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Abstract

Adaptive sorting exploits the structure of a partially
sorted list—in particular, the sorted segments of a list
called runs—to improve its performance. Persistent ho-
mology, on the other hand, is a topological data anal-
ysis tool that captures a space’s topological features at
different scales. In this paper, we combine these two
seemingly unrelated concepts and introduce a new per-
spective on adaptive sorting. We introduce a new stable
sorting algorithm, referred to as the Persistence Sort (or
PersiSort in short), which utilizes the persistence pairs
among the local extrema of a list. Given a list of n ele-
ments containing r runs with run entropy H, we prove,
for the first time, that any adaptive sorting algorithm
that uses the two-way-merge subroutine (AdaptMerge)
of Carlsson et al. (1990) performs O (nH) = O (nlogr)
comparisons to merge precomputed runs based on its
predetermined merge policy, and is therefore worst-case
optimal. Using PersiSort, we then provide a new way
to analyze adaptive sorting with a persistence-based ar-
rangement of runs. Unlike previous work such as Power-
Sort and TimSort, PersiSort does not consider the num-
ber of elements in each run but the values of elements
in the sorting process. We finally discuss the scenar-
ios when PersiSort outperforms several state-of-the-art
adaptive sorting algorithms.

1 Introduction

A sorting algorithm has a basic goal: putting elements
from a list into some total order. Adaptive sorting
is an active area of research that exploits the struc-
ture of a partially sorted list to improve performance.
Specifically, it utilizes unique structures in the input
called the runs, which are segments of the list already in
sorted order. Examples of adaptive sorting algorithms
include Natural MergeSort [7], TimSort [26], Power-
Sort [24], and multiway PowerSort [14]. Among those,
the first three algorithms use the two-way merges of runs
(i.e., AdaptMerge) from Carlsson et al. [7] as subrou-
tines, whereas the multiway PowerSort employs k-way
merges of runs.

Persistent homology is a popular tool from topolog-
ical data analysis (TDA) that captures the topological
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features of a space at different scales. In its simplest

form, given a real-valued function f : R — R, persistent

homology computes the pairings among local extrema

(i.e., local maxima and local minima) of f. These per-

sistence pairs encode the topological features of f at

different scales.

In this paper, we combine two seemingly unrelated
concepts—adaptive sorting and persistence—and intro-
duce a new sorting algorithm, referred to as the Per-
sistence Sort (PersiSort in short, pronounced “Percy
sort”), that utilizes the persistence pairs among local
extrema of a list. Our contributions include:

e We provide, for the first time, a general worst-case
bound for a class of adaptive sorting algorithms.
We prove that any adaptive sorting algorithm that
uses AdaptMerge of Carlsson et al. [7] (i.e., two-way
merges of runs) performs O (nH (¢4, ...,¢,)) compar-
isons on a list of n elements containing r precomputed
runs each with ¢; elements, and is, therefore, worst-
case comparison optimal. Here, H({1,...,0.) =
— >, (¢;/n)log(¢;/n) is the entropy of the runs [2].

e Using PersiSort, we provide a new way to analyze
adaptive sorting by looking at the arrangement of
runs based on the topological notion of persistence.
Unlike previous work such as TimSort and PowerSort,
PersiSort does not consider the number of elements
but the values of elements in the sorting process.

e We demonstrate that PersiSort outperforms several
state-of-the-art adaptive sorting algorithms on data
distributions where runs have little overlap in their
ranges of values. Our experiments suggest ways to
improve PowerSort by using AdaptMerge as its merge
subroutine.

Finally, we provide an open-source implementation of

PersiSort on Github!.

2 Related Work

Adaptive sorting algorithms. Any sorting algorithm
requires worst-case 2(nlogn) comparisons to sort a list
of n elements. In particular, MergeSort [18] has a
O(nlogn) complexity for all inputs. An adaptive sort-
ing algorithm seeks to use the presortedness of the input
to make informed decisions about the merges performed.

The first adaptive sorting algorithm uses the number
of inversions Inv(X) in the input list X as a measure of
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presortedness. Inv(X) is the number of pairs of input el-
ements in the wrong order [13]. Given a list X with n el-
ements, Guibas et al. [16] gave the first adaptive sorting
Inv(X)

22 4 ),
using a finger-based balanced search tree. Other adap-
tive sorting algorithms include BlockSort [21], Split-
Sort [19], and Adaptive HeapSort [20].

The second type of adaptive sorting algorithm uses
runs (i.e., presorted subsequences, see Sec. 3.2) as a
measure of presortedness. Carlsson et al. [7] intro-
duced AdaptMerge, which uses exponential and binary
searches to merge two sorted lists. Given a list X with
n elements and r runs, Natural MergeSort [7] detects
runs and performs pairwise merges in a balanced way
using AdaptMerge, giving a ©(n + nlogr) complexity.
TimSort [26] puts detected runs on a stack and uses a
set of involved rules to decide what and when to merge.
TimSort was later shown to have worst-case O (nlogn)
complexity [1] w.r.t. comparison and merge cost. Pow-
erSort [24, 28] is similar to TimSort in the sense that
it makes a pass of the input from left to right, and for
each new run it detects, it either performs some merges
or delays the merges by keeping the runs on a stack. It
assigns each adjacent pair of runs a “power” score and
applies all delayed merges of higher power. PowerSort
has become the standard library sort for CPython since
2022.

Our novel PersiSort algorithm belongs to the second
type of adaptive sorting algorithms, where we study the
organization of runs in an input list using the notion
of persistence [11, 6]. Unlike other adaptive sorting al-
gorithms that focus on the number of elements in each
run, PersiSort takes advantage of the values of elements
in the sorting process and provides a new perspective
on adaptive sorting. Whereas TimSort and PowerSort
merge adjacent runs, PersiSort merges runs ordered by
persistence pairs.

algorithm with a complexity (nlog(

Persistent homology. Persistent homology is a tool
from TDA that captures topological features of data
across multiple scales. It has seen a wide range of ap-
plications in the study of networks, biological molecules,
natural images, time series, etc.; see [9, 23, 25] for in-
troductory texts and surveys. To the best of our knowl-
edge, this is the first time persistence has been utilized
in the study of sorting algorithms. The persistent ho-
mology of functions from R to R is studied in [15] and
the windows of [4, 8] are reminiscent but slightly differ-
ent from the persistence boxes we introduce in Sec. 3.3.

3 Technical Background

3.1 A Review on Persistent Homology

We review the notion of persistent homology in the most
straightforward 1-dimensional setting; see [9] for some

introductory texts and [10] for a formal treatment.

Let f : M — R be a smooth function defined on a
1-dimensional manifold M C R. A point x € M is a
critical point of f if and only if f/'(z) = 0; otherwise, it
is a regular point. There are two types of critical points,
local maxima and local minima, which are both extrema
points. The image of a critical point is a critical value
of f. A critical point x is non-degenerate if f"(x) # 0.
f is a Morse function if all its critical points are non-
degenerate and have distinct function values. Assume
f is a Morse function, the sublevel set of f is defined as
the pre-image M; := f~!((—o0,t]) = {x € M | f(x) <
t}. To compute the persistent homology, we study the
topological changes of M; as ¢ increases from —oo to co.
This could be considered as the common sweep line idea
from computational geometry.

