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Understanding the physics of the deep solar interior, and the more exotic environs of core-collapse

supernovae (CCSN) and binary neutron-star (NS) mergers, is of keen interest in many avenues of research.
To date, this physics is based largely on simulations via forward integration. While these simulations
provide valuable constraints, it could be insightful to adopt the “inverse approach” as a point of

comparison. Within this paradigm, parameters of the solar interior are not output based on an assumed
model, but rather are inferred based on real data. We take the specific case of solar electron number density,
which historically is taken as output from the standard solar model. We show how one may arrive at an
independent constraint on that density profile based on available neutrino flavor data from the Earth-based
Borexino experiment. The inference technique’s ability to offer a unique lens on physics can be extended to
other datasets, and to analogous questions for CCSN and NS mergers, albeit with simulated data.
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I. INTRODUCTION

The dynamics of the solar interior is of keen interest in a
variety of research areas, particularly the fundamental
physics of stellar evolution [1]. To date, constraints on
solar properties have come largely from the standard solar
model [2]. In this scenario, parameters governing solar
dynamics are estimated via forward integration based on a
reasonable assumed initial equation of state [3]. While these
constraints are the best we have to date, it would be useful
to identify an independent lens through which to obtain
estimates for comparison.

Inference may provide such a lens. Inference, also called
the “inverse approach” and related to machine learning
methodology, is a means to obtain estimates on unknown
model parameters based not on a priori physical assump-
tions, but rather on real available data where the data are
assumed to arise from the model dynamics. It is a funda-
mentally different framework compared to forward integra-
tion, and is formulated mathematically to address problems
that forward integration is ill-equipped to handle [4].
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We take as our parameter of interest the radially varying
solar electron number density n,(r). We are interested in
this quantity as it has important implications for neutrino
flavor physics. Standard simulations of solar neutrino
spectra are initial value problems (IVPs) that take n,(r)
as input, where n,(r) has been calculated by the standard
solar model, given observed surface abundances. In a
previous paper [5] we assayed whether that n,(r) profile
was consistent with available Earth-based neutrino flavor
data from the Borexino [6] and SNO [7] experiments. We
found that it was but that result begged the followup
question; is that particular solution for n,(r) necessarily
the only profile that is consistent with the available data?
That is, might the data further constrain, or broaden, the
range of permitted density profiles? Thus was born our
choice to reverse the scientific question; can the neutrino
data yield an independent constraint on n,(r)?

That is the quest in this current manuscript. Specifically,
we seek to estimate n,(r) directly from neutrino data using
not an IVP but rather a two-point boundary-value-problem
(BVP) formulation.! The specific inference procedure
we adopt is statistical data assimilation (SDA). SDA is

'We should point out that although applying the SDA method
to this problem is a new approach, the idea of estimating solar
density through neutrino observations itself has been considered
before using other approaches [8,9].

© 2024 American Physical Society
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an inference methodology invented to extract information
from measurements for the purpose of numerical weather
prediction [10—15]. It has since gained traction in neuro-
biology [16-22]. The aim of SDA is to incorporate
information contained in measurements directly into a
model, to estimate unknown parameters and the dynamics
of the model state variables, both measured and unmeas-
ured. SDA was invented specifically for the case of sparse
data, which is a key feature of our problem; we can
measure only a fraction of the neutrinos emitted from the
Sun, and at just one location i.e., Earth. We have used SDA
in previous papers [4,23-26] on collective neutrino flavor
oscillations in core-collapse supernovae (CCSN), where
the aim was to examine nonlinearities of the model through
the inverse-problem lens.”

Our specific task for SDA is to take Earth-based
electron-flavor survival probabilities [6] together with a
model of flavor evolution assumed to underlie those data,
to infer (i) the electron density n, at the solar center, and
(i) whether the data show preference for a particular
analytical form for the full trajectory n,(r).

II. INPUT

A. Model of neutrino flavor evolution

To model the flavor evolution of neutrinos inside the
Sun, we follow the same framework as [5]. We consider
mixing between v, and v, (a superposition of v, and v,) in
a two-flavor framework with a mixing angle 6 ~ 6, and
013 ~0. All neutrinos are assumed to be produced in
the center of the Sun in purely v, flavor states, and
subsequently, they experience flavor evolution through a
combination of vacuum oscillations and matter effects
inside the Sun. Sufficiently energetic neutrinos undergo
a mass-level crossing, i.e., the Mikheyev-Smirnov-
Wolfenstein (MSW) resonance, and consequently expe-
rience enhanced coherent v,-v, transformations as they
pass through the solar envelope.

