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Abstract. The security of many powerful cryptographic systems such
as secure multiparty computation, threshold encryption, and threshold
signatures rests on trust assumptions about the parties. The de-facto
model treats all parties equally and requires that a certain fraction of
the parties are honest. While this paradigm of one-person-one-vote has
been very successful over the years, current and emerging practical use
cases suggest that it is outdated.

In this work, we consider weighted cryptosystems where every party
is assigned a certain weight and the trust assumption is that a certain
fraction of the total weight is honest. This setting can be translated to
the standard setting (where each party has a unit weight) via virtualiza-
tion. However, this method is quite expensive, incurring a multiplicative
overhead in the weight.

We present new weighted cryptosystems with significantly better effi-
ciency: our proposed schemes incur only an additive overhead in weights.

– We first present a weighted ramp secret-sharing scheme (WRSS)
where the size of a secret share is O(w) (where w corresponds to the
weight). In comparison, Shamir’s secret sharing with virtualization
requires secret shares of size w · λ, where λ = log |F| is the security
parameter.
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– Next, we use our WRSS to construct weighted versions of (semi-
honest) secure multiparty computation (MPC), threshold encryp-
tion, and threshold signatures. All these schemes inherit the effi-
ciency of our WRSS and incur only an additive overhead in weights.

Our WRSS is based on the Chinese remainder theorem-based secret-
sharing scheme. Interestingly, this secret-sharing scheme is non-linear
and only achieves statistical privacy. These distinct features introduce
several technical hurdles in applications to MPC and threshold cryp-
tosystems. We resolve these challenges by developing several new ideas.

Keywords: Weighted cryptography · Secret-sharing · Secure
multiparty computation · Threshold cryptography

1 Introduction

Cryptography enables mutually distrusting parties to accomplish various tasks
as long as a certain subset of the parties are honest. For example, a secure
multiparty computation protocol (MPC) [26,43] allows a group of parties to
jointly compute a public function over their private inputs such that nothing
beyond the function output is revealed if a subset of the participants are honest.
Specific instances such as threshold signatures (resp., encryption) [19,20] work
by distributing a secret signing (resp. decryption) key among multiple parties
such that it is possible to sign a message (resp., decrypt a ciphertext) if and only
if a threshold number of parties participate honestly.

This paradigm of trust has been immensely successful over the years. Thresh-
old cryptosystems have seen widespread use in recent years, especially within
the blockchain ecosystem [40]. Furthermore, efforts to standardize threshold
cryptosystems have already begun [37]. MPC protocols have also started see-
ing increased adoption due to recent dramatic improvements in their efficiency.

Traditionally, in such systems, parties are considered as equals. For instance,
it is assumed that all parties are equally motivated to participate in the pro-
tocol actively; or that it is equally hard for an adversary to corrupt any party.
However, the “everyone is equal” paradigm does not suffice for many emerging
applications. For instance, in stake-based blockchains [32], parties are associated
with stakes that are not necessarily binary. Similarly, in oracle networks [14,21],
parties have reputation scores with high variance. In these scenarios, parties in
the system are naturally asymmetrical and unequal. Therefore, it is appropriate
to consider a weighted setting where every party is associated with a weight: the
adversarial capability (i.e., privacy threshold) is modeled in terms of the total
weight that can be compromised, and a successful protocol execution requires
a sufficiently weighted set of participants (i.e., reconstruction threshold). Natu-
rally, the reconstruction threshold is strictly larger than the privacy threshold.

Despite being a natural problem, essentially, the only general approach in
the literature [31,38] to realize weighted cryptography is via virtualization. That
is, a party with assigned weight w is treated as w virtual parties, and then a
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standard unweighted system is used for all the virtual parties. This straightfor-
ward solution, however, is extremely inefficient: a party with weight w has to
bear w times the amount of computation and/or communication cost that one
does in the unweighted setting. When the weights are large, this multiplicative
overhead in efficiency can be prohibitive.

In this work, we ask the following question:

Can we realize weighted cryptography with better efficiency?
Specifically, could the efficiency degradation depend additively on the weights?

Summary of this Work. Our work answers this question positively. Our first
contribution is an efficient weighted secret sharing scheme (WRSS) where the
size of the secret share of a party with weight w is only O(w). We obtain this
result in the ramp setting [13], where there is a gap between the privacy and
reconstruction thresholds. In comparison, the virtualized version of Shamir’s
secret sharing requires a share of size w · log |F|, where F is the underlying field.
We obtain our result by lifting secret-sharing schemes based on the Chinese
Remainder Theorem (CRT) [5,27,35] to the weighted setting and leveraging the
ramp structure to achieve our desired efficiency.

Building on our efficient WRSS scheme, we construct several efficient dis-
tributed cryptographic protocols: a secure (semi-honest) MPC protocol for gen-
eral functionalities, a threshold (public-key) encryption scheme, and a threshold
signature scheme. In all of these schemes, the computation/communication cost
of the parties only degrades additively in their weights. Interestingly, as our
WRSS scheme is both non-linear and imperfect (i.e., it only achieves statistical
privacy in contrast with Shamir’s, which achieves perfect privacy), several new
technical ideas are required for each application.

1.1 Our Contribution

Secret Sharing. Our first contribution is a construction of a weighted ramp
secret-sharing with succinct share sizes. Recall that a ramp secret sharing scheme
is parameterized by two thresholds: a reconstruction threshold T and a privacy
threshold t. Any collection of parties with cumulative weights � T should be
able to reconstruct the secret; any collection of parties with cumulative weights
� t should not learn anything about the secret (see Definition 1).

We prove the following theorem.

Theorem 1 (Efficient WRSS). Let (w1, . . . , wn, T, t) define a weighted access
structure, where wi are weights and T and t are reconstruction and privacy
thresholds, respectively. Assume T − t = Θ(λ). There exists a weighted ramp
secret sharing scheme realizing (w1, . . . , wn, T, t) such that

– The share size of a party with weight w is O(w).1

1 In all theorems, the size and the communication complexity are measured by bits.
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– It has perfect correctness.
– It is 2−λ-statistically private.

Our WRSS scheme is built upon CRT-based secret sharing scheme previously
studied by [5,27,35]. Our contribution lies in identifying that by relaxing the
“sharp” threshold setting (i.e., T = t+1) to the ramp setting (i.e., T −t = Θ(λ)),
it is possible to achieve significant efficiency improvement.

While the ramp structure has been previously used to obtain more efficient
secret-sharing schemes (and their applications), our specific application to the
weighted setting is novel. Indeed, as we discuss in Sect. 1.2, leveraging the ramp
structure with Shamir-style secret-sharing schemes does not seem to offer sig-
nificant benefits in the weighted setting. In contrast, by exploiting the ramp
setting in CRT-based secret-sharing, we obtain our desired efficiency while also
preserving the algebraic structure of the secret. This enables our applications to
MPC and threshold cryptosystems.

Weighted Secure Multiparty Computation. Next, we consider weighted
MPC where every party is assigned a weight. We aim for information-theoretic
security in the honest majority setting, where the cumulative weight of the mali-
cious parties is less than half of the total weight.

Using our new WRSS scheme, we construct a weighted MPC protocol fol-
lowing the BGW framework [11]. Our result is summarized as follows.

