Model of Scaling Laws

We investigate the simplest possible model which can exhibit task-dependent time, model size and finite data bottlenecks.
We therefore choose to study a linear model with projected features

1 1
T

)= —w |—AY(x) | , ylx) = —
f@) (pavi@)  vie) =
The weights w are updated with gradient descent on a random training dataset which has (possibly) noise corrupted target
values y,, = y(x,) + oe,,. This leads to the following gradient flow dynamics

wy - P (x). 21

2 wir) = Z ~ J)AY, = (FZ%[ (w*—jNATw)wMaeu])- 22)

We introduce the variable v° = w, — \/%AT’LU to represent the residual error of the learned weight vector. This residual
error has the following dynamics:

B0 (t) = — (;fATA> K;qﬁw) 00(t) + a\;M\IITe] : (23)

The entries of each matrix are treated as random with W% ~ A/(0, A) and A, ~ N(0, 1). To study the dynamical evolution
of the test error £(t) = 17v°(t) " Av®(t) + 02, we introduce the sequence of vectors

1 1
1 0 2 T,.1
v(t) = —=Pv (t) + oe, v°(t) = W v(t
(1) = 7 2e() ()= —=¥Tv'()
1 1
v3(t) = \/—MA'U2(t) ,vi(t) = y MATU3(t). (24)
The train and test losses can be computed from the v* and v' fields
1 < 1 &
=5 > up(t)?, L) = i > Avp(t)? + o’ (25)
pn=1 k=1

In the next section, we derive a statistical description of the dynamics in an appropriate asymptotic limit using dynamical
mean field theory methods.

A.1. DMFT Equations for the Asymptotic Limit

Standard field theoretic arguments such as the cavity or path integral methods can be used to compute the effective statistical
description of the dynamics in the limit of large M, N, P with fixed ratios « = P/M and v = % (see Appendix B). This
computation gives us the following statistical description of the dynamics.

vl (t) = ul(t) + é /dSROQ(t, s)vi(s) + o€, u(t) ~ GP(0,Co) , € ~ N(0,1),
vi(t) = ui(t) + i /dsRl(t,s)vg(s) , up(t) ~ GP (O, ;)\kC&) )
Bt = ud(t) + / dsRy a(t, s)0%(s) , u3(t) ~ GP (0,Cy) | (26)

1
v (t) /dng (t,s)vi(s), up(t) ~ GP (O, I/Cg) ,
ByoR (t) = —vy(t
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The correlation and response functions obey

M
Z/\k (s)) , Ci(t,s) = (v (t)v'(s)) , Calt,s) = %Z@z(t)vi(s»
o) 1 Svi(t)
Rozts Z)\k< 8 > ’R2’4(t’S)Mzk:<5u%(8)>

mit) = (250 ry.9 = (220

These equations are exact in the joint proportional limit for any value of a;, v.

A.2. Closing the Equations for the Order Parameters

Though we expressed the dynamics in terms of random fields, we stress in this section that all of the dynamics for the
correlation and response functions close in terms of integro-differential equations. To shorten the expression, we will provide
the expression for 3 = 0, but momentum can easily be added back by making the substitution 9; — 9; + 30?.

First, our closed integral equations for the response functions are
Ro2.x(t, s) /dt Ot — t')Rs(t', s) )\k/dt dt"dt" et — t')Rs(t', " )Ry (t",t" )Ry 2 (£, 5)
Ry(t,s) =6(t —s) + é/dt'Ro,z(t,t’)Rl(t’, s)
Ro 4 i(t,8) = —Xg /dt’dt“Rl(t,t’)G(t’ —t") — Ak/dt’dt”dt”’Rl(t, YO —t")Rs(t", 1" )Roa 1 (t", s)
R3(t,s) = 5(t —s)+ %/dt’RM(t,t’)Rg,(t', s)

ROQ(tS Z)\kROQk(t S) R24t8 ZR24kts (27)

We note that these equations imply causality in all of the response functions since R(¢,s) = 0 for ¢ < s. Once these
equations are solved for the response functions, we can determine the correlation functions, which satisfy

0E.Co k(t,s) = — )\k/dt’dt”Rg(t,t’)Rl(t’,t”)68007k(t”,s)

[ A R, ) B, 5001 Cos (0,
+ A2 / dt'dt"ds'ds" R3(t,t' )Ry (', ") Rs(s, 8" )Ry (s', ") Co x (t", s")
~ (W8(03(s) 5 Caltos) = & [ dPds Rt ) Ras,5)Cal')

Ci(t, s) :/dt’Rl(t,t’)Rl(s,s')CO(t’,s’)

Coi(t,s) =— )\k/dt'dt”Rl (t, ") Rs(t', t")Ca i (t",8) — Ak /ds’ds”Rl (s,8")R3(s',s")Col(t,s")

+ A2 / dt'dt"ds'ds" Ry (t, ¢ ) Rs (', #")Ry (s, s ) Rs(s', 8" ) Can (. s")

Ci(t,s) = / dt'ds' Rs(t, ) Ra(s, 8" Ca(t', ') (28)

Solving these closed equations provide the complete statistical characterization of the limit. The test and train losses are
given by the time-time diagonal of Cy(¢,t), Cy (¢, ).
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A.3. Time-translation Invariant (TTI) Solution to Response Functions

From the structure of the above equations, the response functions are time-translation invariant (TTI) since they are only
functionals of TTI 6(¢ — s) Dirac-Delta function and © (¢t — s) Heaviside step-function. As a consequence, we write each of
our response functions in terms of their Fourier transforms

Rit.s) = Rit-9)= [ 52 IRw) 29)
oo 2T
Using the fact that
dw ., . _ . dw ™7
= R T = 1 €T = 1 R
o(r) 2m e, 8(r) e—1>I(§1+ e[ e—1>r(r)1+ 21 e +iw (30)

We will keep track of the regulator € and consider ¢ — 07 at the end of the computation. The resulting DMFT equations for
the response functions have the following form in Fourier space

R1 (w) =1 + éRgA(w)Rl (w)

Ra(w) =1+ %R2,4(w>7%3<w)
1 Ak
Roa(w) = —7 — e +iw + Ale(W)Rs(w)R3(w)

— Ak
Raa(w) = M zk: €+ iw+ MR (w)Rs(w)

Ri(w) 3D

where ¢ — 0 will be taken after. Combining these equations, we arrive at the simple set of coupled equations

B 1 )\kR;),(w)Rl (w)
Riw)=1- 5 Z CF i+ MRy (@) Rs (@)

., 1 /\le RB( )
Rs(w) =1 Z €+ iw + AR (w)Ra(w) >

After solving these equations for all w, we can invert the dynamics of v{(¢) to obtain its Fourier transform

vp(w) = Hi(w) [w — up(w) = MRs(w)ui ()]

B 1
Hi(w) = €+ iw + MR (w)Rs(w)

(33)

where we defined the transfer functions Hj,(w). From this equation, we can compute v2(¢) through inverse Fourier-
transformation and then compute the correlation function to calculate the test error. An interesting observation is that the
response functions R (w), R3(w) alter the pole structure in the transfer function, generating v, v dependent timescales of
convergence.

A.4. Fourier Representations for Correlation Functions

While the response functions are TTI, the correlation functions transparently are not (if the time-time diagonal Cy (¢, t)
did not evolve, then the loss £(t) wouldn’t change!). We therefore define the need to define the double Fourier transform
C(w,w") for each correlation function C(¢, s)

/
Clw,w') = /dtds e WSOt 5) , Ot ) :/dﬂdi

twt+iw’s /
or o e Clw,w") (34)
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Assuming that all response functions and transfer functions H;, have been solved for, the correlation functions satisfy the
closed set of linear equations.

