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ABSTRACT

This work proposes a minimal computational model for learning structured mem-
ories of multiple object classes in an incremental setting. Our approach is based
on establishing a closed-loop transcription between the classes and a correspond-
ing set of subspaces, known as a linear discriminative representation, in a low-
dimensional feature space. Our method is simpler than existing approaches for
incremental learning, and more efficient in terms of model size, storage, and com-
putation: it requires only a single, fixed-capacity autoencoding network with a
feature space that is used for both discriminative and generative purposes. Network
parameters are optimized simultaneously without architectural manipulations, by
solving a constrained minimax game between the encoding and decoding maps
over a single rate reduction-based objective. Experimental results show that our
method can effectively alleviate catastrophic forgetting, achieving significantly
better performance than prior work of generative replay on MNIST, CIFAR-10,
and ImageNet-50, despite requiring fewer resources. Source code can be found at
https://github.com/tsb0601/i-CTRL.

1 INTRODUCTION

Artificial neural networks have demonstrated a great ability to learn representations for hundreds or
even thousands of classes of objects, in both discriminative and generative contexts. However, net-
works typically must be trained offline, with uniformly sampled data from all classes simultaneously.
When the same network is updated to learn new classes without data from the old ones, previously
learned knowledge will fall victim to the problem of catastrophic forgetting (McCloskey & Cohen,
1989). This is known in neuroscience as the stability-plasticity dilemma: the challenge of ensuring
that a neural system can learn from a new environment while retaining essential knowledge from
previous ones (Grossberg, 1987).

In contrast, natural neural systems (e.g. animal brains) do not seem to suffer from such catastrophic
forgetting at all. They are capable of developing new memory of new objects while retaining
memory of previously learned objects. This ability, for either natural or artificial neural systems,
is often referred to as incremental learning, continual learning, sequential learning, or life-long
learning (Allred & Roy, 2020).

While many recent works have highlighted how incremental learning might enable artificial neural
systems that are trained in more flexible ways, the strongest existing efforts toward answering the
stability-plasticity dilemma for artificial neural networks typically require raw exemplars (Rebuffi
et al., 2017; Chaudhry et al., 2019b) or require external task information (Kirkpatrick et al., 2017).
Raw exemplars, particularly in the case of high-dimensional inputs like images, are costly and difficult
to scale, while external mechanisms — which, as surveyed in Section 2, include secondary networks
and representation spaces for generative replay, incremental allocation of network resources, network
duplication, or explicit isolation of used and unused parts of the network — require heuristics and
incur hidden costs.

In this work, we are interested in an incremental learning setting that counters these trends with two
key qualities. (1) The first is that it is memory-based. When learning new classes, no raw exemplars of
old classes are available to train the network together with new data. This implies that one has to rely
on a compact and thus structured “memory” of old classes, such as incrementally learned generative
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Figure 1: Overall framework of our closed-loop transcription based incremental learning for a
structured LDR memory. Only a single, entirely self-contained, encoding-decoding network is
needed: for a new data class Xnew, a new LDR memory Znew is incrementally learned as a minimax
game between the encoder and decoder subject to the constraint that old memory of past classes Zold

is intact through the closed-loop transcription (or replay): Zold ≈ Ẑold = f(g(Zold)).

representations of the old classes, as well as the associated encoding and decoding mappings (Kemker
& Kanan, 2018). (2) The second is that it is self-contained. Incremental learning takes place in a
single neural system with a fixed capacity, and in a common representation space. The ability to
minimize forgetting is implied by optimizing an overall learning objective, without external networks,
architectural modifications, or resource allocation mechanisms.

Concretely, the contributions of our work are as follows:

(1) We demonstrate how the closed-loop transcription (CTRL) framework (Dai et al., 2022; 2023) can
be adapted for memory-based, self-contained mitigation of catastrophic forgetting (Figure 1). To the
best of our knowledge, these qualities have not yet been demonstrated by existing methods. Closed-
loop transcription aims to learn linear discriminative representations (LDRs) via a rate reduction-
based (Yu et al., 2020; Ma et al., 2007; Ding et al., 2023) minimax game: our method, which we
call incremental closed-loop transcription (i-CTRL), shows how these principled representations and
objectives can uniquely facilitate incremental learning of stable and structured class memories. This
requires only a fixed-sized neural system and a common learning objective, which transforms the
standard CTRL minimax game into a constrained one, where the goal is to optimize a rate reduction
objective for each new class while keeping the memory of old classes intact.

(2) We quantitatively evaluate i-CTRL on class-incremental learning for a range of datasets:
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), and ImageNet-50 (Deng et al.,
2009). Despite requiring fewer resources (smaller network and nearly no extra memory buffer),
i-CTRL outperforms comparable alternatives: it achieves a 5.8% improvement in average classifica-
tion accuracy over the previous state of the art on CIFAR-10, and a 10.6% improvement in average
accuracy on ImageNet-50.

(3) We qualitatively verify the structure and generative abilities of learned representations. Notably,
the self-contained i-CTRL system’s common representation is used for both classification and
generation, which eliminates the redundancy of external generative replay representations used by
prior work.

(4) We demonstrate a “class-unsupervised” incremental reviewing process for i-CTRL. As an in-
cremental neural system learns more classes, the memory of previously learned classes inevitably
degrades: by seeing a class only once, we can only expect to form a temporary memory. Facilitated
by the structure of our linear discriminative representations, the incremental reviewing process shows
that the standard i-CTRL objective function can reverse forgetting in a trained i-CTRL system using
samples from previously seen classes even if they are unlabeled. The resulting semi-supervised
process improves generative quality and raises the accuracy of i-CTRL from 59.9% to 65.8% on
CIFAR-10, achieving jointly-optimal performance despite only incrementally provided class labels.
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2 RELATED WORK

A significant body of work has studied methods for addressing forms of the incremental learning prob-
lem. In this section, we discuss a selection of representative approaches, and highlight relationships
to i-CTRL.

In terms of how new data classes are provided and tested, incremental learning methods in the
literature can be roughly divided into two groups. The first group addresses task incremental learning
(task-IL), where a model is sequentially trained on multiple tasks where each task may contain
multiple classes to learn. At test time, the system is asked to classify data seen so far, provided with
a task identifier indicating which task the test data is drawn from. The second group, which many
recent methods fall under, tackles class-incremental learning (class-IL). Class-IL is similar to task-IL
but does not require a task identitifier at inference. Class-IL is therefore more challenging, and is the
setting considered by this work.

In terms of what information incremental learning relies on, existing methods mainly fall into the
following categories.

Regularization-based methods introduce penalty terms designed to mitigate forgetting of previously
trained tasks. For instance, Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and
Synaptic Intelligence (SI) (Zenke et al., 2017) limit changes of model parameters deemed to be
important for previous tasks by imposing a surrogate loss. Alternatively, Learning without Forgetting
(LwF) (Li & Hoiem, 2017) utilizes a knowledge distillation loss to prevent large drifts of the model
weights during training on the current task. Although these methods, which all apply regularization
on network parameters, have demonstrated competitive performance on task-IL scenarios, our
evaluations (Table 1) show that their performance does not transfer to the more challenging class-IL
settings.