Theorem 2 (Efficient Weighted MPC). Let C be an arithmetic circuit over
a field F with depth d. There exists a weighted MPC protocol for n parties with
weights w1, . . . , wn and total weight W for computing C satisfying the following:

– The round complexity is d + O(1).
– In the pre-processing phase, the communication cost per party per gate is

O(W ).
– In the online phase, the communication cost per gate for party Pi with weight

wi is O(wi).
– For any semi-honest (computationally unbounded) adversary who may corrupt

a total weight of t, this protocol is exp(−λ)-secure given W − 2t = Θ(λ).

In comparison, the BGW protocol based on Shamir’s secret sharing with
virtualization would require a communication cost W · log |F| and wi · log |F| in
the preprocessing and online phase, respectively.

While MPC protocols provide a generic solution to threshold cryptography, it
would incur a large overhead if one needs to transform group operations into an
arithmetic circuit over F. Therefore, our next objectives are to construct efficient
weighted threshold encryption and signature schemes.

Weighted (Ramp) Threshold Encryption. We construct a weighted thresh-
old encryption scheme based on the ElGamal cryptosystem. As typical in the lit-
erature, we aim for a scheme with one-round threshold decryption and a reusable
setup. Our result is summarized as follows.
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Theorem 3. For any privacy threshold t and decryption threshold T such that
T−t = Θ(λ), there is a weighted (ramp) threshold ElGamal encryption satisfying:

– Assume all weights are sufficiently large2 (in particular, � log2(λ)), it is
CPA-secure against any adversary that corrupts any subset of parties with
cumulative weights � t.

– Any subset of parties with cumulative weight T could decrypt the ciphertext.
The computation work for the party with weight w is O(w) + poly(λ).

In contrast, a virtualization approach to existing threshold encryption
schemes that use Shamir’s secret sharing would require a computation cost of
O(w) group operations (in contrast to bit operations).

The communication cost in our scheme is only λ as partial decryption only
consists of one group element. This is identical to the Shamir-based approach
(See Remark 1).

Weighted (Ramp) Threshold Signature. Finally, we construct a weighted
threshold signature scheme based on the ECDSA signature. In particular, build-
ing on our weighted MPC protocol, we construct a special protocol for ECDSA
signing functionality summarized as follows.

Theorem 4. For any privacy threshold t, reconstruction threshold T , and total
weight W such that T − t = Θ(λ) and W − 2t = Θ(λ), there is a weighted MPC
protocol realizing ECDSA signing functionality such that:

– It has a semi-honestly secure two-round pre-signing protocol in which all the
parties participate. The communication/computation cost per party is O(W +
λ).

– It has a non-interactive signing phase where each party i broadcasts a partial
signature. The communication/computation cost per party is O(wi). As long
as the cumulative weight of parties who send their partial signature is � T ,
one could correctly aggregate the signature.

1.2 Related Work

Weighted Secret-sharing. The notion of weighted secret-sharing was proposed
in the original work of Shamir [38]. It is well-known that the maximum weight
for the worst weighted threshold function is O(nn) [10]. Beimel and Weinreb [10]
studied the share size of weighted secret sharing in both the information-theoretic
and computational settings. In more detail, for any access structure given by a
set of (potentially exponentially large) weights, [10] constructs a circuit of poly-
nomial size and logarithmic depth that computes this access structure. Given
such a circuit, one can generically transform it into a secret-sharing scheme in
the information-theoretic or computational setting. In the information-theoretic
setting, applying the compiler on [10] yields a secret sharing scheme with the

2 This can always be achieved by multiplying all weights by a large enough factor.
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share size nlog n. This is worse than our scheme for any weights < nlog n, but
better than ours for even higher weights. In the computational setting, they
use techniques similar to Yao’s garbling to garble the circuit that computes the
access structure. This compiler is explicitly written in [42], which states that
the share size resulting from this compiler depends (linearly) on the number
of fan-out gates in the circuit. It is, thus, unclear what polynomial describes
the share size of the computational scheme and how it compares to our scheme
when the weights are polynomially large. When the weight is super-polynomially
large, their computational scheme will have a smaller share size than ours. How-
ever, we stress that the computational secret-sharing scheme completely breaks
the algebraic structure; hence, it is not clear if one could apply it to threshold
cryptography and MPC.

The works of [9,36] studied the information rate of the weighted threshold
access structure. In a secret-sharing scheme, the information rate is the ratio
between the secret size and the (maximum) share size. A secret sharing scheme
is called “ideal” if its information rate is 1. [9,36] asked when the weighted
threshold access structure admits an ideal secret sharing scheme. In particular,
they gave a characterization for such weighted threshold access structures. These
works, however, do not give constructions for weighted secret sharing.

Also, it should be mentioned that any secret sharing schemes for general
access structure also realize weighted secret sharing. The state-of-the-art con-
struction [3] achieves a share size of 1.5n. This is worse than virtualization for
any polynomially large weights.

CRT-based Secret-sharing. The Chinese remainder theorem-based secret-
sharing was first proposed by Mignotte [35] and Asmuth and Bloom [5]. Sub-
sequently, Iftene and Boureanu [31] (also see [29]) proposed an extension of
Mignotte’s construction to the weighted setting. However, their approach essen-
tially applies the näıve virtualization technique3 to CRT-based secret sharing.
This is as inefficient (if not more) as the scheme obtained by applying virtual-
ization to Shamir’s secret sharing. Zou et al. [44] also investigated the problem
of weighted secret sharing using CRT-based secret sharing. Experimentally, they
showed that their scheme could be more efficient than the virtualization app-
roach.

We emphasize, however, that none of the above works provide any formal
proof of security.4 As we show in this paper, the efficiency of CRT-based secret-
sharing is closely related to its security parameter. Hence, without formal secu-
rity analysis, it is not at all clear what efficiency they achieve. Moreover, in the
(sharp) threshold setting considered in the above works (as opposed to the ramp
setting), it is unclear if any efficiency improvement (over the näıve virtualiza-
tion) is even possible. Based on our formal security analysis (see Theorem 6), we
identify that efficiency can be improved in the ramp setting instead.

3 Their scheme is described informally on Page-6, after Remark 1. See the online
version at https://core.ac.uk/download/pdf/147979029.pdf of the paper [31].

4 To our best knowledge, the only formal security analysis for CRT-based secret shar-
ing appears in [27], where they studied how to error-correct CRT-based codes.

https://core.ac.uk/download/pdf/147979029.pdf
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Ramp Secret-sharing. Ramp secret-sharing was first introduced by Blakley
and Meadows [13]. Historically, the ramp structure has been used to improve the
share size and achieve features such as packing [23] that have found significant
applications over the years in the design of efficient MPC protocols (see, e.g., [17,
18,23]) and other primitives such as broadcast encryption [41]. We observe that
packed secret-sharing [23] based on Shamir’s secret-sharing to obtain slightly
improved weighted secret-sharing, but with significant caveats. Specifically, one
can treat the secret s ∈ F as a binary string (s(1), s(2), . . . , s(λ)), where each
s(i) is treated as a field element of some small field F

′. Next, one uses packed
secret-sharing (over F

′) to share the λ secrets (s(1), s(2), . . . , s(λ)) among the W
virtual parties. This scheme can be proven secure with t-privacy and (t + λ)-
reconstruction. Furthermore, a party with weight w has share size w · log |F′|
(which is smaller than the share size w · log |F| obtained by näıve virtualization).