The neutrinos may be represented using a polarization
vector (i.e., a Bloch vector) with real-valued components,
which are related to the wave function amplitudes y, =
(v.|w) and w, = (v,|w) in the following manner:

P, Wy + Yo,
P=|P, | =|ilyy:—vew.) | (1)
Pz |l//e|2 - |l//x|2

In particular, the Z component P, of the neutrino
polarization vector denotes the net flavor content of that
particular neutrino (e-flavor minus x-flavor), and is related

*To our knowledge, the only other representation of SDA
within astrophysics is limited to one group studying the solar
cycle [27,28], although inference for pattern recognition has
grown popular for mining large astronomical datasets [29].

to the electron-flavor survival probability P,, as
P, =2P,, —1. Since the neutrinos are assumed to be
produced as pure v, states in the center of the Sun, we
have the initial condition P, = 1 and P, = P, = 0 for each
neutrino. The dynamical equation for neutrino flavor
evolution, when expressed in this language, assumes the
form of a spin-precession equation,

-

‘;—’: = (wB + V(r)2) x P, (2)

The external field driving this precession in flavor space
consists of a “vacuum” part a)é, and a “matter” part
V=V(r)2. w=>5m*/(2E) is the vacuum oscillation
frequency of a neutrino with energy E and mass-squared
difference Sm2. The unit vector B = sin(26)% — cos(26)2
points along the direction of the |v,) mass eigenstate in
flavor space. The function V(r) is proportional to the
electron number density, as described in Sec. IIB. A
neutrino propagating out through the Sun encounters a
mass-level crossing (MSW resonance) when V(r)—
wcos20 = 0, i.e., when the Z component of the external
field vanishes.

We take our domain of state-variable evolution to span
from the center of the Sun to aradius of R /2 (half the solar
radius), where the matter density is sufficiently low to for it
to be considered the vacuum regime (ie., V(r) <
w cos 260). To connect the state variable evolution within
the Sun to measurements of neutrino flavor at the earth,
however, requires some careful consideration. One has to
take into account that the neutrinos kinematically decohere
as they propagate over sufficiently long distances, i.e., the
vy and v, mass eigenstates become separated in space as
they are moving at slightly different speeds. As a result, the
detector “catches” only one mass eigenstate at a time, and
not a coherent superposition of both. Taking this effect into
account leads to the following transformation between the
polarization vector components at rg,,; = Ro/2—the outer
endpoint of our domain, and the neutrino electron-flavor
survival probability measured on Earth, P,, ¢ [5,30]:

(1 =5in?20) P, fpa — c0820in20P,, 10 =2Poeg — 1. (3)

A derivation of the above relation can be found in
Appendix B. The same relation can, in principle, be derived
by taking the flavor composition (a { P, Py, P} triad) at the
surface of the Sun, translating it to earth, and averaging over
either the neutrino energy or propagation distance (averag-
ing over the product wL). To derive the same expression
using averaging arguments, rather than decoherence, we
refer the reader to our previous paper [5], Egs. (5)—(12).
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TABLE I. Model quantities taken to be known. The V, values
here refer to the initial (proof-of-concept) stage of testing the
procedure, prior to parameter estimation (see Sec. IV).

TABLE II. Energy bins and corresponding survival probabil-
ities P,,; from the Borexino experiment [6]. These energy values
were also adopted for the model.

Parameter Value [unit] Parameter Energy [MeV] Parameter Probability
Rg 6.957 x 103 km E, 7.4 P 0.39 +0.09
0 0.5838 rad E, 8.1 Pe» 0.37 +0.08
Gr 1.166 x 107" MeV~2 E; 9.7 Pj 0.35+0.09
5m? 7.53 x 10717 MeV?

V, values 0.015, 0.02, 0.025, 0.03, 0.035,

0.055, 0.075, 0.095 km™!

B. Model for electron number density n,

The matter potential V(r) of Eq. (2) is related to the
electron number density n, as

V(r) = V2Gpn,(r).

This term embodies the neutrino mass Wolfenstein correc-
tion [31] since it arises from neutrino coherent forward
scattering on the background electrons.

We chose two distinct forms for the matter potential, to
check for invariance of results across the two. Our
motivation was as follows. If the change in V(r) is slow
enough to allow for adiabatic evolution, the resulting
neutrino state would depend solely on the matter potential
at the endpoints, V, and V¢, and not strongly on the shape
of V(r) itself. In choosing two versions for V(r), we aimed
to test this expectation.

The first version for V(r) was an exponential decay,

2
V(r) = Voexp{—R—rln¥}. (4)
o f

This form can approximate the decay of the matter profile
of the standard solar model near the edge of the Sun, while
remaining analytically simple.

The second version was a logistic function,

Fo V4 1/q
o[

Here, ¢ = 1.7 and k = 1.35 x 107> km~'. We adopted this
form so that, together with the chosen parameter values, it
would more closely match the shape of the matter potential
from the standard solar model, compared to the simpler
exponential form. Namely, the falloff near the solar center
is shallower.

Both models were designed so that altering the value of
V would keep V(R /2) = V fixed, at a value near zero,
in agreement with the standard solar model [32]. The aim of
this paper, to be described in Sec. IV, was to estimate from

data the value of Vy—the matter potential at the solar
center. (Model quantities taken to be known are listed in
Table 1.)

C. Data

We used ®B daytime neutrino flux observed by the
Borexino [6] experiment, which provides electron flavor
survival probabilities across different energy bins.” From
Borexino we used only the observed pp-chain neutrinos
(specifically, 8B neutrinos), and not the carbon-nitrogen-
oxygen cycle (CNO) neutrinos. This is a reasonable choice
for the Sun; its core temperature is relatively low, so that
few CNO neutrinos are produced. In addition, for simplic-
ity we used daytime data only. The Borexino survival
probabilities are listed in Table II.

III. THE INFERENCE METHOD

This section offers a brief description of our methodol-
ogy. For details, we refer the reader to Ref. [5].

