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Abstract

In this paper, we contend that the objective of representation learning is to compress
and transform the distribution of the data, say sets of tokens, towards a mixture of
low-dimensional Gaussian distributions supported on incoherent subspaces. The
quality of the final representation can be measured by a unified objective function
called sparse rate reduction. From this perspective, popular deep networks such
as transformers can be naturally viewed as realizing iterative schemes to optimize
this objective incrementally. Particularly, we show that the standard transformer
block can be derived from alternating optimization on complementary parts of
this objective: the multi-head self-attention operator can be viewed as a gradient
descent step to compress the token sets by minimizing their lossy coding rate, and
the subsequent multi-layer perceptron can be viewed as attempting to sparsify the
representation of the tokens. This leads to a family of white-box transformer-like
deep network architectures which are mathematically fully interpretable. Despite
their simplicity, experiments show that these networks indeed learn to optimize
the designed objective: they compress and sparsify representations of large-scale
real-world vision datasets such as ImageNet, and achieve performance very close
to thoroughly engineered transformers such as ViT. Code is at https://github.
com/Ma-Lab-Berkeley/CRATE.

1 Introduction

In recent years, deep learning has seen tremendous empirical success in processing massive amounts
of high-dimensional and multi-modal data. Much of this success is owed to effective learning of
the data distribution and then transforming the distribution to a parsimonious, i.e. structured and
compact, representation [39, 49, 51, 61], which facilitates many downstream tasks (e.g., in vision,
classification [23, 40], recognition and segmentation [25, 38, 73], and generation [31, 64, 65]). To
this end, many models and methods have been proposed and practiced, each with its own strengths
and limitations. Here, we give several popular methods a brief accounting as context for a complete
understanding and unification that we seek in this work.

Transformer models and self-attention. Transformers [28] are one of the latest popular models
for learning a representation for high-dimensional structured data, such as text [28, 30, 37], images
[40, 72], and other types of signals [48, 56]. After the first block, which converts each data point
(such as a text corpus or image) into a set or sequence of fokens, further processing is performed
on the token sets, in a medium-agnostic manner [28, 40]. A cornerstone of the transformer model
is the so-called self-attention layer, which exploits the statistical correlations among the sequence
of tokens to refine the token representation. Transformers have been highly successful in learning
compact representations that perform well on many downstream tasks. Yet the transformer network
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Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z°, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z*TY/2 and sparsification against a global dictionary, generating Z***. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and



show that transformer-like deep network layers can be naturally derived from unrolling iterative
optimization schemes to incrementally optimize the sparse rate reduction objective. In particular, our
contributions and outline of the paper are as follows:

e In Section 2.2 we show, using an idealized model for the token distribution, that if one
iteratively denoises the tokens towards a family of low-dimensional subspaces, the associated
score function assumes an explicit form similar to a self-attention operator seen in transformers.

* In Section 2.3 we derive the multi-head self-attention layer as an unrolled gradient descent step
to minimize the lossy coding rate part of the rate reduction, showing another interpretation of
the self-attention layer as compressing the token representation.

* In Section 2.4 we show that the multi-layer perceptron which immediately follows the multi-
head self-attention in transformer blocks can be interpreted as (and replaced by) a layer
which incrementally optimizes the remaining part of the sparse rate reduction objective by
constructing a sparse coding of the token representations.

* In Section 2.5 we use this understanding to create a new white-box (fully mathematically in-
terpretable) transformer architecture called CRATE (i.e., Coding RAte reduction TransformFEr),
where each layer performs a single step of an alternating minimization algorithm to optimize
the sparse rate reduction objective.

Hence, within our framework, the learning objective function, the deep learning architecture, and
the final learned representation all become white boxes that are fully mathematically interpretable.
As the experiments in Section 3 show, the CRATE networks, despite being simple, can already learn
the desired compressed and sparse representations on large-scale real-world datasets and achieve
performance on par with much more heavily engineered transformer networks (such as ViT) on a
wide variety of tasks (e.g., classification and transfer learning).

2 Technical Approach and Justification

2.1 Objective and Approach

We consider a general learning setup associated with real-world signals. We have some random
variable X = [z1,...,xn] € RP*Y which is our data source; each x; € RP is interpreted as a

token', and the x;’s may have arbitrary correlation structures. We use Z = [z1,...,2n] € RN to

denote the random variable which defines our representations. Each z; € R is the representation of
the corresponding token x;. We are given B > 11i.i.d. samples X1, ..., Xp ~ X, whose tokens are
x; . The representations of our samples are denoted Z1, ..., Zp ~ Z, and those of our tokens are

2; . Finally, for a given network, we use Z* to denote the output of the first £ layers when given X

as input. Correspondingly, the sample outputs are Z! and the token outputs are zf b

Objective for learning a structured and compact representation. Following the framework of
rate reduction [54], we contend that the goal of representation learning is to find a feature mapping
f: X € RPN 5 Z € RN which transforms input data X € RPN with a potentially
nonlinear and multi-modal distribution to a (piecewise) linearized and compact feature representation
Z € RN While the joint distribution of tokens (z;)Y_; in Z may be sophisticated (and task-
specific), we further contend that it is reasonable and practical to require that the target marginal
distribution of individual tokens z; should be highly compressed and structured, amenable for compact
coding. Particularly, we require the distribution to be a mixture of low-dimensional (say K ) Gaussian
distributions, such that the k*" Gaussian has mean 0 € R?, covariance ¥, = 0 € R%¥? and support
spanned by the orthonormal basis Uj, € R?*P. We denote U K] = (Uk)f:1 to be the set of bases
of all Gaussians. Hence to maximize the information gain [61] for the final token representation,
we wish to maximize the rate reduction [6, 46] of the tokens, i.e., maxz AR(Z;Ujg)) = R(Z) —
R°(Z;Uj K]), where R and R¢ are estimates of lossy coding rates to be formally defined in (7)
and (8). This also promotes token representations z; from different Gaussians to be incoherent [46].
Since rate reduction is an intrinsic measure of goodness for the representation, it is invariant to
arbitrary rotations of the representations. Therefore, to ensure the final representations are amenable
to more compact coding, we would like to transform the representations (and their supporting

"For language transformers, tokens roughly correspond to words [28], while for vision transformers, tokens
correspond to image patches [40].



subspaces) so that they become sparse with respect to the standard coordinates of the resulting
representation space.” The combined rate reduction and sparsification process is illustrated in Figure 1.
Computationally, we may combine the above two goals into a unified objective for optimization:

Ifnea;:(IEz [AR(Z;Uir)) =M Z|lo] = anea}-{EZ [R(Z)-R(Z;Uk)) - Z]o] st. Z = f(X), (1)

where the £° norm || Z||, promotes the sparsity of the final token representations Z = f(X).> We
call this objective “sparse rate reduction.”

White-box deep architecture as unrolled incremental optimization. Although easy to state, each
term of the above objective can be computationally very challenging to optimize [54, 69]. Hence it is
natural to take an approximation approach that realizes the global transformation f optimizing (1)
through a concatenation of multiple, say L, simple incremental and local operations f that push the
representation distribution towards the desired parsimonious model distribution:
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[2. RNy NG AN NN S Q)

where f0 : RP — R is the pre-processing mapping that transforms input tokens z; € R to their
token representations z; € R,

Each incremental forward mapping Z**' = f*(Z*), or a “layer”, transforms the token distribution
to optimize the above sparse rate reduction objective (1), conditioned on the distribution of its
input tokens Z*. In contrast to other unrolled optimization approaches such as the ReduNet [54],
we explicitly model the distribution of Z* at each layer, say as a mixture of linear subspaces or
sparsely generated from a dictionary. The model parameters are learned from data (say via backward
propagation with end-to-end training). This separation of forward “optimization” and backward
“learning” clarifies the mathematical role of each layer as an operator transforming the distribution
of its input, whereas the input distribution is in turn modeled (and subsequently learned) by the
parameters of the layer.

We show that we can derive these incremental, local operations through an unrolled optimization
perspective to achieve (1) through Sections 2.3 to 2.5. Once we decide on using an incremental
approach to optimizing (1), there are a variety of possible choices to achieve the optimization. Given
a model for Z*, say a mixture of subspaces U\, we opt for a two-step alternating minimization
process with a strong conceptual basis: first in Section 2.3, we compress the tokens Z* via a gradient
step to minimize the coding rate term minz R°(Z; Uk); second, in Section 2.4, we sparsify the
compressed tokens, with a suitably-relaxed proximal gradient step on the difference of the sparsity
penalty and the expansion term, i.e., minz[A||Z|lo — R(Z)]. Both actions are applied incrementally
and repeatedly, as each f in (2) is instantiated with these two steps.