Co(w,w') = % Z M Hp (W) Hp (W) [(wz)Q + %Cg(w,w’) + é/\kRg)(w)Rg(w/)Cl (w,w')}
k
Ci(w,w') = R1(w)R1(w)Co(w,w")
/ 1 / 1 . . ’ ! *\2 1 /
Cafen) = 7 L NHL M) | H(0)(1)C1(06) + MRa(Re ) (01 + S Cafers)) |
k
C3(w,w’) = R3(w)R3(w)Co(w,w") (35)

These equations can be efficiently solved for all pairs of w,w’ after the response functions have been identified. Then one
can take an inverse Fourier transform in both indices.

B. Field Theoretic Derivation of DMFT Equations

In this section, we derive the field theoretic description of our model. We will derive this using both the Martin-Siggia-Rose
(MSR) path integral method (Martin et al., 1973) and the dynamical cavity method. For a recent review of these topics in the
context of neural networks, see (Helias & Dahmen, 2020).

B.1. Statistical Assumptions for DMFT

The DMFT that we derive in the next few sections requires some assumptions on the structure of A and ¥. To carry out
the classic MSR path integral computation, we assume that the entries of both matrices are Gaussian with mean zero and
covariance

(AijAkt) = 0irdji s (VurWui) = 6, 0k1 Ak (36)

These are sufficient conditions for the DMFT description to hold and we will take them as our primary assumptions.
However, we note that these restrictions are not strictly necessary and can be relaxed. In general, a more flexible cavity
derivation in Appendix B.3 shows that independent entries from any well behaved distribution which admits a central limit
theorem for sums of independent draws would also have the same DMFT description of the proportional limit. Prior works
on DMFT of M-estimators with random data have demonstrated universality for any data matrix ¥ with a covariance that
has bounded spectral norm (Gerbelot et al., 2022).

B.2. Path Integral Derivation

With the MSR formalism, we evaluate the moment generating functional for the field v°(¢):
1
ZI{jt)}] = / DO(t) 6 [ 9°(t) + —=AT AT T WO(t) ) exp / dt 3(t) - v°(t) . (37)
NP AT

Note that at zero source, we have the important identity that

Z[0]=1. (38)
We insert a Dirac delta functions to enforce the definitions of each of the fields {v!, v?, v3, v*} as in equation 8.

ZI{j(t)}] = /D[vo,...,v4,131 01600 4 v?) exp (/ dt §(t) -vo(t)>

X <exp [z’/dt [@1(7:). (vl(t) - V%%%)) + o (1) - (vQ(t) - 1M\IlTvl(t)>H >‘p (39)
[l (- |
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At this stage we can add sources j for each @; variable, yielding a Z[j(t), 7(¢)]. Interpreting each source as modification of
the respective evolution equation, we see that this modified moment-generating function remains equal to unity at any value
ofj, Z 0, j(t)} = 1. As a consequence, all correlation functions consisting only of ¥° variables vanish. See (Crisanti &
Sompolinsky, 2018) for further details and a worked example.

We now average over the sources of disorder. We assume that the entries of A are i.i.d. with mean zero and variance 1.
In the proportional limit, we can replace the entries of A as a draw from a Gaussian A/ (0, 1) by appealing to Gaussian
equivalence. We furhther justify this in the cavity derivation in the next section. This allows us to evaluate the averages over
the matrix A.

<exp (_ \/iMTrAT / dt [0°(t)v*(8) " + Vl"g(t)ﬁ4(t)T])>A

—exp —% / dtds[5*(t) - 9%(s) %02(15)-'02(5) Fr Lo 1) - 51 (s) 20 (F) - v3(s)]
Cs(t,s) Cs(t,s) (40)

1 .. .
X exp f/dtds Nﬁ‘g(t) ~03(s) v3(t) - 91 (s)
iRg(S,t)

Similarly, we can calculate the averages over the data, which enters via the design matrices W. Again in this proportional
limit we can invoke Gaussian equivalence on ¥ to have it take the form ¥ ~ ®A'/? where ® has entries drawn from a unit
normal. Taking the average then gives us

(o~ [l e’ +a 009207 ) )

= exp —% /dtds['f)l(t) ol (s) %vo(t) - AVY(s) Fa T o (t) - AD3(s) %vl(t) vt |,

—_— 41
Co(t,s) Ci(t,s) @D

1
X exp —/dtds Fﬁl(t) ~vl(s) ¥O(t) - A - D3 (s)
iRl(S,t)

We now insert delta functions for following bracketed terms: Cy, C7, Cs, C3 and R1, R3 using the following identity (e.g.
for Cy at times s, t):

1— / dCy(s,t)dCo(s,1)

dmivi-1 P {;M/dtdséo(tvs) <Co(t75) — ]\livo(t)-AvO(s))]. (42)

Here the C;, R; integrals are taken over the imaginary axis. This yields a moment generating function (here we’ll take
7 =0):

Z = /D[Cl,él,...}exp [MS[CO,01702,037RhR3,éo,él,é2yé3,R1,R3]} : 43)
The constraint that Z = 1 means that S = 0 at the saddle point. S here is given by:
1 ~ ~ ~ A
Sl.1=3 / dtds [co(t, $)Co(t, ) + aly(t, )Cu(t, s) + Calt, $)Ca(t, s) + vCs(t, 5)Cs(t, s)}
+ / dtds[— Ri(t, ) Ri(s,t) — Ry(t, s)Rs(s, 1) (44)

1
+ alog 2, + vlog Z3 + i zk: log Z0,2,4:k-
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We have chosen to take R; (s,t) to have a different sign and s, ¢ ordering convention than the C;to simplify our notation
later on. We have also used that Equations (40), (41) factorize over their respective indices, so each Z is a partition function
over a single index. The individual Z; are given by:

Z = /D[vlj)l] exp [i/dtds (5(15 —5)— a_llizl(s,t)) Ul(t)f)l(s)}
(45)

X exp [;/dtds(@l(t)ﬁl(s)oo(t,s) + ol ()l (s)Ch(t, 5))] ,

2, = / DI, 5] exp {z / dtds (5(t — )~ v Rys.1)) 1}3(25)@3(3):|
(46)

X exp {—; /dtds(@g(t)ﬁ?’(s)Cg(t,s) + U3(t)v3(s)ég(ﬁ,s))] ,

1
Zoo4k = / D[p%24 %24 exp [—2 / dtds (o " Ne 07 (¢) 07 (s)C1 (¢, 5) +y—1@,‘§(t)@§(s)c3(t,s))]
1 A . A
X exp [2 / dtds (Akvg(t)vg(s)C’o(t, 5) + v2(1)02(s)Cal(t, ) + vi(t)vi(s)Cu(t, s))} 47)
, 2/l 0( )72
X exp [—z/dtds (Rs(t, s)vi(s)o,(t) + MeRa (2, s)vk(s)vk(t))} .
In the large M limit we evaluate this integral via saddle point. The saddle point equations give:

Colt,5) = 32 A (R (1)ofs)
k

Ci(t,s) = (W(t)t(s)), €=1{1,2,3,4}

Ry(t,s) = —i(v! (£)0' (s))
(48)
Ry(t,s) = —i(v*(t)0°(s))
R(t,s) = —i% Z Me02()v2(s) = Roa(t, s)
k
B3t 5) = % SO EE(S) = Raalt,s).
k

Here (-) denotes an average taken with respect to the statistical ensemble given by the corresponding partition function Z;.
Lastly, the saddle point equations for the C;(t, s) variables are all quadratic functions of the variables {9°, 9,92, 3} which
vanish under the average defined by Z (Helias & Dahmen, 2020). Following the discussion below Equation 39, we take

C;(t, s) = 0, which will enforce (0;(¢)9;(s)) = 0 and lead to the correct dynamical equations.