Architecture-based methods explicitly alter the network architecture to incorporate new classes of
data. Methods such as Dynamically Expandable Networks (DEN) (Yoon et al., 2017), Progressive
Neural Networks (PNN) (Rusu et al., 2016), Dynamically Expandable Representation (DER) (Yan
et al., 2021) and ReduNet (Wu et al., 2021) add new neural modules to the existing network when
required to learn a new task. Since these methods are not dealing with a self-contained network
with a fixed capacity, one disadvantage of these methods is therefore their memory footprint: their
model size often grows linearly with the number of tasks or classes. Most architecture-based methods
target the less challenging task-IL problems and are not suited for class-IL settings. In contrast, our
work addresses the class-IL setting with only a simple, off-the-shelf network (see Appendix B for
details). Note that the method Redunet also uses rate-reduction inspired objective function to conduct
class incremental learning. Our method is different from the method that (i) our method does not
require dynamic expansion of the network (ii) Our method aims to learn a continuous encoder and
decoder.(iii) Empirically, our method has shown better performance and scalability.

Exemplar-based methods combat forgetting by explicitly retaining data from previously learned
tasks. Most early memory-based methods, such as iCaRL (Rebuffi et al., 2017) and ER (Chaudhry
et al., 2019a), store a subset of raw data samples from each learned class, which is used along with the
new classes to jointly update the model. A-GEM (Chaudhry et al., 2018) also relies on storing such an
exemplar set: rather than directly training with new data, A-GEM calculates a reference gradient from
the stored data and projects the gradient from the new task onto these reference directions in hope of
maintaining performance on old tasks. While these methods have demonstrated promising results,
storing raw data of learned classes is unnatural from a neuroscientific perspective(Robins, 1995) and
resource-intensive, particularly for higher-dimensional inputs. A fair comparison is thus not possible:
the structured memory used by i-CTRL is highly compact in comparison, but as demonstrated in
Section 4 still outperforms several exemplar-based methods.

Generative memory-based methods use generative models such as GANs or autoencoders for
replaying data for old tasks or classes, rather than storing raw samples and exemplars. Methods such
as Deep Generative Replay (DGR) (Shin et al., 2017), Memory Replay Gans (MeRGAN) (Wu et al.,
2018), and Dynamic Generative Memory (DGM) (Ostapenko et al., 2019) propose to train a GAN on
previously seen classes and use synthesized data to alleviate forgetting when training on new tasks.
Methods like DAE (Zhou et al., 2012) learn with add and merge feature strategy. To further improve
memory efficiency, methods such as FearNet (Kemker & Kanan, 2018) and EEC (Ayub & Wagner,
2020) store intermediate features of old classes and use these more compact representations for
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generative replay. Existing generative memory-based approaches have performed competitively on
class-IL without storing raw data samples, but require separate networks and feature representations
for generative and discriminative purposes. Our comparisons are primarily focused on this line of
work, as our approach also uses a generative memory for incremental learning. Uniquely, however,
we do so with only a single closed-loop encoding-decoding network and store a minimum amount of
information – a mean and covariance – for each class. This closed-loop generative model is more
stable to train (Dai et al., 2022; Tong et al., 2022), and improves resource efficiency by obviating the
need to train separate generative and discriminative representations.

3 METHOD

3.1 LINEAR DISCRIMINATIVE REPRESENTATION AS MEMORY

Consider the task of learning to memorize k classes of objects from images. Without loss of
generality, we may assume that images of each class belong to a low-dimensional submanifold in
the space of images RD, denoted as Mj , for j = 1, . . . , k. Typically, we are given n samples
X = [x1, . . . ,xn] ⊂ RD×n that are partitioned into k subsets X = ∪k

j=1Xj , with each subset Xj

sampled from Mj , j = 1, . . . , k. The goal here is to learn a compact representation, or a “memory”,
of these k classes from these samples, which can be used for both discriminative (e.g. classification)
and generative purposes (e.g. sampling and replay).

Autoencoding. We model such a memory with an autoencoding tuple {f, g, z} that consists of an
encoder f(·, θ) parameterized by θ, that maps the data x ∈ RD continuously to a compact feature z
in a much lower-dimensional space Rd, and a decoder g(·, η) parameterized by η, that maps a feature
z back to the original data space RD:

f(·, θ) : x 7→ z ∈ Rd; g(·, η) : z 7→ x̂ ∈ RD. (1)
For the set of samples X , we let Z = f(X, θ)

.
= [z1, . . . , zn] ⊂ Rd×n with zi = f(xi, θ) ∈ Rd be

the set of corresponding features. Similarly let X̂ .
= g(Z, η) be the decoded data from the features.

The autoencoding tuple can be illustrated by the following diagram:
X

f(x,θ)−−−−−−→ Z
g(z,η)−−−−−−→ X̂. (2)

We refer to such a learned tuple: {f(·, θ), g(·, η),Z} as a compact “memory” for the given dataset
X .

Structured LDR autoencoding. For such a memory to be convenient to use for subsequent tasks,
including incremental learning, we would like a representation Z that has well-understood structures
and properties. Recently, Chan et al. (Chan et al., 2021) proposed that for both discriminative and
generative purposes, Z should be a linear discriminative representation (LDR). More precisely, let
Zj = f(Xj , θ), j = 1, . . . , k be the set of features associated with each of the k classes. Then each
Zj should lie on a low-dimensional linear subspace Sj in Rd which is highly incoherent (ideally
orthogonal) to others Si for i ̸= j. Notice that the linear subspace structure enables both interpolation
and extrapolation, and incoherence between subspaces makes the features discriminative for different
classes. As we will see, these structures are also easy to preserve when incrementally learning new
classes.

3.2 LEARNING LDR VIA CLOSED-LOOP TRANSCRIPTION

As shown in (Yu et al., 2020), the incoherence of learned LDR features Z = f(X, θ) can be promoted
by maximizing a coding rate reduction objective, known as the MCR2 principle:

max
θ

∆R(Z) = ∆R(Z1, . . . ,Zk)
.
=

1

2
log det

(
I + αZZ∗)︸ ︷︷ ︸

R(Z)

−
k∑

j=1

γj
1

2
log det

(
I + αjZjZ

∗
j

)
︸ ︷︷ ︸

R(Zj)

,

where, for a prescribed quantization error ϵ, α = d
nϵ2 , αj =

d
|Zj |ϵ2 , γj =

|Zj |
n .