However, there are several issues with this approach. First, the size of F
′

cannot be too small. In particular, F′ needs to contain > W elements to share
it among W (virtual) parties, which means that the share size is at least w ·
log W (compared to just w in our construction). Second, and more crucially,
this approach entirely breaks the algebraic structure of the secrets. In particular,
one cannot hope to locally compute the secret share of x + y ∈ F, given secret
shares of both x and y.

Additionally, we note that, if there are multiple secrets and we are considering
the amortized cost of storing all such secrets, then packed secret sharing (over the
original field F) does provide efficiency gains similar to our improvement. Indeed,
many recent works on multiparty computation [7,22,28] take advantage of this to
improve the communication complexity of the MPC protocol. Compared to our
work, these MPC protocols either only applies to circuits with specific topological
structure (e.g., SIMD) or requires an expensive one-time compilation step, which
introduces additional overheads.

Concurrent Work. Recently, Benhamouda, Halevi, and Stambler [12] also
studied weighted ramp secret sharing schemes. They considered a ramp set-
ting with reconstruction threshold T = β · W and privacy threshold t = α · W ,
where 0 < α < β < 1 are constants. They present two schemes based on dif-
ferent techniques. The first scheme, based on rounding techniques, has share
size n

β−α · log |F|. The second scheme, based on wiretap channel techniques, has
share size f(α, β), where f is a fixed function depending on the employed wiretap
channel techniques.5

Our work, in comparison, considers a more “fine-grained” ramp setting, where
we only require T − t = Θ(λ). In contrast, their results only work when both T
and t are a constant fraction of the total weights. Furthermore, the share size in
their rounding-based scheme depends on the number of parties, which might be
undesirable in some scenarios (e.g., imagine a threshold signature scheme among
1000 parties with weights 0 < wi � 50). The share size in their wiretap-channel-

5 For instance, if the wiretap channel in use is the binary symmetric channel, the share

size is Θ
(

1
(α−β)2

)
. We refer the readers to their paper for details.
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based scheme is independent of both the weight wi and n. However, this scheme
breaks the algebraic structure of the secret; hence, it is not clear how one could
apply this scheme to MPC and threshold cryptosystems.6

Other Work. A standard way of reducing the dependence on the number of
(virtual) parties is to rely on small committees. In this approach, a small number
of parties are selected as committee members to perform the task on behalf of all
parties. This approach has been considered both in the MPC setting [16,25] and
threshold signature schemes [15]. This approach, however, is not generally prefer-
able because it incurs high costs for specific parties, and is typically vulnerable
to adaptive corruption attacks.

2 Technical Overview

The secret-sharing scheme is essential to any threshold cryptosystem. To build
any efficient weighted threshold primitive, an efficient weighted secret-sharing
scheme is usually the first objective. Hence, we start our discussion with weighted
secret-sharing.

Linear Secret-sharing.7 We first observe that it is not clear if an efficient
linear weighted secret-sharing scheme exists. For a particular set of weights (for
instance, if all the weights are the same), one might be able to construct a linear
secret with a small overhead. However, to construct a general linear scheme that
works an arbitrary set of weights, it seems inevitable that the secret share of a
party with weight w contains at least Ω(w) field elements.8 Therefore, in order
to obtain a more efficient weighted secret-sharing scheme, we have to resort to
non-linear schemes.

Non-linear Secret-sharing. Compared to linear secret-sharing schemes, non-
linear secret-sharing schemes are much less well-understood. Most of the non-
linear secret-sharing schemes that have been studied are either for specialized
access structures [8] or for general access structures [1,2,34]. These schemes

6 To elaborate, in their scheme, the secret s is viewed as a binary string and encoded
using some binary error-correcting code Enc(s) padded with n instances of noises
ρ1, ρ2, . . . , ρn, i.e., Enc(s) ⊕ ρ1 ⊕ · · · ⊕ ρn. The noisy encoding is public, while the
secret share of party i is ρi, Intuitively, one could reconstruct the secret by canceling
the noise in noisy encoding with the secret shares. If one gets sufficient many secret
shares, one could reconstruct the secret; if one has few secret shares, the encoding is
noisy enough to hide s. Clearly, one could not locally compute a secret sharing of,
for instance, x + y ∈ F given the secret shares of both x and y.

7 We consider linear scheme over the natural field F that the secret lives in. In partic-
ular, the discussion here does not include the linear ramp scheme that we discussed
in Sect. 1.2, which is over some unnatural field F

′ that breaks the algebraic structure
of the secret.

8 Unless one could generically transform a set of weight {wi} to another set of weights
{w′

i} that are significantly smaller (i.e., w′
i = o(wi)), but define the same access

structure. However, this seems extremely challenging, if at all possible.
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either cannot realize the weighted threshold structure or have an exponential-
size secret share. The only exception of a non-linear secret sharing scheme
for threshold structure is the Chinese remainder theorem-based secret sharing
scheme [5,27,35]. Indeed, as we explain later, CRT-based secret-sharing can help
construct efficient weighted secret-sharing schemes.

CRT-Based Secret-sharing. Let us first recall the (unweighted) CRT-based
secret-sharing. Let p0 be the order of the field F. In CRT-based secret-sharing,
parties are associated with distinct integers p1, . . . , pn, where p0, p1, . . . , pn are
required to be coprime. To share a secret s ∈ Fp0 , one picks a random integer

S = s + u · p0,

where the operations are over the integer and u is uniform over some range
{1, 2, . . . , L}. The choice of L will become clear as we proceed to discuss the
correctness and security. Now, the ith party shall get

si = S mod pi

as its secret share. For an authorized set A of parties, one may reconstruct the
field element s by finding the unique integer S such that

0 � S � PA − 1 and ∀i ∈ A, S = si mod pi,

where PA =
∏

i∈A pi. Once one finds S, s can be reconstructed by computing
s = S mod p0. Therefore, to ensure perfect correctness, it must hold that (p0 +
1) ·L � PA − 1 for all authorized set A. On the other hand, for privacy, consider
an unauthorized set A. The adversary’s view is equivalent to

{S mod pi}i∈A ⇐⇒ S mod PA.

Hence, it suffices to prove that S mod PA is statistically close to the uniform
distribution. This is indeed the case as long as PA/L is exponentially small (see
Claim 1). To summarize, we can construct a CRT-based secret sharing as long
as we can pick L such that

max
A

PA � L � min
A

PA/2λ.

For example, for a threshold secret sharing with reconstruction threshold T . One
may pick pi as n distinct primes with length 2λ. Then, maxA PA and minA PA

are approximately 22λ(T−1) and 22λ·T , respectively. Consequently, letting L to
be 22λ·T−λ satisfies the constraint above.

Note that one could again use virtualization to realize weighted secret-sharing
through (unweighted) CRT-based secret-sharing (as done by [31]). This approach
will result in a secret share of length Θ(w · λ) for a party with weight w, similar
to Shamir’s secret sharing.
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Main Idea: Weighted Ramp Secret-sharing can be Efficient. In this
work, we observe that in the ramp setting, where there is a gap between the
privacy and reconstruction threshold, one could construct an extremely efficient
weighted secret sharing based on CRT secret sharing. Let wi be the weight of
the ith party. One may pick the associated number pi to be of length c · wi (as
opposed to the aforementioned share size of Θ(w · λ)). Here, the same constant
c is picked for all parties. Then, the constraint naturally transforms into

max
A

2
∑

i∈A c·wi � L � min
A

2
∑

i∈A c·wi/2λ.