To evaluate the remaining, we can integrate out the 9° variables. First let us look at Z;. Using the Hubbard-Stratonovich
trick we can write the action in terms linear in 9. This gives

z = /D[vl,@l,ul] exp [i/dtdsﬁl(t) [3(6 — )0} () — u(s)) - a—lél(t,s>v1<s>H

(49)
1 .
X exp [—2 /dtds u(t)u(s)Cqt(t, s) + v ()0 (s)C1(t, 5))
We now replace ol by its saddle point value of 0 and Ry by Ry 2. Integrating over ¥ gives a delta function:
1
o) = uhe) + ~ / dsRoa(t, s)1(s), ul(t) ~ GP(0,Co). (50)

18



A Dynamical Model of Neural Scaling Laws

Analogously for v2 we get
3 3 1 3 3
v (t) = u’(t) + > dsRgo 4(t,s)v°(s), u’(t) ~GP(0,Cs) (51
For Z 2 4,1, after replacing C’O, C’g, C’4 with their saddle point values we get:

Zo240 = exXP [—; / dids (o N2 (1)82(s)Cn (1, ) + v V6 (¢ )@:(s)cg(t,s))]

(52)
X exp {—/dtds (iR3(t, s)vp(s)op(t) + iNpRu(t, s)vg(s)ﬁ%(t))]
Using the same Hubbard-Stratonovich trick on 97 gives:
1
vi(t) = ui(t) + )\k/dsRl (t,s)vd(s), wui(t)~GP (O, a)\k01> . (53)
On 9} we similarly get:
4 4 2 4 1
0 =l + [astatees)- i), ul) ~ 0P (0.2co) 54
Lastly, the equations of motion for v{ in terms of v} are known:
Qvp(t) = —vi(b). (55)

One can easily add momentum by replacing d;v9(t) with (807 + 9;)v}(t) without changing anything else about the
derivation.

B.2.1. INTERPRETATION OF THE RESPONSE FUNCTIONS

Following (Crisanti & Sompolinsky, 2018; Helias & Dahmen, 2020), we can understand the (% (¢)v®(s)) correlators by
adding in the single-site moment generating function (e.g. Equation (49)) a source jb(s) that couples to ©° at time s. As in
the discussion below equation 39, differentiating (v®(¢)) with respect to that source corresponds to its response to a kick in
the dynamics of v® at time s. We denote this by:

Rij(t,s) = <§5JE?)> . (56)

B.3. Cavity Derivation

The cavity derivation relies on Taylor expanding the dynamics upon the addition of a new sample or feature. We will work
through each cavity step one at a time by considering the influence of a single new base feature, new sample, and new
projected feature. In each step, the goal is to compute the marginal statistics of the added variables. This requires tracking
the linear response to all other variables in the system.

Adding a Base Feature Upon addition of a base feature with eigenvalue Ay so that there are M + 1 instead of M features
{vR,vi,vi} for k € {0,1,..., M}, we have a perturbation to both v/,(t) and v (¢). Denote the perturbed versions of the
dynamics upon addition of the M + 1st feature as f)}t(t) and U3 (t). At large M we can use linear-response theory to relate
the dynamics at M + 1 features to the dynamics of the original M feature system

& ) v, 0
0, (t) ~ U Z ) ovo(s)
N
vf;(t) ~ v Z / 81}3 I;) mo vg(s) (57)
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The next order corrections have a subleading influence on the dynamics. Now, inserting these perturbed dynamics into the
dynamics for the new (M + 1)st set of variables {v3(¢), vg(¢)}. For v3(t), we have

t
vp(t Zwo Uy Z /d 1/)08 1(5) vp(s) (58)

;1/1

There are now two key steps in simplifying the above expression in the proportional limit:

1. By the fact that the v}t(t) dynamics are statistically independent of the new feature )/, we can invoke a central limit
theorem for the first term which is mean zero and variance O(1).

2. Similarly, we can invoke a law of large numbers for the second term, which has O(1) mean and variance on the order of
O(M~1). Therefore in the asymptotic limit it can be safely approximated by its mean.

We note in passing that neither of these steps require the ¢} variables to be Gaussian. Thus we obtain the following
asymptotic statistical description of the v3(¢) random variable

WB () ~ 3(t) + / ds Ry (t, 5)03(s)

P 1
u2(t) ~ GP(0,a " NC1) , Ri(t,s) = — Z< ®) > (59)

8

Following an identical argument for vg () we have
M .
1 1 ov3 ()
4 3 n 2
V3 ~ EA,LvntJr E/dsAn A,ovs (s
o)~ AT P S O+ o L Y9u3,(s) ™ 0(s)

~ud(t) + /dSRg,(t,s)vg(s)

Ug(t) ~ QP(O,I/*ng) R3 t S N <8’U3 z > (60)

n=1

Adding a Sample Next, we can consider the influence of adding a new data point. We will aim to characterize a P + 1
data point system in terms of the dynamics when P points are present. Upon the addition of a new data point ° the field
v (t) will be perturbed to 92 (¢). Again invoking linear response theory, we can expand the perturbed value around the

P-sample dynamics

ov(t)
O~ + Z [ g v 1)
Now, computing the dynamics of the new random variable v} (t)
M
L 0,0 / OvR(t) o 1
— d
Nl ;wkvk( s Zwk 902 (s) 1/’4 vp(s)
1
~up(t) + o /dsRO’Q(t, s)vg(s)
1 M ovp(t)
u(l)(t) ~ GP (0, M Z )ka,8> Ro 2 t S M Z <8vk S > (62)
% i

Adding a Projected Feature Now, we finally consider the effect of introducing a single new projected feature so that
instead of N we now have N + 1 projected features. This causes a perturbation to {v(¢)} which we

\ﬁZ [ s ;zt ¢ vi(s) (©3)
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Now, we compute the dynamics for the added variable v (¢)

M
1 t
b0~ g7 2 Awiko+ Z/d Age 2D 8 Aoe Wi(s)
. 1
~ub(t)+ [ dsRaalt. (o)
M
1 Ovg(t)
ud() ~ GP(0,C) | Raalts) = 12 < aZk 2 > (64)

k:l k

Putting it all together Now, using the information gained in the previous sections, we can combine all of the dynamics
for each field into a closed set of stochastic processes. This recovers the DMFT equations of Appendix A.2.

C. Final Losses (the t — oo Limit of DMFT)

In this section we work out exact expressions for the large time limit of DMFT. By comparing with prior computations of the
mean-field statics of this problem computed in (Atanasov et al., 2023; Zavatone-Veth & Pehlevan, 2023; Ruben & Pehlevan,
2023; Maloney et al., 2022; Simon et al., 2021), we show that the large time and large M limits commute, specifically that
limps, N, P—yoo limy—yoo L(M, N, P,t) = limy_, o limps, v p—soo L(M, N, P, t). We invoke the final value theorem and use
the response functions as before.

Final Value Theorem We note that for functions which vanish at ¢t = —oo, that
lim iw H(w) = — li Ood 9 i H(r) = li Ood 2H( )| e ™7 = lim H(r) (65)
wlg})zw w) = wlino N T 8Te T —wlg}) T o )| e = lim H(r

where we invoked integration by parts and used the assumption that lim,_, _ ., H(7) = 0, a condition that is satisfied for the
correlation and response functions in our theory. We can therefore use the identity lim,_, o, H(7) = lim,,_,¢ iwH(w) to
extract the final values of our order parameters.

1
lim H = lim 7 =1 .
Jim Hy(r) =l (@) = i T R R @) (66)

We also need to invoke a similar relationship for the final values of the correlation functions

lim C(t,s) = lim (zw)(zw ) C(w,w)

t,s—00 w,w’—=0
C(w,w") /dt/ds e WS O 5) (67)

where C is the two-variable Fourier transform. The final value of the test loss is lim;_,oo £(t) = lim¢ 500 Co(t, 5).

C.1. General Case (Finite v, o)

Before working out the solution to the response functions, we note that the following condition is always satisfied
v(l — R3(w)) = a(l = Ri(w)). (68)

For v = a, this equation implies that Ry = Rg3. For v # «, we can have either R; — 0 or R3 — 0 but not both. We
consider each of these cases below.