Formally speaking, let m be the number of critical
values of f. Let ag < --- < a,, be a sequence of regular
values of f such that each interval (a;,a;y1) contains
exactly one critical value of f. A sublevel set filtration of
f is a sequence of sublevel sets connected by inclusions,

Mgy, = My, =+ =M, .

In our setting, 0-dimensional persistent homology stud-
ies the topological changes of sublevel sets by applying
0-dimensional homology to this sequence,

Ho(Mg,) = Ho(My,) = -+ = Ho(M,,,).

The 0-dimensional homology group of a topological
space X, denoted as Hy(X), captures the connected com-
ponents of X. As t increases, the number of connected
components in M; only changes when t passes a critical
value of f.
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Figure 1: Left: the graph of f : M — R, where each
point (z;, f(x;)) is labeled as x; for simplicity. Right:
the 0-dimensional barcode of f based on its sublevel set
filtration. Image modified from [29, Fig. 2].

We give an illustrative example in Fig. 1 adapted from
[29]. Let x; denote the critical points and ¢; := f(x;) the
critical values of f, ordered as ¢y < ¢1 < -+ < ¢g (for
readability, we set ¢; = i). Let ag < a3 < --- < a7 be
a sequence of regular values of f, where ¢; € (a;, aj+1).
As t varies from ag to a7, the 0-dimensional persistent
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homology encodes the evolution of connected compo-
nents in M;. As illustrated in Fig.1 (left), at ¢ = aq,
M, is empty. At t = ¢p, a single component appears in
M;; this is referred to as a birth event. At t = c¢q,co,
and c3, a 2nd, 3rd, and 4th component appears in M,
respectively. At ¢t = ¢4, the 4th component containing
x3 merges with the 3rd component containing xo. This
is referred to as a death event: the younger component
containing z3 disappears (dies) while the elder compo-
nent containing x5 remains. Similar death events occur
at t = c5 and cg, respectively. Persistent homology pairs
the birth and death events as a set of intervals, called
barcode, shown in Fig. 1 (right), which contains one in-
finite bar [cp,00) and three finite bars [c1, cg), [c2, ¢5),
and [c3,cq). Since f is assumed to be a Morse func-
tion, critical values of f are unique, and each finite bar
in the barcode corresponds to a unique persistence pair
between a local minimum and a local maximum of f,
that is, [x1, ), [v2, z5), and [z3, T4).

In practice, a smooth function f : R — R may be
made into a Morse function using simulation of sim-
plicity (SoS) [12]. It assumes arbitrarily small but not
vanishing perturbation to f so that critical points be-
come non-degenerate and have distinct function values
(i.e., breaking ties consistently).

3.2 Adaptive Sorting and Run Decomposition

Given a list of elements X, adaptive sorting takes ad-
vantage of existing runs in the list, which are contin-
uous segments already sorted [1]. However, there are
some discrepancies in the definitions of runs. Mannila
defined the runs as the ascending segments of X [22],
whereas Auger et al. [1] defined a run decomposition
as an iterative procedure that builds runs based on the
local monotonicity; see Fig. 2 for their differences. Fol-
lowing [1], we could either build a run decomposition
from left to right (R4 ), or from right to left (R_), and
include local extremum we encounter in the current run.
We can also consider assigning local extremum arbitrar-
ily to runs, which we avoid. We work with Ry in this
paper. We further assume that runs are organized in
alternating monotonic directions (for persistence, see
Sec. 3.1). For example, given X = [1,2,3,2,5,4,3,1],
we have Ry = [[1,2,3],[2,5], 4, 3,1]] (from left to right)
and R_ = [[1,2],[3,2],[5,4,3,1]] (from right to left).
Ry is interpreted to be Ry = [[1,2,3],]],[2,5], 4, 3,1]],
whereas the 1st and the 3rd runs are monotonically in-
creasing and the 2nd empty run and the 4th run are
monotonically decreasing;. However, such an interpre-
tation has no impact on the implementation.

We use the number of comparisons to measure a sort-
ing algorithm’s complexity. Specifically, let n be the
number of elements in an input list X and r the num-
ber of runs. The complexity of a sorting algorithm is
the number of element comparisons the algorithm per-

X =[12,10,7,5,7,10,14, 25,36, 3,5, 11, 14, 15, 21, 22,
20,15, 10,8,5,1]
R =[[12,10,7,5],[7, 10, 14, 25, 36],
3,5,11,14,15, 21, 22], 20, 15, 10,8, 5, 1]]
= [[12], [10], [7], [5,7, 10, 14, 25, 36],
[3,5,11,14, 15, 21, 22], [20], [15], [10], [8], [5], [1]]

Figure 2: We repeat the example list X from [22] and
provide two different run decompositions R and R’ of
the list X. R takes monotonic continuous segments fol-
lowing [1]. R’ consists of increasing continuous segments
in line with [22].

forms as a function of n and r. We have the following
known result due to [1, 22].

Lemma 1 (Adaptive Sorting Lower Bound) Any
adaptive sorting algorithm on an input of size n with
r runs has a worst-case comparison complexity of
Q(n+nlogr) [1, 22].

The discrepancy described in Fig. 2 can lead to an
asymptotic difference in the statement of the lower
bound in Lem. 1 as follows. A strictly decreasing se-
quence of length n would by [22] be decomposed into
r = n singleton increasing sequences, while [1] would
find the single decreasing sequence for » = 1 runs. For
this reason, we use the definition of [1].

An adaptive sorting algorithm may be described by
a two-step process. First, the algorithm detects all the
runs from an input sequence. Second, it merges the
runs in some order determined by a merge policy. There
are several adaptive sorting algorithms, such as Natural
MergeSort [7], TimSort [26], and PowerSort [24]; see
App. A for a detailed review on their merge policies.

3.3 Persistence Pairing Among the Extrema of Runs

The persistence pairing among local extrema of a Morse
function can be utilized to study relations among the
extremal elements of runs in a list, which is at the
core of PersiSort. Let X denote a list of n elements,
X =[zo,...,Zn_1], where x; ;= X[i] (for 0 < ¢ <n—1).
For simplicity, assume z; € R and each x; is unique us-
ing the simulation of simplicity (SoS) [12]. X gives rise
to a piecewise-linear (PL) function f : Ml — R, where lo-
cal extrema of f are precisely the extremal elements (ex-
trema) of runs. In other words, the graph of f linearly
interpolates among points (4, z;) (for 0 < ¢ < n — 1).
Applying sublevel set persistent homology to f gives
rise to a persistence pairing among extrema of runs.
Given a list X, a local mazimum x; at index i satisfies
Ti—1 < x; and z; > xi41. A local minimum x; satisfies
xi—1 > x; and z; < x;4+1. Depending on their neigh-
bors, z¢ and z,_; are boundary extrema (maximum or
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Figure 3: Left: three finite persistence pairs among the
extrema: [eq,e3), [e2,e5), and [eg, e1). Middle: a per-
sistence pair [eq, e3) with its corresponding persistence
box in orange. Right: the nesting of three persistence
boxes involving their corresponding persistence pairs.

minimum). Computing persistence pairs of f then gives
rise to persistence pairs among the extrema of runs. As
shown in Fig. 3 (left), given a list X that contains six
extrema (i.e., eg, 2, €4, eg are local minima, eq, e3, e5 are
local maxima), we obtain three finite persistence pairs:
[es, e3), [e2,e5), [es, €1); their corresponding bars in the
barcode are in orange, green, and purple, respectively.