A. General formulation of SDA

SDA assumes that any observed quantities arise from an
underlying dynamical model, and that those quantities
represent only a sparse subset of the model’s full degrees
of freedom. We call this model F,(x(r),p(r)); a=
1,2,...,D are a set of D ordinary differential equations
governing the evolution of D state variables x,(r), where r
is our parametrization and p are unknown parameters (p in
number).

A subset L of the D state variables can be associated with
measured quantities. We seek to estimate the evolution of
all D state variables that is consistent with those L
measurements, and to predict their evolution at locations
where measurements have not been obtained.

*We chose not to include other neutrino experiments
(SNO [33] or Super-Kamiokande [34]), since they present the
neutrino data in terms of a fitting function for electron flavor
survival probability vs energy, rather than as survival probabil-
ities in specific energy bins, as done by Borexino. In that case, it
is the fitting parameters of these functions, and not the survival
probabilities themselves, that end up becoming the “measured
quantities” in the inference framework, which adds another layer
of complexity that we choose not to include here.
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B. A path integral approach

We can cast SDA as a path integral formulation, in the
following sense. We seek the probability of obtaining a path
X given observations Y,

P(X|Y) = e

which becomes a problem of minimizing the quantity A,
our “action”. Further, we use an optimization formulation,
where the cost function of the optimizer is equivalent to the
|

—Ap(X.Y)

Ay = RfAmodel + R Ameass

model
ne{odd} a=1
1 or
+ {xa(rn+1) _E 8
L
Ameas = Z yl hl,m(-x(rm))z]'

meas ;. e {meas} [=1

In A,,4e1, @dherence to the model evolution is required of
all D state variables x,. The outer sum on n runs through all
odd numbered discretized locations. The inner sum on a
runs through all D state variables (for our case, these are
polarization vector components [P, ;, P, ;, P ;] for each
energy E;). The terms within the first and second sets of
curly brackets represent the errors in the first and second
derivatives, respectively, of the state variables.

In A, ., We require adherence to the measurements of
any measured quantities. The variables y;, for [ =1, ..., L,
are the L components that are measured at locations
rn € {meas} (for our case, these are the linear combina-
tions of the components P,; and P, ; of the polarization
vectors for each energy E;, in accordance with Eq. (3), at
the final 1000 grid locations.) the number of locations is
Neas- We will compare these values to the compo-
nents h,(x).

These h;,, are transfer functions translating the model
state variables to the measured quantities. Here, the mea-
sured quantities are the values of P, of each neutrino, at two
locations; the center of the Sun, and the surface of Earth (the
“measurement” at the center of the Sun is really a robust
theoretical expectation on neutrino flavor). At the Sun’s
center, we can compare the measurement directly to the
model’s P,, rendering the transfer functions trivial (that is,

ho(P) = P,.) The translation at the surface of Earth,
however, is more involved. This is because our model
grid does not extend beyond the Sun (i.e., beyond
Ttinal = Ro/2), and the neutrinos experience kinematic
decoherence on their way to Earth (see Sec. I A and

action on a path in the state space. The cost function
surface is ((D + p) x (N + 1))-dimensional, where N + 1
is the number of discrete model locations, which we take
to be independent dimensions. We seek the path X° =
{x(0),...,x(N),p(0),...,p(N)} in state space that corre-
sponds to the lowest cost. We find minima via the
variational method [35].

After many simplifications, A, can be written in the
following computationally implementable form:

Z Z[{ xo(Frin <rn>—%r[Mx(rn),p(rn))+4Fa<x<rn+1>,p<rn+l>>+Fu<x<rn+2>,p<rn+z>>]}2

(xu(rn) +xa(rn+2)) __[Fa(x(rn)’p(rn)) - Fu(x(rn+2)vp(rn+2))]}2:| ’

(6)

Ref. [5] for an explanation). We connect model to meas-
urement at this end by comparing the P, measurement at
Earth to an extrapolated P, value derived from the polari-
zation vector components at R, /2 [as given by Eq. (3)]. In
this way, there is an equivalency between measuring P, at
Earth and measuring a linear combination of P, and P, at
R /2. Thus, the transfer function at this end is

B (P) = (1 = sin20)P, — cos20sin260P,,  (7)
for each neutrino energy. Then the measurement term
becomes

1 &
Ao = 37— 3| (PEE(0) = Pos(0)?
meas j_|

+ (ng;%(@) Pfinal <Pk <R2®)>>T (8)

Here, the subscript k = {1, ..., N,} indexes the neutrino
energy bins. P77 is the measurement of P, at the specified
location (with 0 being the center of the Sun, and @ being
the Earth). Table III distills the relation between Eq. (6) and
the quantities of interest in the specific model of this paper.
For a detailed derivation of the cost function of Eq. (6), see
Appendix A.

C. Multiple solutions

The action surface for a nonlinear model will be non-
convex, and our search algorithm is descent only. Thus, we
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TABLE III. Relation between language of Eq. (6) and our
model quantities.

Our model for

Eq. (6) inference

Amodel See Eq (6)

Description

Imposes dynamics of all state variables,
measured and unmeasured

X, Py, Py;, P All state variables
D Vo Unknown parameters
Apneas  See Eq. (6) Imposes measurements onto state
variables associated with measured
quantities
v P, survival Measured quantities

Ry See Eq. (7) Translates between measured quantities

and model state variables

face the problem of multiple minima. To identify a lowest
minimum, we iteratively anneal [36] in terms of the
coefficients Ry and R, of the model and measurement
error terms, respectively, of Eq. (6).

