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Abstract

We consider the problem of simultaneously clustering
and learning a linear representation of data lying close to a
union of low-dimensional manifolds, a fundamental task in
machine learning and computer vision. When the manifolds
are assumed to be linear subspaces, this reduces to the clas-
sical problem of subspace clustering, which has been stud-
ied extensively over the past two decades. Unfortunately,
many real-world datasets such as natural images can not
be well approximated by linear subspaces. On the other
hand, numerous works have attempted to learn an appro-
priate transformation of the data, such that data is mapped
from a union of general non-linear manifolds to a union of
linear subspaces (with points from the same manifold be-
ing mapped to the same subspace). However, many existing
works have limitations such as assuming knowledge of the
membership of samples to clusters, requiring high sampling
density, or being shown theoretically to learn trivial repre-
sentations. In this paper, we propose to optimize the Maxi-
mal Coding Rate Reduction metric with respect to both the
data representation and a novel doubly stochastic cluster
membership, inspired by state-of-the-art subspace cluster-
ing results. We give a parameterization of such a repre-
sentation and membership, allowing efficient mini-batching
and one-shot initialization. Experiments on CIFAR-10, -20,
-100, and TinylmageNet-200 datasets show that the pro-
posed method is much more accurate and scalable than
state-of-the-art deep clustering methods, and further learns
a latent linear representation of the data.*

1. Introduction
1.1. Clustering: from Linear to Non-linear Models

Clustering is a fundamental problem in machine learn-
ing, allowing one to group data into clusters based on as-
sumptions about the geometry of each cluster. As early
as the 1950s, the classic k-means [43, 23, 30, 46] algo-
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Figure 1: (a) Input data X where 100 points in green lie
on a curve and 100 in blue lie close to a point. (b) Stage
0: Features fg(X) from a neural network fg whose pa-
rameters 0 are randomly initialized. (c) Stage 1: Features
after self-supervised learning. (d) Stage 2: Features further
improved by the proposed Manifold Linearizing and Clus-
tering (MLC).

rithm emerged to cluster data that concentrate around dis-
tinct centroids, with numerous variants [8, 2, 4] follow-
ing. This assumption of distinct centroids was later gen-
eralized in subspace clustering methods, which aim to clus-
ter data lying close to a union of low-dimensional linear
(or affine) subspaces®. This motivated numerous lines of
research in the past two decades, leading to various formu-
lations [20, 22, 44, 41, 28, 75, 40, 33] with efficient algo-
rithms [76, 75, 15] and theoretical guarantees on the cor-
rectness of the clustering [58, 59, 71, 72, 36, 63, 74, 55, 69].
Subspace clustering has been used in a wide range of appli-
cations, such as segmenting image pixels [45, 70, 42], video
frames [65, 61, 37], or rigid-body motions [66, §11], along

5Note, a centroid can be seen as a O-dimensional affine subspace.
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with clustering face images [24, 29, 22] or human actions
[73, 25, 50].

However, while subspace clustering methods have
achieved state-of-the-art performance for certain tasks and
datasets, the geometric assumption upon which they rely
(namely that the datapoints lie on a union of linear or
affine subspaces) is often grossly violated for common
high-dimensional datasets. For instance, even in a dataset
as simple as MNIST hand-written digits [34], images of
a single digit do not lie close to a low-dimensional sub-
space; directly applying subspace clustering methods thus
fails. Instead, a more natural idea is to assume that each
cluster is defined by a non-linear low-dimensional manifold
and to learn or design a non-linear transformation of the
data so that points from one manifold are mapped to one lin-
ear subspace. In some cases, one may be able to hand-craft
an appropriate transformation of the data, with polynomial
or exponential kernel mappings being examples that have
been explored in the literature [21], and the authors of [39]
show that a subspace clustering method achieves 99% clus-
tering accuracy on MNIST when the data is passed through
the scattering-transform [9].

Unfortunately though, hand-crafted design requires one
to assume specific and simple families of manifolds which
is often unrealistic and challenging to apply on complicated
data such as natural images. On the other hand, the authors
of [21] propose to cluster data via treating a local neigh-
borhood of the manifold approximately as a linear subspace
and applying subspace clustering techniques to local neigh-
borhoods. However, this method requires sufficient sam-
pling density to succeed, which implies a prohibitive num-
ber of samples when the manifolds have moderate dimen-
sion or curvature. More recently, numerous works propose
to learn an appropriate transformation of the data via deep
networks and then perform subspace clustering in a latent
feature space [53, 31, 1, 80, 32]. Unfortunately, it has been
shown that many of these formulations are ill-posed and
provably learn trivial representations®, with much of the
claimed benefit coming from ad-hoc post-processing rather
than the method itself [27]. This motivates the one of the
primary questions we consider here:

Question 1. Can we efficiently transform data near a union
of low-dimensional manifolds, so that the transformed data
lie close to a union of low-dimensional linear subspaces to
allow for easy clustering?

1.2. Learning Diverse and Discriminative Features:
from Supervised to Unsupervised Learning

Meanwhile, learning a compact representation from
multi-modal data has been a topic of its own interest in

®In this paper, we use ‘representation’ and ‘feature’ interchangeably to
mean the image of the data under a (learned) transformation.

machine learning [7]. An ideal property of the learned
representation is between-cluster discrimination, namely,
features from different clusters should be well separated,
which is often pursued via a loss such as the classic cross-
entropy (CE) objective. However, an important yet often ig-
nored property is that the learned representation maintains
within-cluster diversity. This allows distances of samples
within a cluster to be preserved under the learned trans-
formation, which may facilitate downstream tasks such as
generation [16], denoising [68], and semantic interpretation
[78, §B.3.1] (see also §A). Unfortunately, the representa-
tion learned by CE fails to achieve this property and exhibits
neural collapse, a phenomenon discovered by [51] with ex-
tensive theoretical and empirical analysis [47, 85, 62, 83]
(even for non-CE objectives [84]), where latent features
from one cluster tend to collapse to a single point. In
contrast, [78] recently proposed Maximal Coding Rate Re-
duction (MCR?) as an objective to pursue both of the men-
tioned ideal properties. In particular, MCR? learns a union-
of-orthogonal-subspaces representation: features from each
cluster spread uniformly in a low-dimensional subspace
(compact & within-cluster diverse), and the subspaces cor-
responding to different clusters are orthogonal to each other
(between-cluster discriminative). Nevertheless, MCR? re-
quires ground-truth labels to learn such a representation.
This leads to our second question of interest:

Question 2. For data lying close to a union of manifolds,
can we learn a union-of-orthogonal-subspaces representa-
tion, without access to the ground-truth labels?