In a threshold setting, where maxA(
∑

i∈A wi) can be as high as T − 1 and
minA(

∑
i∈A wi) can be as low as T , one has to pick c to be Θ(λ). However, if we

consider a ramp secret-sharing with a privacy threshold t and reconstruction
threshold T , it suffices to pick c such that c · (T − t) = Θ(λ). In particular, in
the case where T − t = Θ(λ), one may pick c = 1. In other words, we observe

There is a natural trade-off between the gap of privacy and reconstruction
threshold and the efficiency for CRT-based secret sharing.

Indeed, for the applications that we envision, it is often reasonable to assume
a large gap between the privacy and reconstruction threshold. For instance, one
may assume that � 1/3 fraction of the weights are corrupted and � 1/2 fraction
of the weights will come online during reconstruction. In this scenario, as long
as the total weight

∑n
i=1 wi is Θ(λ), the large gap is guaranteed.

2.1 Challenges in Using the WRSS Scheme

Our ultimate goal is to use the efficient WRSS to realize weighted cryptosystems
with efficient communication/computation costs. Now, although the WRSS is
well-suited for efficient weighted secret-sharing, it comes with several critical
challenges. We shall discuss them next.

1. Non-linearity. One prominent feature of the WRSS is its non-linearity.
Given secret shares s1, . . . , sn, one needs to reconstruct the secret through
a non-linear function as

(

(λ1 · s1 + λ2 · s2 + · · · + λn · sn) mod P

)

mod p0,

where P = p1p2 · · · pn. Similar to Lagrange coefficients, here, λi is the integer
satisfying9

λi mod pi = 1 and ∀j �= i, λi mod pj = 0.

Now, imagine we want to reconstruct gs for some generator g from the group
G of order p0. In Shamir’s secret sharing, parties may simply broadcast gsi ,

9 We note that λi could be efficiently computed. Refer to Remark 2.
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and later one can use Lagrange interpolation to find gs. In WRSS scheme,
however, interpolation using group elements gsi will only give gλ1·s1+···+λn·sn ,
whose exponent is effectively equal to

(

λ1 · s1 + λ2 · s2 + · · · + λn · sn

)

mod p0,

which is not necessarily equal to s. Evidently, the non-linearity poses a chal-
lenge to correctness.

2. Integer Growing Problem. Although the reconstruction procedure of the
WRSS is non-linear, it does preserve the algebraic structure and support local
computations similar to Shamir’s secret sharing. For instance, suppose x and
y are secret shared. Intuitively, parties can locally compute xi + yi mod pi

as a secret share of the secret x+y. This, however, is not always correct. The
issue is that the associated integer might grow out of range. Recall that x is
re-randomized as some integer X = x + u · p0 and y as Y = y + u′ · p0. For
any authorized set A and the product PA, the correctness guarantees that
both X and Y is < PA. Nonetheless, it is not guaranteed that X + Y < PA.
Therefore, when parties use secret shares xi +yi mod pi to reconstruct x+y,
they are trying to reconstruct the secret integer X + Y first. And they can
only correctly reconstruct X + Y when X + Y < PA.
Similar issues arise when one wants to locally compute the secret shares of
−x, x · y, and scalar multiplication c · x for some constant c. Therefore, one
must be careful with correctness when trying to do local computations.

3. Challenges for Simulation. Consider a secret-sharing-based MPC proto-
col. At the end of the protocol, parties typically broadcast the secret share
si of the output wire to allow reconstruction of the output s. A simulator,
given the output s, needs to simulate all the secret shares of the honest par-
ties. This is usually not an issue for linear secret sharing schemes as, at each
wire s, it is maintained that si’s are identically distributed as freshly sam-
pled secret sharing of s (and, hence, simulatable). However, consider a WRSS
secret sharing of x and y. Observe that the secret shares of xi + yi mod pi is
not identically distributed as a fresh secret sharing of x+y.10 Therefore, given
the output x + y, it is not clear how to simulate the broadcast secret shares.
One may hope to resolve this issue by masking the secret shares with a fresh
secret sharing of 0. However, note that we are essentially trying to mask an
integer X + Y over integer operations (instead of over a field). Consequently,
extra care is required for this to go through.

Next, we discuss how we address these issues in different settings.

2.2 Weighted Threshold Encryption

For expository purposes, we start with a threshold encryption scheme. Recall
that we aim for a scheme with one-round threshold decryption. Typically, this is
10 In fact, their statistical distance is quite far. In particular, the distribution of the

integer X + Y , where X = x + u · p0 and Y = y + u′ · p0 is very different from the
integer (x + y) + u′′ · p0.
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done by combining a PKE scheme with a secret sharing scheme, where the secret
key is shared among parties. In this work, we consider the ElGamal encryption
scheme for the underlying PKE scheme. Let us recall it first. In the ElGamal
encryption scheme, a group G with order p0 and generator g is sampled. The
secret key sk and public key pk are sampled as s and gs where s ← Fp. To encrypt
a message msg, one sample a random r ← Fp, and the ciphertext is defined as
(msg · pkr, gr). Given a ciphertext (c1, c2), one could decrypt it as c1 · c−sk

2 . This
encryption scheme is semantically secure as long as DDH is hard.

Now, suppose we sample a public key and secret key (gs, s) from ElGamal
and secret share s using our WRSS scheme. Given a ciphertext (msg · gr·s, gr),
what should parties send as a partial decryption? As we discussed earlier, if
parties simply send gr·si , one cannot correctly aggregate it to obtain gr·s.

Towards resolving this challenge, we first observe that the reconstruction of
CRT-based secret sharing can be rewritten as

((
(λ1 · s1 mod P ) + (λ2 · s2 mod P ) + · · ·+ (λn · sn mod P )

)
mod P

)
mod p0.

For simplicity, let us write (λi · si mod P ) as αi. There are several benefits
to writing the reconstruction as above. First, parties can locally compute αi.
Second, given α1, α2, . . . , αn, we know that the secret s is of the form

s = (α1 + α2 + · · · + αn − Δ · P ) mod p0, where Δ ∈ {0, 1, . . . , n − 1}.

Crucially, the overflow number Δ has only polynomially many possibilities.
Therefore, given the partial decryption gr·αi , one knows that the one-time pad
grs is one of the following

gr·(∑i αi), gr·(∑i αi)−r·P , . . . , gr·(∑i αi)−r·(n−1)·P .

To get statistical correctness, we shall ask the encryptor to include a hash of
the encapsulated key H(gr·s) (using, for example, a universal hash function).
Consequently, the decryptor could check all possibilities of the encapsulated key
against the hash H(gr·s) to find gr·s. Finally, since H(gr·s) leaks information
about gr·s, we shall add a randomness extractor Ext to extract uniform random-
ness from gr·s. Overall, the ciphertext would be

msg · Ext(seed, gr·s), seed, gr, H(gr·s).

This presents the main ideas behind our efficient weight threshold decryption
scheme. To prove the security, we need the additional guarantee that the weights
cannot be too small (for example, a constant). Indeed, if the weight wi is too
small, one could use an exhaustive search to find party Pi’s secret share using
its partial decryption output. We refer the readers to Sect. 6 for more details.