2.2 Self-Attention via Denoising Tokens Towards Multiple Subspaces

There are many different ways to optimize the objective (1) incrementally. In this work, we propose
arguably the most basic scheme. To help clarify the intuition behind our derivation and approximation,
in this section (and Appendix A.1) we study a largely idealized model which nevertheless captures
the essence of nearly the whole process and particularly reveals the reason why self-attention-like
operators arise in many contexts. Assume that N = 1, and the single token « is drawn i.i.d. from
an unknown mixture of Gaussians (A'(0, ))& _; supported on low-dimensional subspaces with

orthonormal bases U, (K] = (Uk)kK:1 and corrupted with additive Gaussian noise w ~ N (0,1),i.e.,
Tr=z+ow, 3

where z is distributed according to the mixture. Our goal is simply to transform the distribution of
the noisy token & to the mixture of low-dimensional Gaussians z. Towards incremental construction
of a representation f for this model following (2), we reason inductively: if z* is a noisy token (3) at
noise level o/, it is natural to produce z‘*! by denoising at the level o*. In the mean-square sense,
the optimal estimate is E[z | 2¢], which has a variational characterization (e.g. [12]):

Elz| ]= arg}min zIEw[Hf(z + ofw) — z||;] )

’That is, having the fewest nonzero entries.
3To simplify the notation, we will discuss the objective for one sample X at a time with the understanding
that we always mean to optimize the expectation.



Setting 2! = E[z | 2¢], (4) thus characterizes the next stage of (2) in terms of an optimization
objective based on a local signal model for z¢. Moreover, letting  — ¢*(x) denote the density of z¢,
Tweedie’s formula [13] allows us to express the optimal representation solving (4) in closed-form:

2 = 28 4 (6%)2V, log ¢ (2Y). %)

Tweedie’s formula expresses the optimal representation in terms of an additive correction (in general
a nonlinear function of z%) to the noisy observations by the gradient of the log-likelihood of the
distribution of the noisy observations, giving the optimal representation a clear interpretation as an
incremental perturbation to the current noisy distribution ¢°. This connection is well-known in the
areas of estimation theory and inverse problems [1, 13, 14, 19, 20, 27, 42], and more recently has
found powerful applications in the training of generative models for natural images [4, 15, 22, 43,
44]. Here, we can calculate a closed-form expression for this score function V5 log ¢¢, which, when
combined with (5) and some technical assumptions*, gives the following approximation (shown in
Appendix A.1). Let ® denote the Kronecker product; then we have

[leseallb Uy
. ®Ip

2T~ [Uy,...,Uk] |diag | softmax : :
U213 Uj=*

W ) (6)

This operation resembles a self-attention layer in a standard transformer architecture with K heads,
sequence length N = 1, the “query-key-value” constructs being replaced by a single linear projection
U,jzf of the token z*, and the aggregation of head outputs (conventionally modeled by an MLP)
done with the two leftmost matrices in (6). We thus derive the following useful interpretation, which
we will exploit in the sequel: Gaussian denoising against a mixture of subspaces model leads to
self-attention-type layers in the transformation f. Given an initial sample x following the model
(3), we can repeatedly apply local transformations to the distribution with (6) in order to realize the
incremental mapping f:  — z in (2).> These insights will guide us in the design of our white-box
transformer architecture in the upcoming subsections.

2.3 Self-Attention via Compressing Token Sets through Optimizing Rate Reduction

In the last subsection, we have seen that the multi-head attention in a transformer resembles the score-
matching operator that aims to transform a token z* towards a mixture of subspaces (or degenerate
Gaussians). Nevertheless, to carry out such an operation on any data, one needs to first learn or
estimate, typically from finite samples, the parameters of the mixture of (degenerate) Gaussians,
which is known to be a challenging task [6, 24]. This challenge is made even harder because in a
typical learning setting, the given set of tokens are not i.i.d. samples from the mixture of subspaces.
The joint distribution among these tokens can encode rich information about the data—for example,
co-occurrences between words or object parts in language and image data (resp.)—which we should
also learn. Thus, we should compress / denoise / transform such a set of tokens together. To this end,
we need a measure of quality, i.e., compactness, for the resulting representation of the set of tokens.

A natural measure of the compactness of such a set of tokens is the (lossy) coding rate to encode
them up to a certain precision € > 0 [6, 46]. For a zero-mean Gaussian, this measure takes a closed
form. If we view the tokens in Z € R4 as drawn from a single zero-mean Gaussian, an estimate
of their (lossy) coding rate, subject to quantization precision € > 0, is given in [6] as:

1 d . 1 d "
In practice, the data distribution is typically multi-modal, say an image set consisting of many classes
or a collection of image patches as in Figure 1. It is more appropriate to require that the set of
tokens map to a mixture of, say K, subspaces (degenerate Gaussians) [54]. As before we denote
the (to be learned) bases of these subspaces as Uk = (Uk)ff:l, where Uj, € R¥*P_ Although the
joint distribution of the tokens Z is unknown, the desired marginal distribution of each token z; is a

4Such as o being smaller than the nonzero eigenvalues of 3 and the normalization assumption 7r; det(3; +
o?I)™Y? = 1j det(2; 4+ 02I) /2 forall i, j € [K], where 7y, is the mixture proportion for the &£ Gaussian.

5This statement can be made mathematically rigorous by exploiting a deep connection between neural ODEs
and diffusion models, following ideas in Song et al. [44] and Chen et al. [70].



mixture of subspaces. So we may obtain an upper bound of the coding rate for the token set Z by
projecting its tokens onto these subspaces and summing up the respective coding rates:

“(Z;Up) ZR Uiz Zlogdet(IJr (U} )(U;;Z)). ®)

We would like to compress (or denoise) the set of tokens against these subspaces by minimizing the
coding rate. The gradient of R°(Z; Uj) is

V2 R(Z;Upng) = NQZUkUk (r+ Lwizywi2) ©)

The above expression approximates the residual of each projected token U} z; regressed by other
tokens Uy z; [54]. But, differently from [54], not all tokens in Z are from the same subspace. Hence,
to denoise each token with tokens from its own group, we can compute their similarity through an
auto-correlation among the projected tokens as (U} Z)* (U} Z) and convert it to a distribution of
membership with a softmax, namely softmax((U; Z)* (U} Z)). Then, as we show in Appendix A.2,
if we only use similar tokens to regress and denoise each other, then a gradient step on the coding
rate with learning rate x can be naturally approximated as follows:

Z'H2 = 2t oV 4 RY(Z5 Ul ~ (1 — k< 2) Z'+ kLo wssa(Z' | Uy, (10)
where MSSA is defined through an SSA operator as:
SSA(Z | Uy) = (Ui Z) softmax (U Z2)* (Ui Z)), k€ [K], (11)
SSA(Z | Uy)
MSSA(Z | Ujw) = 1 - [Un.-... U] : . (12)
SSA(Z | Uk)

Here the SSA operator in (11) resembles the attention operator in a typical transformer [28], except
that here the linear operators of value, key, and query are all set to be the same as the subspace
basis, i.e., V = K = Q = U;.% Hence, we name SSA(- |Uy) : RN — RPXN the Subspace
Self-Attention (SSA) operator (more details and justification can be found in (72) in Appendix A.2).
Then, the whole MSSA operator in (12), formally defined as MSSA( - |U[f): RN — RN and
called the Multi-Head Subspace Self-Attention (MSSA) operator, aggregates the attention head
outputs by averaging using model-dependent weights, similar in concept to the popular multi-head
self-attention operator in existing transformer networks. The overall gradient step (10) resembles the
multi-head self-attention implemented with a skip connection in transformers.

Notice that if we have N = 1 tokens as well as take an aggressive gradient step (x = 1) and tune the
quantization error (¢ = /p/N), the multi-head subspace self-attention operator in (12) becomes the
ideal denoiser defined in (6), with the one minor difference that the aggregation of the heads is done
by a linear function here, while in (6) it is done by a nonlinear mixture-of-experts type function.’
This provides two very related interpretations of the multi-head self-attention operator, as denoising
and compression against a mixture of low-dimensional subspaces.