We set R,, to 1.0, and write R as R;oa”. The values of
R and a are chosen to work best for the particular model
at hand (in this paper, they are 103 and 2.0, respectively),
and f is the annealing parameter, initialized at 1. The first
annealing iteration takes the measurement error to domi-
nate: with the model dynamics imposed relatively weakly,
the action surface is rather smooth, and we obtain an
estimate of Ay. The second iteration involves an integer
increment in f, which places faint structure upon the
action surface, and the search begins anew from the initial
estimate of Ay. We anneal toward the deterministic limit
where Ry > R,,, aiming to remain sufficiently close to the
lowest minimum along the way.

IV. SPECIFIC INFERENCE TASK

Our model contained neutrinos with three distinct
energies, chosen to replicate the Borexino experiment’s
three energy bins. For each neutrino energy, the flavor
evolution was constrained by two measurements. At a
radius of r = 0, a measurement of P, =1 was given to
represent pure electron flavor. At the outer end, r = R /2,
P, and P, were constrained based on energy-dependent
measurements of the survival probability P,, at Earth, as
described in Sec. III B. There we provided as measurements
the final 1,000 pairs of those values; i.e., the 1,000th pair
corresponded to the final radial location at r = Ry /2. This
choice was in keeping with our prior work (Ref. [5]), and
is justified given that the neutrinos had completed their
matter-driven flavor evolution well before encountering
this region in which the 1,000 measurements were made.
Knowing that the neutrinos decohere by the time they arrive
at Earth, the relation [Eq. (3) or Eq. (7)] between the
measured P,, (or P,) at Earth, and the {P_, P, } pairs in the

Sun, can be applied to any number of points within the
“vacuum regime” of the domain.

We ran two versions of the optimization, each defined by
a distinct choice for V(r) in the flavor evolution model
[Eq. (2)]. In one version, the model took the exponential
form for V(r) [Eq. (4)]. The other version took the more
complicated logistic form of [Eq. (5)]. For each case, the
value of V ,—that is, the value at R /2—was taken to be a
fixed known value of 4.470945 x 10~ km~! (consistent
with the expectation from the standard solar model). In
comparison, the value of @ cos 26 at the typical Borexino
energies is ~0.01 km™!, reinforcing our assertion that the
endpoint of our domain is comfortably within the vacuum
oscillation regime.

A. Proof of concept: State prediction at fixed V),

Prior to performing parameter estimation, we needed to
establish that the SDA procedure could reliably identify the
correct solution for the case wherein the correct solution is
not known to us. Thus, we first sought to determine how
well the procedure would predict state variable evolution in
a controlled scenario wherein we did know the true value
of V. In this case, the predicted evolution of the state
variables can be compared to the output from forward
integration.

In previous work [25], we showed that the value of the
action could be used as a litmus test for the correct
solution; namely, the correct solution corresponded to the
path of least action. Here, we sought to verify that was
indeed also the case for this model. That is: the best match
to the forward integration should also be the solution
corresponding to the path of least action. If we found that
to be the case, then we would be able to identify the
correct solution for the scenario wherein we do not have
an independent verification from forward integration. In
short, the best solution is simply the one corresponding to
the path of least action. It is vital to have such a metric
prior to trusting the data to lead us blind in parameter
estimation.

To that end, for each model version, we performed eight
variations, each taking a known distinct value of V. We
sought a range for these values that would encompass the
prediction from the standard solar model [32] that V| is
around 0.03 km™!. Further, we sought to identify the range
over which the survival probabilities are expected to be
sensitive to the value of V), using forward integration. We
examined V, over the range [0.001,0.12] km™!, using 500
linearly spaced steps in V,, each time initializing our state
as P = 0,0, 1]. Then we calculated values of P,, as they
would be measured on Earth, via the transformation given
in Eq. (3). The outcome is shown in Fig. 1. For both models
of V(r), values of V, near 0.025 km~! to 0.030 km~!
produced P,, values that most closely matched the
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0.475 -

0.450 -

0.425 A

0.400 -

0.375 A

0.350

Pee averaged over last 1000 points

0.325 A

0.02 0.04 0.06 0.08 0.10 0.12
Vo

FIG. 1. Predicted neutrino survival probabilities P,,, as would
be measured on Earth based on Eq. (3), versus V, the matter
potential at the center of the Sun. These predictions were obtained
using forward integration. Dashed lines represent the measured
survival probabilities for each neutrino energy in the Borexino
experiment [6]. Here we used the logistic model for V(r)
[Eq. (5)]; results for the exponential decay model were visually
identical. We used this plot to determine our search range for V.
Importantly, this range spans the prediction from the standard
solar model [32] of V ~0.03 km™!.

measurements, for each neutrino energy. Given this out-
come, we chose the following eight values for the proof-of-
concept stage SDA experiments; 0.015 km~!, 0.020 km™",
0.025 km~!,  0.030 km~', 0.035 km~!, 0.055 km™!,
0.075 km~!, and 0.095 km~!.