Over-parameterized Case v > a: In this case, the response function R; ~ O(iw) asw — 0and R3 ~ 1 — 2 asw — 0.
We thus define

r = lim (iw) 'Ry (w)Ra(w) (69)

w—0
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Using the equation which defines R, we find that the variable r satisfies the following relationship at w — 0

1 /\kT
- = 70
@ M % 14+ Agr (70)
After solving this implicit equation, we can find the limiting value of iwH(w) as
1
o 1 T _
HiE = lim Hy(7) = limy iy (w) = 35— 70

Next, we can work out the scaling of the correlation functions in the limit of low frequency. We define the following limiting
quantities based on a scaling analysis performed on our correlation functions for small w

Cyr = Jim Co(t,s) = wggo(iw)(iw’)co(mw’)

Cfoz/ / dt'ds'Cy(t',s') = lim Cq(w,w’)
o Jo

w,w’—=0

0o poo (72)
Cs E/ / dt'ds'Co(t',s") = lim Co(w,w’)
o Jo

w,w’—0

o = / / dt'ds'Cy(t',s') = Tim_Cs(w, )
0 0

w,w’—0

These limiting quantities satisfy the closed set of linear equations

CO = M Z )\k(Hk; )2 I:(wk)Q + ;Cg + a)\k (1 - ;) Cl :l
k

2

Or = —=3 00"
- o)
[eS) 1 002 Y00 7‘2 1 2 0N 2 e e

O = TM%:A;@(H,C )2C5 +Wﬂ;xk(ﬂk 2[(wp)? + v O

(-2

These equations can be solved for {C§°, C°, C$°, C$°}. Simplifying the expressions to a two-variable system, we find

1 i 1 aN? 1 .
Co” = MZ)%(HISO)? [(wk)2+y (1— ;) Cs +&)\k7“2co ]
K

2 2
oo __ r 00\ 2 Y00 r i 2 00\ 2 *\2 1 _2 2 e}
Cz " a(l —a/v)2M zk:A’“(H’“ )Gy +(1—%)2M;A’“(H’C) {(w’“) +,,<1 ,,) 02]

This expression recovers the ridgeless limit of the replica results of (Atanasov et al., 2023; Zavatone-Veth & Pehlevan, 2023)
and the random matrix analysis of (Simon et al., 2023).

Under-parameterized Case v < a: Following the same procedure, we note that for v < « that R3 ~ O(iw) and
Ry ~ 1 — £. We thus find the following equation for 7 = lim,, .o (iw) 'R (w)R3(w).

(74)

where as before H° =
limiting quantities

ﬁ. The analogous scaling argument for small w gives us the following set of well-defined

Cy° = lim Cy(t,s) = lim (iw)(iw')C(w,w")

t,s—00 w,w’—=0

C = lim Ci(t,s) = lim (iw)(iw")Ci(w,w’)

t,s—00 w,w’ =0
C3° = , Pinoo Co(t,s) = wggo(iw)(iw’)(zg(w, W) (75)

C§°E/ / dtds C5(t,s) = lim Cs(w,w’).
o Jo

w,w’—0
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where these limiting correlation values satisfy

Co = M Z)‘k(Hk )? |:(wk)2 + ;03 + E)\k (1— z)2c1 }
k a

(-5

(76)
CF = o SAHEFCE + 7 (1 1) SN0 [ + o7

This is again a closed linear system of equations for the variables {C§°, C°, C$°, C5°}. In the next section, we recover the
result for kernel regression where v — oo and the learning curve for infinite data @ — oo with respect to model size v.
C.2. Learning Curves for Kernel Regression v, ¢ — oo

In the t — oo and ¥ — oo limit we recover the learning curve for kernel regression with eigenvalues A;. To match the
notation of (Canatar et al., 2021), we define

lim (iw) 'Ry (w) = ak™! (77)

w—0

which generates the following self-consistent equation for

1=— —_— 78
M ; A+ K (78)
Plugging this into the expression for the loss, we find
2 -1 /
(iw) (iw")Co(w, w") Z ————— /{—i—)\ [( 2+ am G (w,w')]
C1(w,w’) = (iw)(iw )oKk~ 2Co(w, w’) (79)
Letting Coo = limy, o/ —0(iw)(iw")C(s, s”), we have
1 K2 «
Co=—) Mg75 —
Mzk: k(lﬁ:+)\ka) 3 (W Mzk: )\kcH-
1 K2
—_— A (wj 27 = 80
1_7 k k(wk)( +)\k0¢ ) Y= MZ )\k;a‘i‘l‘f ( )
The variable s decreases from [ﬁ Dok Ak O] as o € [0,1]. For o > 1 we have x = 0. The quantity = comes from

overfitting due to variance from the randomly sampled dataset.

D. Early Time Dynamics (High-Frequency Range)

In this section, we explore the early time dynamical effects of this model. Similar to how the late time dynamical effects
could be measured by examining the low frequency w < 1 part of the response and correlation functions, in this section, we
analyze the high frequency components w > 1. We start by noting the following expansions valid near w — co

+0O(w™?)

Rl(w)wl—@ lﬂzZAk
k

L 0w @81)

Ra(w) ~ 1 — V(zw) UI S M
k
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We let c = ﬁ >« k- These can be plugged into the transfer function for mode %

1 1 cAp(at +v71) 9
~ ~ - (@) 82
(@) w4+ A —cla ™+ v Hw)™t  dw+ A { iw(iw + Ag) +O (™) ®2)
Performing an inverse Fourier transform, we find the following early time asymptotics
dw eiwt
H.(t) ~ —Axt 5\ -1 -1 /7
R AR I = ey W
0 dw  e!
_ — At 5\ —1 -1 hated
¢ eArla™ +v )6‘)\k / 27 iw(iw + Ag)
0 |1 1
— e Mt _ o) -1 -1\_Y & =Xt
e (o™ +v )a)\k L\k )\ke ]
-1 —1
=e Mt 4 76((1 +v) [1 — e MR\t 67/\”] (83)
Ak

We see from this expression that the early time corrections always scale as 1/« or 1/v and that these corrections build up
over time. We also note that in this picture, Hy(t) is minimized in the limit of large model and large data v, v — oo (limited
data and limited model size strictly harm performance). A similar expansion can be performed for all of the correlation
functions C(w, w’) with w,w’ > 1 which also give leading corrections which scale as 1/« and 1/v.

E. Buildup of Overfitting Effects

In this section, we derive a formula for the gap between test loss £(¢) and train loss ﬁ(t) We start from the following
formula

1 t
vi(t) = ui(t) + a/ dsRg o(t, s)v1(s) (84)
0

Moving the vy (t) term to the other side, and using the fact that (u; (t)u1(s)) = C1(¢, s), we find the following relationship
between train and test loss

L(t) = (ur(t)us(t)) = (vr(t)vr (1)) — 2/0 dt' Ro 2(t,1) (o1 (£)va (t'))

1 t t
+ ) dt/ / dSlRO’Q(t, t/)RO’Q(t, 8/) <’U1 (t’)v1 (8/)>
a” Jo 0
R 2 t 1 t t
=L(t) — o dt'Ro2(t,t")Cy (¢, 1) + @/ dt' | ds'Roa(t,t')Ro2(t,s")Ci(t,s). (85)
0 0 0

To get a sense of these expressions at early and late timescales, we investigate the Fourier transforms at high w > 1 and low
w < 1 frequencies respectively.

E.1. High Frequency Range / Early Time

The relationship between Fourier transforms at high frequencies w > 1 is

Co(w,w') = m Ci(w,w') ~ Ci(w,w') + C1(w,w") + O((iw) =2 + (i) ~?)