1.3. Our Contributions

To address the two interrelated questions, we start with
the basic idea of blending the philosophies from MCR? and
subspace clustering to explore the best of both worlds. This
idea leads us to the following contributions.

* Formulation (§2): We propose Manifold Linearizing
and Clustering (MLC) objective (4), which optimizes
the MCR? loss over both the representation and a novel
doubly stochastic cluster membership . The latter con-
sists of pair-wise similarities between samples, and it is
constrained to be doubly stochastic, inspired by state-
of-the-art subspace clustering results [39, 18].

* Algorithm (§3): We describe how to parameterize and
initialize the representation and membership, as well
as to optimize MLC (4). Even though the membership
is doubly stochastic, which may appear large in size
and hard to constrain, we give an efficient parameter-
ization of it that allows for mini-batching and notably
one-shot initialization. That is, the membership is ini-
tialized with no additional training whatsoever lever-
aging already-initialized representation, which is sta-
ble, structured, and efficient.



e Experiments (§4): On CIFAR-10, we demonstrate
that MLC learns a union-of-orthogonal-subspaces rep-
resentation, and achieves more accurate clustering than
state-of-the-art subspace clustering methods. More-
over, on CIFAR-10, -20, -100, and TinyImageNet-200,
we show that MLC yields higher clustering accuracy
using less running time than state-of-the-art deep clus-
tering methods, even when there are many or imbal-
anced clusters.

1.4. Additional Related Work

Beyond the above, we make connections to a few emerg-
ing deep-learning-based works related to this paper.

Self-supervised Representation Learning. An important
line of research that learns a representation without using
ground-truth labels is that of self-supervised learning. It
has seen remarkable recent progress thanks to the so-called
Jjoint-embedding approach. The basic idea of the latter is
to learn a representation such that augmentations of the
same input have similar features, while features from dif-
ferent inputs do not collapse to a single point. Extending
this idea, self-supervised methods such as SimCLR [12],
BYOL [26], and VICReg [5] are able to learn representa-
tions on par with those obtained from supervised learning
methods; see [57] for an excellent review. Encouraging as
it may sound, these methods do not aim to learn a union-of-
orthogonal-subspaces representation, nor do they explicitly
model clustering in their design. Nevertheless, we shall see
that self-supervised methods are key stepping stones for the
proposed method, as they will be used to initialize parts of
our model.

Clustering and Representation Learning. Numerous
works have proposed to jointly perform clustering and
representation learning, leveraging the success of self-
supervised learning. Roughly speaking, most methods con-
sider the following two steps. The first step is to use self-
supervised learning to initialize the representation. Indeed,
state-of-the-art methods such as SCAN [64] and SPICE [48]
adopt SImCLR [12] and MoCoV?2 [14] as their pre-trained
features. Starting from the initial representation, the second
step is to iteratively refine the representation and cluster-
ing, using the idea of pseudo-labeling [10, 64, 52, 48]. De-
spite the promising clustering performance, the representa-
tion learned by these methods is not constrained to be both
between-cluster discriminative and within-cluster diverse.
In contrast, our approach learns a representation with these
two ideal properties (Figure 4) and also achieves state-of-
the-art clustering performance (Tables 3, 4 and 6). Finally,
the work most closely related to this paper is that of Neu-
ral Manifold Clustering and Embedding (NMCE) [38] — we
note similarities and differences in terms of formulation, al-
gorithm, and empirical performance at the end of §2.2.

Table 1: Summary of prior works and our contributions.

Manifold Self-supervised Initialization
Linearizing Clustering Representation ~Membership
MCR? [78] yes no n/a n/a
SCAN [64] No yes one shot one shot
NMCE [38] yes yes one shot no
MLC (Ours) yes yes one shot

2. Formulation

We begin by making clear the problem of interest.

Problem 1 (Unsupervised Manifold Linearizing and Clus-
tering). Suppose X = [x1,...,x,] € RP*"isa dataset of
n points lying on an union of k& low-dimensional manifolds
Ule M. Given X, we aim to simultaneously

1. Cluster the samples: find g such that x; € My;y;

2. Learn a linear representation: find a transformation
f : RP — R9, such that features f(x;)’s from the
same cluster spread uniformly in a low-dimensional
linear subspace, and the subspaces arising from dif-
ferent clusters are orthogonal.

In §2.1, we review the principle of Maximal Coding Rate
Reduction (MCR?) which is designed to learn ideal represen-
tations in a supervised manner, i.e., when the ground-truth
membership is given. Then in §2.2, we discuss the chal-
lenges of simultaneous clustering and learning a represen-
tation (i.e., addressing Problem 1 in its entirety), for which
we propose our MLC objective (4). Later in §3, we further
give an algorithm to optimize MLC (4).

2.1. Supervised Manifold Linearizing via MCR?

When the cluster membership is given as supervision,
MCR? [78] is designed to solve part 2) of Problem 1. To be-
gin with, let fg : RP? — S?~! be a transformation param-
eterized by a neural network; this in turn gives the features
Z = [z1,...,2,] € R" of data with z; := fo(x;) €
S4=1. MCR? aims to learn an ideal representation by utiliz-
ing the coding rate measures. Define the coding rate

R(Z; €) :=log det <I+ dzzzT> .
ne

Intuitively’, R(Z; ¢) measures some volume of features in
Z up to € > 0 precision, so maximizing it would diversify
features of all the samples. Likewise, one can apply the
measure to features of each cluster and take weighted mean
over the clusters; namely, define R.(Z,IT; ¢€) as

k
II;,1
E M, 1) log det <I + 2ZDiag(Hj)ZT> .
n
=1

<Hja 1>€

TFor a rigorous treatment, see for example [45, §2.1].



Here IT = [II,...,II;] € R™** is a given point-cluster
membership such that IT;; = 1 if z; € M, and II;; = 0
otherwise, 1 is a vector of all ones so (IT;, 1) is the number
of points in cluster j, and for any v € R"™, Diag(v) denotes
a diagonal matrix with the entries of v along the diagonal.
Minimizing R.(Z,II; €) thus pushes features in each clus-
ter to stay close. MCR? learns an ideal representation by
maximizing the coding rate reduction (hence the acronym)

max R(Z;¢e)— R.(Z,IL;¢) st. Z= fg(X) (1)
Notably, it has been shown that given II, the features ob-
tained by maximizing the rate reduction has the property
that the features of each cluster spread uniformly within a
subspace (within-cluster diverse), and subspaces from dif-
ferent clusters are orthogonal (between-cluster discrimina-
tive), under relatively mild assumptions [78, Theorem 2.1].