B. Parameter estimation of V)

Once we ascertained that the path of least action reliably
corresponded to the best state variable evolution match to
the (known) forward integration result in that controlled
scenario, and importantly that the reliability did not
depend on the value of V| itself (see Sec. V), we proceeded
with the more ambitious problem of parameter estimation.
Specifically, at this stage we challenged the procedure to
infer V, given the (now incomplete) model together with
the Borexino data. Here, the permitted search range for V
was 0.001 km~! to 0.120 km™!, chosen to match the range
used for the preliminary forward integration tests (Fig. 1).

We repeated the parameter estimation, this time con-
sidering the Borexino experimental error, by adding
Gaussian-distributed noise* of that average magnitude into
the measurements of P,, at Earth.

We used the open-source interior-point optimizer
(Ipopt) [37] to perform the simulations. Ipopt discretizes
the state space via a Hermite-Simpson method, with

*This noise was added to each of the 1,000 locations sampled
for each energy 0.1% of the resulting noisy samples fell below the
range [0,1], which is unphysical. So we imposed a lower bound at
0, which had negligible effect on the distribution.

constant step size. We used 121,901 steps and a step size
of &r of 2.8524 km~!. We discretized the state space, and
calculated the model Jacobian and Hessian, using a Python
interface [38] that generates C code that Ipopt reads. The
computing cluster that ran the simulations had 201 GB of
RAM and 24 Genuinelntel CPUs (64 bits), each with
12 cores.

For the proof-of-concept test of the accuracy of the V|,
estimates, we generated a simulation via forward integra-
tion, with all neutrinos initialized at [P, P,, P.] = [0,0, 1]
at the solar core. Here we used the value of V|, obtained
through parameter estimation, and a domain identical to the
domain used in the optimization. This result we compared
directly to the solution from Ipopt. The integration was
performed by Python’s odeINT package, which uses a
FORTRAN library and an adaptive step size. Our complete
procedure can be found in the publicly available repository
of Ref. [39].

For all experiments, ten independent paths were initial-
ized randomly. That is, each initialization consisted of as
many random choices as there are dimensions to the action
surface; D x (N + 1) 4+ p, where D, N + 1, and p are the
number of state variables, discretized model locations, and
parameters, respectively. The permitted search range for
state variables (P,, P,, and P;) spanned their full dynamical
range [—1.0, 1.0].)

V. RESULTS AND DISCUSSION

The key results are threefold:

(i) For the proof-of-concept experiments wherein V
was taken to be known; the Borexino data were most
consistent with a model V, value in the range of
0.025-0.030 km~! (in keeping with the prediction
from the standard solar model). In addition, the state
variable predictions that most closely matched the
known result from forward integration were indeed
the solutions corresponding to the paths of least
action. Thus, we had confidence in using the path of
least action as a litmus test in the parameter-
estimation stage; a stage at which there would
exist no independent “known truth” from forward
integration.

(i) For the parameter estimations of V based on
the data; the path-of-least-action litmus test iden-
tified a (slightly broader) range for V,, that centered
around the (smaller) range identified above (of
0.025-0.030 km™"), as most consistent with the
Borexino measurements.

(iii) All results were invariant across the exponential and
logistic models for V(r). That is, it was not the shape
of the matter profile that dictated the survival
probability, but rather only the difference between
initial (V) and final (V) values as expected for
adiabatic flavor evolution.
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Annealing parameter 8
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FIG. 2. Top: Evolution of state variables, using different fixed values of V|, in each case; prediction (gray) versus expectation from
forward integration (blue), for one neutrino energy, using the logistic model for V(r). Left: V; = 0.025 km™'; Right: V;; = 0.095 km~!.
The left match is significantly better; black versus blue are indiscernible by-eye. Bottom: Corresponding plots of log(action) versus
annealing parameter f3, for each result, respectively. The action asymptotes to ~107¢ (left) and ~10~* (right). Note that the better
prediction (left) corresponds to the path of lower action. The exponential model for V(r) yielded similar results; not shown. Thus, the
action can be taken as a metric for the case of parameter estimation, wherein we will have no independent check on prediction quality
from forward integration (since V|, will not be considered “known”). In addition, the transparent red band in the panels for P, and P,
denote the (sparse) region where measurements of P,, at Earth were provided, as per Eq. (3).

A. Proof of concept: State prediction at fixed V,

As described in Sec. IV, our initial step—prior to
parameter estimation—was to identify a metric that could
be used to identify the optimal solutions for the case
wherein the true evolution of state variables is not known.
To this end, we ran the optimization for the eight distinct
(known) values of V|, and compared the resulting pre-
dictions for state variables against the (known) results from
forward integration.

The top panel of Fig. 2 shows the predicted evolution of
state variables (black) compared to the result obtained
from integration (blue), for one neutrino energy. Left and
right panels are examples of an excellent versus a poorer
match, respectively. In both, the overall flavor evolution is
qualitatively predicted well, but the prediction on the right
fails to capture the amplitude of oscillations. The differ-
ence between the procedures on the left versus right was as
follows. On the left, the specific model value chosen for

V, is 0.025 km~! and on the right, the choice is instead
0.095 km~'. (This result was obtained using the logistic
form for V,; results are similar for the exponential
form but are not shown.) In other words, these results
indicate that a value for V, of 0.025 km~' is more
compatible with the Borexino measurements, compared
to the value of 0.095 km™!.