A persistence pair naturally gives rise to a new con-
cept, a persistence box. It is a rectangular box around a
persistence pair that is stretched horizontally to include
the nearest projections of the local extrema of the pair
onto the neighboring runs. See Fig. 3 for an example.
Persistence boxes interact with one another, reflecting
the relations among runs in a list. A pair of persistence
boxes may be disjoint or nested, or they may intersect.
In particular, a pair of persistence boxes intersect if their
intersection is nonempty and not nested. We describe in
Lem. 2 that computing the persistence pairs of X takes
linear time.

Lemma 2 Given a list X of n elements with r runs,
the persistence pairs can be computed in n+ O (r) com-
parisons. If the list of extrema of X is given, then the
persistence pairs can be obtained in O (1) comparisons.

Proof. Given an element z; € X, determining whether
it is a local extremum relies on its two neighboring ele-
ments x;_1 and x;41. Therefore, the local extrema can
be computed in a single scan using n — 1 comparisons.

Assume X contains r runs and F stores the indices of
r 4+ 1 extrema in X. The algorithm to compute persis-
tence pairs proceeds iteratively. During each iteration,
it detects pairings among neighboring extrema (referred
to as neighboring persistence pairs) in E and removes
them from the list of extrema E. The algorithm ter-
minates when FE is empty or contains one unpaired ex-
tremum.

For simplicity, let e; := E[j] denote an element in the
current list of extrema. It has two neighboring extrema
ej—1 and e;11. Its pairing candidate is one of its neigh-
boring extrema that is closest in terms of its value. De-

termining the pairing candidate of e; requires a single
comparison between e;_; and e;j1i. Two neighboring
extrema are paired if they are each other’s pairing can-
didate. The pairing candidate of a boundary extremum
is always its neighboring extremum, thus requiring no
comparison (e.g., the pairing candidate of eq is always
e1 and the pairing candidate of e, is always e,_1).
Every extremum e; is removed once from F during
some iteration. When e; is removed, it triggers its
neighbor (not paired with e;) to update its pairing can-
didate. This takes O (1) operation. Therefore, process-
ing r+ 1 extrema requires O (r) comparisons. The com-
parison complexity is therefore n + O (r) . O

Observation 1 Intuitively persistence pairings are
computed via a sweep line going from —oo to co, but
sweep line algorithms require sorting the event points,
i.e. extremal values, implying that the comparison com-
plexity of a standard sweep line algorithm would be
Q(rlogr), excluding the n — 1 comparisons to find the
extremal values. As such, our approach from Lem. 2 is
a logr multiplicative factor improvement.

We give an illustrative example in Fig. 4. Here, at the
beginning of the 1st iteration shown in Fig. 4 (top left),
E contains 10 extrema of X, E = {ej,...,e190}. The
boundary minimum ey has a pairing candidate ey, de-
noted as ey — e1. The local maximum e; has a pairing
candidate e since es is closer to e; than ey, therefore
e1 — eg. Similarly, we have e; — €1, e3 — ey, €4 — €5,
es — e4, €g — €5, €7 — €g, €g —> €9, €9 — €g, and
e19 — eg. Since we have e; > eg, €4 <> €5, eg <> €g
we obtain three neighboring persistence pairs [es, eq),
[es, e5), and [es, eg), shown in orange, red, and purple,
respectively, see Fig. 4 (top left). Removing the ex-
trema involved in these pairs gives rise to an updated
list of extrema at the beginning of the 2nd iteration,
E = {eq, e3, e, €7, e10}. The pairing candidates of their
neighboring extrema are also updated. See Fig. 4 (top
middle).

For instance, as shown in Fig. 4 (top middle), when
extrema from the pair [eq, e5) are removed from E, we
update the pairing candidates of their neighbors e3 and
eg to obtain e3 — eg and eg — e3. During the 2nd
iteration, we obtain a new neighboring persistence pair
[es, €3) since e3 <> eg. During the 3rd and final iteration,
we obtain a final neighboring pair [e1¢, e7), shown in teal
in Fig. 4 (top right) . Each persistence pair is enclosed
by a colored persistence box, shown in Fig. 4 (bottom).

However, corner cases involving the boundary ex-
trema require some care. Based on the algorithm de-
scribed in Lem. 2, a boundary extremum may be in-
volved in a pair that is not a proper persistence pair.
As illustrated in Fig. 5, eg is a boundary maximum,
but the pair [es, eg) is not a proper persistence pair: eg
gives rise to a new component, which is not killed at
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Figure 4: An illustration of computing persistence pairs.

Top: a pink arrow from each e; points to its pairing

candidate during each iteration. Bottom: Persistence boxes surrounding persistence pairs were detected during each
iteration. From left to right: the 1st iteration returns pairs shown in orange, red, and purple, respectively; the 2nd
iteration returns a pair in green; and the 3rd and final iteration returns a pair in teal.

Figure 5: Adding a dummy run (dotted line) for a
boundary extremum.

eg. Such a pair can be made into a proper persistence
pair conceptually by adding a dummy run adjacent to
the boundary extremum that extends beyond the global
minimum. A boundary minimum can be handled sim-
ilarly by adding an adjacent dummy run that extends
beyond the global maximum.

In the case of duplicates, SoS is not actually imple-
mented in PersiSort due to its non-negligible overhead,
instead we employ simple rules to handle the pairings in
a way that remains consistent with persistence. Specif-
ically, in the case of equally valued pairing candidates,
the maximum would first consider the candidate with
the smaller index, and the minimum would first con-
sider the candidate with the larger index.

3.4 AdaptMerge and FingerMerge

The key idea behind PersiSort is performing a pair of
three-way merges—referred to as FingerMerge—around
persistence pairs. Carlsson, Levcopoulos, and Peters-
son [7] introduced a merging procedure that uses ex-
ponential and binary search [3] to achieve the optimal
number of comparisons when merging two sorted lists.

This is referred to as AdaptMerge in [7], it is also known
as galloping, which is employed by TimSort [1, 26].
FingerMerge employs AdaptMerge twice to perform a
three-way merging of three sorted lists. We review the
idea behind AdaptMerge for completeness. We slightly
modify in Fig. 6 an example from [7, Fig. 1]. The in-
put to a merging algorithm consists of two sorted lists, A
and B. The output is a sorted list C. Each entry in C'is
a consecutive subsequence of A or B, e.g., C[0] = A0, 4]
and C[1] = BJ0,0]. We obtain the merged sequence by
reporting the elements in these subsequences in the or-
der in which they appear in B.

1,2,3,4,5,7,8,11]
6,9,10,12,13,14]
1,2,3,4,5,6,7,8,9,10,11,12,13, 14]

=[A][0,4], B[0,0], A[5, 6], B[1, 2], A[7, 7], B[3, 5]]
Figure 6: An example of the input and output of a merg-
ing algorithm adapted from [7, Fig. 1]. We write A[i1, is)
to represent the elements of A at indices ¢; through is.