As noted in (Yu et al., 2020), maximizing the rate reduction promotes learned features that span the
entire feature space. It is therefore not suitable to naively apply for the case of incremental learning, as
the number of classes increases within a fixed feature space.1 The closed-loop transcription (CTRL)

1As the number of classes is initially small in the incremental setting, if the dimension of the feature space d
is high, maximizing the rate reduction may over-estimate the dimension of each class.
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framework introduced by (Dai et al., 2022) suggests resolving this challenge by learning the encoder
f(·, θ) and decoder g(·, η) together as a minimax game: while the encoder tries to maximize the
rate reduction objective, the decoder should minimize it instead. That is, the decoder g minimizes
resources (measured by the coding rate) needed for the replayed data for each class X̂j = g(Zj , η),
decoded from the learned features Zj = f(Xj , θ), to emulate the original data Xj well enough.
As it is typically difficult to directly measure the similarity between Xj and X̂j , (Dai et al., 2022)
proposes measuring this similarity with the rate reduction of their corresponding features Zj and
Ẑj = f(X̂j(θ, η), θ)(∪ here represents concatenation):

∆R
(
Zj , Ẑj

) .
= R

(
Zj ∪ Ẑj

)
− 1

2

(
R
(
Zj) +R

(
Ẑj)

)
. (3)

The resulting ∆R gives a principled “distance” between subspace-like Gaussian ensembles, with the
property that ∆R

(
Zj , Ẑj

)
= 0 iff Cov(Zj) = Cov(Ẑj) (Ma et al., 2007).

min
θ

max
η

∆R
(
Z
)
+∆R

(
Ẑ
)
+

k∑
j=1

∆R
(
Zj , Ẑj

)
, (4)

one can learn a good LDR Z when optimized jointly for all k classes. The learned representation Z
has clear incoherent linear subspace structures in the feature space which makes them very convenient
to use for subsequent tasks (both discriminative and generative).

3.3 INCREMENTAL LEARNING WITH AN LDR MEMORY

The incoherent linear structures for features of different classes closely resemble how objects are
encoded in different areas of the inferotemporal cortex of animal brains (Chang & Tsao, 2017;
Bao et al., 2020). The closed-loop transcription X → Z → X̂ → Ẑ also resembles popularly
hypothesized mechanisms for memory formation (Ven et al., 2020; Josselyn & Tonegawa, 2020).
This leads to a question: since memory in the brains is formed in an incremental fashion, can the
above closed-loop transcription framework also support incremental learning?

LDR memory sampling and replay. The simple linear structures of LDR make it uniquely suited
for incremental learning: the distribution of features Zj of each previously learned class can be
explicitly and concisely represented by a principal subspace Sj in the feature space. To preserve
the memory of an old class j, we only need to preserve the subspace while learning new classes.
To this end, we simply sample m representative prototype features on the subspace along its top r
principal components, and denote these features as Zj,old. Because of the simple linear structures
of LDR, we can sample from Zj,old by calculating the mean and covariance of Zj,old after learning
class j. The storage required is extremely small, since we only need to store means and covariances,
which are sampled from as needed. Suppose a total of t old classes have been learned so far. If
prototype features, denoted Zold

.
= [Z1

old, . . . ,Z
t
old], for all of these classes can be preserved when

learning new classes, the subspaces {Sj}tj=1 representing past memory will be preserved as well.
Details about sampling and calculating mean and convariance can be found in the Appendix 1 and
Appendix 2

Incremental learning LDR with an old-memory constraint. Notice that, with the learned auto-
encoding (2), one can replay and use the images, say X̂old = g(Zold, η), associated with the memory
features to avoid forgetting while learning new classes. This is typically how generative models
have been used for prior incremental learning methods. However, with the closed-loop framework,
explicitly replaying images from the features is not necessary. Past memory can be effectively
preserved through optimization exclusively on the features themselves.

Consider the task of incrementally learning a new class of objects.2 We denote a corresponding new
sample set as Xnew. The features of Xnew are denoted as Znew(θ) = f(Xnew, θ). We concatenate
them together with the prototype features of the old classes Zold and form Z = [Znew(θ),Zold].
We denote the replayed images from all features as X̂ = [X̂new(θ, η), X̂old(η)] although we do not
actually need to compute or use them explicitly. We only need features of replayed images, denoted
Ẑ = f(X̂, θ) = [Ẑnew(θ, η), Ẑold(θ, η)].

2In Appendix A, we consider the more general setting where the task contains a small batch of new classes,
and present algorthmic details in that general setting.
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Mirroring the motivation for the multi-class CTRL objective (4), we would like the features of the
new class Znew to be incoherent to all of the old ones Zold. As Znew is the only new class whose
features needs to be learned, the objective (4) reduces to the case where k = 1:

min
η

max
θ

∆R(Z) + ∆R(Ẑ) + ∆R(Znew, Ẑnew). (5)

However, when we update the network parameters (θ, η) to optimize the features for the new class,
the updated mappings f and g will change features of the old classes too. Hence, to minimize the
distortion of the old class representations, we can try to enforce Cov(Zj,old) = Cov(Ẑj,old). In other
words, while learning new classes, we enforce the memory of old classes remain “self-consistent”
through the transcription loop:

Zold
g(z,η)−−−−−−→ X̂old

f(x,θ)−−−−−−→ Ẑold. (6)

Mathematically, this is equivalent to setting ∆R(Zold, Ẑold)
.
=

∑t
j=1 ∆R(Zj,old, Ẑj,old) = 0.

Hence, the above minimax program (5) is revised as a constrained minimax game, which we refer
to as incremental closed-loop transcription (i-CTRL). The objective of this game is identical to the
standard multi-class CTRL objective (4), but includes just one additional constraint:

min
η

max
θ

∆R(Z) + ∆R(Ẑ) + ∆R(Znew, Ẑnew)

subject to ∆R(Zold, Ẑold) = 0. (7)

In practice, the constrained minimax program can be solved by alternating minimization and maxi-
mization between the encoder f(·, θ) and decoder g(·, η) as follows:

max
θ

∆R(Z) + ∆R(Ẑ) + λ ·∆R(Znew, Ẑnew)− γ ·∆R(Zold, Ẑold), (8)

min
η

∆R(Z) + ∆R(Ẑ) + λ ·∆R(Znew, Ẑnew) + γ ·∆R(Zold, Ẑold); (9)

where the constraint ∆R(Zold, Ẑold) = 0 in (7) has been converted (and relaxed) to a Lagrangian
term with a corresponding coefficient γ and sign. We additionally introduce another coefficient λ for
weighting the rate reduction term associated with the new data. More algorithmic details are given in
Appendix A.

Jointly optimal memory via incremental reviewing. As we will see, the above constrained minimax
program can already achieve state of the art performance for incremental learning. Nevertheless,
developing an optimal memory for all classes cannot rely on graceful forgetting alone. Even for
humans, if an object class is learned only once, we should expect the learned memory to fade as we
continue to learn new others, unless the memory can be consolidated by reviewing old object classes.