2.4 MLP via Iterative Shrinkage-Thresholding Algorithms (ISTA) for Sparse Coding

In the previous subsection, we focused on how to compress a set of tokens against a set of (learned)
low-dimensional subspaces. Optimizing the remaining terms in the sparse rate reduction objective
(1), including the non-smooth term, serves to sparsify the compressed tokens, hence leading to a
more compact and structured (i.e., parsimonious) representation. From (1) and (7), this term is

. 1 d ..
mgx [R(Z) — M| Z]o] = min M Zllo — B logdet (IJr N—GQZ Z)] , (13)

s

%We note a recent suggestion of Hinton [50] that it is more sensible to set the “value, key, and query’
projection matrices in a transformer to be equal. Our derivation in this section confirms this mathematically.

"This suggests that we could also consider such a mixture of expert type aggregation of the multiple attention
heads. In this work, we use linear aggregation, and leave evaluation of more variants for future work.
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Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to
sparsification via the || Z]|o term, the expansion term R(Z) in (13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient Vz R(Z), which
requires a matrix inverse [54].

To simplify things, we therefore take a different approach to trading off between representational
diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D € R¥*?, and
ask to sparsify the intermediate iterates Z¢*+1/2 with respect to D. That is, Z¢*1/2 = DZ*+1 where
Z**1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.

By the incoherence assumption, we have D*D = I;; thus from (7) we have R(Z “1) ~
R(DZ*') = R(Z"t'/?). Thus we approximately solve (13) with the following program:

z = armein |Z|lo subjectto Z‘TY/*=DZ. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex
program, known as LASSO:

21— argmin |:)\||ZH1 + |zt - DZ||%}. (15)
z

In our implementation, motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative
constraint to Z¢*1,

Z'! = argmin [)\||ZH1 + ||z — DZ||%}, (16)
Z>0

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [8], to give the update:

Z = ReLU(ZHY2 4 nD*(Z2Y2 — DZY2) — A1) = ISTA(Z*TV/? | D). (17)
In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for
optimizing (13) by properly linearizing and approximating the rate term R(Z).
2.5 The Overall White-Box CRATE Architecture
By combining the above two steps:

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a
mixture-of-subspace structure, leading to the multi-head subspace self-attention block — MSSA;



2. (Section 2.4) Global compression and sparsification of token sets across all samples through
sparse coding, leading to the sparsification block — ISTA;

we can get the following rate-reduction-based transformer layer, illustrated in Figure 2,
Z =zt ussa(Z' | Ufyy), 2" =18TA(ZTV/? | D). (18)

Composing multiple such layers following the incremental construction of our representation in (2),
we obtain a white-box transformer architecture that transforms the data tokens towards a compact
and sparse union of incoherent subspaces.

This model has the parameters (U[%])IV,L:1 and (D%)L_,, which are learned from data via back-
propagation. Notably, in each layer ¢, the learned U[‘}q retain their interpretation as incoherent

bases for supporting subspaces for the mixture-of-Gaussians model at layer ¢, and the learned D*
retains its interpretation as a sparsifying dictionary at layer /. We emphasize that the parameters
UfK] and D’ are dependent on the layer £ — that is, we learn a different set of parameters at each
layer. This is because at each layer we learn an approximate local parametric model for the input
data distribution, then use that learned model to construct the layer operators that transform the
distribution. Our procedure of parameterizing the data distribution at each layer distinguishes this
work from previous works on unrolled optimization for neural networks such as the ReduNet [54].
Our interpretation clarifies the roles of the network forward pass (given local signal models at each
layer, denoise/compress/sparsify the input) and the backward pass (learn the local signal models from
data via supervision).

‘We note that in this work, at each stage of our construction, we have chosen arguably the simplest
possible construction to use. We can substitute each part of this construction, so long as the new part
maintains the same conceptual role, and obtain another white-box architecture. Nevertheless, our
such-constructed architecture, called CRATE (i.e., Coding RAte TransformEr), connects to existing
transformer models, obtains competitive results on real-world datasets, and is fully mathematically
interpretable.

3 Experiments

In this section, we conduct experiments to study the performance of our proposed white-box trans-
former CRATE on real-world datasets and tasks. As the analysis in Section 2 suggests, either the
compression or the sparsification step can be achieved through various alternative design choices or
strategies. CRATE arguably adopts the most basic choices and so our goal with the experiments is not
simply to compete with other heavily engineered transformers while using such a rudimentary design.
Rather, our goals are twofold. First, unlike any empirically designed black-box networks that are
usually evaluated only on end-to-end performance, the white-box design of our network allows us
to look inside the deep architecture and verify if layers of the learned network indeed perform their
design objective—say performing incremental optimization for the objective (1). Second, despite their
simplicity, our experiments will actually reveal the vast practical potential of our so-derived CRATE
architectures since, as we will show, they already achieve very strong performance on large-scale
real-world datasets and tasks. In the remainder of this section we highlight a selection of results;
additional experimental details and results can be found in Appendix B.

Model architecture. We implement the architecture that is described in Section 2.5, with minor
modifications that are described in Appendix B.1. We consider different model sizes of CRATE by
varying the token dimension d, number of heads K, and the number of layers L. We consider four
model sizes in this work: CRATE-Tiny, CRATE-Small, CRATE-Base, and CRATE-Large. A PyTorch-
style pseudocode can be found in Appendix B.1, which contains more implementation details. For
training using supervised classification, we first take the CLS token z;, = z1L7 2‘1 of for each sample,

then apply a linear layer; the output of this linear layer u;, = Wz, is used as input to the standard
cross-entropy loss. The overall loss averages over all samples b € [B].

Datasets and optimization. We mainly consider ImageNet-1K [9] as the testbed for our architecture.
Specifically, we apply the Lion optimizer [71] to train CRATE models with different model sizes.
Meanwhile, we also evaluate the transfer learning performance of CRATE: by considering the models
trained on ImageNet-1K as pre-trained models, we fine-tune CRATE on several commonly used
downstream datasets (CIFAR10/100, Oxford Flowers, Oxford-IIT-Pets). More details about the
training and datasets can be found in Appendix B.1.
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Figure 4: The compression term R°(Z) (left) and sparsification term || Z||o/(d - N) (right) across models
trained with different numbers of epochs. (Model: CRATE-Base).

3.1 In-depth Layer-wise Analysis of CRATE

Do layers of CRATE achieve their design goals? As described in Section 2.3 and Section 2.4, the
MSSA block is designed to optimize the compression term R°(Z) and the ISTA block to sparsify the
token representations (corresponding to the sparsification term || Z||o). To understand whether CRATE
indeed optimizes these terms, for each layer ¢, we measure (i) the compression term R°(Z/+1/2)
on the MSSA block outputs Z*+1/2; and (ii) sparsity || Z‘*" ||y on the ISTA block outputs Z**!.
Specifically, we evaluate these two terms by using training/validation samples from ImageNet-1K.
Both terms are evaluated at the per-sample level and averaged over B = 10 samples.

Figure 3 shows the plots of these two key measures at all layers for the learned CRATE-small model.
We find that as the layer index ¢ increases, both the compression and the sparsification terms improve
in most cases. The increase in the sparsity measure of the last layer is caused by the extra linear
layer for classification.? These results suggest that CRATE aligns well with the original design goals:
once learned, it essentially learns to gradually compress and sparsity the representations through
its layers. In addition, we also measure the compression and sparsification terms on CRATE models
with different model sizes as well as intermediate model checkpoints and the results are shown by
plots in Figure 5 of Appendix B.2. The observations are very consistent across all different model
sizes—both the compression and sparsification terms improve in most scenarios. Models with more
layers tend to optimize the objectives more effectively, confirming our understanding of each layer’s
roles.

To see the effect of learning, we present the evaluations on CRATE-Small trained with different number
of epochs in Figure 4. When the model is not trained enough (e.g. untrained), the architecture does
not optimize the objectives effectively. However, during training—learning better subspaces U[‘ZK]

and dictionaries D‘—the designed blocks start to optimize the objectives much more effectively.

Visualizing layer-wise token representations. To gain a better understanding of the token represen-
tations of CRATE, we visualize the output of each ISTA block at layer ¢ in Figure 6 of Appendix B.2.
Specifically, we visualize the Z‘*! via heatmap plots. We observe that the output Z‘*! becomes
more sparse as the layer increases. Moreover, besides the sparsity, we also find that Z**! becomes

8Note that the learned sparse (tokens) features need to be mixed in the last layer for predicting the class.
The phenomenon of increase in the sparsity measure at the last layer suggests that each class of objects may be
associated with a number of features, and some of these features are likely to be shared across different classes.



Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.
For ImageNet/ImageNetReal., we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L \ VIiT-T ViT-S
# parameters 6.09M 13.12M 22.80M 77.64M \ 5.72M 22.05M
ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet RealL 74.0 76.0 76.5 77.4 78.3 78.4
CIFARI10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6

more structured (i.e., low-rank), which indicates that the set of token representations become closer
to linear subspaces, confirming our mental picture of the geometry of each layer (as in Figure 1).

Visualizing layer-wise subspaces in multi-head self-attention. We now visualize the U[”‘K] ma-

trices used in the MSSA block. In Section 2.3, we assumed that UfK] were incoherent to capture
different “views” of the set of tokens. In Fig. 7 of Appendix B.2, we first normalize the columns
in each U}, then we visualize the [UY,...,Us] [Uf,...,Uk] € RPEXPK_The (i, j)-th block
in each sub-figure corresponds to (U )*Uf for ,j € [K] at a particular layer £. We find that the
learned U, [‘}q are approximately incoherent, which aligns well with our assumptions. One interesting

observation is that the U, [‘}q becomes more incoherent when the layer index ¢ is larger, which suggests

that the token representations are more separable. This mirrors the situation in other popular deep
networks [57].

3.2 Evalutions of CRATE on Large Real-World Datasets and Tasks

We now study the empirical performance of the proposed networks by measuring their top-1 accuracy
on ImageNet-1K as well as transfer learning performance on several widely used downstream datasets.
We summarize the results in Table 1. As our designed architecture leverages parameter sharing in
both the attention block (MSSA) and the MLP block (ISTA), our CRATE-Base model (22.08 million)
has a similar number of parameters to the ViT-Small (22.05 million).

From Table 1, we find that with a similar number of model parameters, our proposed network
achieves similar ImageNet-1K and transfer learning performance as ViT, despite the simplicity and
interpretability of our design. Moreover, with the same set of training hyperparameters, we observe
promising scaling behavior in CRATE—we consistently improve the performance by scaling up the
model size. For comparison, directly scaling ViT on ImageNet-1K does not always lead to consistent
performance improvement measured by top-1 accuracy [40]. To summarize, we achieve promising
performance on real-world large-scale datasets by directly implementing our principled architecture.

4 Conclusion

In this paper, we propose a new theoretical framework that allows us to derive deep transformer-
like network architectures as incremental optimization schemes to learn compressed and sparse
representation of the input data (or token sets). The so derived and learned deep architectures are not
only fully mathematically interpretable, but also consistent on a layer-by-layer level with their design
objective. Despite being arguably the simplest among all possible designs, these networks already
demonstrate performance on large-scale real-world datasets and tasks close to seasoned transformers.
We believe this work truly helps bridge the gap between theory and practice of deep neural networks
as well as help unify seemingly separate approaches to learning and representing data distributions.
Probably more importantly for practitioners, our framework provides theoretical guidelines to design
and justify new, potentially more powerful, deep architectures for representation learning.
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Appendix

A Technical Details from Section 2

A.1 Companion to Section 2.2

We first wish to re-iterate the core contributions of our approach in Section 2.2 at a slightly more
technical level. Connections between denoising and score matching are well-understood [59], and
computing the optimal denoising function (i.e., the conditional expectation) against a mixture-of-
Gaussians model is a rather simple computation giving existing tools such as Tweedie’s formula [13].
These are not our main contributions. Instead, the main contributions of Section 2.2 are two-fold:

* First, we demonstrate a mechanism to learn representations via denoising within a idealized
mixture of Gaussian data model for a single token (i.e., with sequence length N = 1).

* Second, we illustrate the similarities between a such-derived representation learning scheme
and existing self-attention layers within the transformer (with sequence length 1), thus
demonstrating an interpretation of the self-attention layer as a generalized mechanism to
denoise against a mixture-of-Gaussian-marginal model for a set of tokens.

Now we produce the proofs alluded to in Section 2.2, which mostly form the technical aspects of
the first listed contribution. To simplify the proofs, we use the following notation correspondences:
x> 24 2 21 and o — ot

Proposition 1. Let uq,...,ux € R? be independent and have distribution uy ~ N(0,3X},) for
3k = 0, and let z take value wy, with probability m;, > 0. Let w ~ N (0, I;) be independent of z.
Let x = z + ow. Let  — q(x) be the density of x. We define

My = (S +0°L) /2 (19)
and assume that m; det(M,;) = 7; det(M;) forall 1 < i < j < K. Then we have
Ve logg() (20)
| M2 M
= —[M;, - ,Mkg] |diag| softmax | —= : ® Iy : ) (2D
M3 Mix
where @ denotes the Kronecker product, i.e., the block matrix defined by
AyB -+ Ay, B
AR B = : : (22)
ApB - ApnB

Proof. Let u be the multinomial random variable such that z = z,,, so that v has probability mass
function 7. Then by the law of total probability, we have

K
Valogq(z) = Valog Y gl | k)my (23)
k=1

_ ZkK:I kawQ(m ‘ k)
e a(@ | k)

where ¢(x | k) is the conditional density of & given the event {u = k}. To compute this quantity,
note that conditional on the value of u, we have

(24)

x =2z, +ow~N(0,2, +0°1,). (25)
Thus we have
1 1
x| k)= exp| —=x*(By, + o1, _1:1:), (26)
@10 = e p(~5e =+ 0L

This gives
Veq(@ | k) = —q(x | k) - (Bp + 0*La) . 27)
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Putting this all together, we get
V2 log g(x) (28)
_Zszl q(z | k)my - (B + 02 1) '

- SLale | K)m =
_ Eszl 7 det (2, + 02I,)~1/? exp(—%x*(Ek + UQId)_lsc) (B + 0?0yt 30)
25:1 T det(Ey, + 020) "2 exp(—ia* (T + 021,) ') '
Now define My, = (3, + 02I;)~'/2. With this notation, we have
V. log q(a) Dy w;;(det(Mk) exp(—La* My Mjx) - M}, Mj an
> i1 Tk det(My,) exp(— s@* M, M} x)
_ ke me det(My) exp(— 5| Mial}3) - MM -

Zszl 7y, det(M,) exp (— 2 x* M, M x)
Given our assumption that each 7, det(Mj) is the same, we have

Vz log q(x) (33)
S m det(My) exp(— 5| M) - My M

= 34)
i me det(My) exp(—3 | M |3)
K * *
o _Zk:1 eXp(féHMkm”%) 'MkMkm (35)
= R -
k1 exp(—3 [ M)
K | M|l
=_ Z e}, softmax —3 MM x (36)
=1 | M |3
| M 13 Mix
= —[My,...,Mg] |diag| softmax | —= ® Iq (37)
M |13 Myx
O

Now we provide a final justification for the result cited in Section 2.2.

Approximation 2. In the setting of Proposition 1, diagonalize 3y, = U A, U} where Uy, € RéxP
is orthogonal and Ay, ~ 0 € RP*? is diagonal.’ Then we have the approximation

IUT |3 Uiz
E[z | ] = [Us,...,Uk] |diag| softmax 257 ® I, (38)
Ukl Uk
Proof. We have
K M|
Vazlogg(x) = — Z e}, softmax —3 MM x (39)
k=t | M]3
K lo M |3
=_ ; e}, softmax 552 * ; MM x (40)
- lo M ||3

This assumption can be easily relaxed to Ay > O for all k, but requires some more notation to handle, and
the form of the solution does not change. Thus we handle the case where all matrices are full rank for simplicity.
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K )13 = llo M3
=— Zez softmax 592
k=t ]| — [l M |3

Now define P, = I; — 0 M}, and let U, ,ﬁ- € R4*(d=P) pe an orthogonal complement of Uj. Then
we have

M, M; . (41)

Pk :Idfde (42)
=L, — 0 (S +02L,) ? 43)
—-1/2
A, O U;
=I,—0 ([Uk Uj| [ 0‘“ 0] [(ka)*] +021d> (44)
— /2
Ap+02I, 0 U; '
_ _ € k p k
no (o o P L0 ][] @
L | [o(Ay +02I,) 712 0 U
=1 [U}C Uk' ] l: 0 o- (0-2)_1/2Id7p (UkL)* (46)
o o L (O'_ij;C +Ip)_1/2 0 U;:
=I1,— [U. U} { 0 L,| |wh (47)
_ 1[I = (672A + 1,)7% 0 U;
~[oe | X ol @)
I, 0 U;
~ 17 [4p E
~ U, UF| [0 0} {(sz)*} (49)
=U,U;. (50)
Thus P, is approximately a projection when o is small. Under this algebraic relation, we have
Vg log q(x) (51)
K ) |3 — llo My |3
=— Z e} softmax 292 : MMz (52)