2.2. Unsupervised Manifold Linearizing
and Clustering

While MCR? is designed to learn ideal representations
(§1) when the membership II is given, here we are inter-
ested in the unsupervised setting where one does not have
access to membership annotations. To address both parts 1)
and 2) of Problem 1, a natural idea is to optimize MCR? over
both the representation Z and membership IT via

max R(Z;e)— R.(Z,II;€) st Z = fo(X). (2)

6,I1€Q,
Here Q. := {IT € R™* : Vi € [n], 3G(i) s.t. M0 =
1 and II;; = 0 for j # §(¢)} is the set of all ‘hard” assign-
ments, i.e., each row of II is a one-hot vector. However,
this optimization is in general combinatorial: its complex-
ity grows exponentially in n and k, and it does not allow
smooth and gradual changes of II. Further, a second chal-
lenge is the chicken-and-egg nature of this problem: If one
already has an ideal representation Z, then existing sub-
space clustering methods can be applied on Z to estimate
the membership. Likewise, if one is given the ground-truth
membership IT of clusters, then solving (1) would lead to
an ideal representation. However, the Z and II at the be-
ginning of optimization are typically far from ideal.

In the rest of this section, we propose a so-called doubly
stochastic membership to deal with the combinatorial chal-
lenge. To tackle the chicken-and-egg nature, we parameter-
ize and initialize the representation and membership in an
efficient and effective way, as we will discuss in §3.

Doubly Stochastic Subspace Clustering. To address the
combinatorial nature of estimating the memberships, we
draw inspiration from the closely related problem of sub-
space clustering, where the goal is to cluster n samples as-
sumed to lie close to a union of k low-dimensional sub-
spaces (§1.1). In this case, one typically does not directly

learn an n x k matrix denoting memberships of n points
into k subspaces. Instead, one first learns an affinity ma-
trix I' € R™*"™ signaling the similarities between pairs of
points, and then applies spectral clustering on the learned I'
to obtain a final clustering [20, 22, 44, 41, 28, 75]. In par-
ticular, requiring doubly-stochastic constraints on the affin-
ity I' is shown theoretically to suppress false inter-cluster
connections for clustering [18] along with state-of-the-art
empirical performance for subspace clustering [39].
Inspired by the above, we propose a constraint set {2 for
matrix I' to be the set of n x n doubly stochastic matrices,

Q={CeR™:T'>0, T1=T"1=1}. 3)

However, this constraint alone is insufficient for strong clus-
tering performance: Consider optimizing MCR? with re-
spect to I' € Q only, and note that the objective is convex
with respect to I'. Since we maximize a convex function
with respect to convex constraints {2, an optimal I" would
lie at an extreme point of €2, which for doubly stochastic
matrices is a permutation matrix. This is not ideal for clus-
tering, as it implies that every point is assigned to its own
distinct cluster, and there is no incentive to merge points
into larger clusters. To resolve this issue, we use a negative
entropy regularization »_,; I';; log(I';;) to I' which biases
T toward the uniform matrix %llT. By tuning the coeffi-
cient of such regularization, we can also tune the sparsity
level of I'. This regularization can be conveniently inte-
grated into the network architecture, as we will see in §3.
Now we are ready to state our proposed formulation Mani-
fold Linearizing and Clustering (MLC):

max R(Z; €) — R.(Z,T; ¢) 4)
st. Z = fo(X), T =hg(X) €, where

1< d
Re(Z,T; ¢) = — > log det (I + E—QZDiag((I‘)j)ZT).
j=1

Note that both Z and T' are parameterized by neural net-
works. While a doubly stochastic membership I' may seem
large in size and hard to constrain, we explain in §3 how
we parameterize I' so that the constraints are satisfied by
construction and efficient mini-batching is allowed.

Comparison with NMCE. A recent paper (NMCE) [38] stud-
ies the same Problem 1 as in this paper, and also proposes
to optimize MCR? over both the representation and mem-
bership. Their method adopts an n x k matrix IT to model
the point-cluster membership; in contrast MLC uses a dou-
bly stochastic point-point membership I' inspired from the
state-of-the-art subspace clustering (as stated above). Al-
though seemingly not particularly significant, we note that
in practice this allows for significantly simpler initialization
strategies since we can initialize with a n X n estimate of an
affinity matrix rather than a n x k estimate of cluster mem-
bership. We further elaborate on algorithmic differences at
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Figure 2: Overall architecture for optimizing the proposed Manifold Linearizing and Clustering (MLC) objective (4). Given a
mini-batch of n;, input samples X each lying in R, their d-dimensional representation is given by Z . Further, their doubly
stochastic membership matrix I" is given by taking an inner product kernel of the output of the cluster head C followed by a

doubly stochastic projection.

the end of §3.2, and give empirical evidence that MLC is
more accurate (Table 3) and stable against randomness (§F).

3. Algorithm

In this section, we describe how to parameterize the rep-
resentation Z and doubly stochastic membership I" (§3.1),
as well as how to initialize them (§3.2) — in an efficient and
effective manner. We summarize the meta-algorithm in Al-
gorithm 1, and the overall architecture in Figure 2.

3.1. Efficient Parameterization

Parameterizing Z. As is common practice, we take an ex-
isting network architecture such as ResNet-18 as the back-
bone. We append a few affine layers with non-linearities as
the feature head to further transform the output of the back-
bone to R?, followed by a projection layer to respect the
unit sphere S%~! constraint.

Parameterizing I'. Different from parameterizing Z,
this is much less trivial: If one were to directly take I'
as decision variables in €2, it would lead to maintaining
O(n?) variables, which is prohibitive for large datasets
(e.g., n = 10° for ImageNet). To allow efficient compu-
tation, we again draw inspiration from subspace cluster-
ing: There, the membership I' given data X often takes
the form of g(X)T g(X) for some transformation g, such
as in the inner product kernel [28, 18] where g(X) = X
or the least square regression [44] where g(X) = (I +
AXTX)"1/2X. It is then tempting to take a neural net-
work gg and use C'TC as the membership where C =
go(X). Nevertheless, such a matrix is in general not doubly
stochastic, i.e., CTC ¢ Q. To obtain a doubly stochastic
membership, we further apply a Sinkhorn projection layer
Paq.,(+) [56, 19], which givesT = P ,(CTC) € Q, where
n is the coefficient of entropy regularization.® As in pa-

8Soin (4), T' = he(X) is simply T' = P ,,(90(X) " go(X)).

rameterizing Z, we implement gg by taking the same back-
bone and appending layers of the same type to be the cluster
head. As we shall see soon in §3.2, such a parameterization
further allows us to initialize both Z and I in one shot using
self-supervised learning.