Remark 1 (Raise hand setting). We note that our scheme is in the “raise hand”
setting. That is, parties need to know what authorized set will participate in the
partial decryption process. This is because the Lagrange coefficient λi depends
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on this information. In contrast, Shamir’s secret sharing-based scheme does not
need this information for partial decryption. Indeed, parties could directly send
gsi and the aggregator could do Lagrange interpolation over the group elements.

However, we note that, even for Shamir’s secret sharing, “raise hand” might
be preferable in the weighted setting as the communication cost is much lower
compared to the non-raise-hand setting. Indeed, a party with weight w would
need to broadcast w many group elements in the non-raise-hand setting; while
in the “raise hand” setting, parties aggregate the partial decryption locally first
and only need to broadcast one group element.

2.3 Weighted MPC

Next, we consider weighted MPC. In a weighted MPC protocol, every party
is assigned some weights. And it is assumed that the cumulative weight of the
corrupted parties is upper-bounded by a certain fraction. In this work, we restrict
to the information-theoretic honest majority setting and semi-honest adversaries.
Crucially, the communication/computation cost (per party i and gate) should
be O(wi) + λ.

On a high level, our protocol adopts the secret-sharing-based MPC framework
(e.g., BGW protocol [11]), where we shall use the WRSS scheme as the underly-
ing secret sharing scheme. Consequently, the efficiency of the WRSS scheme will
determine the efficiency of the weighted MPC protocol. As we have mentioned,
this approach involves several issues. We discuss how to address these issues
next.

Multiplication. We consider the multiplication gate first. Let W = w1 + · · ·+
wn be the total weight and assume that the adversary may corrupt parties with
weight at most t. The security of the WRSS requires that: if the value x of a
wire is secret shared, it must be the case that the random integer X = x+ u · p0
is sampled from u ← {1, . . . , L} with L 	 2t (e.g., L = 2t+λ). Therefore, the
integer X associated with every wire x is (approximately) of size 2t+2λ. Now,
suppose we want to compute the product x · y. The corresponding integer X · Y
may be as large as 22t+4λ. This integer XY (henceforth, the secret xy) could
only be reconstructed if the total weight W satisfies 2W � 22t+4λ. Therefore,
our protocol only works in the setting where there is an honest majority and a
large enough gap (i.e., Θ(λ)) between the corruption threshold t and half of the
total weight W/2.

Although the secret could be reconstructed after one multiplication gate, one
cannot let the integer grow indefinitely. Therefore, after every multiplication
gate, one has to use a “degree reduction” protocol11 to reduce the integer Z
associated with z = xy to a smaller range. Our degree reduction protocol follows

11 We call this a degree reduction protocol as it is reminiscent of the degree reduction
protocol in the BGW protocol based on Shamir’s secret sharing. In Shamir’s secret
sharing, the product of two secrets shared by a degree-t polynomial is shared by
a degree-2t polynomial. A degree reduction protocol in this case brings down the
degree of the polynomial back to t.
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the standard approach in the MPC literature. In particular, in the preprocessing
phase, we ask parties to generate two secret shares [r]0 and [r]1 of a random value
r. Here, in the share [r]0, r is re-randomized as some integer over the small range
L = 2t+λ; while in the share [r]1, r is re-randomized as some integer over the
large range L = 22t+4λ. The idea is that parties will use the secret shares of [r]1

to reconstruct r + xy in the clear. Afterward, they may locally subtract r + xy
from [r]0 to obtain a secret share of xy with a small integer range.

However, there is one crucial issue here. One has to guarantee that the recon-
struction of r+xy leaks only the value r+xy and nothing else. While this comes
for free in Shamir’s secret sharing, it is not the case here. Indeed, the secret
shares of r + xy reveal its associated integer, whose distribution may not be
indistinguishable from a fresh secret sharing of the secret r + xy. We defer the
discussion of this issue to the discussion on the output reconstruction procedure.

Addition. Similarly to the multiplication gate, the addition gate also has integer
growing issues. One might think if we can handle the multiplication gate, we can
certainly handle the addition gate in the same way. While this is true, we do
not want to invoke a degree reduction protocol for addition gates, which incurs
additional interactions and consumes correlations.

Instead, we observe that the growth of the integer for addition gates is very
slow. In particular, if a circuit has size poly(λ), the integer associated with a wire,
which is a sum of several other wires, is upper-bounded by poly(λ) ·2t+2λ � 2W .
Hence, reconstructing the sum of wires is not an issue. However, it becomes
problematic when we want to reconstruct x · y, where x and y are the sums of
several wires. Indeed, both X and Y are now upper-bounded by poly(λ) · 2t+2λ

and X · Y might be � 2W if W ≈ 2t + 4λ. However, this is not an issue as long
as W is large enough (e.g., W � 2t + 5λ). In other words, if the total weight is
large enough, the integer growing for the addition gates is not an issue.

Output Reconstruction. As we have mentioned, unlike Shamir’s secret shar-
ing, it is not clear if parties could broadcast the secret shares of the output wire
for reconstruction. To resolve this issue, we shall use a freshly sampled secret
share [0] to mask the secret shares [out] of the output wire. Parties will recon-
struct out+ 0 as the output of the protocol. Again, here, we need to argue that
the secret shares of out+0 leak only out+0. In particular, the integer associated
with the secret out+0 should only depend on out+0. We observe that if the inte-
ger associated with out is (arbitrarily) distributed over some range {1, . . . , L},
it suffices to sample the integer associated with 0 uniformly randomly from an
exponentially large range {1, . . . , L · 2λ}. The sum of these two integers will be
exponentially close to a freshly sampled secret share of 0 + out from the range
{1, . . . , L·2λ}. We formally prove this by our integer masking lemma (Lemma 1).

2.4 Weighted Threshold Signature

Lastly, we consider the threshold signature protocol. In particular, we consider
a weighted multiparty signing protocol based on the ECDSA signatures.
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Let us first recall the signing functionality of the ECDSA signature. Let sk be
the signing key, G be the curve base point, H be a cryptographic hash function
and m be the message. To sign message m with sk, one computes the following:

1. (Pre-signing Phase) Generate a secret random value k ← Fq, and then
compute (public) group element k × G.

2. (Signing Phase) Parse k × G as curve point (rx, ry). Then compute σ =
k−1 · (H(m) + rx · sk).

3. Output the signature (rx, σ).

Note that we could generically use our MPC protocol to compute all the field
operations. However, parties do need to construct the group element k × G in
the clear. We further note that parties need to agree on the exact value of k ×G
in order to proceed in the signing phase (i.e., step 2). Hence, our ideas from
the threshold encryption section, where parties agree that k × G is one of n
possibilities, are not applicable.

However, note that our task at hand is significantly simpler compared to
the threshold encryption setting. In the pre-signing phase, we simply need all
parties to collectively sample a random group element k×G while also obtaining
a secret sharing of k. This is different from the threshold encryption setting,
where parties start with a secret share of k. And later in the online phase, they
need to reconstruct (g′)k for some random group element g′.

To collectively sample k×G and the secret shares [k], we simply ask party Pi

sample a random ki and (i) secret share [ki] among all the parties; (ii) broadcast
the group element ki × G. Afterward, parties could locally reconstruct k × G
as

∑
i(ki × G). Party Pi locally computes the secret share of k by computing∑

j [kj ]i. This is secure simply because ki × G forms an additive secret share of
k × G and could be simulated given only k × G.