To emulate this phase of memory forming, after incrementally learning a whole dataset, we may go
back to review all classes again, one class at a time. We refer to going through all classes once as
one reviewing “cycle”.3 If needed, multiple reviewing cycles can be conducted. It is quite expected
that reviewing can improve the learned (LDR) memory. But somewhat surprisingly, the closed-loop
framework allows us to review even in a “class-unsupervised” manner: when reviewing data of an old
class say Xj , the system does not need the class label and can simply treat Xj as a new class Xnew.
That is, the system optimizes the same constrained mini-max program (7) without any modification;
after the system is optimized, one can identify the newly learned subspace spanned by Znew, and use
it to replace or merge with the old subspace Sj . As our experiments show, such an class-unsupervised
incremental review process can gradually improve both discriminative and generative performance of
the LDR memory, eventually converging to that of a jointly-learned memory.

4 EXPERIMENTAL VERIFICATION

We now evaluate the performance of our method and compare with several representative incremental
learning methods. Since different methods have very different requirements in data, networks,
and computation, it is impossible to compare all in the same experimental conditions. For a fair
comparison, we do not compare with methods that deviate significantly from the IL setting that our
method is designed for: as examples, this excludes methods that rely on feature extracting networks

3to distinguish from the term “epoch” used in the conventional joint learning setting.
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Category Method
MNIST CIFAR-10

10-splits 5-splits 10-splits 5-splits
Last Avg Last Avg Last Avg Last Avg

Regularization
LwF (Li & Hoiem, 2017) - - 0.196 0.455 - - 0.196 0.440
SI (Zenke et al., 2017) - - 0.193 0.461 - - 0.196 0.441

Architecture ReduNet (Wu et al., 2021) - - 0.961 0.982 - - 0.539 0.645

Exemplar

iCaRL (Rebuffi et al., 2017) 0.322 0.588 0.725 0.803 0.212 0.431 0.487 0.632
A-GEM (Chaudhry et al., 2018) 0.382 0.574 0.597 0.764 0.115 0.293 0.204 0.473
CLR-ER (Arani et al., 2022) - - - 0.895 - - - 0.662

Generative

DGMw (Ostapenko et al., 2019) - 0.965 - - - 0.562 - -
EEC (Ayub & Wagner, 2020) - 0.978 - - - 0.669 - -
EECS (Ayub & Wagner, 2020) - 0.963 - - - 0.619 - -
i-CTRL (ours) 0.975 0.989 0.978 0.990 0.599 0.727 0.627 0.723

Table 1: Comparison on MNIST and CIFAR-10.

pre-trained on additional datasets such as FearNet (Kemker & Kanan, 2018) or methods that expand
the feature space such as DER (Yan et al., 2021). Instead, we demonstrate the effectiveness of our
method by choosing baselines that can be trained using similar fixed network architectures without
any pretraining. Nevertheless, most existing incremental learning methods that we can compare
against still rely on a buffer that acts as a memory of past tasks. They require significantly more
storage than i-CTRL, which only needs to track first and second moments of each seen class (see
Appendix A for algorithm implementation details).

4.1 DATASETS, NETWORKS, AND SETTINGS

We conduct experiments on the following datasets: MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky et al., 2014), and ImageNet-50 (Deng et al., 2009). All experiments are conducted for
the more challenging class-IL setting. For both MNIST and CIFAR-10, the 10 classes are split into 5
tasks with 2 classes each or 10 tasks with 1 class each; for ImageNet-50, the 50 classes are split into
5 tasks of 10 classes each. For MNIST and CIFAR-10 experiments, for the encoder f and decoder g,
we adopt a very simple network architecture modified from DCGAN (Radford et al., 2016), which is
merely a four-layer convolutional network. For ImageNet-50, we use a deeper version of DCGAN
which contains only 40% of the standard ResNet-18 structure.

4.2 COMPARISON OF CLASSIFICATION PERFORMANCE

We first evaluate the memory learned (without review) for classification. Similar to (Yu et al., 2020),
we adopt a simple nearest subspace algorithm for classification, with details given in Appendix B.
Unlike other generative memory-based incremental learning approaches, note that we do not need to
train a separate network for classification.

MNIST and CIFAR-10. Table 1 compares i-CTRL against representative SOTA generative-replay
incremental learning methods in different categories on the MNIST and CIFAR-10 datasets. We report
results for both 10-splits and 5-splits, in terms of both last accuracy and average accuracy (following
definition in iCaRL (Rebuffi et al., 2017)). Results on regularization-based and exemplar-based
methods are obtained by adopting the same benchmark and training protocol as in (Buzzega et al.,
2020). All other results are based on publicly available code released by the original authors. We
reproduce all exemplar-based methods with a buffer size no larger than 2000 raw images or features
for MNIST and CIFAR-10, which is a conventional buffer size used in other methods. Compared to
these methods, i-CTRL uses a single smaller network and only needs to store means and covariances.

For a simple dataset like MNIST, we observe that i-CTRL outperforms all current SOTA on both
settings. In the 10-task scenario, it is 1% higher on average accuracy, despite the SOTA is already
as high as 97.8%. In general incremental learning methods achieve better performance for smaller
number of steps. Here, the 10-step version even outperforms all other methods in the 5-step setting.

For CIFAR-10, we observe more significant improvement. For incremental learning with more
tasks (i.e splits = 10), to our best knowledge, EEC/EECS (Ayub & Wagner, 2020) represents the
current SOTA. Despite the fact that EEC uses multiple autoencoders and requires a significantly
larger amount of memory (see Table 6 in the appendix), we see that i-CTRL outperforms EEC by
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more than 3%. For a more fair comparison, we have also included results of EECS from the same
paper, which aggregate all autoencoders into one. i-CTRL outperforms EECS by nearly 10%. We
also observe that i-CTRL with 10 steps is again better than all current methods that learn with 5 steps,
in terms of both last and average accuracy.

iCaRL-S EEIL-S DGMw EEC EECS i-CTRL

0.290 0.118 0.178 0.352 0.309 0.458
Table 2: Comparison on ImageNet-50. The results of other methods are as reported in the EEC paper.

Figure 2: Block diagonal structure of |Z⊤Z| in the feature space for MNIST (left) and CIFAR-10 (right).