Complexity. Thanks to the above parameterization, we
can do forward and backward passes efficiently via mini-
batches. For a mini-batch of n;, samples (n, < n typically),
the mini-batched versions of Z, C and I" have sizes d x np,
d x ny and ny x ny, respectively (Figure 2).°

3.2. Efficient Initialization

Since the proposed MLC objective (4) is non-convex, it is
important to properly initialize both Z and I" to converge to
good (local) minimum.

Initializing Z: Self-supervised Representation Learn-
ing. Randomly initialized features could be far from be-
ing ideal (in the sense defined in §1), and further may
not respect the invariance to augmentation, i.e., the aug-
mented samples should have their representation close to
each other. Thus, we initialize the features using a self-
supervised learning called rotal coding rate (TCR) [38]

>+>\Z|z

Vi € [n], (5)

Z+ 7'

max R(
0
st zl,z; €S

where for every 4, z; and z, are features of different aug-
mentations of the i-th sample. This essentially requires that
features from different augmentations of the same sample
should be as close as possible, whereas features from dif-
ferent samples should be as uncorrelated as possible. '

9Interested readers are referred to [3] for efficient computation of
log det via variational forms, and [19] for efficient Sinkhorn iterations via
implicit differentiation; these are beyond the scope of this paper.

10TCR is introduced here since it also uses coding rate measures. In



Initializing I'. An ideal initialization of I' would be such
that if I';; has a high value then points 4, j are likely to be
from the same true cluster and vice versa. Luckily, after
the self-supervised feature initialization mentioned above,
Z already have some structures which we can utilize. Thus,
we propose to initialize I' with Pp, ,(Z " Z); this is easily
implemented by copying the parameters from the feature
head to the cluster head once after the self-supervised ini-
tialization of the features, thanks to the parameterization of
T discussed in §3.1.

With the parameterization and initialization of our dou-
bly stochastic membership I' set up, we are ready to contrast
it with a popular alternative in the sequel.

Doubly Stochastic Membership vs. Point-Cluster Mem-
bership. Different from the doubly stochastic point-point
membership I' proposed in this paper, prior deep repre-
sentation learning and clustering works [64, 38, 48] often
model a point-cluster membership. That is, an n x k ma-
trix IT where each row represents the probability of a point
belonging to k clusters. II is parameterized by a neural
network (or a cluster head if one wishes), initialized ran-
domly or otherwise via an extra training stage after the rep-
resentation Z is initialized. We highlight a few advantages
of using a doubly stochastic point-point membership over a
point-cluster one:

» Stable: As T is initialized deterministically, the per-
formance of MLC is more stable compared to incorporating
randomness in initializing the cluster head. We further jus-
tify this point empirically in §F.

 Structured: Initialization of I' takes advantage of
structures from self-supervised initialized Z. As a side ben-
efit, ML.C automatically gains from developments of self-
supervised representation learning.

e Efficient: Once Z is initialized, I" can be initialized

with no additional cost whatsoever, compared to using any
extra training stage to initialize the cluster head. In contrast,
e.g., SCAN [64] trains the cluster head with 10 different ran-
dom initializations, which is time-consuming.
Data Augmentation. Beyond initializing Z, it is often de-
sirable to incorporate augmentation in optimizing the MLC
objective (4). Specifically, from { X (*) € RP*"}A | the
dataset X under A different augmentations, one computes
(Z(@ ¢ R¥x™ T(@) ¢ RX") for each augmentation a, and
use in (4)

A A
_ 1 (a) _1 (a)
Z = P (AZ_;Z ) I‘_Z;I‘ e (6)

Note that one can benefit from parallelization by putting
X (@) z(@) T() for each augmentation a on one comput-

principle, many contrastive learning methods could be used for initializing
the features, e.g., as we demonstrate via experiments (Table 3).

Algorithm 1 MLC: Manifold Linearizing and Clustering

Input: X € RP*" €0 >0, d k,n,T,AE€Z>o
1: initialize Z by self-supervised representation learning
> (5)
initialize I' via parameter copying
fort=1,...,Tdo
X € RP*™ « sample a batch from X
XM, ..., X « apply A augmentations to X
Z,T < forward pass with { X (®)}4_ and network
parameters 6 > (6)
Vo(4) < backward pass
8: 0 <—update 0 using some optimizer on Vg(4)
9: end for
0: run spectral clustering on I to estimate labels g
Output: Z.y

AN

~

—_

ing device, since I'(*) only depends on X (*) but not from
other augmentations.

4. Experiments on Real-World Datasets

We empirically verify that MLC learns a union-of-
orthogonal-subspaces representation, and yields more ac-
curate clustering than state-of-the-art subspace clustering
methods (§4.1). Further, we show that MLC outperforms
state-of-the-art deep clustering methods, even when there
are many or imbalanced clusters (§4.2).

Metrics. To evaluate the clustering quality, we run spec-
tral clustering on learned membership matrix I', and re-
port the normalized mutual information (NMI, [60]) and
clustering accuracy (ACC, [35]), as are commonly used in
clustering tasks. To evaluate the learned representation,
we define the following metric: for a collection of points
W = [wy,...,w] € R¥! (I > d) with associated sin-
gular values {o;}% |, define the numerical rank of W as

arg min,, {r YT o2/ 02> 0.95}. Now, one can
measure the numerical rank of the learned representation Z,
as well as that of each ground-truth cluster'' of Z. A low
numerical rank of W implies that points in W lie close to
a low-dimensional subspace. We further report the cosine
similarity of learned representation, which is simply |2, z;|
for points ¢ and j, since ||z;|| = 1 by construction in (4).
Finally, to compare the efficiency of methods we report the
training time in §4.2, where the experiments are run on 2
Nvidia RTX3090 GPUs.

4.1. Comparison with Subspace Clustering

To demonstrate the ability of MLC to cluster the sam-
ples and linearize the manifolds, we conduct experiments on

II'They are defined by the true membership, so that the numerical rank
metric is decoupled from the quality of learned membership I".
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features learned by MLC on CIFAR-10 as epoch varies.

CIFAR-10, which consists of RGB images from 10 classes
such as planes, birds, and deers. As mentioned in §1 sub-
space clustering methods rely crucially on the assumption
that data lie close to a union of linear subspaces, which
many real-world dataset may not satisfy. To show that this
is the case, we additionally compare the proposed method
with subspace clustering methods. As we shall see, apply-
ing subspace clustering directly on self-supervised features
of CIFAR-10 will yield low clustering accuracy. In con-
trast, MLC is able to achieve high clustering accuracy, and
moreover, produce a union-of-orthogonal-subspaces repre-
sentation on which subspace clustering methods can also
achieve high accuracy.

