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Abstract—This paper introduces a novel methodology for
array synthesis in multi-user MIMO systems. Utilizing binary
variables to represent antenna excitation states, we encode
desired beampattern properties, such as a narrow main lobe,
low peak sidelobe level, and minimized inter-user interference,
into a quadratic objective function. The optimal array excitation
profile is then obtained through a quantum-inspired simulated
bifurcation algorithm. Large-scale numerical experiments are
performed to validate the performance of our method.

I. INTRODUCTION

Multi-user Multi-input Multi-output (MU-MIMO) technol-
ogy plays a pivotal role in the evolution of wireless commu-
nication, especially in the context of 5G and beyond. In MU-
MIMO, a base station (BS) equipped with many antennas can
concurrently serve multiple users by distributing data across
parallel streams, a technique known as spatial multiplexing [1].
From the perspective of antenna engineering, an ideal beam
pattern for a BS antenna array should provide high gain signals
to the intended user equipment, narrow main lobes to enhance
direction-of-arrival (DOA) estimation, and specified null/notch
to mitigate interference [2]. The associated optimization prob-
lem is typically NP-hard due to the nonconvex and nonsmooth
min-max objective function.

In our paper, we introduce a quantum-inspired metaheuris-
tic algorithm for the efficient synthesis of optimal radiation
patterns in MU-MIMO systems. The basic problem statement
is illustrated in Fig. 1. We consider a large planar phase array
with uniform half-wavelength element spacing. The objective
is to select subsets of the array to steer individual beams
toward specific users while minimizing signal towards oth-
ers, thereby reducing inter-user interference. It is noteworthy
that the optimized solution inherently yields non-overlapping
groups of sparse arrays. As these sparse arrays share similar
aperture sizes, narrow main lobes are naturally produced.
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Fig. 1. BS antenna array performs beamforming towards the intended user
equipment (UE) while null steering towards other UEs, with red and blue
antenna elements creating respective radiation patterns.

II. METHODOLOGY

Consider the problem statement depicted in Fig. 1, the
algorithm starts by defining the radiated electric field (E-field)
E of the antenna array with M antenna elements, which is
written as a weighted sum of radiation vectors, G, (6, ¢), from
individual antenna elements. The goal is to select a group of
array elements beamforming towards UEL, and the other group
to serve UE2. Here, we introduce an unknown binary variable
a., and then express the element-wise radiated E-field in one
of two excitation states (e/?1m or e/?2.m). The total radiated
field is given as:

M
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Next, we convert the complex electric field data into a power
representation by calculating the squared norm. The desired
radiation profile, e.g. beamforming and nullforming, is then
recasted into a quadratic argmin function £ of the excitation
coefficients and binary variables (a1, - - -, aar).

However, minimizing such objective function £ poses an
NP-hard computational challenge [3]. To tackle this, we
introduce a modified simulated bifurcation (SB) algorithm,
drawing inspiration from quantum adiabatic optimization and
spin dynamics. SB is a rapid, parallelizable approach for
Ising problems, reminiscent of a computational strategy from
quantum mechanics where a system gradually transitions to
seek the lowest-energy configuration of a Hamiltonian.

The original SB [4] begins by embedding the quadratic
function £ into a nonlinear Hamiltonian, with optimization
variables initially assigned around zero. As the pumping pa-
rameter in the nonlinear Hamiltonian gradually increases over
time, the system evolves, leading to bifurcation phenomena.
This results in the emergence of two stable branches at +1
or -1, as depicted in Fig. 2 for a small problem with 100
spins. In our context, if particle m is at position 1, it indicates
that antenna m exclusively serves UE1 and minimizes energy
towards UE2.

Our modified SB algorithm (SB-TAR), in addition, incor-
porates the “trap and randomize” (TAR) protocol to address
concerns like “retarded bifurcation”, characterized by asyn-
chronous convergence [5]. This is evident in Fig. 2, where
each particle or node bifurcates at different times. During
the SB time-stepping process, TAR is regularly performed to
locate and round off trapped nodes” near +1 or -1, while
randomizing the other particles between -1 and +1. This
minimizes solution oscillations and speeds up convergence to
the global solution.
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Fig. 2. Simulated Bifurcation: Antenna states bifurcate asynchronously into
+1 or -1, with +1 indicating service for UE1 and -1 for UE2.