ImageNet-50. We also evaluate and compare our method on ImageNet-50, which has a larger number
of classes and higher resolution inputs. Training details can be found in Appendix B. We adopt results
from (Ayub & Wagner, 2020) and report average accuracy across five splits. From the table, we
observe the same trend, a very significant improvement from the previous methods by almost 10%!
Since ImageNet-50 is a more complicated dataset, we can even further improve the performance
using augmentation. More discussion can be found in Appendix 11.
4.3 GENERATIVE PROPERTIES OF THE LEARNED LDR MEMORY

Unlike some of the incremental methods above, which learn models only for classification purposes
(as those in Table 1), the i-CTRL model is both discriminative and generative. In this section, we
show the generative abilities of our model and visualize the structure of the learned memory. We also
include standard metrics for analysis in Appendix H.
Visualizing auto-encoding properties. We begin by qualitatively visualizing some representative
images X and the corresponding replayed X̂ on MNIST and CIFAR-10. The model is learned
incrementally with the datasets split into 5 tasks. Results are shown in Figure 3, where we observe
that the reconstructed X̂ preserves the main visual characteristics of X including shapes and textures.
For a simpler dataset like MNIST, the replayed X̂ are almost identical to the input X! This is rather
remarkable given: (1) our method does not explicitly enforce x̂ ≈ x for individual samples as most
autoencoding methods do, and (2) after having incrementally learned all classes, the generator has
not forgotten how to generate digits learned earlier, such as 0, 1, 2. For a more complex dataset like
CIFAR-10, we also demonstrates good visual quality, faithfully capturing the essence of each image.
Principal subspaces of the learned features. Most generative memory-based methods utilize
autoencoders, VAEs, or GANs for replay purposes. The structure or distribution of the learned
features Zj for each class is unclear in the feature space. The features Zj of the i-CTRL memory,
on the other hand, have a clear linear structure. Figure 2 visualizes correlations among all learned
features |Z⊤Z|, in which we observe clear block-diagonal patterns for both datasets.4 This indicates
the features for different classes Zj indeed lie on subspaces that are incoherent from one another.
Hence, features of each class can be well modeled as a principal subspace in the feature space. A
more precise measure of affinity among those subspaces can be found in Appendix D.
Replay images of samples from principal components. Since features of each class can be modeled
as a principal subspace, we further visualize the individual principal components within each of those
subspaces. Figure 4 shows the images replayed from sampled features along the top-4 principal
components for different classes, on MNIST and CIFAR-10 respectively. Each row represents

4Notice that these patterns closely resemble the similarity matrix of response profiles of object categories
from different areas of the inferotemporal cortex, as shown in Extended DataFig.3 of (Bao et al., 2020).

8



Published as a conference paper at ICLR 2023

(a) MNIST X (b) MNIST X̂ (c) CIFAR-10 X (d) CIFAR-10 X̂

Figure 3: Visualizing the auto-encoding property of the learned i-CTRL (X̂ = g ◦ f(X)).

(a) sampled x̂old of ‘4’ (b) sampled x̂old of ‘7’ (c) sampled x̂old of
‘horse’

(d) sampled x̂old of
‘ship’

Figure 4: Visualization of 5 reconstructed x̂ = g(z) from z’s with the closest distance to (top-4) principal
components of learned features for MNIST (class ‘4’ and class ‘7’) and CIFAR-10 (class ‘horse’ and ‘ship’).

samples along one principal component and they clearly show similar visual characteristics but
distinctively different from those in other rows. We see that the model remembers different poses
of ‘4’ after having learned all remaining classes. For CIFAR-10, the incrementally learned memory
remembers representative poses and shapes of horses and ships.

4.4 EFFECTIVENESS OF INCREMENTAL REVIEWING

We verify how the incrementally learned LDR memory can be further consolidated with an unsuper-
vised incremental reviewing phase described at the end of Section 3.3. Experiments are conducted on
CIFAR-10, with 10 steps.
Improving discriminativeness of the memory. In the reviewing process, all the parameters in the
training are the same as incremental learning Table 3 shows how the overall accuracy improves
steadily after each cycle of incrementally reviewing the entire dataset. After a few (here 8) cycles, the
accuracy approaches the same as that from learning all classes together via Closed-Loop Transcription
in a joint fashion (last column). This shows that the reviewing process indeed has the potential to learn
a better representation for all classes of data, despite the review process is still trained incrementally.

# Rev. cycles 0 2 4 6 8 JL

Accuracy 0.599 0.626 0.642 0.650 0.658 0.655

Table 3: The overall test accuracies after different numbers of review cycles on CIFAR-10.

Figure 5: Visualization of replayed images x̂old of class
1-‘airplane’ in CIFAR-10, before (left) and after (right)
one reviewing cycle.

Improving generative quality of the memory.
Figure 5 left shows replayed images of the first
class ‘airplane’ at the end of incremental learn-
ing of all ten classes, sampled along the top-3
principal components – every two rows (16 im-
ages) are along one principal direction. Their
visual quality remains very decent – observed
almost no forgetting. The right figure shows
replayed images after reviewing the first class
once. We notice a significant improvement in
visual quality after the reviewing, and principal
components of the features in the subspace start
to correspond to distinctively different visual
attributes within the same class.
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5 CONCLUSION

This work provides a simple and unifying framework that can incrementally learn a both discriminative
and generative memory for multiple classes of objects. By combining the advantages of a closed-
loop transcription system and the simple linear structures of a learned LDR memory, our method
outperforms prior work and proves, arguably for the first time, that both stability and plasticity can be
achieved with only a fixed-sized neural system and a single unifying learning objective. The simplicity
of this new framework suggests that its performance, efficiency and scalability can be significantly
improved in future extensions. In particular, we believe that this framework can be extended to the
fully unsupervised or self-supervised settings, and both its discriminative and generative properties
can be further improved.
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A ALGORITHM OUTLINE

For simplicity of presentation, the main body of this paper has described incremental learning with
each incremental task containing one new class of data. In general, however, each incremental task
may contain a finite C new classes. In this section, we detail the algorithms associated with i-CTRL
in this more general setting.

Suppose we divide the overall task of learning multiple classes of data D into a stream of smaller
tasks D1,D2, . . . ,Dt, . . . ,DT , where each task consists of labeled data Dt = {Xt,Y t} from C
classes, i.e, Xt = {Xt

1, . . . ,X
t
C}. The overall i-CTRL process is summarized in Algorithm 3

We begin by training the model on the first task D1, optimized via the original objective function
(4). We then use FORMING MEMORY MEAN AND COVARIANCE 1 to find M1, the means and
covariances of the representations of classes in the first task. When learning a new task Dt, we first
sample Zold using MEMORY SAMPLING 2. We then take (Xt,Y t) from Dt, and calculate Xt →
Zt → X̂t → Ẑt using f(·, θ), g(·, η) to obtain Zt and Ẑt. We next compute Zold → X̂old → Ẑold

using f(·, θ), g(·, η). So far, we get Z = [Zt,Zold] and Ẑ = [Ẑt, Ẑold]. The encoder updates θ by
optimizing the objective (8):

max
θ

∆R(Z) + ∆R(Ẑ) + λ∆R(Zt, Ẑt)− γ∆R(Zold, Ẑold).

The decoder updates η via optimizing the objective (9):

min
η

∆R(Z) + ∆R(Ẑ) + λ∆R(Zt, Ẑt) + γ∆R(Zold, Ẑold).