Data. We use the training split of CIFAR-10 contain-
ing 50000 RGB images, each of size 3 x 32 x 32. We
use the augmentation specified in the Appendix to perform
self-supervised representation learning via TCR (5) and get
Z1cr. For a fair comparison, the so-learned Zrcr are used
both as initialization for MLC (line 1 of Algorithm 1), and
as the input for subspace clustering methods'?. In MLC, for
each image in each batch we randomly sample A = 2 aug-
mentations to apply to the image. As an additional compar-
ison, we also run subspace clustering methods on the fea-
tures Zy;c learned by MLC.

Methods. We compare with the elastic-net subspace clus-
tering with active-set solver (EnSC, [75]) and sparse sub-
space clustering with orthogonal matching pursuit solver
(SSC-OMP, [76]), using off-the-shelf implementation pro-
vided by the authors'’. We search the parameters of
EnscC over (v,7) € {1,5,10,50,100} x {0.9,0.95,1}
and those of SSC over (kmax,€) € {3,5,10,20} x
{107%,1075,107%,10~7}, and report the run with the

12Self-supervised features learned via coding rate measures empirically
exhibit some union-of-subspace structure (one subspace per cluster). They
have been used for subspace clustering as in, e.g., [78, §3.2] and [81, §4.2].

13https ://github.com/ChongYou/subspace-clustering.

of the features Zy; learned by MLC.

Table 2: Clustering accuracy and normalized mutual infor-
mation of subspace clustering (EnSC, SSC-OMP) and pro-
posed manifold linearizing and clustering (MLC). X con-
tains 6 - 10* images from 10 classes of CIFAR-10, Z1x are
features learned via self-supervised learning TCR, Zy ¢ are
features learned by MLC.

Method Input Data ACC NMI
Zrcr 72.2 67.9
Ensc Zusc 81.5 79.2
Zrcr 67.8 64.5
SSC-OMP Zusc 78.4 763
MLC X 86.3 78.3

highest clustering accuracy for each method. We summa-
rize detailed parameters for MLC in the Appendix.

Results. Figure 3 reports the coding rates (as loss terms
in (4) and numerical ranks of features learned by MLC as
epoch varies. As a first note, the coding rate R of all fea-
tures (the blue curve in 3a) decreases only slightly as epoch
goes, indicating that the overall representation is diverse in
the feature space. Indeed, the numerical rank of all features
(the dark curve in Figure 3b) stays 118 which is close to
the dimension 128 of the feature space. This is in sharp
contrast to the deep subspace clustering methods where all
the features collapse to a one-dimensional subspace [27].
Moreover, as the coding rate R, of clustered features (the
orange curve in Figure 3a) goes down, the numerical ranks
of features from each ground-truth cluster decrease. For
instance, the representation from true cluster 3 has a numer-
ical rank of 37 in the first step and 24 in the last step. This
implies that most representation gets linearized better and
clustered more accurately, even though the MLC objective
(4) is unsupervised, i.e., it does not use ground-truth labels.
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Last but not least, note that the features within each ground-
truth cluster spread well in a low-dimensional subspace,
e.g., the numerical ranks for the true clusters at the last step
are within [13, 23]. This achieves the desired within-cluster
diverse property (§1), as opposed to the neural collapse phe-
nomenon that appears with the cross-entropy loss.

Now we compare MLC with subspace clustering meth-
ods. Table 2 reports clustering accuracy and normalized
mutual information for applying EnSC, SSC-OMP on self-
supervised features Zrcr, features Zy;c learned by MLC,
and applying MLC on X, where X is 6 - 10* images from
10 classes of CIFAR-10. In addition, we plot the cosine
similarity of the features learned by MLC in Figure 4. Re-
markably, the highest clustering accuracy is 86.3% achieved
by MLC on X, which surpasses EnSC (72.2%) and SSC-
OMP (67.8%) on Zcr by a large margin, even though Zcx
is used both as initialization for MLC and input for EnSC
and SSC-OMP. Interestingly, using instead the features Zy;,c
learned by MLC, the clustering performance of EnSC and
SSC-OMP increases and even becomes comparable to MLC,
e.g., EnSC achieves 79.2% normalized mutual information
compared to 78.3% of MLC. This suggests that Zy;c has
a union-of-subspace structure that can be utilized by sub-
space clustering. Indeed, as seen in Figure 4, features from
different clusters tend to have a small similarity, i.e., being
orthogonal to each other. This demonstrates the between-
cluster discrimination (§1) as desired.

4.2. Comparison with Deep Clustering

We further compare the proposed MLC with state-of-the-
art deep clustering methods on large-scale datasets (CIFAR-
10, -20, -100, and TinyImageNet-200). Different than MLC,
most methods reported (all except NMCE as discussed in
§2.2) do not aim to learn a union-of-orthogonal-subspaces
representation. Be that as it may, MLC achieves compara-
ble or better clustering accuracy than state-of-the-art meth-
ods using less running time, even when the dataset presents
many or imbalanced clusters.

Datasets. Beyond CIFAR-10 (§4.1), we further use CIFAR-
20, CIFAR-100 and TinyImageNet-200 to evaluate the per-
formance of our method. Both CIFAR-100 and CIFAR-20
contain the same 50000 train images and 10000 test images
with size 32 x 32 x 3, while the former are split into 100
clusters and the latter 20 super clusters. Finally, TinyIma-
geNet contains 100000 train images and 10000 test images
with size 64 x 64 x 3 split into 200 clusters.

Baseline Methods. We include clustering accuracy and
normalized mutual information reported by SCAN [64],
GCC [82], NNM [17], IMC [49], NMCE [38], SPICE [48] on
aforementioned datasets whenever applicable. In addition,
to compare the running time as well as to have more base-
line methods when there are many clusters, we conduct ex-
periments with MLC, SCAN [64], and IMC [49] on CIFAR-

Table 3: Clustering accuracy and normalized mutual infor-
mation of different methods on CIFAR-10 and CIFAR-20.
For a fair comparison, all methods use ResNet-18 as back-
bone.

Method vs. CIFAR-10 CIFAR-20

Dataset & Metric ACC NMI ACC NMI
SCAN-SimCLR gccv *20) 876 787 468 459
GCC-SimCLR gccev *21) .856 764 472 472
NNM-SimCLR (cvpR *21) .843 748 AT77 484
IMC-SwWAV (k8BS "22) .891 811 490 503
NMCE-TCR (Arxiv *22) 830 761 437 488
MLC-TCR (Ours) 863 783 522 546
SCAN-MoCoV2Z gccv 20) 874 786 455 472
SPICE-MoCoV2 (TIP °22) 918 .850 535 565
MLC-MoCoV2 (Qurs) 922 855 583 .596
Table 4: Clustering accuracy and normalized mutual

information of different methods on CIFAR-100 and
TinyImageNet-200. For a fair comparison, all methods use
ResNet-18 as backbone.