A=
B=|
C =

We now describe AdaptMerge applied to two sorted
list A and B; w.lo.g., we assume that ap := A[0] <
by := BJ[0]. Consider the example in Fig. 6. To compute
C, we find the positions in which A and B have to be
split, where portions of the other sequence should be
inserted. In other words, we compute the elements in A
and B that would receive new successors in the resulting
sequence. For example, number 5 from A receives a new
successor 6 from B in the resulting sequence C’; number
10 from B receives a new successor 11 from A in C,
and so on. The intuition behind AdaptMerge is that
if there are large consecutive portions in A and B in
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which all elements would keep their original successor
after merging [7], then these elements do not need to be
examined entirely during merging. AdapteMerge “uses
exponential and binary search to pass such portions as
fast as possible in our search for the next element that
would receive a new successor” [7].

3

14
Y
\12
11,

Figure 7: An illustration of AdaptMerge algorithm. The
deep red curve illustrates the exponential search (by
indices), whereas the teal curve illustrates the binary
search. Elements from both sorted lists are laid out in
increasing values, resembling a run.

Following [7], let {as,ai,...,a;,} be a set of el-
ements in A that will receive new successors. For
example, this set equals {5,8,11} in A. Similarly,
{bjo,bjy,- .., bj,} is a set of elements in B that will re-
ceive new successors; this would be {6,10} in B. If A
and B are two sorted sequences of length n and m, re-
spectively, we define Rank(b;, A) = maxz{¢ | 0 < ¢ <
n,b; > ag}, for 0 < j < m — 1. This means the maxi-
mum element in A is smaller than (thus closest to) b;.
Rank(b;, A) tells us where the split of A and the actual
merge from B has to start.

As illustrated in Fig. 7, for the example from Fig. 6,
AdaptMerge starts by computing ig = Rank(bg, A) = 4
by an exponential and binary search forward in A based
on element indices. Deep red curves illustrate the expo-
nential search, whereas teal curves illustrate the binary
search. The red dotted arrow illustrates the comput-
ing process ig, and Alig] is highlighted as a red point.
Then C[0] = A[0,i9] = A[0,4]. Second, we compute
jo = Rank(a;,+1,B) = 0 by an exponential and bi-
nary search forward in B. And we set C[1] = B[0, jo] =
B0, 0] (see the green dotted arrow and the green point).
Third, we compute i1 = Rank(bj,+1,4) = 6 by an ex-
ponential and binary search forward in X starting from
Alig + 1], and set C[2] = Alip + 1,i1] = A[5, 6] (see the
orange dotted arrow and the orange point). We continue
to perform exponential and binary searches, alternating
between A and B. We start the search from where the
last element is found to receive a new successor. When
one of the sequences is finished, the next empty entry

in C is set to the remaining portion of the nonempty se-
quence (e.g., B[3,5] is copied over). For completeness,
the pseudocode of AdaptMerge is included in App. B.
The following complexity of AdaptMerge is obtained
by studying the worst case lower bound on the num-
ber of comparisons performed by a merging algorithm
in Lem. 3 and Thm. 4 of [7].

Lemma 3 ([7]) Applying AdaptMerge to two sorted
lists of lengths n1 < no has a worst-case comparison

complexity O (n1 log (%1"2))

Observation 2 In particular, AdaptMerge of two
sorted lists where all elements of one list have smaller
values than all elements of the other performs O (logny)
comparisons (assuming ny < na ).

We define three-way FingerMerge(A,B,C) to be Adapt-
Merge(AdaptMerge(A,B),C); see App. B for pseu-
docode for both merge algorithms.

Recall that we study the complexity of a sorting algo-
rithm using the comparison cost, also used by the Natu-
ral MergeSort and its subroutine AdaptMerge [7]. Pow-
erSort [24] and multiway PowerSort [14], on the other
hand, are optimized with regards to the merge cost. To
merge two runs of lengths n; and ny, AdaptMerge has
a merge cost of O (n; 4+ ng) and a comparison cost of

@) <n1 log (%ﬁ”)) for n; < ny. These two costs are
equivalent in the worst case. We explore the Merge Tree

that encodes the merging order in Sec. 4.

4 New Result: Optimal Bound for Adaptive Sorting

Based on our discussion of AdaptMerge in Sec. 3.4, we
prove, for the first time, that any adaptive sorting al-
gorithm that uses AdaptMerge (i.e., two-way merges of
runs) as a subroutine is worst-case optimal. In partic-
ular, given a list of n elements containing r (precom-
puted) runs, such an algorithm has a worst-case com-
parison complexity of O (nlogr).

GCHONONONCNONONONONONONMONONO)

Figure 8: An exemplar Merge Tree of the list in Fig. 2.
AdaptMerge(R1, Ry) is represented by Ry € Ro.

To analyze the comparison complexity of a merge-
based sorting algorithm, we can view the intermediate
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steps as a tree, referred to as a Merge Tree of a sorting
algorithm?. In a Merge Tree, leaves represent (sublists
of) single elements, internal nodes represent intermedi-
ate sorted sublists, and the root represents the entire
sorted list. Given an input list X of n elements, the
classic MergeSort first divides X into n (sorted) sub-
lists of one element and then repeatedly merges sub-
lists to produce sorted ones until only one sublist re-
mains. Therefore, the classic MergeSort produces an
almost perfectly balanced Merge Tree. On the other
hand, any iterative merge-based sorting algorithm that
inserts elements into a sorted list one at a time can be
represented by a maximally unbalanced Merge Tree.

We extend the notion of a Merge Tree to adaptive
sorting by introducing the Adaptive Merge Tree, which
is a Merge Tree whose leaves represent nonempty sorted
lists (runs). In Fig. 8, we represent an Adaptive Merge
Tree (in red) as a subtree of a Merge Tree (in red and
black) for the example in Fig. 2. Not every Merge Tree
contains an Adaptive Merge Tree as a subtree. Here,
R1, Rs, Rs and Ry (in red) are the four runs from the run
decomposition R in Fig. 2. Each subtree rooted at R;
(in black) is a Merge Tree that shows how (an instance
of) a MergeSort would have constructed R; from the
input. Given an input list of n element with r runs, the
run decomposition requires n — 1 comparisons. Using
an Adaptive Merge Tree, we produce an upper bound
in Thm. 4. Assume that we have an input list of n
elements containing r precomputed runs, where an ith
run contains /¢; elements.

Theorem 4 Any adaptive sorting algorithm
that uses AdaptMerge as a subroutine performs
O nH(y,...,4,)) = Of(nlogr) comparisons to
merge precomputed runs based on its predeter-
mined merge policy. In the case when runs are
not precomputed, the comparison complexity s
n+OmH{,....0))=n+ O (nlogr).

Proof. We assume X to be a list of n elements contain-
ing r runs, and each run contains ¢; > 2 elements. We
assume the runs have been precomputed and the merge
policy has been predetermined, therefore we start with
an established Adaptive Merge Tree T. Using Adapt-
Merge as a subroutine, we report on the number of com-
parisons needed to merge the sublists from the leaves to
the root of T'.

Let f : T — Z be a function that assigns to each
node v € T the number of comparisons performed to
reach its corresponding sublist from its children. For
any leaf v, set f(v) = 0. The comparison complexity
of the algorithm is the number of comparisons needed
to arrive at the root o of T, that is, f(0). We prove
that f(o) < en(H(4y,...,¢,.)) by induction on the size

2This is an entirely different concept from the merge tree of a
scalar field commonly used in TDA; see [29] for a survey.

of the tree. Here, the constant ¢ > 0 comes from the O
notation of Lem. 3.