Now, the bottom panel of Fig. 2 shows the corresponding
plot of the action versus annealing parameter f, for each
result, respectively. The action for the better (left) solution
asymptotes to a significantly lower value compared to that
at right; namely, A, ~ 10~ compared to 107, Indeed, this
was our finding in a much more extensive study of the
utility of this “path of least action” for identifying best
solutions [25]. In addition, note the vertical red band on the
plot for P, and P, denoting the region in which measure-
ments were provided to the procedure as a reminder of their
sparsity.
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FIG. 3. Log of action as a function of annealing parameter S for
each fixed value of V| chosen in the proof-of-concept stage of
optimization, for the logistic [Eq. (5)] model for V(r) (top), and
the exponential [Eq. (4)] model (bottom). For both models, values
of 0.025 km~! and 0.03 km~! resulted in the lowest action, with
either lower or higher values of V|, corresponding to a higher
action plateau.

We repeated the comparison shown in Fig. 2 across all
chosen values for V(. Resulting composite action plots are
shown in Fig. 3, for the logistic (top panel) and expo-
nential (bottom) versions. Note that the greater the
deviation of the chosen value of V|, from the expected
range of [0.025,0.030] km~!, the higher the action value.
And critically, the higher the action value, the poorer the
optimization of state variable evolution with the data (not
shown). Thus, within the scope of this paper, the action
can be taken as a reliable proxy for the correct solution, for
the case wherein we “fly blind” without an independent
check from forward integration.

B. Parameter estimation of V)

With our action-as-litmus-test in hand, we proceeded
with parameter estimation of V|, given the Borexino data.
As per the description in Sec. IV, we performed ten
independent trials for each model version of V(r), once
without noise and once with Gaussian noise on the order
of the published Borexino errors [6] added to the
measurements.

FIG. 4. Top: Log of action as a function of annealing parameter
p for the logistic model, across ten independent trials, without
noise in measurements. The values of V, in the plot legend
correspond to a value of 25 for annealing parameter f; an iteration
at which solutions had stabilized. Bottom: Estimate of V|, [left
(blue) y-axis, circles] and log A, at f# = 25 [right (red) y-axis,
triangles], across the ten trials. The light blue band indicates the
expected range of V, based on Fig. 1 and on the proof-of-
concept optimization runs. (Those trials that did not plateau are
denoted by hollow shapes, both for the V|, estimates and for the
corresponding value of the action.)

Results for the logistic model are shown in Fig. 4
(noiseless) and Fig. 5 (noisy). The top panel of each
plot shows the log of the action as a function of g, for all
ten trials. All trials found stable estimates. With the
noiseless data, the estimates of V|, spanned the range
[0.0105,0.0488] km™!, where the lowest value of the
action A, corresponded to an estimate for V, of
0.0247 km~'. With additive noise, the range for V was
[0.001,0.0432] km~', and the value corresponding to
lowest action was V, = 0.0243 km™".

The bottom panels of Figs. 4 and 5 offer an alternative
display of the information contained in the top panel. Here,
the estimate of V|, is shown on the left (blue) y-axis, and the
corresponding asymptotic value of the action is on the right
(red) y-axis. The horizontal light blue band indicates the
expected range for V, based on the analysis depicted in
Fig. 1 or Fig. 3. Note that the greater the distance of the
estimate of V|, from that band (blue circle), the higher the
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FIG. 5. Same as Fig. 4 for the logistic model, but showing the
results for the optimization trials with Gaussian noise added to the
measurements, on the order of the uncertainties in the Borexino
data [6].

action value (red triangle). (Paths whose action value did not
reach a stable plateau are denoted with hollow shapes.)

Results for the exponential model were similar.
Figures 6 and 7 show the noiseless and noisy cases,
respectively. The without-noise range of estimates for V|,
was [0.0198,0.0779] km~!, and with noise the range
shifted slightly to [0.0173,0.0781] km~'. Again, for both
noiseless and noisy cases, the path of least action
corresponded to a value for V, within the expected range
of 0.025-0.030 km~!.

VI. CONCLUDING REMARKS

To summarize our results; neutrino flavor measurements
at terrestrial detectors (e.g., Borexino) can be used to
independently constrain the electron density at the solar
center (complementary to the existing constraints from
stellar oscillations, for instance). This is demonstrated here
through a novel application of the SDA method. The
outcome is insensitive to the overall shape of the electron
density profile, as long as it evolves sufficiently smoothly
through the mass level crossing between the instantaneous
in-medium neutrino mass eigenstates ensuring adiabatic
flavor evolution across the resonance.
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FIG. 6. Same as Fig. 4, but with the exponential-decay model
for V(r) [Eq. (4)] instead of the logistic model [Eq. (5)], for
noiseless measurements.

One reason we are interested in independent means to
estimate the electron density profile n,(r) is that n,(r) can
inform other important solar properties. For example, there
exists a strong connection between helioseismology and
neutrino production in the Sun [40]—a connection that can
be exploited. Specifically, taken together with helioseis-
mology data, n,(r) can lead to an estimate of the solar
temperature profile. The connection is sound speed.
Observations of pressure waves at the solar surface have
grown increasingly precise for deducing the sound speed
profile throughout the Sun and sound speed at any given
location in the Sun depends on both matter density and
temperature at that location.