Method vs. CIFAR-100  TinyIlmageNet-200
Dataset & Metric ACC NMI ACC NMI
SCAN-SimCLR gEccy 20 343 557 - -
GCC-SimCLR gcev 21y - - 13.8 34.7
IMC-SWAV (KBS "22) 43.9 58.3 28.2 52.6
SPICE-MoCoV2 (1ip 22 - - 30.5 449
MLC-TCR (Ours) 494 683 335 67.5

Table 5: Running time in minutes and clustering accuracy
on CIFAR-100. For a fair comparison, all methods use
ResNet-18 as backbone.

Method vs. Running Time ACC
Metric & Stage 1 I III  Total

SCAN-SimCLR gccv 20 308.3 333 547 3963 343
IMC-SwAV (kBs "22) 5294 - - 5294 439
MLC-TCR (Ours) 266.7 17.7 - 2844 494

100. Training details are left to §B.2. For a fair compari-
son, all methods reported use ResNet-18 as the backbone,
commonly adopted by the literature. Note that each method
chooses one or more pre-training that best fits its objective,
such as SimCLR [12], SwAV [11], TCR [38], MoCoV2 [14].
Hence, for clarity, we indicate the pre-training used after the
method, e.g., SCAN-SimCLR means SCAN method initial-
ized with SimCLR.

Results on CIFAR-10, -20. Table 3 presents cluster-
ing accuracy and normalized mutual information of vari-
ous methods. Overall, MLC is the most accurate, among



Table 6: Clustering accuracy on imbalanced datasets: (a)
Imb-CIFAR-10, (b) Imb-CIFAR-100. For a fair compari-
son, all methods use ResNet-18 as backbone.

Method / Dataset (a) (b)

SCAN (Eccv "20) 629 31.1
IMC-SwWAV (KBS '22) 65.7 382
MLC (Qurs) 80.0 4e6.1

methods using either the same pre-training (middle and
bottom rows) or any pre-training. To begin with, using
TCR as pre-training, MLC achieves 86.3% and 52.2% clus-
tering accuracies on CIFAR-10 and -20, which are 3.3
and 8.5 percentage points higher respectively than those
achieved by NMCE'4. Remarkably, when MLC is initialized
with MoCoV2 pre-training, it yields even higher clustering
accuracies of 92.2% on CIFAR-10 and 58.3% on CIFAR-
20, surpassing previous state-of-the-art methods SPICE-
MoCoV2 (91.8%, 53.5%) and IMC-SwAV (89.1%, 49.0%).
Interestingly, while the clustering performance of MLC-TCR
is competitive on CIFAR-20, it is less so on CIFAR-10. Af-
ter investigation, we find that the learned clusters appear se-
mantically meaningful, even though they do not agree with
the ground-truth labels of CIFAR-10 used for evaluation;
we leave the details to §A.

Results on CIFAR-100, TinyImageNet-200. We report
clustering accuracy and normalized mutual information on
both datasets in Table 4, and further show running time on
CIFAR-100 in Table 5. Notably, MLC outperforms SCAN
and IMC-SwAV on CIFAR-100 and TinylmageNet-200 by
a large margin, while using lower running time: E.g., on
CIFAR-100, MLC yields an accuracy of 49.4% in 291 min-
utes, whereas TMC-SwAV has 43.9% using 529 minutes, and
SCAN has 34.3% in 396 minutes.

Results on Imbalanced Clusters. Note that for CIFAR-
10 or CIFAR-100 each cluster contains approximately the
same number of samples. On the other hand, natural im-
ages are typically imbalanced, i.e., the clusters have un-
equal number of samples. To mimic this setting, we take
a naive approach to construct the following imbalanced
datasets. For the 10 clusters of CIFAR-10, we remove half
of the samples from odd-numbered clusters (i.e., clusters
1,3,...,9) from both the training and test split. We refer
to the reduced dataset Imb-CIFAR-10. Likewise we con-
struct Imb-CIFAR-100. We run two state-of-the-art meth-
ods IMC-SwAV and SCAN as well as the proposed MLC on
Imb-CIFAR-10 and Imb-CIFAR-100.

Table 6 shows clustering accuracy on the imbalanced

14For a further comparison between MLC and NMCE, see the end of §2.2
for conceptual and algorithmic differences, and §F for an empirical study
on the stability against random seeds.

datasets Imb-CIFAR-10 and Imb-CIFAR-100. As a first ob-
servation, the clustering accuracy of all methods is lower on
the imbalanced datasets than on the balanced counterparts,
as expected. Notably, MLC suffers from the least perfor-
mance drop, e.g., when moving from CIFAR-10 to Imb-
CIFAR-10 the accuracy of MLC drops from 86% to 80%,
whereas that of SCAN and IMC-SwAV decreases from above
87% to below 66%.

5. Conclusion

This paper studies the problem of simultaneously clus-
tering and learning an union-of-orthogonal-subspaces rep-
resentation for data, when data lies close to a union of low-
dimensional manifolds. To address the problem we pro-
pose an objective based on maximal coding rate reduction
and doubly stochastic membership inspired by the state-of-
the-art subspace clustering results. We provide an efficient
and effective parameterization of the membership variables
as well as a meta-algorithm to optimize the representation
and membership jointly. We further conduct experiments
on datasets with larger number of clusters and imbalanced
clusters and show that the proposed method achieves state-
of-the-art performance. We believe that our work provides
a general and unified framework for unsupervised learning
of structured representations for multi-modal data.
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Figure 5: Images along the principal components (see §A) of features from each cluster on CIFAR-10, where features and
clusters are learned by MLC. For the sake of space, only 9 clusters are shown.



A. Semantic Interpretability and Failure Case Analysis on CIFAR-10

Recall that MLC clusters images and learns a representation for them where images of each cluster lie close to a low-
dimensional subspace. A natural question that arises is what are the different directions within each subspace? Below we
give some interesting visualization. Specifically, after MLC is trained, we take the (learned) features from each (learned)
cluster, and apply Principal Component Analysis to them to obtain the first 8 principal components (for a review see, e.g.,
[66, §2.1]). Recall that principal components are mutually orthogonal, indicating uncorrelated directions in the subspace (of
each cluster). To visualize these principal components, we show the images from each cluster whose features are the closest
to the principal components.