We optimize these objectives until the parameters converge. After the training session ends, we
calculate M t of this learn task using FORMING MEMORY MEAN AND COVARIANCE 1 The process
of training a new task is repeated until all tasks are learned.

Algorithm 1 FORMING MEMORY MEAN AND COVARIANCE(Zt, k, r)

Require: C classes of features Zt = [Zt
1,Z

t
2, . . . ,Z

t
C ] of the entire t-th task, t ∈ [1, . . . , T ]. The

parameters k and r, which correspond to top-k features on each of top-r eigenvectors which we
will sample on each class;

1: for j = 1, 2, . . . , C do
2: Calculate the top-r eigenvectors V j of Zt

j . V j = [v1, . . . , vr] where vn means the n-th
eigenvector;

3: for i = 1, 2, . . . , r do
4: Calculate projection distance d = v⊤

i Z
t
j ;

5: Choose the top-k features from Zt
j based on the distance d to form the set Si;

6: Calculate mean µi and covariance Σi based on the set Si;
7: end for
8: Obtain memory mean and covariance of j-th class Bj

.
= [(µ1,Σ1), . . . , (µr,Σr)];

9: end for
10: Memory of mean and covariance set for t-th task Mt .

= [B1, . . . ,BC ].
Ensure: Mt

B IMPLEMENTATION DETAILS

A simple network architecture. Tables 4 and 5 give details of the network architecture for the
decoder and the encoder networks used for experiments reported in Section 4. All α values in
Leaky-ReLU (i.e. lReLU) of the encoder are set to 0.2. We set (nz = 128 and nc = 1) for MNIST,
(nz = 128 and nc = 3) for CIFAR-10 and CIFAR-100, (nz = 256 and nc = 3) for ImageNet-50.
For ImagetNet-50, we added 2 down sample and up sample layer in f and g respectively to match the
resolution of ImageNet-50. The details of architecture are given in Appendix B. The dimension d of
the feature space is set accordingly for different datasets, d =128 for MNIST and CIFAR-10, d =256
for ImageNet-50. More details about the algorithmic settings and ablation studies are given in the
Appendix.
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Algorithm 2 MEMORY SAMPLING(M1, . . ., Mt, k, r, C)

Require: A set of Memory M1, . . .Mt, where Mi .
= [B1, . . . ,BC ], k, r and C, which is the

number of classes in each task;
Initialize an empty Zold;

2: for i = 1, . . . , t do
for j = 1, . . . , C do

4: get Bj from Mi, Bj
.
= [(µ1,Σ1), . . . , (µr,Σr)];

For each direction l ∈ r, sample k number of samples from distribution N(µl,Σl), add
them to Zold;

6: end for
end for

Ensure: Zold

Algorithm 3 i-CTRL

Require: A stream of tasks D1,D2, . . . ,DT , where Di = {Xi,Y i}; A pre-trained encoder f(·, θ)
and decoder g(·, η) on D1, k and r;
Calculate Z1 via f(X1, θ);

2: Find M1 by FORMING MEMORY MEAN AND COVARIANCE(Z1, k, r);
for t = 2, . . . , T do

4: Sample Zold = MEMORY SAMPLING(M1, . . ., Mt−1, k, r, C);
while not converged do

6: Draw samples in (Xt,Y t) from the t-th task Dt;
Compute expressions: Xt → Zt → X̂t → Ẑt;

8: Replay the old memory Zold → X̂old → Ẑold;
Z = [Zt,Zold]; Ẑ = [Ẑt, Ẑold];

10: Update θ via the optimization objective (8);
Update η via the optimization objective (9);

12: end while
Calculate Zt via f(Xt, θ);

14: Find Mt by FORMING MEMORY MEAN AND COVARIANCE(Zt, k, r);
end for

Ensure: f(·, θ) and g(·, η)

Optimization settings. For all experiments, we use Adam (Kingma & Ba, 2014) as our optimizer,
with hyperparameters β1 = 0.5, β2 = 0.999. Learning rate is set to be 0.0001. We choose ϵ2 = 1.0,
γ = 1, and λ = 10 for both equation (8) and (9) in all experiments. For MNIST, CIFAR-10 and
CIFAR-100, each task is trained for 120 epochs; For ImageNet-50, the first task D1 is trained for
500 epochs with constraint on augmentation used in (Chen et al., 2020) and 150 epochs for rest
incremental 4 tasks using the normal i-CTRL objective 7. All experiments are conducted with 1 or 2
RTX 3090 GPUs.

Prototype settings As we use prototype sampling in this method, so the storage becomes almost
trivial. For MNIST, we choose r = 6, k = 10. For CIFAR-10, we choose r = 12, k = 20. For
ImageNet-50, we us r = 10, k = 15. For CIFAR-100, we us r = 10, k = 20.

z ∈ R1×1×nz

4 × 4, stride=1, pad=0 deconv. BN 256 ReLU
4 × 4, stride=2, pad=1 deconv. BN 128 ReLU
4 × 4, stride=2, pad=1 deconv. BN 64 ReLU

4 × 4, stride=2, pad=1 deconv. 1 Tanh

Table 4: Network architecture of the decoder g(·, η).

15



Published as a conference paper at ICLR 2023

Image x ∈ R32×32×nc

4 × 4, stride=2, pad=1 conv 64 lReLU
4 × 4, stride=2, pad=1 conv. BN 128 lReLU
4 × 4, stride=2, pad=1 conv. BN 256 lReLU

4 × 4, stride=1, pad=0 conv nz

Table 5: Network architecture of the encoder f(·, θ).

Figure 6: Affinity between memory subspaces within CIFAR-10.

A simple nearest subspace classifier. Similar to (Dai et al., 2022) and (Yu et al., 2020), we adopt
a very simple nearest subspace algorithm to evaluate how discriminative our learned features are
for classification. Suppose Zj are the learned features of the j-th class. Let µj ∈ Rd be its mean
and Uj ∈ Rd×rj be the first rj principal components for Zj , where rj is the estimated dimension of
class j. For a test data x′, its feature z′ is given by f(x′, θ). Then, its class label can be predicted by
j′ = argminj∈{1,...,k} ∥(I −UjU

⊤
j )(z′ − µj)∥22. It is especially noteworthy that our method does

not need to train a separate deep neural network for classification whereas most other methods do.

C RESOURCE COMPARISON DETAILS

In Table 6 of the appendix, both i-CTRL and EEC methods are tested on CIFAR-10. Under joint
learning, CTRL follows the setting in Appendix A.4 of (Dai et al., 2022), but we adopt the architec-
tures of the encoder and decoder detailed in Table 5 and Table 4 respectively. The training batch size
is 1600 over 1400 epochs because the generative CTRL model is more challenging to train than the
simple classifier network that EEC uses in the joint learning setting; EEC uses the ResNet architecture
from (Gulrajani et al., 2017) for the classifier, with training batch size and training epochs of 128 and
100 respectively.