(86)

Cl (Wv w/) +

a(iw’) afiw’)

where ¢ = % > Ak Taking a Fourier transform back to real time gives us the following early time differential equation
for the test-loss train loss gap

O [Colt, s) = Cu(t,5)] = FCu(t,5) + = (0 + D) Ch(t,s). (87)

The above equation should hold for early times. We note that Cy(t,t) — Cy(t,t) = L(t) — L(t) exactly recovers the
test-train gap.
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E.2. Low Frequency Range/Late Time

At late time/low frequency, as we showed in Appendix C, the behavior of the C; correlation function depends on whether
the model is over-parameterized or under-parameterized. In the overparameterized case, the asymptotic train loss is zero
while the asymptotic test loss is nonzero. In the underparameterized case, we have a limiting value for both the test and train
loss which can be computed from the expressions in Appendix C.

F. Timescale/Eigenvalue Density Interpretation

We can use an alternative interpretation of the Fourier transforms derived in previous sections to obtain the timescale density
for the dynamics. Since this is a linear model defined by an effective matrix %vo = — (%ATA) (%lIIT\II) vY, this is
equivalent to computing the eigenvalue density. We start by expanding the transfer function for mode % in the basis of
exponentials

Hy(t) = /Oo du py.(u) e . (88)
0

We allow for Dirac-delta masses at « = 0 which correspond to the constant (unlearnable) components. Next, we note that
the Fourier transform has the form

Hi(w) = [m dt e ™ Hy(t) = /0 du py(u) [m dt e~ (vt — /0 du ZZCE?L (89)
We can recover the density pg(s) by using the Sokhotski—Plemelj theorem %Imﬁ = §(u — s) which gives us
1
pr(u) = 213(1) ;Im Hy(iu — €). (90)

This allows us to interpret the spread of timescales from the random sampling of data and the random projection A. In the
limit of o, v — 0o we have py(s) = 0(s — Ax) but for finite «, v the density spreads out. We visualize these densities for
power law features in Figure 8.

350
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— k=2 300 — k=2
6 — k=3 — k=3
5 — k=4 250 k=4
k=5 200 — k=5
34 k=6 5 — k=6
~ k=7 = — k=7
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Q3 k=8 Q k=8
5 k=9 100 k=9
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1 50 ]\
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u u
(a) N =50,P =100 (b) N = 10000, P = 10000

Figure 8. Timescale (eigenvalue) densities for each transfer function Hy (7) with power law features with b = 1.2. For limited IV, P there
is a significant spread of timescales for each mode. For N, P — oo the density converges to a Dirac mass at u = Ag.

F.1. Recovering the Marchenko-Pastur Law from DMFT Response Functions

To further illustrate the validity of this perspective, we show that it is possible to recover known random matrix theory
results using this technique. To illustrate this, we study the case where A, = 1 and take v — oo. In this case, we have the
coupled equations

1 1

m , Ri(w) =1— aRl(W)H(W) 1)

H(w) =
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Combining these equations gives the single equation

1

Hw)= ——a—, = iwH(W)?+ (diw+a - DH(w) —a=0
1w + aFH@)
1 . - -
H(w) = 5 [(azw—&—a— 1)+ (oiw + o — 1)2+4zwa} (92)
w
Now, evaluating this expression at iw = —s — i€ gives
1
s — €)= —— |(~as—i 1 “as — i 12 _4(s+i
H(is — €) 0179 [( as —ioe+a —1) 4+ /(—as — aie +a — 1) (s +ie)a 93)

The radical has an imaginary solution in the e — 0 limit provided that

2
s€[s_,84], 81 = <1 + \/la) (94)

In this interval [s_, 5], the density p(s) = lim,_,o ~Im?(is — €) has the form

ay/Gs =5 )(s —s3)

2ms

, S € [s—,54] (95)

p(s) =

which is precisely the bulk of the Marchenko-Pastur law.

G. Non-Proportional (Dimension-Free) Limit

We can imagine a situation where the original features are already infinite dimensional (M — oo is taken first). This would
correspond more naturally to the connection between infinite dimensional RKHS’s induced by neural networks at infinite
width (Bordelon et al., 2020; Canatar et al., 2021; Cheng & Montanari, 2022). Further, we will assume a trace class kernel
K(z,2') = ¥(x) - (') for the base features ) which diagonalizes over the data distribution p(x) as

/K(m,m’)qﬁk( Np(x')dx' = A\pdp(x ZAk < 0. (96)
As before, we are concerned with the test and train losses
1 L
Z Mo (8)?, L(t) = 5 PRAGE (97)
p=1

The appropriate scaling of our four fields of interest in this setting are
1
vl(t) = To(t) , v2(t) = =¥ vl (1)
v3(t) = Av3(t) , vi(t) = —ATv3(1). (98)

Following the cavity argument given in the previous section, we can approximate the the correlation and response functions
as concentrating to arrive at the following field description of the training dynamics

Bpup(t) = —vy(t)
ot (t) = ut(t) + %/ds Roa(t,s)vt(s), u'(t) ~ GP(0,Cy)

V2(E) = U2 (1) + M / ds Ru(t, $)02(s) , w2(t) ~ 6P (0, ;AkCl) )
V(1) = (1) + % / ds Ra.a(t, s)0%(s) , u(t) ~ GP(0,Cy)
v,%(t) = uﬁ(t) +/ds Rg(t,S)'U]%(S) , u%(t) ~N (O, ;Cg)
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which are exactly the same equations as in the proportional limit except with the substitution v — N and o — P. The
correlation and response functions have the form

3 0 1 (100)
=S (240} - (50
£ (540 - (50

which will all be O(1) under this scaling.

H. Effect of Ensembling and Bagging on Dynamics
H.1. What Does/Doesn’t Concentrate in the DMFT Limit?

To help gain insight into bias and variance decompositions, we first provide a short primer on which entities concentrate
over random draws of matrices A and W¥. For any distinct randomly sampled system, the following objects will always be
the same in the asymptotic limit

1. The response functions { Ry 2(t, s), R1(t, s), R2,4(t, s), R3(t,s)}
2. The correlation functions {C;(t, 5) }ie{1,2,3,4}-
3. The train and test loss dynamics

While the above quantities behave as concentrating or “’self-averaging” random variables, many important quantities are not
the same across different realizations of { A, ¥'}. For example,

1. The (random) entries of the vectors {v"(t), v} (t), v%(t), v3(t), vi(t)}.
2. The Gaussian sources {u*(t),u?(t),u3(t),u*(t)} which appear in the large system size limit.

In particular, the first implies that the model outputs f () will generally depend on random variations across datasets or
model initializations. This means that we can consider drawing multiple realizations of, for example, projection matrices
{A.}E_| and then training E separate models using each of them. Averaging these vectors gives us

_ 1 &
o(t) = & ;v.‘;(t) (101)

This operation will intuitively ”average out” noise from the random projection matrices A, and in the limit of infinite
ensembling ¥ — oo will completely eliminate it.

H.2. Definition of Bias and Variance

We adopt the language of the fine-grained bias-variance decomposition in (Adlam & Pennington, 2020b). There, a given
learned function generally depends on both the dataset D and initialization seed 6. We write this as fp g,. The role of
random initialization is played by the A matrix in our setting. For a given function, its variance over datasets and its variance
over initializations are respectively given by

Varpf = Ep(fp.e, — Ep[fpe,))? (102)
Varg, f = Eg, (fp.00 — Eoo[fD.0])° (103)

Here Ep|[fp,g,] and Eg,[fD,6,] can be viewed as infinitely bagged or infinitely ensembled predictors respectively. The bias
of a function over datasets or initializations is given by the test error of Ep|fp a,], Eg, [fD,0,] respectively. The irreducible
bias is given by Ep g, [fp,6,]-
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H.3. Derivation

In this section, we consider the effect of ensembling over E' random initial conditions and bagging over B random datasets.
We let vg »(t) represent the weight discrepancy for model e on dataset b. Here e runs from 1 to £ and b runs from 1 to B.
The (e, b)th vector has dynamics:

%v?,b@) = - (leAZ Ae) (}V\PJ \Ifb) vy (1) (104)
Ensembling and bagging would correspond to averaging these v°s over these E B systems
1 BB
(1) =25 2; > vl (). (105)
e=1b=1

The key vectors to track for this computation are

1 1
vy (1) = W‘Ijbvg,b(t) + o6y, v2,(t) = W‘I]Jv;,b(ﬂ
1 1
vy (t) = WAevib(t), vy (t) = y MAZvZ’,b(t)- (106)

We can further show that the vgb and vg,,b, have response functions that decouple across e, b. Intuitively, giving the
dynamical system e, b a kick should not alter the trajectory of the separate ¢’, b’ dynamical system, even if they share
disorder {®, A}. The DMFT description of the proportional limit yields the following integral equations for the v fields:

vy k(1) = —viy k(1)

1
halt) = uky(0)+ 5 [ dsRoa(t, o)ty (o
02y k() =uly (1) + )\k/dSRl(tv )00 (s)
1
o) = udal0) 5 [ dsRaalt.s)ody(s)

ﬁwwzﬁww+/w&wﬁﬁw@. (107)

Here, the response functions R are to be computed within a single system. In what follows, we will use (-) to denote
averages over the disorder, and explicitly write out any averages over the ensemble members and datasets.