Figure 5 reports the images along the principal components of the 10 clusters using the representation and clusters learned
by MLC, where each sub-figure corresponds to a cluster and each row a principal component. Interestingly, the rows of
images appear to exhibit some semantic ‘concepts’: in Figure 5b, row 1 and 8 are respectively white and red trucks, while
row 3 are the trucks that ship sand or mud; row 1 of Figure 5d are deers with trees as background. This seems to suggest that
the learned representation preserves distance within each cluster, i.e., images that are close/far in semantic meaning will be
close/far in the feature space, as desired in §1.

This visualization further allows us to investigate why on CIFAR-10 MLC has a clustering accuracy slightly lower than
some state-of-the-art methods (Table 3). We observe that the main clusters samples are in clusters 3 and 8: e.g., rows 1 and 3
of Figure 5h are cats while all other rows in this cluster are dogs. On the other hand, one may argue that Figure 5h is a cluster
of pets of lighter colors, and Figure Sc a cluster of pets of darker colors. They could be semantically meaningful clusters
despite not aligning with the ground-truth labels. We believe it would be an interesting future work to use MLC to discover
new semantics that are not present in the given labels.

B. Details on Experiment Settings

B.1. Synthetic Union-of-Manifold Data

We perform simulations to visualize the properties of the proposed manifold learning and clustering method. As seen in
Figure 1a, we generate data X from two manifolds on the sphere S, each consisting of 200 samples. The points from the
first manifold (green) take the form

cos (Asin(we;)) sin ¢;
sin (A sin(we;))

cos (Asin(we;)) cos ¢;
x; = + €, @)

where A = 0.2 and w = 5 sets the curvature of the manifold, €; ~ A(0,0.0513) is the additive noise, and we take
hi = % for: =1,...,100 to generate 100 points. On the other hand, the points from the second manifold (blue) are simply
100 samples from A([0,0,1]T,0.0513). We take the feature dimension d = 3 to be equal to he input dimension D = 3.
We paramterize both the feature head fp and the cluster head gg to be a simple fully-connected network with 100 hidden
neurons, followed by a Rectified Linear Unit as non-linearity and a projection operator onto the sphere S?. Figures 1b to 1d
report the features Z with random initialization (i.e., before line 1 of Algorithm 1), with self-supervised initialization, and at
convergence of MLC. Notably, despite Z being noisy and only approximately piece-wise linear, as epoch goes Z gradually
transform to two linear subspaces: the green points converge to a 2-dimensional subspace (intersected with S?) and the blue

points converge to a 1-dimension subspace.
B.2. Real-World Datasets

MLC. Since MLC is based on MCR? (§2.1), we follow [79, 38] for the choice of batch size and augmentation. For all real-data
experiments, we use a batch size of n, = 1024 and VICReg [6] augmentation (Augmentation 1). A = 2 augmentations
are used, while not using any leads to worse clustering accuracy (§C). Doubling n, or A improves accuracy by < 1% on
CIFAR10-10 with the cost of increased running time. In self-supervised initialization of Z (line 1 of Algorithm 1), we used
TCR (see (5) or [38]) or otherwise MoCoV2 [14]. To train TCR, we use the precision (§2.1) parameter €2 = 0.2, a LARS
optimizer [77] (as is also done in [13, 38]) with a learning rate of 0.3 and trained MLC for 1000 epochs. For MoCoV2, we use
off-the-shelf pre-trained models'>. On the other hand, in the training of MLC objective (4), we use €2 = 0.1 and n = 0.175 for
the entropy regularization in the Sinkhorn projection [19] layer Py, (). We fix the backbone and for each batch, we perform

15https://githu]o. com/vturrisi/solo-learn/tree/d27c¢7130d19035c0ba0af8£90217e78d8ebe7£48.
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one update for parameters in the feature head Z and one update for parameters in the cluster head C'. For each head we use
one SGD optimizer [54] with a learning rate of 102, momentum of 0.9, and weight decay of 5 - 104,

Table 7: Ablation study on the roles of different parts of Algo-
rithm 1 and on using augmentation.

Augmentation 1 Augmentations for real datasets

import torchvision.transforms as t Ablation Study on CIFAR-10 Clustering
Accuracy
t.Compose ([
t .RandomResizedCrop (32, scale=(0.04, Full Algorithm 1 86.3%
1.0)),
t.RandomHorizontalFlip (p=0.5), Replacing self-supervised initialization (line 1) 20.0%
t.RandomGrayscale (p=0.2), with random initialization e
t.RandomApply ([t.ColorJditter (0.4,
0.4, 0.4, 0.1)], p=0.8) Replacing updating MLC loss (4) (lines 3-9) 73 49
.4, L ay . ’ . ’ 4%

GaussianBlur (p=0.1) with subspace clustering (EnSC)

1

Not using augmentation in updating (4) (lines 3-9)  80.0%

SCAN and IMC-SwAV. Recall that we conduct experiments on CIFAR-100, Imb-CIFAR-10, and Imb-CIFAR-100 with SCAN
[64], IMC-SwAV [49] and MLC, and report clustering and running time in Tables 5 and 6. We use off-the-shelf implemen-
tation'® provided by the authors. For a fair comparison, SCAN, IMC-SwAV and MLC all use ResNet-18 as the backbone.
Finally, the hyper-parameters of SCAN and IMC-SwAV are set to be the ones optimally chosen for CIFAR-10 and CIFAR-100
respectively provided by the authors.

C. Role and Ablation Study of Augmentation

Recall that data augmentation was used both in the self-supervised initialization (line 1 of Algorithm 1, see ‘Initializing
Z’ in §3) and in updating the MLC objective (lines 3-9 of Algorithm 1, ‘Data Augmentation’ in §3). Below we give additional
clarification on the role of augmentation therein.

C.1. Augmentation for Initializing the Features

Since the proposed MLC objective (4) is highly non-convex, the quality of the (local) solution an optimizer converges to
in general depends on the initialization. However, before line 1 of Algorithm 1 is executed, the features Z at initialization
could be very far from union-of-orthogonal-subspaces (as pursued by Problem 1), since the neural network has an arbitrary
architecture and initialization. To at least promote some ideal structures in the features, line 1 of Algorithm 1 is conducted
so that the features from an original sample and its augmented copies are close, while features from different samples spread
out in the feature space. This is a common idea'” used in contrastive learning as we review in §1.4. Empirically, initializing
the features using augmentation (line 1 of Algorithm 1) is important for the clustering performance: as seen in Table 7, on
CIFAR-10, if one uses random initialization to replace this step, then the final clustering accuracy is 20%, in sharp contrast
to 86.3%.