=1 zll5 — llo Mjz|3
| x O [l = 12— Puyal
== ;ez softmax 252 ) o (Ia — Py)(Ia — Py)'x (53)
=1 lz]|5 = |(Ia — Px)*z||3
K | Pfel3
~ 1 * 1 . *
N-— ,; e}, softmax 357 *: . (Ig— Py)(Ig— Py)'x 54
=1 _”PK:C”Z_
K ||P1*33||%
~ 1 * 1 . *
- I; ej softmax 352 o (Ig— Py)'x (55)
- _||PK5”||2_
= K 1 ||P1*33||% 1K 1 ||P1*33||§
== I; e}, softmax 352 * . + = ; e}, softmax 292 * ) P x
- _||PK$||2_ - | Prx|3
(56)
K [ Pya||3 ]
Lr+ =3 e soft ! : Py (57)
=——xz+ — e} softmax | — : T
o2 o2 = k 202 S e k
= 1 Pr||3]
K U |3
L +1Z* ft ! : U,U; (58)
~N——x+ — e} softmax | — : T
o2 o2 — k 2052 K EYk
= I Uk 3]
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. . U713 Uiz
=——ax+ — [Uy, - ,Uk] |diag| softmax | — : ® I, : (59)
o? o? 202 S e :
Ukl 1 [Uk=
Plugging this into Tweedie’s formula, we have
IUT |3 (Ui
Elz | ] = [Us,--- ,Uk] |diag| softmax 5 : ® I, : (60)
IUx=|3 Uiz
O

Remark 3. Although Approximation 2 is stated as an approximation rather than as a proposition, we
believe it should be possible without too much extra work to convert it into a statement of asymptotic
equivalence as ¢ — 0 (in particular, holding for o below the smallest (nonzero) eigenvalue of any
3k. Most approximations taken in the derivation of Approximation 2 can immediately be turned into
asymptotic claims; the only slightly delicate point is treating the softmax, which can be accomplished
using standard “high temperature” convergence behavior of the softmax function (in particular, as
o — 0 in our expressions, the softmax concentrates on the “best head”).

A.2 Companion to Section 2.3

We again wish to re-iterate the core contribution of our approach in Section 2.3. The application of a
compression perspective to representation learning has been discussed before, for example in the line
of maximal coding rate reduction works [46]. In Section 2.3, we provide the following contributions
and developments to this perspective:

* We propose a generalized coding rate function R°(-; U[g]) which measures the coding rate
with respect to a set of subspaces U|g as opposed to a set of classes (as in [46, 54]), making
the underlying formulation unsupervised.

* We then show how if we adopt the framework of alternating minimization of the sparse rate
reduction objective, then unrolling the first alternating step — gradient descent on this coding
rate objective — nearly exactly recovers the common multi-head attention mechanism found
in transformer networks (except that the query/key/value operators are all the same operation
U} now, which we interpret as projection onto a single subspace).

In the process of the second contribution, and in the following proofs, we make some simple
approximations and technical assumptions. The validity of these assumptions may be explored, and
the approximations refined, altogether providing a more complex (and possibly more performant)
resulting self-attention like operator. For the sake of technical clarity and simplicity in this work, we
make perhaps the simplest possible choices. As a result, we do not claim that our network is optimally
designed, but rather that the principles we develop in this work (compression, denoising, sparsification,
unrolled optimization) can provide the backbone for far superior and more interpretable network
architectures in the future on sundry tasks. As it is, with our straightforward, simple, and interpretable
design, we still obtain meaningful conceptual results and very solid empirical performance.

We now give the derivation of the approximation alluded to in Section 2.3.

Approximation 4. Let Z € RN have unit-norm columns, and U k] = (U, ..., Uk) such that
each Uy, € RY*? is an orthogonal matrix, the (U;f)kK:1 are incoherent, and the columns of Z
approximately lie on U,i{:l Span(Uy). Let v = . Let > 0. Then

Z — HVZRC(Z | U[K]) =~ (1 — Ii’y)Z + /Q")/MSSA(Z|U[K]), (61)
where as in Section 2.3 we have
$84(Z|Uy) = (Uy; Z) softmax((U Z2)" (U Z)), (62)

SSA(Z|UY)

SSA(Z|Ux)
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where softmax(+) is the softmax operator (applied to each column of an input matrix), i.e.,

et
1

softmax(v) = =—— | * |, (64)

D€V on

e
softmax([vy, ..., vk]) = [softmax(vy),...,softmax(vg)]. (65)
Proof. According to (9), the gradient V z R°(Z; U, (K]) 1s

V2zR(Z;Ux)) VZUkUk I+~U2) (U Z) ™" (66)

Notice that according to [54], the gradient is precisely the residual of a ridge regression for each
(projected) token Uj; z; using other projected tokens U} z; as the regressors, hence being the residual
of an auto-regression.

However, as we have seen in the work of ReduNet [54], computing the inverse
I +~U;2) (UkZ)) ~! can be expensive. Hence for computational efficiency, we may approxi-
mate it with the first order term of its von Neumann expansion:

-1
V2R (Z; Upk)) = Z U Z(1+(U; 2) (Ui 2)) (67)
K
~ Y U Z(T (U 2)"(U; 2)) (68)
k=1
K
—1 > U(UiZ - Ui Z1(U; 2)" (U 2)) (69)
k=1

Notice that the term (U} Z)* (U} Z) is the auto-correlation among the projected tokens. As the
tokens Z may be from different subspaces, we would prefer to use only tokens that belong to the
same subspace to regress and compress themselves. Hence we may convert the above correlation
term into a subspace-membership indicator with a softmax operation, whence (69) becomes

K
VZR(Z:Uq) ~ 7> Uk(UpZ - Ui Z((U; 2) (U; 7)) (70)
k=1

Q

'yZUkUkZ ~ ZUk(UkZsoftmax((UkZ)*(U,jZ))) (71)
k=1 =

Then, we can rewrite the above approximation to the gradient of R¢ as:

K K
VzR(Z;U)) =Y UUSZ — 5> Uy (U} Z softmax((U} 2)" (U} Z)))  (72)
k=1 k=1
K K
=vY UU;Z - ) UiSSA(Z | Uy) (73)
k=1 k=1
x SSA(Z | Uy)
k=1 SSA(Z | Ug)
~vZ
SSA(Z | Uy)
~vZ —~*[Uy, - ,Uk] . (75)
SSA(Z | Ug)
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Thus the gradient descent step with learning rate x > 0 gives
SSA(Z|Uy)
Z —kVzRY(Z |Ugy) = (1 — k7)Z + ky* [Uy,..., Uk] : . (76)
SSA(Z|Uk)

A.3 Companion to Section 2.4
We again wish to re-iterate the core contribution of our approach in Section 2.4.

* Within the framework of alternating minimization of the sparse rate reduction objective, we
show that the second alternating step — gradient descent on the overall coding rate plus a
sparse regularization term — has heuristic connections to a particular LASSO optimization.

* We show that the unrolling of the proximal gradient step to solve this LASSO optimization
resembles the MLP which immediately follows the self-attention layer within transformer
blocks.

In the main text, our connection between the second step of the alternating minimization and the
LASSO optimization was high-level and heuristic. In some sense, the choice to pose the minimization
step as a LASSO was a simple, reliable, and interpretable choice which works well in practice, but
is nonetheless not backed up by rigorous theoretical justification. In the following subsection, we
provide a mathematical justification for a reformulation of the minimization step using a majorization-
minimization framework. We further show that the associated unrolled optimization step bears a
strong resemblance to the ISTA step. This confirms our earlier discussion — we took the simplest
possible choice in designing CRATE, but by more rigorous derivation we can uncover alternative
operators which nonetheless have the same conceptual function and may perform better in practice.

Assumptions. In this section, we present a rigorous optimization analysis of an incremental
minimization approach to the objective (13). We will show that under two simplifying assumptions,
namely

1. The columns of Z‘*1/2 are normalized, in the sense that diag((Z‘+1/2)* Z+1/2) = 1,0

2. We have d > N,'! and the columns of Z“*1/2 are orthogonal, so that (Z*+1/2)* Zz+1/2 =
I.12

the approach leads to an update iteration that is equal to a slightly simplified version of the ISTA
block (17). We see this as a justification for our derivation in Section 2.4, which obtained the ISTA
block by introducing an additional simplifying assumption on the distribution of the data at layer ¢.