If we have a single run ¢1, H(¢1) = 0, which is trivial.
We thus start with an base case (BS) with two runs of
size 1 and {5, where ¢1 + {5 = n. This corresponds to
an Adaptive Merge Tree T that contains a root o with
two leaves that correspond to runs of lengths ¢; and
U5 respectively (w.l.o.g., assuming ¢; < f3). A single
AdaptMerge is applied to the two runs and according
to Lem. 3, the comparison cost is

F(0) < ¢t Tog (élj&)

1

< cfylog (612—&) + cls log (W)
1 2

0 0
— —cllog [ —2— ) — cty1
i Og(£1+eg> cra08 (élwg)
=Ccn (H(£1,£2))

For the induction hypothesis (IH), we assume the
bound holds for trees with » — 1 runs or less.

For the induction step, we need to show the bound
holds for trees with r runs. Let T be a given Adaptive
Merge Tree and o be its root. Let o, be the root of the
left subtree over nj elements whose leaves (runs) are
indexed by an index set I;,. Similarly, let og be the root
of the right subtree over ng list elements whose leaves
(runs) are indexed by an index set Ip. By construction,
np+ng=mn, [It|+|Ig|=7r, > fi=nrand ) {; =

i€l JjEIR
ng. Assume w.l.0.g. that ny < ng.

The comparison cost needed to reach the root o is
obtained from the comparison cost required to reach
its children oy and or plus the cost of merging their
corresponding sublists, according to Lem. 3. Since
|[In| < r —1 and |Ig| < r — 1, the IH holds for both
the left and right subtree.

To complete the induction we first look at the entropy
function H(hy,...,ht), denoted as H({h;}ics) for sim-
plicity (for all ¢ in the index set I). For h; > 0 and
m = Zle h;, we have,

k
mH (s, ..., hy) =3 hylog (2”)
i=1 i
k k
=log(m) Z h; — Z h;log(h;)
=1 =1
k
=mlog(m) — Zhi log(hs) (1)
=1

Returning to our induction and apply Eqn. 1 to the left
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and right subtrees,

f(o)

IN

f(or) + f(or) + eng log (

<enpH({{itier,) + enrH ({4} jerr)
nr, + nR)

nr, +—n43>

nr

N

+ceng, log<

+ cnglog(ng) — ¢ Z £ilog(¢;)

JjE€EIR
n
+ cny, log (n)
L

= cnpglog(ng) + cny, log(n) — CZ& log(¢;)
i=1
< cnglog(n) + cny log(n) — CZ ¢;log(¢;)
i=1

= cnlog(n) — CZ& log(¢;)
i=1
=cnH(ly,...,0,),

concluding the induction.

Finally, the right-hand side of the upper bound
O (nlog(r)) follows from the fact that H(¢y,...,%)
is maximized when ¢; = n/r, in which case

nH(n/r,...,n/r) =3 i_,n/rlogr =nlogr. O

5 New Result: Persistence Sort

We now introduce the novel PersiSort algorithm. The
key idea is performing a pair of three-way merges—
referred to as FingerMerge—around persistence pairs,
that is, merging the three consecutive runs that inter-
sect a persistence box (or two successive runs involv-
ing boundary extrema). On a high level, the algorithm
identifies persistence pairs with multiple iterations (de-
scribed in the proof of Lem. 2). It applies FingerMerge
to runs that intersect each persistence pair.

Given an input list X with n elements in 7 runs,
we first identify the set of extrema F from X. We
then compute the initial set of (neighboring) persistence
pairs. We repeat the following procedure until the list
is sorted, i.e., when there are at most two extrema in F.

1. For each persistence pair:

— Perform FingerMerge on the two or three runs
that intersect the pair.
x If the pair contains boundary extrema,
perform a two-way merge;
* Otherwise, perform a three-way merge;
— Remove the pair of extrema from the set of
extrema F.

2. Recompute the persistence pairs by updating the
pairing candidates (i.e., neighboring extrema that
are closest in terms of values).

Using Fig. 9 as an illustrative example (cf., Fig. 4),
we first identify the set of extrema E = {eg,...,e10}
and denote the ten runs as Ri,..., Rig. We compute
the initial set of neighboring persistence pairs, whose
persistence boxes are visualized as colored boxes in (a).
During the 1st iteration, we perform a three-way merge
(FingerMerge) of runs intersecting the box for each box.
For example, we would merge Ri, Rs, R3 that intersect
the orange box defined by the pair [e2,e1). We would
then merge Ry, R5, Rg that intersect the red box defined
by the pair [eq4, e5), followed by merging Rg, Rg, R1 that
intersect the purple box defined by the pair [es, eg). We
would remove the corresponding extrema from FE, re-
sulting in E = {ep, e3, €6, €7,e10}. We then recompute
the persistence pairs among FE, producing a single pair
[es, €3) whose green persistence box is visualized in (b).
During the 2nd iteration, we merge the three runs in-
tersecting the green box (b), remove the corresponding
extrema, and update E = {eq, e7, e19}. During the final
iteration, we merge the remaining two runs that inter-
sect the teal box (c), producing a sorted list visualized
in (d).

To analyze the comparison complexity of PersiSort,
we introduce the notion of dynamic box depth of an ele-
ment x € X, which is the number of persistence boxes it
belongs to across iterations, denoted as d(x). As shown
in Fig. 9 (cf., Fig. 4), an element x; € X belongs to
the orange box during the 1st iteration, and the teal
box in the 3rd iteration, therefore it has a box depth
d(z;) = 2. z; € X belongs to the orange box in the
1st iteration, the green box in the 2nd iteration, and
the teal box in the 3rd iteration, therefore, it has a box
depths d(z;) = 3. z € X belongs to the orange box in
the 1st iteration, then it dynamically “moves” into the
green box during the 2nd iteration (to somewhere close
to x;, not visualized here), and stays within the teal box
during the 3rd iteration, therefore d(xy) = 3. There-
fore, the dynamic box depth d(z) captures the number
of FingerMerge operations an element x will participate
in. We then need the following Lem. 5 and Lem. 6.

Lemma 5 FingerMerge implicitly computes the persis-
tence bozes.

Proof. We use Fig. 10 to illustrate the relation between
FingerMerge and persistence boxes. First, w.l.o.g., as-
sume [ept1,€p) is a persistence pair that does not in-
volve a boundary extremum. The pair intersects three
runs R,, Rp41, and Rpyo (with number of elements
Ly, lpi1,pta, respectively). Computing the persistence
box of such a pair is equivalent to finding the predeces-
sor of e, 11 in R, and the successor of e, in R, 2.
Using FingerMerge, we apply AdaptMerge to the runs
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Figure 9: A step-by-step illustration of the PersiSort algorithm.

R, and R,;;. This process involves finding the maxi-
mum element z in R, that is smaller than e, using
exponential and binary search (c.f., Fig. 7). x is the lo-
cation where R, needs to be split and the actual merge
from R,11 has to start. Identifying element x is illus-
trated by a red dotted arrow from e,1, and x is shown
as a red point. A key observation is that such a process
implicitly identifies the lower left corner of the persis-
tence box.