Finally, by standard techniques in ECDSA, one could prepare the secret
shares of the correlated values [k−1] and [rx · sk] in the pre-signing protocol,
which leads to a one-round signing phase. We refer the readers to Sect. 7 for
details.

3 Preliminaries

We use λ for the security parameter. Let negl(λ) denote a negligible function.
That is, for all polynomial p(λ), it holds that negl(λ) < 1/p(λ) for large enough λ.
For any two distributions A,B over the finite universe Ω, the statistical distance
between A and B is defined as SD (A,B) = 1

2

∑
ω∈Ω |Pr[A = ω] − Pr[B = ω]|.

For an integer n, we shall use [n] for the set {1, 2, . . . , n}. For an integer M , we
also use UM for the uniform distribution over {0, 1, . . . ,M − 1}.

Next, we define secret-sharing schemes.

Definition 1 (Secret-sharing Scheme). The access structure of the secret-
sharing scheme consists of two subsets A,A ⊆ 2[n], where A consists of all
authorized subsets of parties and A consists of all unauthorized subsets of parties.
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A secret-sharing scheme among n parties for access structure (A,A) consists of
two algorithms (Share,Reconst), which satisfies the following.

– Perfect Correctness. For all secret s and authorized set A ∈ A, it holds

Pr[s′ = s :
(s1, s2, . . . , sn) ← Share(s)

s′ = Reconst
({si}i∈A

) ] = 1.

– ε-Statistical Security. For any unauthorized set A ∈ A and two secrets
s, s′, it holds that the following two distributions are ε-statistically close.

{
(s1, s2, . . . , sn) ← Share(s)

Output {si}i∈A

}

≈
{

(s′
1, s

′
2, . . . , s

′
n) ← Share(s′)

Output {s′
i}i∈A

}

.

In particular, for a weighted ramp secret sharing scheme with privacy threshold
t and reconstruction threshold T , each party is associated with a weight wi and
the authorized A and unauthorized A set are defined as Fig. 2.

The security of CRT-based secret sharing relies heavily on the following claim.

Claim 1 ([27]). Let M < L be arbitrary integers. Let p be an arbitrary integer
that is coprime with M . Let s be any integer. We have

SD ( (s + p · UL) mod M , UM ) < M/L.

Intuitively, this claim states the following. Suppose we have a secret s ∈ F,
where the order of F is p. If we pick a sufficiently random12 integer S = s+p ·UL,
it is guaranteed that S mod M is statistically close to uniformly random. This
claim is crucial in proving the security of the CRT-based secret-sharing scheme.
We defer the formal proof to the full version of this paper.

4 Efficient Weighted Ramp Secret-Sharing Scheme

In this section, we show how to construct an efficient weighted ramp secret-
sharing (WRSS) scheme. Our scheme is based on the Chinese Remainder
Theorem-based (CRT-based) secret-sharing scheme. This scheme is introduced
by [5,27,35] in the unweighted setting. Let us recall their scheme and formally
present its security. Next, we show how to transform this scheme to the weighted
setting, where the size of the secret share is small.

4.1 Unweighted CRT-Based Secret-Sharing

Let Fp0 be a field, where p0 ≈ 2λ. Suppose we want to secret share a secret
s ∈ Fp0 . Unlike Shamir’s secret-sharing scheme, the CRT-based scheme is non-
linear. In particular, the secret shares are not elements from Fp0 . Instead, for all
i ∈ [n], the ith party is associated with an integer pi and its secret share shall be
an integer si such that 0 � si < pi − 1. Formally, the CRT-based secret-sharing
scheme among n parties is constructed as follows.
12 Measured by the parameter L.
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– Access Structure. Let A be the set of authorized subsets and A be the set
of unauthorized subsets.

– Parameters. The scheme is parametrized by a set of integers p1, p2, . . . , pn

and an additional integer L. It is required that all the pi’s (including p0) are
coprime with each other. These parameters implicitly define the following two
products. (Note that Pmax < Pmin.)

Pmax = max
A∈A

⎛
⎝∏

i∈A

pi

⎞
⎠ and Pmin = min

A∈A

(∏
i∈A

pi

)
.

– Share the secret. To share a secret s, one picks a random integer

S = s + p0 · UL.

Recall that UL is uniformly distributed over [L]. We will refer to the integer
S as the lifting of s and write the above step as S = Lift(s, UL). When it
is clear from the text, we also write S = Lift(s). The secret share of the ith

party shall be
si = S mod pi.

– Reconstruct the secret. For an authorized set A ∈ A, parties in A recon-
struct the secret as follows. Using Chinese remainder theorem, they can find a
set of Lagrange coefficients {λi}i∈A such that S =

∑
i∈A λi · si mod P . Then

they can reconstruct the secret s as

s = S mod p0.

Fig. 1. A generic CRT-based Secret-sharing Scheme

Remark 2. The Lagrange coefficient λi here are integers such that

λi mod pi = 1 and ∀j �= i, λi mod pj = 0.

We note that the Lagrange coefficients λi could be efficiently computed as fol-
lows. Let Q =

∏
j �=i Pj be the product of pj ’s except for pi. Then,

λi = Q · Q−1,

where Q−1 is the inverse of Q modulo pi. That is, Q · Q−1 mod pi = 1.

Theorem 5. The secret-sharing scheme in Fig. 1 satisfies the following.

– Correctness. The scheme is perfectly correct if (L + 1) · p0 < Pmin.
– Security. The insecurity of scheme is � Pmax/L. That is, for any unautho-

rized set, the statistical distance between the distributions of its secret shares
for any two distinct secrets is at most Pmax/L.

Proof. Suppose (L+1)·p0 < Pmin. For any authorized set A and secret s, observe
the following. The random integer S = s + p0 · UL always satisfies

S � (L + 1) · p0 < Pmin �
∏

i∈A

pi.
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Consequently, given the secret shares si for i ∈ A, parties can always correctly
recover the integer S and, consequently, correctly reconstruct the secret s = S
mod p0.
Next, we argue the security. For any unauthorized set A and any secret s, observe
the following. Let P =

∏
i∈A pi. By the Chinese remainder theorem, there is a

bijection between the secret shares {si}i∈A and the integer in {0, 1, . . . , P − 1}.
Therefore, instead of considering the distribution of the secret shares, i.e.,

{s + p0 · UL mod pi}i∈A,

we shall equivalently consider the distribution of the following integer

s + p0 · UL mod P.

By Claim 1, for any secret s, this distribution is (P/L)-close to the uniform
distribution over UP . Therefore, for any unauthorized set A, the insecurity is �
(
∏

i∈A pi)/L and, by definition, the insecurity of the whole scheme is � Pmax/L.

Threshold Secret-sharing. As a representative example, we illustrate how
one can implement a t-threshold secret-sharing using the CRT-based scheme.
The parameters can be set up as follows. Pick p1, . . . , pn as n distinct prime
numbers of length 2λ. By definition, Pmax is the maximum product of t − 1
integers, which is approximately Pmax ≈ 2(2λ)·(t−1); Pmin is the minimum product
of t integers, which is approximately Pmin ≈ 2(2λ)·t. Then, if one picks L to be
L ≈ 22tλ−λ, one can verify by Theorem 5 that the scheme is a threshold secret-
sharing with perfect correctness and 2−λ-insecurity.