As another future direction, it is worthwhile to inves-
tigate possible improvements that inference might offer
for the analysis of solar neutrino data itself. For example,
it might provide an independent check on new methods
to remove cosmogenic-induced spallation in Super-
Kamiokande, a recent effort to improve the precision of
solar neutrino data [41].

Finally, and looking beyond our immediate solar neigh-
borhood; the inverse paradigm offers a unique and possibly
complementary counterpoint to integration, for studying a
diversity of astrophysical environments from ‘“simple”
main sequence evolution to the fiercely nonlinear environs
of core-collapse supernovae and merger events.
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FIG. 7. Same as Fig. 6 for the exponential-decay model for
V(r) [Eq. (4)], with Gaussian noise added to the measurements,
on the order of the Borexino uncertainties [6].
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APPENDIX A: DERIVATION
OF THE COST FUNCTION

1. Summary

To derive the cost function, or “action”, of Eq. (6), we
first seek the probability of obtaining a path X in a model’s

state space given observations Y: P(X|Y),
P(X|Y) = e~AXY),

This is the path X for which the probability, given Y, is
highest is the path that minimizes A,. If A is sufficiently
large (where “large” is defined within the context of a
particular model), we can use Laplace’s method to estimate
the minimizing path on AO.S

Then the expectation value of any function G(X) on a
path X can be written as

GOX)) — [dXG(X)e AX.Y)
< ( )> - dee—AO(XsY)

That is, the expectation value is written as a weighted sum
over all paths, with weights exponentially sensitive to A0.6
In our case, the quantity of interest is the path X itself.

We now seek a functional form for A,. As a reminder of
the notation the model consists of D partial differential
equations (PDEs), written in D state variables. We are able
to measure L quantities, each of which corresponds to one
of the model’s D state variables. Typically the measure-
ments are sparse (L < D), and the sampling may be sparse
as well.

2. Model dynamics alone, without measurements

We first consider the model’s dynamics in the absence of
measurements. We represent the model’s path through state
space as the set X = {x(ro),x(r),....x(ry),p}, Wwhere we
have chosen a parametrization of r (or radius). Here, ry is
the final discretized location and the vector x(r) contains
the values of the D total state variables, and p are the
unknown parameters.

a. Assuming that a Markov process underlies
the dynamics

If we assume that the dynamics are Markov, then x(r) is
determined by x(r — Ar), where r — Ar means “the loca-
tion immediately preceding r” and an appropriate discre-
tization of time Ar for our particular model has been
chosen. A Markov process can be described in terms of
differential equations,

dx,(r)
dr

=F,(x(r),p); a=12,..D,

with state variables x(r) and unknown parameters p. In this

appendix we take the parameters to be constant numbers,
but more generally they may vary with discretization r.

5Laplace’s method was developed to approximate integrals of
the form, [ M/¥)dx. For large M, significant contributions to the
integral come only from points near the minimum.

®The rms variation and higher moments can be calculated by
taking the x, to the appropriate higher exponents.
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To discretize that continuous form, we choose to use the
trapezoidal rule,

%o n 1) = xyn) + 5T TF (4 1) 4 Fy ()]

where n and n + 1 are shorthand for r, and r, ;.

b. Introducing stochasticity

We now permit stochasticity in the model dynamics.
Here the evolution can be written in terms of transition
probabilties: P(x(n + 1)|x(n)) is the probability of the
system reaching a particular state at location n + 1 given its
state at location n. If the process were deterministic, then in
our case P(x(n + 1)|x(n)) would reduce to 52 (x(n + 1) —
x(n) =& [F(x(n+ 1)) + F(x(n))]). We will revisit to this
expression later.

For a Markov process, the transition probability
from state x(n) to state x(n + 1) represents the probability
of reaching state x(n + 1) given x(n) and x at all prior
steps, or,

P(x(n + Dlx(n)) = P(x(n + Dlx(n).x(n - 1), ....x(0)),

so that
P(X) = P(x(0).x(1). ....x(N))
— ] Px(n + 1)lx(n) P(x(0))
n=0

Then we write
P(X) = e_AO<X)’

so that the path X that minimizes the action Ay is the path
most likely to have occurred. Then the model term of the
action can be written as

Apmoder = = Y log[P(x(n + 1)[x(n))].

3. Adding measurements

We now define measurements Y as the set of all vectors
y(n) at all locations n, the analog of X for the state
variables. We shall examine the effect these measurements
have on the model’s dynamics by invoking “conditional
mutual information” (CMI) [42].7

"For an intuition regarding CMI, consider that the overall
information, in bits, in a set A is defined as the Shannon entropy
H(A) = =5, P(A)log[P(A)]. The CMI quantifies the amount
of information, in bits, that is transferred within a particular
segment along a model trajectory. That information is

= 2no log[P(x(n)ly(n). ¥ (n = 1))].

The expression CMI(x(n),y(n)|Y(n—1)) asks “how
much is learned about event x(n) upon observing event
y(n), conditioned on having observed event(s) Y(n —1)?”
We can write it as

CMI(x(n),y(n)[Y (n - 1))

o[ P e 1)
P(m)¥(n = D)POY(n = 1))

4. Action including measurements

With measurements, the action becomes,

Ap(X.Y) = =" log[P(x(n + 1)|x(n))] - log[P(x(0))]
= " CMI(x (). y(n)|¥ (n = 1)),

where the first term represents the model dynamics, and the
third term represents the transfer of information from
measurements.” The summations are over the discretized
parametrization, which, in this paper, is a one-dimensional
distance. As noted, this formulation positions us to calcu-
late the expectation value of any function G(X) on the
path X.