Assume z is located at index 4, in R,, then the ex-
ponential and binary search discovers z in O (logi,)
O (log¢,) comparisons. After merging R, with R,4;
into R’, FingerMerge merges R’ with R,4o. In fact, it
merges R’ starting from index i, + 1 in R’ (i.e., the in-
dex of epy1 in R'), since all elements in R, 1o are larger
than e,;1. When R’ is exhausted of elements, we have
found the successor of e, in R, 2. This is equivalent to
finding the upper right corner of the persistence box, as
desired. O

Figure 10: An illustration of the FingerMerge algo-
rithm. The deep red curve illustrates the exponential
search, whereas the teal curve illustrates the binary
search.

With the above Lemma, we are ready to present an
analysis of PersiSort that uses our new computational
model. As illustrated in Fig. 9, dynamic box depth is
insufficient for analyzing PersiSort since the algorithm
requires extra work to detect the boundaries of persis-
tence boxes using FingerMerge. For example, detect-
ing the boundary of the orange box along the run R,

requires log(#,), which is an overestimation based on
the exponential and binary search along R,. We know
from the Adaptive Merge Tree structure that there are
r runs represented by leaves, denoted as Ry, ... R,; and
r — 1 intermediate sorted sublists represented by inter-
nal nodes, denoted as R,1,...,Ror—1. Let {; = |R;|
for 1 <i<2r-—1.

Lemma 6 Using PersiSort on a list of n elements with
r runs, the number of comparisons performed is

2r—1

n+(’)<r—|— Zd(x)+ Z log&-).
i=1

zeX

Proof. First, recall in Lem. 2 that all persistence pairs
can be computed in n+ O (r) comparisons, where n — 1
comparisons are needed to first locate the runs.

Second, the dynamic box depth d(z) of an element
x € X captures the number of FingerMerge operations
an element x may participate in. However, £ may not
be compared during the FingerMerge process. The term
> wex d(x) is thus an overestimation of the contribution
of elements to the comparison complexity.

Finally, PersiSort by design performs a FingerMerge
on runs intersecting a persistence box during an itera-
tion. We know from Lem. 5 that an element outside a
persistence box will contribute logarithmically (in the
number of elements outside the box) to the compari-
son complexity. We can upper bound the number of
elements outside of the persistence boxes by the total
number of elements across the original and intermediate
runs, that is, Zf;;l log ¢;. This concludes the compar-
ison complexity analysis of PersiSort. O

Together with Thm. 4, Lem. 6 now provides an alter-
native comparison complexity analysis of PersiSort.

A desirable property of a sorting algorithms is to be
stable. Stability is defined as follows: if elements =z = v,
and x precedes y in the initial ordering, then this or-
dering is preserved after sorting. AdaptMerge is stable,
making FingerMerge and subsequently PersiSort stable
as well. Although PersiSort does not merge runs se-
quentially like PowerSort and TimSort, it always merge
adjacent runs, which is sufficient for a simple inductive
proof.
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6 Adaptive Sorting Implementations

We discuss implementation details on several popular
sorting algorithms: the sorting algorithm implemented
in Python (referred to as Python Sort), TimSort, and
PowerSort. We implement PersiSort and TimSort in-
house. Following [1, 28], we use the number of com-
parisons performed to quantify the complexity of these
sorting algorithms. We count the number of element
comparisons via a custom class for our in-house imple-
mentations.

TimSort. We use an in-house Python implementation
of TimSort based on the description of [1]. The orig-
inal TimSort uses galloping, a version of AdaptMerge,
discussed in Sec. 3.4.

TimSort is a sequential adaptive sorting algorithm

that maintains a stack of runs and applies AdaptMerge
to selected pairs of runs. Specifically, it merges the top
run and the 2nd run from the top or the 2nd and 3rd
runs from the top under a merge policy. It ensures that
the sizes of the runs on the stack form an exponentially
increasing sequence.
Python Sort. We compare against the sorting algorithm
used in Python version 3.11.2% at the time of writing.
This version of Python implements the PowerSort of
Munro and Wild [24].

PowerSort [24] is essentially based on TimSort but

with a different merge policy, see App. A. In Python
version 3.11.2, PowerSort is the standard library sort,
which makes it easy for us to get a comparison. On
the other hand, the implementation in Python is highly
optimized for time, unlike our in-house PersiSort and
TimSort implementations. To differentiate the Python
sorting algorithm from the PowerSort described below,
this algorithm is referred to as Python v3.11.2 in our
experiments.
PowerSort. Sebastian Wild provided an educational
implementation of PowerSort [27] that we used as Pow-
erSort in our experiments. This version is not as highly
optimized as the Python standard library version, but
we can control which merge subroutine is used. In the
original code provided by Wild, a classic O (ny + n2)
merge routine is used (for merging a pair of lists of
lengths ny and ngy respectively). For our experiments,
we replace it with AdaptMerge to more fairly compare
the merge policies of PersiSort and PowerSort.

7 Data Distributions

To empirically compare the adaptive sorting algorithms
described in Sec. 6, we introduce six data distributions
(also referred to as run configurations) that illustrate
different behaviors of the algorithms under scrutiny.

Shttps://www.wild-inter.net/posts/
powersort-in-python-3.11, accessed on December 2, 2023

The six data distributions include Staircase, Isolated
Points, Super Nesting, Uniformly Random, Ultra Nest-
ing, and TimSort Nemesis, presented left to right in
Fig. 11. A list sampled from a data distribution is vi-
sualized as a PL function: the x-axis represents the in-
dices of list elements, and the y-axis represents their
values; elements are visualized as blue points connected
by edges following the input order, where runs are eas-
ily visible as monotonic segments of the PL curve. We
also include one additional data distribution, Overlap-
ping Staircase, that is a variant of Staircase. The lists
sampled from these distributions differ by the amount
of overlap between runs in their range of values and,
subsequently, the dynamic box depths of elements in
the lists. We describe the intuition behind these data
distributions and the performance of PersiSort on them;
see Tab. 12 for an overview.

We sample 100 lists from each data distribution and
report the median number of comparisons. For lists
sampled from the Staircase, Isolated Points, and Super
Nesting distributions, we first vary the number of ele-
ments and then the number of runs; see Fig. 13. For
lists sampled from Uniformly Random, Ultra Nesting,
and TimSort Nemesis, we only vary the number of el-
ements as we cannot control the number of runs; see
Fig. 14.

When we vary the number of elements, we hard code
50 runs and let the number of elements range from 150
to 2950 in increments of 100 for a total of 29 data points.
Similarly, when we vary the number of runs, we hard
code 3000 elements and let the number of runs range
from 10 to 750 in steps of 25 for 30 total data points.

Observation 3 (Disjoint Values) AdaptMerge on
two sorted lists A, B of lengths n1 < ngy has a worst-case

comparison complexity of nilog (%1”2) by Lem. 3.
However, if the values in the runs are disjoint, w.l.o.g.,
assuming A[n; — 1] < B[0], then AdaptMerge would use
worst case O (logny) comparisons and simply prepends

A to B.

We use Obs. 3 to create data distributions where the
benefits of AdaptMerge over regular merge subroutines
are maximized.