The Gaussian variables in the DMFT have the following covariance

(ue p(t)ugs 1y (5)) = Gpp0 C2 o (t, 5)

(ug 1 (
<Ug7b(t)ug/7b/ (S)> = 65,6/02,b,b' (t, S)
1
<u3’b}k(t)ui/’b/,k(s)> == 66,6/ ;C37b’b/ (t7 S) (108)

The covariances above Cy ¢ ¢/, Cl c.er; Coppr, Csp,y allow for different ensemble or dataset index but not both. We
will use Cy, C1,Ca, C3 etc to represent the correlation functions within a single system. For instance, C ,(t,s) =

a2k N <vg7b(t)v2,7b(s)> while C0 = 37, A <v27b(t)v27b(s)>. The correlation function of interest is thus
1 A
Coke,er(wyw') = Hi(w)Hi(w) {(w,:)z + ;§eye/C3(w,w’) + ;kCLe’e/ (w,w’)]
Ceper(w,w') = Ry (w) Ry (w)CY o (w, ')
/ . . / )‘k / 2 / *\2 1 !
Co b,k (w,w') = (iw) (iw’)Hi (w) Hy (w )E5b,b’cl(w»w ) + AR (W) R (W) | (wp)” + —Cappr (w,0)

6371,’(,/ (w,w') = Rg(w)Rg,(w)CQ’b,b/ (w7w’) (109)
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We can combine the first two equations and the second two equations to identify the structure of the cross-ensemble and
cross-dataset (across-system) correlations in terms of the marginal (within-system) correlation statistics

1
1 —o(w,w’)

Yo(w,w') = ﬁ Z MMy (W) Hi (W) R (w) Ry (W)

1 1 ,
Coeer(w,w') = i Z A Hp (W) Hy (W) [(w;)Z + ;5676/C3(w,w )
k

CQ b,b’ (UJ w ) m Z )\k |: (OJI))\]C (’U}g)Q + é(zw)(zw’)%k (W)Hk; (w/)db,b’cl (OJ, w/)

12 ') = 3 Ry(@)Raw) 37 SN (110)
k

These equations give the necessary cross-ensemble and cross-dataset correlations. Now we can consider the effect of
ensembling and bagging on the dynamics. To do so, consider the Fourier transform of the bagged-ensembled error

() = 25 Yoo v27e7b(t), which has the Fourier transform

1
Up(w) = Hi(w) |wi — EB (ui,b,k(w) + R3(W)Ug,b,k(w)) (111)
e,b

Computing the correlation function for this bagged-ensembled field random variable, we find

(@) () = Ha(w)Ha (o) | (w])? + —

J— 5(,P/C3bb/(ww Zébb’clPe WW)
vE2DB2 Z R ’ E232
e,e’ ,b,b’ ee’ bb’

N 1 Ak ,
= Ha@) () |00 + s 3 Coppr () + —E 3 Crr(, )
b,b’ ee’

= Hi(w)Hr (') (w})?
VlEHk(w)ﬂk(w,)?g_(yiﬁ(;/))Rl( l > i) ]
o 2 70)(w f Ra() Mzwgmm(w')(wzf

)
M M (w)Hi(W)Cs(w, ')
’)

+ avEB 1 —y(w,w M ZA/H[ JHe() (112)

The first term is the irreducible bias for mode k£ which is the loss for mode k& when the learned function is averaged over all
possible datasets and all possible projections We see that the second term scales as 1E which will persist even if Ba — oo.
Similarly, there is a term that is order —5 which will persist even if vE' — oco. Lastly, there are two terms which depend
on both B, E. This is similar to the vanance that is explained by the interaction of the dataset and the random projection
(Adlam & Pennington, 2020b). The test loss is then a Fourier transform of the above function

1 _
— MZ)\,C CHORY (113)
k
If £, B — o0, then we obtain the stated irreducible bias of the main paper

Ellgooﬁ ZAk wi)2Hy(t)2. (114)

This is the error of the mean output function over all possible datasets and random projections of a certain size.
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Figure 9. The infinite time limit of the loss when ensembling with isotropic features A\, = 1 recovers prior results on ensembling and
double descent (d’Ascoli et al., 2020; Adlam & Pennington, 2020b). There is an overfitting peak (double descent) at &« = v. In the
overparameterized regime where o < v, the infinite ensembled model matches the performance of the v — oo limit. This is because the
bias is limited by dataset size rather than model size. In the underparameterized regime o« > v, the infinite ensembled model does not
achieve the loss of the infinite model due to a bias limited by v.

H.4. Ensembling is Not Always Compute Optimal

For a compute budget C' = N E't, we find that ensembling does not provide as much benefit as increasing the size of the
model. From the results in the last section, we note that ensembling reduces the variance. For this section, we consider the
P — oo limit. We let B(V, t) represent the bias and V(N t) represent the variance within a single ensemble. The loss at
fixed compute then takes the form

L, C.t) = B(n, ) + %wu, . (115)

For any v which satisfies the condition that

o o
_ < — <
5, B1) S0, = V(1) <0 (116)

we have that ensembling is strictly dominated by increasing v.

1. White Bandlimited Model

To gain intuition for the model, we can first analyze the case where A, = 1, which has a simpler DMFT description since
each of the M features are statistically identical. We illustrate the dependence of the loss on model size v and training time ¢
for a < 1 in Figure 10. We note that the loss can be non-monotonic in v at late training times, but that monotonicity is
maintained for optimal early stopping, similar to results on optimal regularization in linear models (Advani et al., 2020) and
random feature models (Mei & Montanari, 2022; Simon et al., 2023).

I.1. Derivation

In the case of all A, = 1 we have the following definitions

1 Ri(wRs(w)
Rifw) =1- 2= + Ri(w)Rs(w) (117)
Ra(w) = 1 1 Ri(w)Rs(w)

Viw 4 Ry (w)Ra(w)
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Figure 10. The white bandlimited model (\;, = 1) with & = 0.8 and varying model size v with no explicit noise o = 0 exhibits double
descent at late time. Optimal early stopping, like optimal regularization, recovers monotonic scaling with v.

Writing Ry = 1 — £(R3 — 1) allows us to solve for R3 exactly:
. v . v 1 v
Rs (zw + Ry(1+ = (Rs - 1))) = iw+Ro(1+ = (Rg —1)) = (723(1 + 2 (Rs - 1))) . (118)

This is a cubic equation that can be solved for R3 as a function of w. In the limit of & — oo this simplifies to:

1
Raiw + R3 = iw + (1—V> Rs3

(119)
1 1 — - -
=Rz = 5[(1 — v —iw) + V(1 — vl —iw)? + diw].
I.2. Timescale Corrections in The Small » Regime
By expanding the above in the limit of small v we get that R3 goes as
w
R3Nm7y—>0 (120)
From this approximate response function, we find that the transfer function takes the form
H(T) _ dﬁ | eiwriw _ / dﬁ (V—.l _ ij_ m{)eiwr
27w + s 2w v 4w
=(1—-v)+ve /", (121)

where in the last line, we used the residue theorem. We note that in this perturbative approximation that this transfer function
is always greater than the transfer function at v — oo which is e™". Thus finite v leads to higher bias in this regime. We
define bias and variance precisely in Appendix H.2.