Analysis. Following (16), we will consider the natural relaxation of the £y “norm” to the £* norm,
and incorporate a nonnegativity constraint. Consider the objective

1
¢(Z) = M|Zl + x(220}(Z) — 5 log det (I + aZ”Z), 7

R(Z)

where Z € RN and o = d/N¢e?, and X{z>0} denotes the characteristic function for the set of
elementwise-nonnegative matrices Z. As in Appendix A.2, we calculate

VzR(Z)=aZ(I+az*Z)"". (78)

!0This is a natural assumption in transformer-type architectures such as CRATE due to the use of LayerNorm
blocks—although these blocks (indeed, as we use them in CRATE) include trainable mean and scale offsets as
well as an additional mean subtraction operation [63], they are initialized to have zero mean and unit norm,
hence this assumption corresponds to an analysis of the network at its initialization.

"This assumption is without loss of generality, as we will see in the analysis below. The reason is that Z* Z
and Z* Z have the same nonzero eigenvalues regardless of the shape of Z, which implies that log det(I +
aZ*Z) = logdet(I + «ZZ™). In particular, interpreting the norms appropriately (with a slight abuse of
notation), we have p(Z) = p(Z™), so for the purposes of analysis we can always proceed as though Z is a tall
matrix (as long as we do not use any special properties of « in our derivation).

>This assumption is strictly stronger than the previous one, and strictly stronger than an assumption of
incoherence on the columns. It corresponds to the representation Z+1/2 being non-collapsed, which we expect
to hold at initialization due to the projections U| k) being random.
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We consider an incremental optimization scheme for the highly nonlinear and nonconvex objective ¢.
Following Section 2.3, we optimize locally at a “post-compression” iterate Z‘+1/2. We follow the
standard proximal majorize-minimize framework [69] for incremental/local optimization: this begins
with the second-order Taylor expansion for the smooth part of ¢ in a neighborhood of the current
iterate Z¢+1/2:

R(Z) — R(zé-‘rl/Q) + <VZR(Z€+1/2),Z o Z€+1/2>

+ /01(1 - t)<Z — 212 N2R(Z,) (z - z‘+1/2)> dt, ™

where for any Z € RN, Z, = tZ*+1/2 4 (1 — t)Z. The proximal majorization-minimization
approach alternates two steps to minimize ¢:

1. First, use assumptions on Z‘t1/2 to derive an upper bound on the operator norm of the
Hessian V2 R(Z) over the effective domain of the optimization problem. We will write L
for this (uniform) upper bound. This yields a quadratic upper bound for the smooth part of
the objective ¢.

2. Then, alternately minimize the smooth part of the quadratic upper bound as a function of Z,
and take a proximal step on the nonsmooth part. It can be shown [69] that corresponds to
the iteration

1
+
zZT = pI‘OX%(H “Nit+xizz0}) (Z + LVZR(Z)> (80)

In the alternating minimization setting of this paper for optimizing (1), we only take one
such step, starting at Z¢+1/2,

We will instantiate this program below, showing quantitative error bounds related to our assumptions
above as necessary. Rather than directly applying the iteration (80), we will derive it below under our
aforementioned assumptions.

Starting at (79), our first task is to upper bound the quadratic residual. This corresponds to estimating
<Z _ ZV2 2R(Z,) (Z - Z“1/2>> 81)

< sup HVQR(Zt)H

Z- Zf+1/2H2 (82)
te[0,1] F

202
with Cauchy-Schwarz. Using Lemma 5, we can estimate the operator norm term in the previous
bound in terms of properties of Z‘*1/2. We need to bound

a sup ||(A—aZ(I+aZ;Z) " (ZiA+ A Z)) (I +aZfZ) "
lafe<t

(83

and Lemma 6 gives that this term is no larger than 9«/4 for any Z and any ¢. With this estimate and
(79), we have a quadratic upper bound for —R(Z):

2

“R(Z) < —R(Z"*+V/?) ¢ <7VZR(Z”1/2),Z _ Z£+1/2> n %IHZ _ ZHI/QHF' (84)
Meanwhile, by our assumptions above, we have

—VzR(ZHl/Z) — _azZtt/2 (I+ aI)_1 _ _%Zﬂl/z_ (85)

We now minimize the preceding quadratic upper bound as a function of Z. Differentiating, the
minimizer Zy, is calculated as

4
Zops = (1 4+ — | Z0H1/2 86
" ( +9(1+a)) ’ (59
and it is well-known that the proximal operator of the sum of x{z>0y and A|| - ||; is simply the

one-sided soft-thresholding operator [69]

prox (Z) = max{Z — \1,0}, 87

X{z>o0}+Al -1
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where the maximum is applied elementwise. As in Section 2.4, we may write this elementwise
maximum simply as ReLU. Thus, one step of proximal majorization-minimization under our

simplifying assumptions takes the form
4
) ZH12 1) ) (88)

Z*t = ReLLU ((1 +
[e]e"

9(1 + )

Finally, we point out one additional elaboration which introduces the dictionary D that appears in the
ISTA block in Section 2.4. Notice that for any orthogonal D, one has R(DZ) = R(Z) for every Z.
This symmetry implies equivariance properties of VzR(Z) and V4 R(Z): for every Z and every A
and every orthogonal D,

DVzR(Z)=VzR(DZ), (89)
(DA,V%4R(Z)(DA)) = (A,V4R(DZ) (A)). (90)

Hence the quadratic Taylor expansion (79) can be written equivalently as

R(Z) = R(D"ZV?) + (VzR(D 21112, Z - 741/2)
1 91
+ / (1- t)<Z — Z'*\/2 V2R(D* Z,) (Z - Z“1/2)> d,
0

for any orthogonal D. The significance of this is that we have obtained an expression equivalent
to (79), but with Z*+1/2 replaced by D* Z*+1/2; moreover, because our approximation arguments
above are not affected by left-multiplication of Z*'/2 by an orthogonal matrix (this operation
does not change the norms of the columns of Z ¢+1/2 or their correlations, and hence the matrix’s
incoherence), we can apply exactly the same line of reasoning above to obtain that an equivalent
proximal majorization-minimization iteration is given by

Z'* = ReLLU ((1 + ) D*ZzH1/2 _ 4A1) , (92)

9(1 + ) 9
for any orthogonal dictionary D. This gives an update quite similar to the ISTA block (17) in the
case where the dictionary used in Section 2.4 is orthogonal, but without a skip connection.

We thus obtain a natural white-box version of this part of the architecture, along with the natural

interpretation that its purpose is to sparsify the compressed tokens Z*+1/2 in a (learnable) dictionary,
which accords with recent empirical studies [75].

Other architectures? As we mentioned at the start of this section, the preceding derivation
is performed in the most elementary possible setting in order to demonstrate the majorization-
minimization approach for layer design. More precise approximations or assumptions may lead to
superior layer designs that better optimize the target objective (1) (and in particular (13)). We mention
two here:

1. Beyond exactly-incoherent features: our derivations above assumed that the incoming
representations Z‘t1/2 were already maximal for the expansion term R in (13). It is
desirable to obtain a ‘perturbative’ derivation, which applies in cases where Z*+1/2 is not
fully orthogonal, but instead near-orthogonal, in particular incoherent [69]. The derivations
above can be adapted to this setting; the perturbation bounds become slightly more delicate,
and the ultimate layer (92) changes to involve additional normalization.

2. Beyond orthogonal dictionaries: The symmetries of the expansion term R in (13) may be
followed to lead to a pair of dictionaries D and D’ and an objective that sparsifies DZ D’.
This type of transformation is suggestive of popular architectures that mix over tokens [53,
66], however we consider the simpler form D Z in this work. In addition, we have focused
for simplicity on orthogonal dictionaries D; as in the previous bullet, one may consider
in a similar way dictionaries D which are complete and near-orthogonal. Adapting the
derivation to overcomplete dictionaries is an interesting future direction that we expect to
improve the scalability of CRATE; one avenue to achieve this could be increasing the number
of projections U/ and their embedding dimensions.
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A.3.1 Auxiliary Lemmas
Lemma 5. Consider the function

R(Z) = %logdet I+aZ*Z), 93)
where o > 0 is a constant. Then we have
VzR(Z)=aZ(I+aZ*Z)"", (94)
and the Hessian operator V4 R(Z): RN — RIXN satisfies that for any A € RN,
VZR(Z)(A) (95)

—aA(I+aZ*Z) ' —a?Z(T+aZ"Z)  (Z"A+A*Z) I +aZ*Z)" .  (96)

Proof. The gradient calculation follows from [46], for example. For the Hessian, we use the usual
approach to calculating derivatives: if A is any matrix with the same shape as Z and ¢t > 0,

d
VLR(Z)(A) = 5 [t — VzR(Z +tA)], (97)
t=0
valid since R is smooth. We have
VzR(Z +tA)
=a(Z +tA) (I +o(Z +tA)(Z +tA)) "

=a(Z+tA) I +aZ*Z +at|Z*A+ A Z +tA*A]) !