Staircase. The Staircase distribution is designed such
that an element x in the list has a constant dynamic
box depth d(x). This is achieved by creating monotoni-
cally increasing runs of length three, and monotonically
decreasing runs of length n/(r/2) — 3 in an alternating
fashion, while ensuring that all elements of run 7 have
smaller values than those of run ¢ + 1. This ensures
that d(z) = 1 for all elements. When running PersiSort
on the staircase distribution, an accumulator run is cre-
ated, and the initial runs are merged into it one at a
time. This behavior is equivalent to a maximally un-
balanced Adaptive Merge Tree. By Obs. 3 and Lem. 6,
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Figure 11: Six types of data distributions. From left to right: Staircase, Isolated Points, Super Nesting, Uniformly
Random, Ultra Nesting, and TimSort Nemesis.

Distribution Disjoint Values | Box depth PersiSort
Staircase Yes 1 O (n + rlog(rn))
Isolated Points Initially O(r) O (n+nlogr)
Super Nesting No O (r) O (n+rlogn)
Ultra Nesting No O (n) O (nlogn)
Overlapping Staircase § Variable O (r) O (n+nlogr)
Uniformly Random § No O (n) O (nlogn)
TimSort Nemesis § No O (n) O (nlogn)

Figure 12: Overview of our data distributions and the
comparison complexity using PersiSort. n is the num-
ber of elements in a list with r runs. “Disjoint Values”
means that runs contain values that are disjoint. We
did not perform experiments by varying r with distri-
butions marked with a .

the comparison complexity of the merges can roughly
be described as

2r—1
o <Z log (7 - n/r)) = O (rlogn+rlogr)
i=1

for a total comparison complexity of O (n + rlog(rn)).
Isolated Points. We introduce the Isolated Points dis-
tribution to investigate the impact of the disjoint runs
on the performance. By partitioning a list of unique
integers into r continuous subsets of random sizes and
then uniformly shuffling them, we obtain elements in
a list of stochastic dynamic box depth. The purpose
of this is to show that, in general, the performance of
PersiSort is consistent with initially disjoint runs. It fol-
lows from basic probability theory that uniformly ran-
dom data has runs of expected constant length, which
means that » = ©(n) and PersiSort has a comparison
complexity of O (n+nH) = O (n+nlogr).

Super Nesting and Ultra Nesting. Super Nesting is
designed for most elements to have high dynamic box
depth while maintaining non-intersecting runs. A way
to envision the distribution is to have an “X” shape
and remove elements such that there are r pieces of
equal lengths, and the projection onto either axis is in-
jective. The lowest level persistence pair throughout the

execution of PersiSort is between the endpoints of the
innermost run/piece of the ”X” shape. At each level,
PersiSort performs O (logn) comparisons to append the
neighboring pieces for a total comparison complexity of
O (n+ rlogn). Ultra Nesting is the most extreme ver-
sion of Super Nesting, where each run has length two.
Overlapping Staircase. We are interested in explor-
ing how increasing the dynamic box depth d(z) affects
the performance of PersiSort. To do so, we generalize
the Staircase distribution to the Overlapping Staircase
distribution, where adjacent runs have increasing over-
lap in their ranges of values with a controlled parame-
ter. The overlap parameter s controls the length of the
short runs, and by “pulling down” the runs, we have the
same s values in three adjacent runs. This means that
the benefit of FingerMerge is neutralized. As s tends to
n/r, the data become a maximally entangled “zigzag”,
for instance, s = n/r = 3 produces data that look like
1,2,3,2,1,0,1,2,3,.... Here, PersiSort will produce an
accumulator and merge adjacent length three lists into
it. In this specific case that contains very few unique
values, it would be much more effective to count the oc-
currences of each value using Counting Sort or Bucket
Sort.

TimSort Nemesis. It is conjectured by [5, 24] that the
worst-case input for TimSort is the following recursive
sequence:

(n) if n <3;
R(n/2) = R(n/2—1) (1) if 2|n;
R(%51) =R (251 — 1) = (2) otherwise,

R(n) =

where :: denotes list concatenation, 2|n means n = 0
mod 2 and (k) is the list [0,1,2,...,k —1].

PersiSort faces the same difficulties with this distri-
bution as with maximally overlapping staircases, the
dynamic box depth of an element in the list is O (n),
which by Lem. 6 gives an O (nlogn) upper bound.
Uniformly Random. Following the footsteps of [5, 24],
we sample real numbers from the interval [0,1] uni-
formly randomly. This distribution has very short runs,
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Figure 13: Number of comparisons with Staircase,

in expectation, where the benefit of using an adaptive
sorting algorithm is negligible.

8 Experimental Results

We compare the number of comparisons of PersiSort
empirically against several adaptive sorting algorithms,
including TimSort [1], Python Sort (the PowerSort im-
plementation used in Python version 3.11.2, which does
not use AdaptMerge), and PowerSort [24, 27]. Notably,
our PowerSort implementation uses AdaptMerge as a
subroutine, while Python Sort does not. We use the
data distributions described in Sec. 7.
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Number of elements.
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Figure 14: Number of comparisons with Uniformly Ran-
dom, Ultra Nesting, and TimSort Nemesis distributions.

Highlighted results. As shown in Fig. 13, PersiSort out-
performs state-of-the-art adaptive sorting algorithms—
PowerSort, TimSort, and Python Sort—on the Staircase
data distributions, where runs have no overlap in their
ranges of values. This seems reasonable since the merge
policy of PersiSort considers the extrema values of the
runs. In contrast, TimSort and PowerSort consider the
number of elements in the runs when deciding which
runs to merge. Meanwhile, PersiSort performs compara-
bly with PowerSort and TimSort on Isolated Points and
(partially) on Super Nesting distributions (see Fig. 13).
However, it is also clear from Fig. 14 that PersiSort will
not replace PowerSort as the standard Python library
sorting algorithm. Nevertheless, PersiSort provides a
new perspective on adapting sorting based on TDA.

Additional results. We experiment further by increas-
ing the overlap between runs, creating a data distribu-

200 400 600
Number of runs

1000 2000 3000 0

Number of elements

0 200 400 600
Number of runs

Isolated Points, and Super Nesting distributions.
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140000

45000
120000
40000

100000

80000 35000

60000

30000

40000

250001 7
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Figure 15: Number of comparisons with the Overlap-
ping Staircase distribution. From left to right: a list
sampled from the distribution with a small amount of
overlap (before the elbow point); a list sampled from
the distribution with a large amount of overlap (after
the elbow point); the number of comparisons with in-
creasing number of runs on the x-axis; a zoomed-in view
of the red box from the comparison plot.

tion from the Overlapping Staircase, see Fig. 15. We
create a list of 20,000 elements in 300 runs and let the
overlap between runs vary from 1 through 60 on the x-
axis. As the amount of overlap increases, the advantage
of PersiSort degrades. We observe an elbow point at
r = 40 because the dynamic box depth increases dras-
tically from 3 (r = 40) to 11 (r = 60), increasing the
comparison complexity dramatically.

9 Discussion

PersiSort is well-suited for parallelism, which is left for
future work. Introducing parallelism will, however, have
no impact on the number of comparisons performed.
In cases where the data points have high dynamic box
depths, the theoretical performance of AdaptMerge is
comparable to that of simpler merge algorithms, which
suggests that a highly optimized implementation of
AdaptMerge can have practical merit.