L.3. Timescale corrections in fully expressive regime v > 1

For v > 1, we can approximate R3(w) ~ 1 — v~ 1(1 + iw) ™!, we have

H(T)N/dw e :/dw e (1 4+ iw)

2miw+ 1 — v (iw + 1)1 27 (iw 41— v=172)(iw + 1 + v=1/2)

1 1
= 5@*“1*@ + 5e*TU*W) = e " cosh (7/V/V) (122)
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where we used the residue theorem after closing the contour in the upper half-plane. In Figure 11, we show that this
perturbative approximation does capture a slowdown in the dynamics for large but finite ».
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Time

Figure 11. Slower timescales in the v > 1 regime for white bandlimited features.

J. Power-Law Bottleneck Scalings

In this section we calculate the scaling of the loss with the various limiting resources (time, model size, and data) when using

. . . o0 .
power law features. Since the power-law features give a trace class kernel (i.e. .~ ; Ax < 00), we use the non-proportional
limit formalism in Appendix G, which gives an expression for L(t, N, P) with M already considered infinite. While the
resulting expressions are not a formal proportional thermodynamic limit and finite IV, P corrections exist in the form of
fluctuations from one random realization of the system to another. These corrections decay rapidly enough at finite IV, P for
this mean field theory to be accurate and descriptive in realistic systems (Bordelon et al., 2020; Simon et al., 2023; Cheng &
Montanari, 2022). We plot this variability of random finite size experiments as highlighted standard deviations in the main
text figures.

J.1. Time Bottleneck

The time bottleneck is defined as the limiting dynamics in the absence of any model or data finite size effects. To eliminate
those effects, we simply study the o, v — oo limit

Loo(t)= lim L(t,P,N). (123)

P,N—oc0
In this limit, the response functions simplify to R (w)Rs(w) — 1 so that

1

— o ART
P = Hp(r)=e o(r). (124)

Hi(w) =

Further, in this limit, we have that Co(t, s) = 5 >, A Hg(t) Hi(s)(w})? since all the variance terms (which depend on

v~1 a1 drop out. Thus we have the following loss at time ¢,

L(t) = A(wp)?e 2 ~ /1 dkk™" exp (—2k~"t) ~ ¢t~ (@71, (125)
k

where the final scaling with time can be obtained through either change of variables or steepest descent methods (Bordelon
& Pehlevan, 2022a).
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J.2. Model Bottleneck

In this section we take o, — oc. This leaves us with the following equation for r = lim,, ¢ (iw) ' R3(w).

N = 2 %/Oo bdk*%Tl/bﬁr%Nb_
1 kb/r+1

Now, the large time limit of the transfer functions Hy(7) can be obtained from the final-value theorem

W 1
lim H, =1 = .
Par #(7) wlg}) w + Apriw 1+ Agr

Now, integrating over the eigenvalue density to get the total loss (and disregarding prefactors)

dk
/ 1+ k br)
~ 7 "k g / ke
™)1 N
S G I Yo B M A RS

2b6+1—a a—1
~N— min{a—1,2b}

For difficult tasks where a — 1 < 2b, we thus expect a powerlaw scaling of the form £ ~ N (=1 in this regime.

J.3. Data Bottleneck

In this section we take v,¢ — oc. This leaves us with the following equation for 7 = lim,, o (iw) 1R (w).

AT < gk )
P= —_— ) —_ = /b:> ’R‘J.Pb.
Z/\ /1 Wil "

Now, the large time limit of the transfer functions Hy,(7) can again be obtained from the final-value theorem

W 1

lim H, =1
Pt w(7) wl—%zw+)\kmw 14+ Agr

Now, integrating over the eigenvalue density to get the total loss gives

(oo} k—a
o)~ [

7/ dkaba / Lo

1

- [p (a—1) _ P~ 2b 7P_(a_1)
T2+ 1 a[ I+ a—1

~ P~ min{a—1,2b}

For difficult tasks with a < 2b + 1, the loss will therefore scale as P~(~1 in this data-bottleneck regime.

K. Optimization Extensions

K.1. Discrete Time

(126)

(127)

(128)

(129)

(130)

(131)

In this section, we point out that DMFT can also completely describe discrete time training as well. In this section we

consider discrete time gradient descent with learning rate n

vO(t+1) = v°(t) — ' (t)

= T v = —1 v
vi(t) = V\ﬁA v3(t), v3(t) rA 2(t)
= L T v = 71 v
v (t) = a\ﬁ\l’ vl(t), vi(t) = W\I’ O(t)
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Following either the MSR or cavity derivation, we obtain an analgous set of limiting DMFT equations defined for integer
times t € Z,

vt 4 1) = v2(t) — quE(t) + 6(t + 1w}
vl (t) =u'(t) + o> Roa(t, s)v'(s)

2+ > Ri(t,s)v)(s)
3(t) + Z Ro.4(t, s)v3(s)

= uj(t) +ZR3tsvk (133)
The delta function in this context is defined as
1 t=-1
o(t+1)= { (134)
0 else

ensures that the initial condition v (0) = wy} is satisfied. These iteration equations can be closed for the response functions
and correlation functions and solved over T x T" matrices.

Alternatively, we can also solve this problem in an analogous frequency space. Analogous to the Fourier transform method,
the equations in discrete time can be closed in terms of the Z-transform

v(z) = Z 27 (t) (135)

t=—0o0

Applying this transform gives us the following expression for the v fields.

2wk — nui(z 2)us
v)(2) = ’;_ ?f;;kR?zz‘;’( )(Zk)( ?) = Hi(z) [zwf — nup(z) — nRs(z)ui(2)] (136)

Similar to the Fourier case, the final losses can be extracted as the z — 1 limit of these objects.

K.2. Momentum

As mentioned in appendix B, it is straightforward to extend the DMFT treatment beyond just gradient descent dynamics to
include a momentum term with momentum S3.

We first consider this replacement in continuous time. This requires applying the following replacement:
DR (t) = —vi(t) = (BOF + 8)uR(t) = —vi (D). (137)

This slightly modifies the expressions for the response functions. For example, in Fourier space the response functions

become:

1 A

R = —— R
0.2(«) M zk: € +iw + B(iw)? + MR (w)R3(w) 2()
\ (138)
_ L E
Raalw) =37 Xk: €+ iw + B(iw)? + Aml(w)ng(w)Rl(”)'
In discrete time, momentum updates can be expressed as
vO(t+1) = v°(t) — nb(t)
b(t) = v*(t) + ub(t — 1) (139)
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where b(t) is the filtered version of the loss gradient (the v*(¢) field) with momentum coefficient y and 1 is the learning
rate. The dependence on the b(¢) field can be eliminated by turning this into a second order difference equation

VOt +1) —0(t) — p (VO(t) —°(t = 1)) = —no’(t). (140)
Again, the final result can be expressed in terms of the Z-transformed transfer functions #(z) which have the form

1
Tir(z) = z2—1—p+pz"t +nR1(2)R3(2)" (141)

K.3. One Pass SGD

In this section we derive online SGD with projected features. At each step a random batch of B samples are collected
(independent of previous samples), giving a matrix ¥ (¢) € RE*M of sampled features. The update at step  is

VO(t+1)=0(t) + 1 <]1[ATA> (;\Il(t)T\Il(t)> vO(t). (142)

The DMFT limit gives the following statistical description of the fields, which decouple over time for the v! (t), vZ(¢) but
remain coupled across time for v3(t), v (t)

vl (t) = ul(t) , ut(t) ~ N(0,Co(t,t)5(t — s)),

V2(8) = w2 (8) + Mol(t) , () ~ N (o, L MO0 - s>)

U3(t) = u3(t) + % ZRQA(t, 8)1}3(8) 5 US(t) ~ N(O, 02(t7 S)) (143)

viE(t) = ui(t) + Z Rs(t,s)vi(s), up(t) ~ N <0, %C’g(t, s)>
v(t+ 1) = v (t) — v ().