4.2 Realizing Efficient WRSS Using CRT-Based Secret-Sharing

Weighted Secret-Sharing. In a weighted secret-sharing among n parties,
every party i is associated with a weight wi ∈ N. We consider the ramp secret-
sharing setting. That is, there is a reconstruction threshold T and also a privacy
threshold t. A set of parties is authorized if their collective weight is � T ; a set
of parties is unauthorized if their collective weight is � t. In a ramp scheme, a
set of parties with collective weight ∈ (t, T ) may learn partial information about
the secret.

– Reconstruction threshold T . A set A ∈ A is authorized if
∑

i∈A wi � T .

– Privacy threshold t. A set A ∈ A is unauthorized if
∑

i∈B wi � t.

Fig. 2. The access structure of the weighted ramp secret-sharing scheme.

Näıve Construction with Large Share Size: Shamir’s Secret-sharing
with Virtual Parties. It is not hard to see that one can construct the (thresh-
old) weighted secret-sharing scheme using Shamir’s secret-sharing scheme. In
particular, one thinks of the ith party with weight wi as wi virtual parties. That is,
one can use the standard Shamir’s secret-sharing scheme with w1+w2+ · · ·+wn
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parties. Afterward, the ith party shall get wi secret shares as its secret share. In
words, the ith party represents wi virtual parties in this secret-sharing scheme
with w1 + · · · + wn virtual parties.
However, the size of the secret share in this näıve construction is quite large. In
particular, party with weight wi shall get wi field elements ∈ Fp0 as its secret
share. Therefore, the total length of the secret share is wi · λ.

CRT-based Construction with Small Share Size. To realize the access
structure of the weighted secret-sharing scheme, we shall pick each pi to be an
integer of wi length.13 In particular, we shall pick pi in the range 2wi/(1+1/n) �
pi < 2wi .14 By definition,

Pmax = max
A∈A

⎛

⎝
∏

i∈A

pi

⎞

⎠ < max
A∈A

⎛

⎝
∏

i∈A

2wi

⎞

⎠ � 2t.

On the other hand,

Pmin = min
A∈A

(
∏

i∈A

pi

)

� max
A∈A

(
∏

i∈A

2wi/(1 + 1/n)

)

� 2T /(1 + 1/n)n = 2T−O(1).

Therefore, if one picks the parameter L to be 2t+λ. One may verify by Theorem 5
that this secret-sharing scheme is O(2−λ)-insecure and is perfectly correct as long
as T � t+2λ+Θ(1). Furthermore, observe that the secret shares of the ith party
is simply an integer between 0 and pi. Therefore, the total length of the ith secret
share is wi. In conclusion, this construction gives rise to the following theorem.

Theorem 6. Assume T � t + 2λ + Θ(1), the CRT-based secret-sharing scheme
described above realizes the access structure in Fig. 2 with perfect correctness and
2−λ insecurity. Furthermore, the length of the secret share with weight wi is wi.

Observe that, if the gap T − t could always be amplified at the cost of efficiency.
In particular, for any integer c, the access structure of parties with weights
c · w1, c · w2, . . . , c · wn and reconstruction (resp. privacy) threshold c · T (resp.
c·t) is identical to the original access structure. Hence, this gives us the following
corollary.

Corollary 1 (Efficient WRSS). For any integer c such that c ·(T −t) � 2λ+
Θ(1), the weighted ramp secret-sharing scheme described above realizes the access
structure in Fig. 2 with perfect correctness and 2−λ insecurity. Furthermore, the
length of the secret share with weight wi is c · wi.

13 To ensure they are coprime, we may pick pi to be a distinct prime of length wi.
14 There are 2wi/(n + 1) many integers between 2wi/(1 + 1/n) and 2wi , among which,

there are asymptotically 2wi/((n+1) ·wi) many primes numbers. Therefore, as long
as wi is large enough, e.g., polylog(λ), one could always pick a pi for all parties.
Even if the smallest wi is a small constant, one could always multiply every weight
by some small factor to enable this.



314 S. Garg et al.

In particular, as long as T − t = Ω(λ), we can construct a weighted ramp secret
sharing scheme with share size O(wi).

5 Efficient Weighted MPC

In this section, we shall present a weighted MPC protocol against semi-honest
adversaries. Moreover, we consider an honest majority in the weighted setting15

and information-theoretic security. Let us first define security. We follow the
definition in [4] with appropriate adaptation to the weighted setting.

Definition 2 (Semi-honestly Security). Let W = (w1, . . . , wn) be the
weights of a total of n parties. Let C : X1 × X2 × · · · × Xn → Y be an arithmetic
circuit over Fp0 . We say that a protocol π ε-securely realized C with corruption
threshold t in the weighted setting if the following holds. For any input �x and
any subset I ⊂ [n] such that

∑
i∈I wi � t, there exists an efficient simulator S

such that

SD
((

S(
I, �xI , C(�x)I

)
, C(�x)

)
,

(
Viewπ

I (�x),Outputπ(�x)
))

� ε.

Notations. We use the following notations for the WRSS in our weighted
MPC protocol. Let W = (w1, . . . , wn) be the weights of a total of n parties,
P = (p0, p1, . . . , pn) be the corresponding bases and let (T, t) be the recon-
struction and privacy threshold. In the MPC case, the reconstruction threshold
T = W is the total weight of all parties. We denote the weighted ramp secret
sharing of some secret s by {[s]i}i∈[n] ← Share(P, T, t, s), where [s]i is party
Pi’s share of the secret s. Furthermore, we express the associated lifting of s
as S = Lift(s) where the randomness UL is implicit. Correspondingly we let
S = Reconstruct({[s]i}i∈[n]) be the reconstructed integer Lift(s) value. For every
secret s, we have s = S mod p0.

Overview of the Protocol. For every input wire s, we secret share the value
s using our WRSS where the parameter L is 2t+λ. Therefore, Lift(s) is of size at
most (2t+λ+1)·p0 � 2t+2λ. Throughout the MPC protocol, we shall maintain the
invariant that the for every wire s, the secret integer S = Lift(s) associated with
the secret share of s is upper-bounded by some poly(λ) · 2t+2λ. Intuitively, this
invariant is maintained for each addition gate. However, after each multiplication
gate (including scalar multiplication where the scalar is superpolynomial in λ),
this invariant is broken. Hence, we shall employ a degree reduction protocol
to re-establish this invariant. For degree reduction, in the preprocessing phase,
every party shall generate two secret shares of a random value r, denoted by [r]0

and [r]1. The instance [r]0 is sampled where the corresponding parameter L is
2t+λ; while the instance [r]1 is sampled where the corresponding parameter L is
22t+5λ. Parties shall use [r]1 as a mask to reconstruct the value r + s in the clear
and then deduct it from the secret share [r]0 locally. To successfully reconstruct

15 I.e., the cumulative weight of the corrupted party is less than half of the total weight.
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the value r + s, which corresponds to an integer of size at most 22t+5λ · p0, we
need the total weights to satisfy W � 2t + 6λ + Θ(1). Therefore, as long as
W − 2t = Θ(λ), we have the following theorem.

Theorem 7. Let C be an arithmetic circuit over F with depth d. There is a
weighted MPC protocol realizing C with the following property.

– The round complexity is d + O(1).
– In the online phase, the communication/computation cost per party per gate

is O(wi).
– In the preprocessing phase, the communication/computation cost per party

per gate is O(W ).
– For any semi-honest adversary who may corrupt a total weight of t, this pro-

tocol is exp(−λ)-secure given W − 2t = Θ(λ).