We observe in many cases that Python Sort (CPython
standard library implementation of PowerSort v 3.11.2)
performs equal or worse than our in-house implementa-
tion of PowerSort. Our experimental results thus hint
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at the possibility of using AdaptMerge as a merge sub-
routine for Python Sort.

Finally, it is vital for PersiSort that its merge subrou-
tine is AdaptMerge. If a simple linear merge subroutine
is used, the comparison complexity becomes O (n?),
which is also the worst-case number of element moves
performed by PersiSort. It would be interesting to inves-
tigate the comparison complexity of PersiSort if Adapt-
Merge is replaced by other types of merge subroutines

(e.g., [17]).
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A Merge Policies of Adaptive Sorting Algorithms

An adaptive sorting algorithm was described by Wild [28]
as a two-step procedure. First, the algorithm detects all the
runs. Second, it merges the runs in some order determined
by a merge policy. The order in which the runs are merged
defines a binary tree, referred to as a Merge Tree, where
leaves represent runs, internal nodes represent intermediate
sorted sublists, and the root represents the entire sorted list.

For comparative analysis, we review merge policies of a
number of adaptive sorting algorithms. We assume the input
is a list with n elements in r runs.

Natural MergeSort [7] has a simple merge policy indepen-
dent of the runs’ values and sizes. Simply put, it builds a
(balanced) Merge Tree by merging adjacent runs in the tree.
We omit Natural MergeSort from our experiments because
it behaves similarly to TimSort.

TimSort [1, 26] determines its merge policy by maintaining
a stack of runs. Runs are added to the stack based on the
order in which they are discovered. Merging runs from the
stack is based on the four rules described below. When the
last run is added to the stack, the algorithm collapses the
stack by merging runs from top to bottom. The main idea
behind these merge triggering rules is that they “balance the
run lengths as closely as possible, while keeping a low bound
on the number of runs we have to remember” [26].

At any time, let h denote the height of the stack R. Let
Ri (1 < k < h) be the k-th run from the top of the stack,
and let ¢ := |Ry| be the number of elements in Rj. Tim-
Sort’s merge policy is as follows (based on Algorithm 3 of
[1]). Initially, we perform a run decomposition of an input
list and set the stack to be empty. At each step of the itera-
tion (until all runs are handled), we remove a run from the
run decomposition and push it to the stack. We follow the
following four rules to trigger merges:

e If h > 3 and ¢; > ¢35 then merge runs R2 and Rs;

e else if h > 2 and ¢1 > {2 then merge runs R; and Ra;

e else if h > 3 and ¢; + ¢2 > {3 then merge runs R, and Ra.
e clse if h > 4 and {3 + {3 > ¢4 then merge runs R, and Ra.
The analysis of TimSort was proved to be difficult. Auger
et al. [1] showed that the runs on the stack are of exponen-
tially increasing size, and TimSort performs O (n 4 nlogr)
comparisons.

PowerSort was introduced by Munro and Wild [24] and is
currently used in Python version 3.11.2. It follows the se-
quential left-to-right nature of TimSort with some changes
in the merge policy. Let R; and R be two adjacent runs
of lengths ¢1 and /2 respectively. They start at list indices
i1 and iy respectively, that is, Ry = X[i1,41 + ¢ — 1] and
Ro = X[i2,i2 + €2 — 1]. The power of the boundary between

Ry and R is defined as
p(R1, Ro) = max{l € N:|2° - (i1 + £1/2) /n]
= 2% (2 + £2/2)/n]}

Similarly to TimSort, PowerSort scans the runs. Assuming
there is a run stack Ro, Ri,..., and we have discovered a
new run R. The algorithm compares the power between R
and runs in the stack. If p(Ro, R) < p(Ro, R1), then Rg is
popped from the stack and merged with R, resulting in R’.
Moving forward, if p(Ro, R) < p(R1, R2) then R; is popped
and merged into R” and so on. Like TimSort, when there
are no more runs to process, the stack is collapsed into a
single sorted list by merging runs from top to bottom. The
comparison complexity of PowerSort [24] is O (n + nlogr).

B Pseudocode

We provide pseudocode for AdaptMerge, FingerMerge, and
PersiSort. The pseudocode of AdaptMerge is included in
Fig. 16. By convention, A[3,2] is an empty list, and A[3, 3]
is a single element list. Under these conventions, exponential
search for, say, 5 in the list B = [7,8,9] returns index —1
such that no elements of B are added to the output C. In
the next iteration, the algorithm searches for the predecessor
of 7 in, say, A = [5,6,10], which will find the predecessor 6
at index 1 and extend C by A[0,1] = [5,6]. Furthermore,
if the exponential part of the exponential search overshoots
the end of a list, then it should “round down” to the end of
the list and continue to the binary search phase.

1 AdaptMerge(A, B):

2 C = empty list of length ng,+n

3 ip=Jjo=0

4 while not (ig==mne—1 or jo==mnp—1):

5 i1 = ExponentialSearch (B[jo], Alig, na — 1])
6 C.extend (Alig,41])

7 o =11

8 j1 = ExponentialSearch (Alio], Bljo,n» — 1])
9 C. extend (Bljo, j1])

10 Jo =71

11 C.extend (Alig,ng])

12 C. extend (B[jo,n])

13 return C

Figure 16: Pseudocode for the AdaptMerge algorithm
of Carlsson et al. [7].

The three-way FingerMerge calls AdaptMerge twice, as
shown in Fig. 17. The algorithm also needs to ensure that
the monotonicity of A, B, C, and AB is the same, which
can easily be solved with start and end pointers to the lists.
This, however, makes FingerMerge ill-suited for algorithms
where reverses are costly.

1 FingerMerge(A, B, C):
2 AB = AdaptMerge (A, B)
3 return AdaptMerge(AB,C)

Figure 17: Pseudocode for the FingerMerge algorithm.

The pseudocode of PersiSort is shown in Fig. 18. Given
an input list X with n elements in r runs, we denote the
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sequence of runs as Ro, Ri,..., R-—1. We first identify the
set of extrema E from X (line 2). We then compute the
initial set of (neighboring) persistence pairs (line 3). We
repeat the following procedure until the list is sorted, i.e.,
when there are at most two extrema in E (line 4).
1. For each persistence pair (line 5):
— Perform FingerMerge on the two or three runs
intersecting the pair (lines 6-11).
x If the pair contains boundary extrema, per-
form a two-way merge (lines 6-9);
* Otherwise, perform a 3-way merge (line 11);
— Remove the pair of extrema from the set of ex-
trema E (line 12).
2. Recompute the persistence pairs by updating the pair-
ing candidates (line 13).

1 PersistenceSort (X)

2 E = DetectExtrema(X)

3 PersistencePairs = ComputePairs(E)

4 while |E|>2:

5 for pair in PersistencePairs:

6 if eg in pair:

7 AdaptMerge (Ro ,R1)

8 elif e,_; in pair:

9 AdaptMerge (R_2,R_1)

10 else:

11 FingerMerge (Rpair—1 s Rpair » Rpair+1)
12 E.remove(pair)

13 PersistencePairs = RecomputePairs(E,X)

Figure 18: The pseudocode for the PersiSort algorithm.
R_1 means the last run, and R_5 is the second to last
run. Rpq is the run in the current configuration that
contains the persistence pair, and Rpq;r+1 indicate the
runs before and after the current run, respectively.
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