D AFFINITY BETWEEN LEARNED SUBSPACES

As we see in Figure 2, the learned features of different classes are highly incoherent and their
correlations form a block-diagonal pattern. We here conduct more quantitative analysis of the affinity
among subspaces learned for different classes. The analysis is done on features learned for CIFAR-10
using 10 splits with 2000 features. For two subspaces S and S ′ of dimension d and d’ , we follow the
definition of normalized affinity in (Soltanolkotabi et al., 2014):

aff(S,S ′)
.
=

√∑d∗d′

i cos2 θi

d ∗ d′
. (10)

We calculate the aff(S,S ′) through ∥U⊤U ′∥F where U /U ′ is the normalized column space of
features Z/Z ′ that can be obtained by SVD.

The affinity measures the angle between two subspaces. The larger the value, the smaller the angle.
As shown in Figure 6, we see that similar classes have higher affinities. For example, 8-ship and
9-trucks have higher affinity in the figure, whereas 6-frogs has a much lower affinity than these two
classes. This suggests that the affinity score of these subspaces captures similarity in visual attributes
between different classes.
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Method Resource JL IL Diff

i-CTRL Model Size 2 M 2 M same
(ours) Train Time 15 hours 1.5 hours 10x faster

EEC
Model Size 1 M 10 M 10x larger
Train Time 0.6 hours ≥4 hours 7x slower

Table 6: The resource comparison on the joint learning (JL) and incremental learning (IL) of different methods.
Both methods are tested on CIFAR-10 and the details of the comparison setting can be found in Appendix C.

E INCREMENTAL LEARNING VERSUS JOINT LEARNING.

One main benefit of incremental learning is to learn one class (or one small task) at a time. So it
should result in less storage and computation than jointly learning. Table 6 shows this is indeed the
case for our method: IL on CIFAR-10 is 10 times faster than JL.5 However, this is often not the case
for many existing incremental methods such as EEC (Ayub & Wagner, 2020), the current SOTA in
generative memory-based methods. Not only does its incremental mode require a much larger model
size (than its joint mode and ours6), it also takes significantly (7 times) longer to train.

F ABLATION STUDIES

We conduct all ablation studies under the setting of CIFAR-10 split into 5 tasks with feature size of
2000, and default values of k = 20, r = 12, λ = 10, and γ = 1. We use the average incremental
accuracy as a measure for these studies.

F.1 IMPACT OF CHOICE OF OPTIMIZATION PARAMETERS

Parameter m and r for memory sampling. Here, we verify the impact of the memory size of
Algorithm 1 on the performance of our method. The feature size is determined by two hyperparameters
r, which is the number of the PCA directions and m, which is the number of sampled features around
each principal direction. The value of r varies from 10 to 14, and the value of m varies from 20 to 40.
Table 7 reports the results of the average incremental accuracy. From the table, we observe that as
long as the selection of m and r are in a reasonable range, the overall performance is stable.

m=20 m=30 m=40

r=10 0.713 0.720 0.728
r=12 0.719 0.727 0.725
r=14 0.718 0.721 0.725

Table 7: Ablation study on varying m and r in PROTOTYPESAMPLING, in terms of the average
incremental accuracy.

Hyperparameter λ and γ in the learning objective. λ and γ are two important hyperparameters in
the objective functions for both (8) and (9). Here, we want to justify our selection of λ and γ and
demonstrate the stability of our method to their choices. We analyze the sensitivity of the performance
to the λ and γ respectively. In Table 8, we set γ = 1 and change the value of λ from 0.1 to 50. The
results indicate the accuracy becomes low only when λ are chosen to be extreme (e.g 0.1, 1, 50). We
then change the value of γ in a large range from 0.01 to 100 with λ fixed at 10. Results in Table 9
indicate that the accuracy starts to drop when γ is larger than 10. Hence, in all our experiments
reported in Section 4, we set λ = 10 and γ = 1 for simplicity.

5Note in our method, both JL and IL optimize on the same network. The JL mode is trained on all ten classes
together, hence it normally takes more epochs to converge and longer time to train. But the IL mode converges
much faster, as it should have.

6For EEC, since its classifier and generators are separated, under the JL setting, it only needs a 8-layers
convolutional network to train a classifier for all classes. In the incremental mode, it requires multiple generative
models. Note that our JL model is also a generative model hence requires more time to train as well.
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λ 0.1 1 10 20 50

Accuracy 0.592 0.620 0.712 0.701 0.691

Table 8: Ablation study on varying λ in terms of the average incremental accuracy.

γ 0.01 0.1 1 10 100

Accuracy 0.713 0.716 0.712 0.700 0.655

Table 9: Ablation study on varying γ in terms of the average incremental accuracy.

F.2 SENSITIVITY TO CHOICE OF RANDOM SEED

It is known that some incremental learning methods such as (Kirkpatrick et al., 2017) can be sensitive
to random seeds. We report in Table 10 the average incremental accuracy of i-CTRL with different
random seeds (conducted on CIFAR-10 split into 10 tasks, with a feature size 2000). As we can see,
the choice of random seed has very little effect on the performance of i-CTRL.

Random Seed 1 5 10 15 100

Average Accuracy 0.720 0.720 0.720 0.720 0.721
Last Accuracy 0.594 0.592 0.593 0.594 0.594

Table 10: Ablation study on varying random seeds.

F.3 THE SIGNIFICANCE OF AUGMENTATION IN TRAINING IMAGENET-50

In this section, we study the the impact of using augmentation from Chen et al. (2020) to train the
first task has on our method. From Tab 11, we conclude that augmentation did help the model the
learn better representation. Even without it, it has shown that our method still outperform the current
generative-replay based method by more than 10%. Through this experiment, we think that add
augmentation may be the solution for generative-replay based methods to scale up to even larger
datasets. We leave that to future study.

F.4 THE SIGNIFICANCE OF CONSTRAINT IN MINMAX OPTIMIZATION

Here, we want to justify the significance of this constraint in the context of incremental learning. We
report in table 12 the performance of i-CTRL with and without constraint. Without the constraint,
i-CTRL fall into the victim of catastrophic forgetting. We can conclude that constraint has played a
significant role in the success of our method.

G COMPARISON WITH MORE BASELINES

Due the limitation of space in main paragraph, we present here a table with more comparison with
other methods.

From the table, we see that comparing to the previous methods especially exemplar-based methods,
our method still leads them numerically. We have also conducted on experiments on CIFAR-100.
On more complex data such as CIFAR-100(Krizhevsky et al., 2014), it is also observed in Tab 14
that i-CTRL has led the current exemplar-based methods. It is noteworthy that there is no generative-
replayed based methods in the table. Since it hard for many of the current generative-replay based
methods to scale up to more complex setting.