5. Writing a calculable form for the action

We now simplify the action formulation in order to
obtain a form that can be implemented computationally.

a. The measurement term

Regarding the measurement term, we make four
assumptions:
(i) The measurements taken at different locations along
the parametrized path are independent of each other.
Then the CMI term is P(x(n)|y(n)) or

Ao(X,Y) = —log[P(X|Y)].

(i) There may be an additional relation between the
measurements and the state variables to which those
measurements correspond, which can be expressed
via a transfer function h;: h;(x(n)) = y;(n).

(ii1)) For each of the L measured state variables, we allow
for noise 6, at each measurement location, for each
measurement y;: y;(n) = hy(x(n)) + 0;(n). Then

The measurement term can be considered to be a synchro-
nization term. While such terms are often introduced artificially
in optimization and control problems, we have shown that the
measurement term can arise naturally through considering the
effects of the information contained in those measurements. In
the absence of measurements, we live in a state space restricted
only by our model degrees of freedom. The measurements guide
us to a solution within a subspace in which those measurements
are possible.
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P(x(n)|y(n)) is simply some function of i(x(n)) —
y(n) at each location.
(iv) The measurement noise assumes a Gaussian distri-
bution.
Then we arrive at

CMI(x(n),y(n)|¥ (n—1))

M(hk(x(n)) —yi(n)),

(hi(x(n)) = yi(n))

L
Lk=1

where R,, is the inverse covariance matrix of the measure-
ments ;.

b. The model term

We assume that the model may have errors, which will
broaden the delta function in the expression noted earlier
for the deterministic case. We assume that the distribution
detR fe [_zgz]
(2n)? )
Here, Ry is the inverse covariance matrix for the state
variables.

Taking all approximations together, we can arrive at the
full form of Eq. (6), with details in the main text of Sec. I1I B.
For complete details of this derivation, see Ref. [43].

of errors is Gaussian, so 6°(z) becomes

APPENDIX B: NEUTRINO PROPAGATION
FROM SUN TO EARTH

1. Coherent regime (solar surface)

A neutrino produced in the center of the Sun goes
through MSW resonance and eventually enters the vacuum

J
) [ Ny, Pex } { cosf sind } { n,
' Pex Ny, —sinf cosf] | p},

(
2

n

Note how the time dependence of p;, appears in both the
diagonal and off-diagonal components of the flavor-basis
density matrix. In the polarization vector language, this
becomes
P(fc?, =n,, —n, = (n, —n,)cos26+ 2Rep;, sin 20,
= —(n,, —n,,) sin26 4 2Rep;, cos 26,

(BS)

P12 ] cosd

vy

Ly — My, ) SN 20 + pi,c0s%0 — pysin®f

oscillation regime. In the coherent regime (e.g., just outside
the surface of the Sun), the density matrix in the mass basis
in vacuum can be parametrized as

(B1)

where n,, and n, are independent of time (distance) in the
absence of matter effects, and p;, has time-dependent
oscillation phases. In the flavor basis, the same matrix
can be parametrized as

Ny, Pex
Pex My,

(B2)

where all of the matrix components now depend on time, on
account of the change of basis transformation described
below. This transformation is given by the unitary matrix,

(B3)

[ cos @ siné?]

—sind cosd

so that |v,) => ;U |v;). With this transformation,
we can relate the density matrices in the two bases as
p) = Up™UT. Therefore, one has

—sin@
sinf  cosd
1 (n,, —n,,)sin20 + pj,c0s?6 — pj,sin’6

n, sin’0 + n, cos’0 — Rep, sin 20

2. Incoherent regime (earth)

Next, we look at the incoherent regime, e.g., when the
neutrinos arrive at the earth. By this point, the different
mass eigenstates comprising a neutrino wave function have
become spatially separated due to different velocities,
and as a result, the neutrinos are detected at the earth as
incoherent mixture of mass eigenstates. This phenomenon
is called kinematic decoherence. In this state, the neutrino
density matrix is given by
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(B6)

in the mass basis. The flavor basis density matrix p,(,f ga can

then be obtained by setting p;, — 0 in Eq. (B4). Now we

see that there is no time dependence in pl(;%, which also

makes it easier to interpret the result of any measurement
(since we no longer need to worry about any oscillating
quantities). In this limit, the polarization vector components
in the flavor basis are

— n,,2) cos 20,
—(n,, —n,,)sin20,

(B7)

Comparing Egs. (B5) and (B7), one can obtain the
following relation:

PZ% cos20 — P)% sin260 = Pg% cos20 — P)(C% sin26. (BS8)

From Egs. (B7), we also have

Px% = —Pg L sin 20/ cos 20, (B9)
and hence we can write
PY) cos 20 — P sin26 = PY) / cos 26
= (2P,, —1)/cos20, (B10)

where P,, is the electron flavor survival probability
measured at the detectors. Equation (B10) represents the

transformation between the neutrino state variables ngg)

and P)(Cf 2) in the outer parts of the Sun (where the matter
density is low enough to essentially be in the vacuum
oscillation regime) and the measured survival probability
P,, at the earth.
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