IIT1. NUMERICAL EXPERIMENT

In our experiment, we consider a massive MIMO setup with
two UEs positioned at distinct angles: (6,¢) = (—20°,0°)
and (40°,0°). The transmitting planar antenna array consists
of 20-by-50 antenna elements spaced half wavelengths apart.

We formulate the objective function £ to achieve a balanced
distribution of radiated power to both UEs while minimizing
inter-user interference. This function incorporates the radiated
electric fields (E; and E,) directed towards each UE, as well
as the differential electric field (E; = E; — E»), ensuring an
equal electric field strength at both UEs. Mathematically, the
function is defined as £ = EfE,+E;Es+P-R[ESE}]. At the
ground state of &, the first two terms minimize the inter-user
interference around (—20°,0°) and (40°,0°), while the third
term balances power between the two beams using a penalty
constant P, biasing the multi-objective optimization between
energy balancing and minimization.

We have considered five distinct array setups to evaluate
their effectiveness. Firstly, the sub-array approach divides the
aperture into two sub-panel clusters of equal size. Secondly,
the alternating pattern involves grouping antenna elements for
the two UEs in a periodic alternating manner. Thirdly, the
random pattern selects antenna elements for UEl and UE2
randomly, ensuring an equal number for each UE. Finally, we
employ both SB-TAR and discrete Particle Swarm Optimiza-
tion (d-PSO) [6] algorithms to achieve the desired radiation
pattern configuration by minimizing the objective function &.

Table I summarizes the gain of the five array configurations.
The sub-array, alternating, and random arrays exhibit identical
gain towards the intended UE. In contrast, SB-TAR and d-
PSO show a slight offset gain towards each UE due to the
soft enforcement of power balancing through the differential
electric field E,4. Despite this offset, the gain remains close to
the original value of 28.75 dB. Notably, SB-TAR demonstrates
the lowest mean interference to both UEs at -5.85dB, in con-
trast to the random array at 3.5dB and d-PSO at -1.38dB. The
d-PSO solution seems to be stuck in a local minimum, leading
to suboptimal interference levels for both UEs compared to the
solution provided by SB-TAR.

TABLE I
GAIN AND INTERFERENCE (IF) TO BOTH UES IN DB
Setup UE1 gain | UE2 gain | UEl IF | UE2IF | Mean IF
Sub-array 28.75 28.75 -0.85 -0.85 -0.85
Alternating 28.75 28.75 26.58 26.58 26.58
Random 28.75 28.75 5.70 0.57 3.50
SB-TAR 28.87 28.6 -12.88 -2.01 -5.85
d-PSO 28.86 28.63 2.07 -7.20 -1.38

In addition to evaluating the quality of the optimization
solution, we can also compare the computational time required
by both d-PSO and SB-TAR. SB-TAR achieves the argmin
of the objective function in 8.03 seconds, while d-PSO takes
309.5 seconds to accomplish the same task. This demonstrates
that SB-TAR exhibits greater time efficiency compared to
traditional heuristic optimization methods such as d-PSO.

In Fig. 3, we present the radiation patterns resulting from
five array configurations, with the focus on the group of
subarrays serving UE2. The pattern from the alternating ar-
rangement reveals a grating lobe issue occurring at (6, ¢) =
(—20°,0°), indicating significant interference inherent in pe-
riodically distributed antenna arrays. Moreover, the sub-array
configuration, while lacking grating lobes, exhibits a broader
beamwidth due to its smaller effective area. In contrast, the
random, d-PSO and SB-TAR distributions display narrower
beamwidths, with SB-TAR offering the additional benefit of
lower interference towards UEL at (6, ¢) = (—20°,0°).
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Fig. 3. Radiation patterns from the group of antenna elements that serve

UE2 placed at (6, ¢) = (40°,0°).

IV. CONCLUSION

As widely recognized in our community, optimizing large-
scale antenna arrays for beamforming presents challenges due
to high computational complexity, especially with sparse or
random arrays. Our introduced computational methodology,
based on non-linear dynamics and bifurcation theory, offers
a solution. It can be seamlessly extended to support multiple
User Equipments (UEs) using one-hot encoding with binary
variables. This approach can enable joint optimization of
antenna positions and array excitation vectors, enhancing ef-
ficiency and performance in wireless communication systems.
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