H QUANTITATIVE EVALUATION OF LEARNED GENERATOR

In this section, we use FID score (Heusel et al., 2017) and Inception Scores (IS) (Salimans et al.,
2016) to quantitatively measure the performance of our incrementally learned generator. As there
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iCaRL-S EEIL-S DGMw EEC EECS i-CTRL(without aug) i-CTRL(with aug)
0.290 0.118 0.178 0.352 0.309 0.458 0.523

Table 11: Comparison on ImageNet-50. The results of other methods are as reported in the EEC paper.

With Constraint Without Constraint
Average Accuracy 0.723 0.380
Last Accuracy 0.627 0.223

Table 12: Ablation study on the important of constraint in (7)

Method
MNIST CIFAR-10

10-splits 5-splits 10-splits 5-splits
Last Avg Last Avg Last Avg Last Avg

Regularization
LwF (Li & Hoiem, 2017) - - 0.196 0.455 - - 0.196 0.440
SI (Zenke et al., 2017) - - 0.193 0.461 - - 0.196 0.441

Architecture
ReduNet (Wu et al., 2021) - - 0.961 0.982 - - 0.539 0.645

Exemplar
iCaRL (Rebuffi et al., 2017) 0.322 0.588 0.725 0.803 0.212 0.431 0.487 0.632
A-GEM (Chaudhry et al., 2018) 0.382 0.574 0.597 0.764 0.115 0.293 0.204 0.473
CLR-ER (Arani et al., 2022) - - - 0.895 - - - 0.662
ER-Reservoir (Chaudhry et al., 2019b) - - - - - - - 0.685
GDumb (Prabhu et al., 2020) - - - 0.919 - - - 0.618
Rainbow Memory (Bang et al., 2021) - - 0.927 - - - - -
DER++ (Buzzega et al., 2020) - - - - - - - 0.648

Generative Memory
DGMw (Ostapenko et al., 2019) - 0.965 - - - 0.562 - -
EEC (Ayub & Wagner, 2020) - 0.978 - - - 0.669 - -
EECS (Ayub & Wagner, 2020) - 0.963 - - - 0.619 - -
i-CTRL (ours) 0.975 0.989 0.978 0.990 0.599 0.727 0.627 0.723

Table 13: Comparison on MNIST and CIFAR-10.

Method
Last Accuracy Last Accuracy Last Accuracy

5-split 10-split 20-split

LwF(Li & Hoiem, 2017) - 0.252 0.141
iCaRL(Rebuffi et al., 2017) - 0.346 -
GDUMB(Prabhu et al., 2020) - - 0.241
Rainbow Memory(Bang et al., 2021) 0.414 - -
i-CTRL 0.435 0.392 0.378

Table 14: Comparison on CIFAR-100.

IS↑ FID↓
DCGAN (Radford et al., 2016) 6.6 37.4

i-CTRL (ours) 6.5 36.7

Table 15: Comparison IS and FID on CIFAR-10

exist very few generative-based or replay-based incremental methods offer a quantitative result for us
to compare. We here compare with DCGAN (Radford et al., 2016), which is the backbone of our
method, trained jointly for all classes. Based on table15, it is seen that our method has competitive
FID and IS score comparing to DCGAN. Hence, despite trained incrementally, our method still
generates high-quality images.
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I I-CTRL IN EXTREME SETTING

In this section, we conduct some ablation study of i-CTRL implemented in extreme settings.

I.1 IMBALANCED DATASETS

Often in real life, the data we encounter are not perfectly balanced. To testify our model’s performance
in this situation, we conduct experiment on imbalance-CIFAR-10. In this subsection, CIFAR-10 is
split into 5 tasks, with task 2 and task 4 having only half of the original data. We call this setting
imbalance-CIFAR-10. i-CTRL is trained with parameters same as section B. From table 16, we
observe that imbalance CIFAR-10 has very little impact on the performance of our method.

CIFAR-10 (balance) CIFAR-10 (imbalance)
Last Accuracy Average Accuracy Last Accuracy Average Accuracy

i-CTRL 0.627 0.727 0.623 0.723

Table 16: Comparison of i-CTRL performance on CIFAR-10 and imbalance-CIFAR-10

I.2 SMALL SUBSET OF DATA

Another interesting extreme scenario to examine would be small subset of dataset. Again, we may not
get large number of dataset for us to train every time. To testify i-CTRL’s performance in this scenario,
we design small-CIFAR-10. For example, We denote CIFAR-10(50%), meaning we have deleted
50% of data from every class in CIFAR-10. We run i-CTRL on CIFAR-10(20%), CIFAR-10(40%),
CIFAR-10(60%), CIFAR-10(80%), CIFAR-10(100%) without tuning any parameter. From Table 17,
we observe that smaller daatset will have impact on the performance of our method. If the portion
is larger than 20%, the impact is relatively small. When the size of data reduces to only 20%, the
impact becomes larger. Nonetheless, since CIFAR-10(20%) is nearly a new dataset, we can reduce
the impact by tuning parameters. In Table 18, we present results of i-CTRLon CIFAR-10(20%) after

CIFAR-10 (balance)
Last Accuracy Average Accuracy

CIFAR-10(20%) 0.476 0.625
CIFAR-10(40%) 0.575 0.691
CIFAR-10(60%) 0.589 0.709
CIFAR-10(80%) 0.615 0.721
CIFAR-10(100%) 0.627 0.727

Table 17: Comparison of i-CTRL performance on different scales of CIFAR-10

tuning the hyperparamter λ and epochs. Since CIFAR-10(20%) is a very small dataset, we reduce
the number of λ and epochs to avoid forgetting previous learned classes. We observe that smaller
λ and epochs can greatly improve the performance of i-CTRL on very small subset of data like
CIFAR-10(20%).

CIFAR-10 (balance)
Last Accuracy Average Accuracy

CIFAR-10(20%), λ = 10, epochs=120 0.476 0.625
CIFAR-10(20%), λ = 5, epochs=60 0.541 0.671

Table 18: Comparison of i-CTRL performance on CIFAR-10(20%) with different hyperparameters
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J USING AFFINITY TO MEASURE THE PERFORMANCE

In this section, we discuss if affinity between the memory subspaced learned can be used to evaluate
the performance of our method. Following the setting of subset in CIFAR-10, we visualize the affinity
in Fig 7. From the figure, we see that as the subset of CIFAR-10 becomes smaller, the affinity learned
by i-CTRL becomes more distant. It can be used as a sign for unsatisdying performance because
ideally, we would want the affinity between similar classes (truck and car) to be close. If the affinity
graph shows that the model does not capture this kind of relationship, it is a sign that the overall
performance could be worse.

(a) Affinity between memory subspace
within CIFAR(100%)

(b) Affinity between memory sub-
space within CIFAR(80%)

(c) Affinity between memory subspace
within CIFAR(60%)

(d) Affinity between memory sub-
space within CIFAR(40%)

(e) Affinity between memory subspace
within CIFAR(20%)

Figure 7: Visualization of the affinity between memory subspace under different subset of CIFAR-10
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