


Fig. 2. Simulated Bifurcation: Antenna states bifurcate asynchronously into
+1 or -1, with +1 indicating service for UE1 and -1 for UE2.

III. NUMERICAL EXPERIMENT

In our experiment, we consider a massive MIMO setup with

two UEs positioned at distinct angles: (θ, φ) = (−20◦, 0◦)
and (40◦, 0◦). The transmitting planar antenna array consists

of 20-by-50 antenna elements spaced half wavelengths apart.

We formulate the objective function E to achieve a balanced

distribution of radiated power to both UEs while minimizing

inter-user interference. This function incorporates the radiated

electric fields (E1 and E2) directed towards each UE, as well

as the differential electric field (Ed = E1 − E2), ensuring an

equal electric field strength at both UEs. Mathematically, the

function is defined as E = E
∗

1
E1+E

∗

2
E2+P ·<[E∗

d
E

∗

d
]. At the

ground state of E , the first two terms minimize the inter-user

interference around (−20◦, 0◦) and (40◦, 0◦), while the third

term balances power between the two beams using a penalty

constant P , biasing the multi-objective optimization between

energy balancing and minimization.

We have considered five distinct array setups to evaluate

their effectiveness. Firstly, the sub-array approach divides the

aperture into two sub-panel clusters of equal size. Secondly,

the alternating pattern involves grouping antenna elements for

the two UEs in a periodic alternating manner. Thirdly, the

random pattern selects antenna elements for UE1 and UE2

randomly, ensuring an equal number for each UE. Finally, we

employ both SB-TAR and discrete Particle Swarm Optimiza-

tion (d-PSO) [6] algorithms to achieve the desired radiation

pattern configuration by minimizing the objective function E .

Table I summarizes the gain of the five array configurations.

The sub-array, alternating, and random arrays exhibit identical

gain towards the intended UE. In contrast, SB-TAR and d-

PSO show a slight offset gain towards each UE due to the

soft enforcement of power balancing through the differential

electric field Ed. Despite this offset, the gain remains close to

the original value of 28.75 dB. Notably, SB-TAR demonstrates

the lowest mean interference to both UEs at -5.85dB, in con-

trast to the random array at 3.5dB and d-PSO at -1.38dB. The

d-PSO solution seems to be stuck in a local minimum, leading

to suboptimal interference levels for both UEs compared to the

solution provided by SB-TAR.

TABLE I
GAIN AND INTERFERENCE (IF) TO BOTH UES IN DB

Setup UE1 gain UE2 gain UE1 IF UE2 IF Mean IF

Sub-array 28.75 28.75 -0.85 -0.85 -0.85
Alternating 28.75 28.75 26.58 26.58 26.58

Random 28.75 28.75 5.70 0.57 3.50
SB-TAR 28.87 28.6 -12.88 -2.01 -5.85
d-PSO 28.86 28.63 2.07 -7.20 -1.38

In addition to evaluating the quality of the optimization

solution, we can also compare the computational time required

by both d-PSO and SB-TAR. SB-TAR achieves the argmin
of the objective function in 8.03 seconds, while d-PSO takes

309.5 seconds to accomplish the same task. This demonstrates

that SB-TAR exhibits greater time efficiency compared to

traditional heuristic optimization methods such as d-PSO.

In Fig. 3, we present the radiation patterns resulting from

five array configurations, with the focus on the group of

subarrays serving UE2. The pattern from the alternating ar-

rangement reveals a grating lobe issue occurring at (θ, φ) =
(−20◦, 0◦), indicating significant interference inherent in pe-

riodically distributed antenna arrays. Moreover, the sub-array

configuration, while lacking grating lobes, exhibits a broader

beamwidth due to its smaller effective area. In contrast, the

random, d-PSO and SB-TAR distributions display narrower

beamwidths, with SB-TAR offering the additional benefit of

lower interference towards UE1 at (θ, φ) = (−20◦, 0◦).

Fig. 3. Radiation patterns from the group of antenna elements that serve
UE2 placed at (θ, φ) = (40◦, 0◦).

IV. CONCLUSION

As widely recognized in our community, optimizing large-

scale antenna arrays for beamforming presents challenges due

to high computational complexity, especially with sparse or

random arrays. Our introduced computational methodology,

based on non-linear dynamics and bifurcation theory, offers

a solution. It can be seamlessly extended to support multiple

User Equipments (UEs) using one-hot encoding with binary

variables. This approach can enable joint optimization of

antenna positions and array excitation vectors, enhancing ef-

ficiency and performance in wireless communication systems.
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