-1
—a(Z +1A) (I tat(I+aZ*Z) ' [Z°A+ A Z + tA*A]) (I+az°Z)"
> k
=a(Z +tA) (Z(—at)k ((I +aZ*Z) N [Z*A+ AT Z + tA*A]) ) (I+az*Z)",
k=0

where in the fourth line we require that ¢ is sufficiently close to 0 in order to invoke the Neumann
series. First, notice that the term involving A* A does not play a role in the final expression: after
we differentiate with respect to ¢ and take a limit ¢ — 0, terms arising due to differentiation of
t — tA* A go to zero, because whenever the summation index k& > 0 we have a term (—at)” that
goes to zero as t — 0. We thus obtain with the product rule

9 [t — VZR(Z +tA)] (98)

at|,_,
—aA(I+aZZ) ' —a?ZI+0aZ*Z) " (ZA+A*Z) I +aZ*Z) . (99)
O

Lemma 6. One has

sup [[(A —aZ(I+aZiZ) (ZIA+AZ)) T +aZ Z) |, < (100)

lAllr<1

= ©o

Proof. Fix A satisfying ||Al|r < 1. By the triangle inequality,
(A = aZ(I+aZiZ) (ZiA+AZ) T+ aZ Z) ', (101)
<||AT +aziZ) |+ al|Ze(I + a2 Z) (ZF A+ A Z)(T + aZ Zy) |, (102)
For the first term, we note that
AT +azZ; Z)7 |, = |(T+aZ; Z,)" @ I) vee(A)|| (103)
and since (I + aZ;Z;)~! < I, we obtain from Cauchy-Schwarz'?
AT +aZ; Z) | <Al (104)

BRecall that the eigenvalues of a Kronecker product of symmetric matrices are the tensor product of the
eigenvalues (with multiplicity).
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We can use a similar idea to control the second term. We have from the triangle inequality

|Z:(I+aZ; Z) N (Z; A+ A Z)T +ZZ) ||, (105)
<||Z(I+aZ;Z) ' Z; A + aZ Z) |, (106)
+ [T+ az;Z,) ' Z; AL + aZ; Z,) 7 ZF ||, (107)
For the first term, we have
|Z:(I+aZ;Z) " Z; AT + Z! Z) 7| (108)
= (I +aziZ) ' @ Z(I+aZ; Z,) " Z}) vec(A)||, (109)
< Omax (T + aZf Zy) ™) Omax (Ze(I + 0 Z{ Z0) ' Z7) | Allr (110)
<Al (a1

The last estimate follows from a computation using the SVD of Z,. Meanwhile, we have for the
second term by a similar argument (using the fact that the singular values of A and A* are identical
for any matrix A)

H(I +aZZ,) ' ZF AT + aZ;‘Zt)’lzt*HF < Omax (I + ozZt*Zt)*IZ;“)2 IAllr  (112)
1
< —]lA 113
< —lAlr, (113)
where once again the estimate follows from a computation involving the SVD of Z; (together with
the fact that the function o — o /(1 + ao?) is bounded on o > 0 by 1/(2+/c)). Putting it together,
we have obtained

9
(A —azi(I +az;2)  (Zi A+ A" Z,) (I +aZiZ) |, < JlIA]lF. (114)

which gives the claim after taking suprema.
O
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B Additional Experiments and Details

In this section, we provide details about our experiments, and report the results of additional experi-
ments that were not covered in the main text. CRATE takes arguably the most basic design choices
possible, and so we do not attempt to directly compete with state-of-the-art performance from heavily
engineered and empirically designed transformers. The results of our experiments are meant to
convey a few core messages:

* Despite not being engineered to compete with the state-of-the-art, CRATE performs strongly
on large-scale real-world datasets, including classification on ImageNet-1K. CRATE also
achieves strong transfer learning performance.

* Because our model is designed through unrolled optimization of a well-understood objective,
each layer is interpretable. In particular, we can analyze the performance of CRATE, as well
as design network modifications, on a layer-wise basis. This is powered by an arguably
unparalleled level of insight into the role of each operator in our network.

* We make the simplest possible choices during the design of CRATE, but these can be changed
easily while keeping the same framework. We study a few modifications later in this section
(Appendix B.4) and show that they do not significantly hurt empirical performance, but
emphasize here that there is significant potential for improvement with different architecture
choices (and in particular a different theoretical analysis).

B.1 Implementation details

In this subsection, we provide more details for implementing CRATE on vision tasks.

B.1.1 Architecture of CRATE

Architectural modifications. Compared to the conceptual architecture proposed in Sections 2.5
and 3, we make the following change for the sake of implementation simplicity:

* In the compression step, replace the term % [Ui,...,Uk] in the MSSA operator with
another trainable parameter W € R?*PX | Thus the MSSA block becomes

SSA(Z | U)
MSSA(Z | U[K],W)iW . (115)
SSA(Z | Uk)

PyTorch code for CRATE. We provide PyTorch-style code for implementing our proposed network
architecture. Algorithm 1 defines the overall architecture, Algorithm 2 and Algorithm 3 contain
details for the transformer block, self-attention block (MSSA-block), and MLP block (ISTA-block).

B.1.2 Training Setup

Pre-training on ImageNet-1K. We apply the Lion optimizer [71] for pre-training both CRATE and
ViT models. We configure the learning rate as 2.4 x 10~%, weight decay as 0.5, and batch size as
2,048. We incorporate a warm-up strategy with a linear increase over 5 epochs, followed by training
the models for a total of 150 epochs with cosine decay. For data augmentation, we only apply the
standard techniques, random cropping and random horizontal flipping, on the ImageNet-1K dataset.
We apply label smoothing with smoothing parameter 0.1. One training epoch of CRATE— Base takes
around 240 seconds using 16 A100 40GB GPUs.

Fine-tuning. We fine-tune our pre-trained CRATE and ViT models on the following target datasets:
CIFAR10/CIFAR100 [10], Oxford Flowers-102 [7], Oxford-IIIT-Pets [16]. We also evaluate our
pre-trained models on the commonly used ImageNet Real [36] benchmark. For each fine-tuning
task, we use the AdamW optimizer [26]. We configure the learning rate as 5 x 10~°, weight decay
as 0.01, and batch size to be 512. To allow transfer learning, we first resize our input data to
224. For data augmentations, we also adopt several standard techniques: random cropping, random
horizontal flipping, and random augmentation (with number of transformations n = 2 and magnitude
of transformations m = 14).'

“https://github.com/huggingface/pytorch-image-models/blob/main/timm/data/auto_
augment . py
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Algorithm 1: PyTorch-style pseudocode for CRATENetwork

# Class ViT_dictionary definition
CRATE:
# initialization
def init(self, image_size, patch_size, num_classes, dim, depth, heads,
mlp_dim, pool = ’cls’, channels = 3, dim_head = 64, dropout = 0.,
emb_dropout = 0.):
# define patch, image dimensions and number of patches
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
num_patches = (image_height // patch_height) * (image_width //
patch_width)
patch_dim = channels * patch_height * patch_width

# define patch embedding, positional embedding, dropout, and transformer
self.to_patch_embedding = Sequential (Rearrange, LayerNorm(patch_dim),
Linear (patch_dim, dim), LayerNorm(dim))

self .pos_embedding = Parameter (random(1l, num_patches + 1, dim))
self.cls_token = Parameter(random(1, 1, dim))

self .dropout = Dropout (emb_dropout)

self.transformer = Transformer (dim, depth, heads, dim_head, mlp_dim,
dropout)

# define pooling, latent layer, and MLP head

self.pool = pool

self.to_latent = Identity()

self .mlp_head = Sequential(LayerNorm(dim), Linear(dim, num_classes))

# forward pass
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = shape(x)
cls_tokens = repeat(self.cls_token, 1 1 d ->b 14d’, b =Db)
x = concatenate((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
= self.dropout(x)
= self.transformer(x)
mean(x, dim = 1) if self.pool == ’mean’ else x[:, 0]
= self.to_latent(x)
return self.mlp_head(x)