C.2. Augmentation for Updating MLC Objective (4)

In optimizing MLC loss (4) (lines 3-9 of Algorithm 1), augmentation empirically improves clustering performance. As
one can see in Table 7, on CIFAR-10 using the sample self-supervised initialization of the features, MLC achieves only 80%
clustering accuracy without augmentation, in contrast to 86.3% with augmentation. We attribute this difference to the fact
that augmentation enriches the diversity of samples the algorithm sees.

1(’https ://github.com/wvangansbeke/Unsupervised-Classification, https://github.com/foiv0s/IMC-SwAV-pub
"More related are [78, §3.2] and [38, §3.6] which are also based on MCR? as in this paper. However, the former does not learn a clustering membership,
leading to inferior performance, and we discuss the difference with the latter in §1.4, 2.2 and F.
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D. Role and Ablation Study of Components of Algorithm 1
D.1. Initialization of the Features (Line 1)

Please kindly refer to §C.1.

D.2. Updating the MLC Objective (4) (Lines 3-9)

The main novelty of this paper lies in updating the MLC objective (4) that learns both the representation Z and a doubly
stochastic membership I'. Note that in this step, clustering is pursued by modeling the membership I', as opposed to the self-
supervised feature initialization step where no membership is explicitly pursued. This step is indeed important for clustering:
as seen in Table 7, on CIFAR-10, the clustering accuracy on the self-supervised initialized features Z is only 73.4%, in
contrast to 86.3% obtained after updating the MLC objective (4).

D.3. Spectral Clustering (Line 10)

Since the proposed MLC learns a doubly stochastic membership that signals pair-wise similarity between points, it is
standard to run spectral clustering [67] to compute a final set of clusters from the learned membership. This is done only
once at the very end of Algorithm 1, and is rather efficient compared to the other parts of Algorithm 1: for instance, using an
unaccelerated implementation from SciPy, it takes less than 30 seconds to perform spectral clustering on a 10* x 10* matrix.

E. Complexity Analysis and Efficient Computation

A key observation is that the proposed MLC uses mini-batches (line 4 of Alg. 1). We summarize some important complex-
ities in Table 8.

Table 8: Some key space / time complexities in computing log det and Sinkhorn iterations, where d is the dimension of the
feature space and ny, is the batch size. Real-data experiments in this paper use n;, = 1024 and d = 128.

log det terms in (4) Complexity Sinkhorn iteration = Complexity
1 Size of matrix within logdet d x d 4 SizeofCTC np X Np
2 Evaluate the matrix O(nyd?)
3 Evaluate the log det O(d®)

First, computations 1-3 have the same complexity as in previous works [79, 38]. The only extra overhead comes from the
sum in the R, term in (4) being of size ny rather than k, where k is # of clusters. However, empirically the extra overhead
is negligible using buit-in pararallization from torch.einsum. Second, scalability of Sinkhorn iterations on a n; x ny
matrix is also not a concern. Since'®, in all real-data experiments, while n ~ 10° is typically very large, n, = 1024 is much
smaller than n. Thus, the time and space complexities remain manageable despite the datasets being large-scale. Indeed, as
seen in Table 4, MLC achieves higher accuracy in less time than state-of-the-art alternatives on CIFAR100-100. Finally, we
note that efficient computation of log det is a subject of research (e.g., [3]), and back propagation of Sinkhorn iterations can
be made efficient using implicit differentiation [19]; these are beyond the scope of this paper.

F. Additional Comparison of MLC and NMCE

As detailed in §2.2, one of the advantages of the proposed MLC (4) over NMCE [38] is that MLC has a more stable perfor-
mance with respect to random seeds, since MLC is able to initialize the membership deterministically using structures from
the self-supervised initialized features. Below we conduct extra experiments to provide empirical evidence. We first fix a
self-supervised initialization of features that is in turn used for both NMCE and MLC. Then, based on this very same initial-
ization of features, we update NMCE and MLC objective respectively with 10 different seeds: recall that NMCE initializes the
membership randomly whereas MLC initializes the membership deterministically using the initialized features. To make a
valid comparison, for both methods we further use the same optimization strategy and hyper-parameters that are optimally'”
tuned for NMCE (which are not optimal for MLC): precision €2 = 0.2, # epochs 100, LARS optimizer for Z with an initial
learning rate 0.3 decayed to O in a cosine annealing manner. Table 9 reports clustering accuracy and normalized mutual

18 A5 is also pointed out in §3.
9For NMCE, we use the implementation as well as the parameters provided in https://github.com/zengyi-1i/NMCE-release.
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Table 9: Clustering accuracy and normalized mutual information of MLC and NMCE [38] on CIFAR-10 over 10 random seeds,
using the same self-initialized features. Note that ML.C is more accurate and stable than NMCE, which is attributed to the fact
that the doubly stochastic membership of MLC can be deterministically initialized using self-supervised features (§3).

Method Metric Seed Mean  Std.

0 1 2 3 4 5 6 7 8 9

ACC 845 848 848 846 844 844 84.0 843 844 84.6 845 0.24
NMI 76.6 77.1 76.8 76.8 765 764 76.1 764 764 765 76.6  0.28

ACC 83.7 821 816 737 804 779 81.7 814 727 809 79.6  3.69
NMI 744 712 704 652 700 681 727 708 692 698 70.2 249

MLC (4)

NMCE

200 400 600 800 1000 1200 1400 800 1000 1200 1400

(a) CIFAR-20 (b) CIFAR-100 (c) TinyImageNet-200

Figure 6: Cosine similarity | Z " Z| of the features Z learned by MLC on more complicated datasets: CIFAR-20, CIFAR-100,
TinyImageNet-200.

information of MLC and NMCE over 10 random seeds. As expected, MLC has a more stable clustering performance by having
a standard deviation of clustering accuracy and normalized mutual information less than 0.28, in contrast to more than 2.49
achieved by NMCE. Further, MLC achieves higher mean clustering performance than NMCE, as also observed in Table 3. Last
but not least, we note that the numbers in Table 9 are not comparable to those in Table 3, since for MLC the hyper-parameters
and optimizers are different, and for NMCE an additional step that fine tunes the backbone is used in Table 3.

G. Addtional Visualization on Learned Representation and Clusters

Figure 6 presents the cosine similarity (as defined in the preamble of §4) of the representation learned by MLC on CIFAR-
20, CIFAR-100 and TinyImageNet-200 (for the counterpart on CIFAR-10 see §4.1). As seen, the cosine similarity maps
form approximately block diagonal structures, showing that the features from different clusters are roughly orthogonal to
each other. This is desired by the between-cluster discrimination (§1). Lastly, we provide additional visualization of principal
images on CIFAR-20 (see §A for definition) in Figure 8.
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Figure 8: Images along the principal components (defined in §A) of features from each cluster on CIFAR-20, where features
and clusters are learned by (4).