This system cannot exhibit overfitting effects as we have the statistical equivalence between the covariance of v* and the test
loss:

L(t) = (v*(t)?) = (u (1)) = Co(t,t) = L(t) (144)

We note that this is very different than the case where data is reused at every step, which led to a growing gap between train
and test loss as we derive in Appendix E.

We visualize some example results for one-pass SGD with power law features in Figure 3. While we see that the same
scaling laws with ¢ and N hold, the dependence on batchsize B is much weaker: the model never reaches an asymptote that
scales with B but rather experiences SGD noise that scales with 1/ B for learning rate 7).

We summarize the key similarities and differences between the one-pass SGD and multi-pass batch GD settings

1. If the learning rate is small and a continuous time limit of the dynamics is taken, then the SGD dynamics will agree with
the P — oo limit of our full batch gradient flow theory. This is a setting where finite data and SGD noise are negligible.

2. If learning rate is non-negligible and batch size is finite, then SGD noise cannot be neglected and the SGD dynamics will
be different than full pass GD. The SGD dynamics will be described by a discrete time DMFT given above.

3. In general, the multi-pass version of the theory can have a train loss and test loss gap while the SGD theory never has a
gap between training and test loss.

4. The SGD test loss can be limited by ¢, N, but the effect of finite batch size is basically some additive variance in the
model outputs. Finite dataset size in the full batch GD can lead to a bottleneck scaling law ( like L ~ P~(a=1)),

L. Kernel Analysis of Feature Learning Networks

In Section 5.1, we observed that feature learning networks can achieve better loss and compute-optimal scaling. In such
settings, it may be useful to observe the after kernel, namely the NTK at the end of training. This object can often shed
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Figure 12. a) The observed power law spectrum on a held out test set of the after-kernel for a width N = 128 ResNet trained on
CIFAR-5m. Early on in training, the spectrum flattens quite rapidly. At later times, the spectral decay remains relatively constant. b) The
fraction of the task unexplained, as defined in Equation 20. Throughout training, the top eigenmode of the after-kernel explains more
and more of the task. c) The test loss of the network. We see that the observed scaling of this quantity is faster than that predicted from
analyzing the after-kernel. d) The kernel-target alignment of the after kernel improves throughout training time. The error bars here
denote different ensemble members. Their relatively small size implies that the kernel trajectory is relatively deterministic over different
initialization seeds. e) The norm of the after-kernel throughout training is relatively constant for this task.

insight into the structure of the learned network function (Atanasov et al., 2022; Long, 2021) and its generalization. In
some cases, it has been observed that the final kernel stabilizes during the course of training (Fort et al., 2020), potentially
allowing one to potentially deduce scaling laws from the spectrum and task-model alignment of this after-kernel, though
other papers have observed contrary results (Vyas et al., 2022).

Motivated by this, we study the NTKs of the finite-width networks trained for 64 epochs with the animate-inanimate
CIFAR-5m discrimination task. We observe in Figure 12 a) that the spectrum becomes flatter, with a decay exponent of
close to 1.4 down from 2.0 for the initial kernel.

The fraction of the task power unexplained is also observed to have a lower exponent in Figure 12 b), however there is also
the presence of a low rank spike indicative of the kernel aligning to this discrimination tasks.

From these scalings we can obtain the a and b exponents and get a prediction for the scaling of the test loss. We plot this
in grey in Figure 12 c). The observed scaling (in black) is much better than that predicted by the after-kernel. This is an
indication the the after kernel continues evolving in this task, improving the scaling exponent of the test loss.

The kernel-target alignment (Cortes et al., 2012), as measured by

y' Ky

A=Y =Y
y'ylK|p

(145)

is plotted in 12 d). Here y is the target labels on a held-out test set, and K is the gram matrix of the after-kernel on this test
set. We indeed observe a consistent increase in this quantity across time. This gives an indication that understanding the
evolution of the after-kernel will be useful
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M. Numerical Recipes
M.1. Iteration of DMFT Equations on Time x Time matrices

The simplest way to solve the DMFT equations is to iterate them from a reasonable initial condition (Mignacco et al., 2020;
Bordelon & Pehlevan, 2022b). We solve in discrete time for 7' x T matrices { Rg 2, R1, R2 4, R3, Co, C1, C2, Cs} which
have entries [R]; s = R(t,s), [C]s,s = C(t, s), etc. We let ©(t, s) = nO(t — s) where 7 is the learning rate.

1. Solve for the response functions by updating the closed equations as matrices by iterating the equations.
Ry — — [9_1 + AkR3R1rl R,

1
Ry i zk: A Ro.2 ks

Ry« [I—a'Rys) ", (146)

_ 1
Ry 4 <+ =i [I + M\ R1OR3) 'R0, Ry, = i zk:Rz,zum

R; + [I — 1/_11%2,4]71 .

2. Once these response functions have converged, we can iterate the equations for the correlation functions

_ A _
Cox « [I+ MOR3Ry| ™" {(w,:)zll—r +0 (ylc?, + ;RgclR;) @T] I+ M\ORsR, ",

1 M
C() < M ; AkCO,ka

C, + R,CyR/, (147)
2
Coy « [I+ MR, OR3)™" (A;C1 + R {(w;)%inT + AVk@c?,eT] RI) [T+ \RiORs ",

1
Cy M zk:Cng.

After iterating these equations, one has the discrete time solution to the DMFT order parameters and any other observable
can then be calculated.

M.2. Fourier Transform Method

To accurately compute the Fourier transforms in the model/data bottleneck regime (o« < 1 or v < 1) we have that
R1(w)R3(w) ~ iwr as w — 0 so we must resort to analyzing the principal part and the delta-function contribution to the
integral. Construct a shifted and non-divergent version of the function H(w).

. 1
H(OJ) = H(W) + m

Hw) = 1 B 1 _ iwr — Ry (w)R3(w)
etiw—+Ri(w)R3(w) e+iw(l+r) (e+iw+ Ri(w)Rs(w))(e+iw(l+7r))’

(148)

where r = lim,,_,0 ;5R1(w)R3(w). We see that rather than diverging like #(w), this function H(w) vanishes as w — 0.

We therefore numerically perform Fourier integral against H (w) and then add the singular component which can be
computed separately.

dw ; _ ~ dw e dw ; _ ~ 1
H — LT B — o wWT 14
(7) /27r€ Hw) + 27 € +iw(l + 1) /27re W)+ 1 (149)
where we used the fact that
1 .
T (W) — ——Pw ), e—0 (150)

e—|—iw(1+r):1—|—r 1+7r
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The Dirac mass is trivial to integrate over giving ﬁ Lastly, we must perform an integral of the type

i * dw e™T 1 - sin(wr) 1
1+r J_ 21 w m(1+7) Jo w 21+7)

Adding these two terms together, our transfer function has the form

1 *® dw ;. _ ~
H _ S iwT )
(r) 1+T+/_Oo2we H(w)

The last integral can be performed numerically, giving a more stable result.

N. Compute Optimal Scaling from Sum of Power-Laws

We suppose that the loss scales as (neglecting irrelevant prefactors)

L=tT"+ NN 4P "4 L

(151)

(152)

(153)

Our goal is to minimize the above expression subject to the constraint that compute C' = Nt is fixed. Since C'is fixed we

can reduce this to a one-dimensional optimization problem
mj\i{n [C’*“N” + NﬁTN}
The optimality condition Oy L = 0 is
rCTENTT NN =0
— N« CiFm = toc CTtm

From this last expression one can evaluate the loss at the optimum

TtTN

L.(C) o O 7vrn .
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