X
X
X
X

Algorithm 2: Pytorch Style Pseudocode for Transformer Block in CRATE

# Class Transformer definition
class Transformer:
# initialization
def init(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
# define layers
self.layers = []
self.depth = depth
for _ in range(depth):
self.layers.append([LayerNorm(dim, Attention(dim, heads, dim_head,
dropout))])
self.layers.append([LayerNorm(dim, FeedForward(dim, mlp_dim,
dropout))])

# forward pass
def forward(self, x):
for attn, ff in self.layers:

x_ = attn(x) + x
x = ff(x_)
return x
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Algorithm 3: Pseudocode for Attention and FeedForward

# Class FeedForward definition
class FeedForward:
# initialization
def init(self, dim, hidden_dim, dropout = 0., step_size=0.1, lambd=0.1):
self .weight = Parameter(Tensor(dim, dim))
init.kaiming_uniform_(self.weight)
self.step_size = step_size
self.lambd = lambd
# forward pass
def forward(self, x):
x1 = linear(x, self.weight, bias=None)
grad_1 = linear(x1l, self.weight.t(), bias=None)
grad_2 = linear(x, self.weight.t(), bias=None)
grad_update = self.step_size * (grad_2 - grad_l) - self.step_size *
self.lambd
output = relu(x + grad_update)
return output
# Class Attention definition
class Attention:
# initialization
def init(self, dim, heads = 8, dim_head = 64, dropout = 0.):
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head **x -0.5
self.attend = Softmax(dim = -1)
self.dropout = Dropout (dropout)
self.qkv = Linear(dim, inner_dim, bias=False)
self.to_out = Sequential(Linear(inner_dim, dim), Dropout(dropout)) if
project_out else nn.Identity()
# forward pass
def forward(self, x):
w = rearrange(self.qkv(x), b n (hd) -> b hn d’, h = self.heads)
dots = matmul(w, w.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = matmul(attn, w)
out = rearrange(out, ’b hnd ->bn (h d)?)
return self.to_out(out)
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B.2 Experimental Results

In this subsection, we provide additional experimental results on CRATE, including layer-wise
measurements, visualizations, as well as ablation studies.

B.2.1 Layer-wise Evaluation and Visualization

Layer-wise evaluation of compression and sparsity. Similar to Figure 3, we conduct the layer-
wise evaluation of compression term and sparsity for CRATE-Tiny, CRATE-Base, and CRATE-Large.
We observe similar behavior as mentioned in Section 3.1: both the compression term and the sparsity

term improves as the layer index increases.
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Figure 5: Left: The compression term R°(Z 1/ 2) of the MSSA outputs at different layers. Right: the sparsity
of the ISTA output block, || Z°*|o/(d - N), at different layers.
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Visualizing layer-wise token representations. In Figure 6, we visualize the token representations
Z* at different layers £ € {1,...,12}. We provide more results evaluated on other samples in
Appendix B.2.2.

Visualizing layer-wise subspaces in multi-head self-attention. We provide the visualization of
U[EK] in Figure 7.
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Figure 6: Visualizing layer-wise token Z* representations at each layer £. To enhance the visual clarity, we
randomly extract a 50x 50 sub-matrix from Z~ for display purposes. (Model: CRATE-Tiny)
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Figure 7: We visualize the [UY, ..., Ug] [UY, ..., Uk] € RPX*PK g different layers. The (4, j)-th block in
each sub-figure corresponds to (U )*Uf for ¢, j € [K] at a particular layer £. To enhance the visual clarity, for
each subspace U;, we randomly pick 4 directions for display purposes. (Model: CRATE-Tiny)
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B.2.2 Additional Layer-wise Visualization

We provide more results of the layer-wise token representation visualization on other samples in
Figure 8, Figure 9, Figure 10, and Figure 11 (Model: CRATE-Base).
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Figure 8: Visualizing layer-wise token Z* representations at each layer £. To enhance the visual clarity, we
randomly extract a 50x 50 sub-matrix from Z" for display purposes. (Sample I)
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Figure 9: Visualizing layer-wise token Z* representations at each layer £. To enhance the visual clarity, we
randomly extract a 5050 sub-matrix from Z~ for display purposes. (Sample 2)
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Figure 10: Visualizing layer-wise token Z* representations at each layer ¢. To enhance the visual clarity, we
randomly extract a 50x 50 sub-matrix from Z* for display purposes. (Sample 3)
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Figure 11: Visualizing layer-wise token Z* representations at each layer ¢. To enhance the visual clarity, we
randomly extract a 50x 50 sub-matrix from Z* for display purposes. (Sample 4)
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B.3 CRATE Ablation

Hyperparameters of CRATE. In Table 2, we present evaluation of CRATE trained with various
parameters. More specifically, we investigate the effect of number of epochs, weight decay, learning
rate, step size (1) and the regularization term (\) in ISTA block. As shown in Table 2, CRATE
demonstrates consistently satisfactory performance across a diverse range of hyperparameters.

Table 2: Top 1 accuracy of CRATE on various datasets with different architecture design variants when trained
on ImageNet.

Model | epoch weight decay 1r | 7 (ISTA) A(ISTA) | ImageNet
CRATE-B | 150 (default) 0.5 (default) 24x107" | 0.1 0.1 \ 70.8
CRATE-B | 150 0.5 24x107* | 002 0.1 \ 70.7
CRATE-B | 150 0.5 24 x 107" | 0.5 0.1 \ 66.7
CRATE-B | 150 0.5 24x107" | 0.1 0.02 \ 70.8
CRATE-B | 150 0.5 24x107" | 0.1 0.5 | 70.5
CRATE-B | 90 0.5 24x 107" | 0.1 0.1 \ 69.5
CRATE-B | 300 0.5 24x107" | 0.1 0.1 \ 70.9
CRATE-B | 150 1.0 24x107" | 0.1 0.1 | 70.3
CRATE-B | 150 0.05 24 x 107" | 0.1 0.1 \ 70.2
CRATE-B | 150 0.5 L8 x107* | 0.1 0.1 \ 70.2
CRATE-B | 150 0.5 1.2x 107" | 0.1 0.1 \ 70.3

B.4 Exploring Architecture Variants

In this section, we explore the two following alternative architectures. One architecture involves a
modification to the attention mechanism, while the other involves a modification to the sparsification
mechanism. Again, we re-emphasize that these choices, although principled, are entirely modular and
the choices we make here still lead to very simple architectures. A more sophisticated analysis may
lead to different, more complicated architectures that perform better in practice. The architectures we
experiment with are:

» Compression-inspired attention mechanism: revert the change in (115). That is, the attention
mechanism implements (11) and (12) directly.

* Majorization-minimization proximal step sparsification: instead of (17), implement (92).

We obtain the following classification results in Table 3. After conducting additional simplifications
to the network architecture (i.e., imposing additional constraints to the network architecture design),
we discover that CRATE maintains reasonable performance on ImageNet-1K.

Table 3: Top 1 accuracy of CRATE on various datasets with different architecture design variants when trained
on ImageNet.

Model MSSA-block ISTA-block | ImageNet
CRATE-B default default \ 70.8
CRATE-B Eq. (11) and (12) default 63.3
CRATE-B default Eq. (92) 68.6

33



	1 Introduction
	2 Technical Approach and Justification
	2.1 Objective and Approach
	2.2 Self-Attention via Denoising Tokens Towards Multiple Subspaces
	2.3 Self-Attention via Compressing Token Sets through Optimizing Rate Reduction
	2.4  MLP via Iterative Shrinkage-Thresholding Algorithms (ISTA) for Sparse Coding 
	2.5 The Overall White-Box crate Architecture

	3 Experiments
	3.1 In-depth Layer-wise Analysis of crate
	3.2 Evalutions of crate on Large Real-World Datasets and Tasks

	4 Conclusion
	A Technical Details from sec:approach
	A.1 Companion to sub:denoising
	A.2 Companion to sub:compression
	A.3 Companion to sub:sparse
	A.3.1 Auxiliary Lemmas


	B Additional Experiments and Details
	B.1 Implementation details
	B.1.1 Architecture of crate
	B.1.2 Training Setup

	B.2 Experimental Results
	B.2.1 Layer-wise Evaluation and Visualization
	B.2.2 Additional Layer-wise Visualization

	B.3 crate Ablation
	B.4 Exploring Architecture Variants