We next describe our protocol in detail.

5.1 Generating Shares of Random Value FRandom

In this sub-protocol, parties generate a secret sharing of a random value. Observe
that the communication cost per party is O(W ) as it sends O(wi) bits to the ith

party.

– For all i ∈ [n], the ith party samples a random value ri ∈ F. It secret shares
ri : {[ri]j}j∈[n] ← Share(P, W, t, ri) and sends the shares to each party.

– For all i ∈ [n], the ith party locally computes [r]i =
(
[r1]i +[r2]i + · · ·+[rn]i

)

mod pi as its secret share of the random field element r = r1 + · · · + rn ∈ F.

We note that the threshold parameter L in generating the WRSS secret shares
is either 2t+λ or 22t+5λ.
Furthermore, we also use this protocol for generating secret shares of the value 0
among all the parties. The only difference is that parties sample a fresh secret
share of 0 instead of a random ri. The threshold L is generating the secret
sharing of 0 is 2t+3λ.
We will sometimes refer to the above protocol as FRandom(r =

∑
i∈[n] ri) to

specify the individual randomness ri from each party.

5.2 Degree Reduction Protocol Fdeg

In this sub-protocol, parties re-sample the secret share of some wire x such that
the corresponding integer Lift(x) is small enough. Observe that the communica-
tion cost per party is O(wi).
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– Input. Parties hold the secret shares [x] of some wire x. Additionally, parties
hold two secret shares (i.e., {[r]0i }i∈[n] and {[r]1i }i∈[n]) of a random r. Both
[r]0 and [r]1 are sampled using the FRandom protocol, where the threshold
parameters are 2t+λ and 22t+5λ, respectively.

– Party Pi locally computes and broadcasts
(
[x]i + [r]1i

)
mod pi as the secret

shares of x + r.
– Given all the secret shares, parties locally reconstruct x + r ∈ F and subtract

(x + r) mod pi from the secret shares {[r]0i }i∈[n].

5.3 Opening Secret Shares Fopen

In this sub-protocol, parties open the value of the output wire. Observe that the
communication cost per party is O(wi)

– Input. Parties hold a secret share [out] of the output wire. Parties also hold
a secret sharing of [0] generated similarly as in the FRandom sub-protocol.

– Party Pi locally computes and broadcasts
(
[0]i +[out]i

)
mod pi as the secret

shares of 0 + out.
– Parties locally reconstruct 0 + out as the value of out.

5.4 Realizing Negation Gate Fneg

In this (non-interactive) sub-protocol, parties switch the secret shares [x] of x
to the secret shares of [−x]. Negation gate usually comes for free in the Shamir
secret share-based MPC. However, in our scheme, it requires some special care.
Observe that if parties simply invert their secret share from [x]i to pi − [x]i.
The lifted integer goes from Lift(x) to P − Lift(x), where P is the product of pi.
Crucially, note that

Lift(x) = x mod p0 �=⇒ P − Lift(x) = −x mod p0

as P is not a multiple of p0. Therefore, this approach has a correctness issue.
We realize negation by the following protocol.

– Input. Parties hold WRSS of some secret x.
– Parties (locally) identify a bound B ·p0 on the integer Lift(x). For example, if

x is an input wire, Lift(x) is at most (2t+λ+1)·p0. Hence, one set B = 2t+λ+1.
If x is the secret share of the sum of two input wires, the corresponding bound
B will be 2 · (2t+λ + 1). If x is the output of a degree reduction protocol, the
maximum value of Lift(x) is reset to be (2t+λ + 1) · p0. Hence, one could
again pick B = 2t+λ + 1. Consequently, this bound B only depends on the
topology of the circuit, and parties could identify the same bound B without
interaction.

– Party Pi locally computes [−x]i = (B · p0 − [x]i) mod pi.

Observe that the lifting integer of the secret shares [−x]i is now the integer
B · p0 − Lift(x) and we have (B · p0 − Lift(x)) = −x mod p0. Therefore, this
sub-protocol correctly realizes the negation gate.
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– Preprocessing Phase.
• Parties generate |C| fresh samples of [r]0, [r]1 (as described in FRandom).
• Parties generate samples of the secret sharing [0] of 0 (as described in

FRandom). The number of instances equals to the number of output wires
of C.

– Online Phase.
• Parties sample a WRSS of their inputs and send it to all parties. The

threshold parameter L in generating the secret shares is 2t+λ.
• Addition Gate x + y: Parties locally compute ([x]i + [y]i) mod pi as the

secret share of x + y.
• Multiplication Gate x · y: Parties locally compute ([x]i · [y]i) mod pi as

the secret share of x · y. They then employ a degree reduction protocol
Fdeg and obtain [z]i as the new share where z = x · y. In subsequent
sections we will refer to this as FMult.

• Negation Gate −x: Parties use the sub-protocol Fneg.
• Scalar Multiplication Gate c ·x: Parties locally compute (c · [x]i) mod pi

as the secret share of c ·x. They then employ a degree reduction protocol
Fdeg and obtain [z]i as the new share where z = c · x. In subsequent
sections we will refer to this as FsMult.

– Reconstruct the Output. For each output wire out, parties use the FOpen

with input [out] to reconstruct the value out.

Fig. 3. Our Efficient Weighted MPC Protocol

5.5 Our Protocol

We are now ready to state our protocol in Fig. 3. The correctness is straightfor-
ward as the reconstruction of the secret is correct for each sub-protocol.
For security, the following lemma is helpful. We defer the formal proof to the
full version of this paper.

Lemma 1 (Integer Masking Lemma). Let p and 0 � r1, r2 < p be any
integers. Let M < N also be arbitrary integers. Let D be an arbitrary distribution
over the universe {r1, p + r1, 2p + r1, . . .} ∩ [M ]. Then,

SD
((

D + UN

∣∣∣ UN mod p = r2
)

,
(
UN

∣∣∣ UN mod p = r1 + r2
))

� M/N + 2p/N,

where the addition is over the integers.

We provide some intuition about this lemma and why it is relevant to the secu-
rity of the MPC protocol. Take the multiplication sub-protocol as an example.
We need to argue that the reconstructed integer [x] · [y]+[r]1 could be simulated.
Here, the integer corresponds to [x] · [y] is the distribution D and the integer
corresponds to [r]1 is the distribution UN . The conditioning on UN mod p is
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because of the adversary’s secret share of [r]1. That is, it knows that the remain-
der of UN modulo some product of pi. Now, this lemma states that as long as
the range of the integer [r]1 is sampled from a much larger domain (measured
by N) compared to the maximum value of [x] · [y] (measured by M), one may
simply sample the integer corresponds to [x] · [y] + [r]1 as a uniformly random
one (given that it is consistent with the adversary’s secret share).16

Security. The security proof essentially follows from the security of the WRSS
and Lemma 1. Due to space constraints, we defer the formal proof to the full
version of this paper.

6 Efficient Weighted Threshold Encryption Scheme

In this section, we will demonstrate the utility of our secret-sharing scheme
by constructing a weighted threshold encryption scheme, where the size of the
secret-key shares is small. Let us first define the primitive.

Definition 3. A public-key encryption scheme with weighted threshold decryp-
tion consists of a tuple of PPT algorithms (Gen,Enc,PartialDec,Reconstruct).

– (pk, {ski}n
i=1) ← Gen(1λ, {w1}n

i=1, T, t): The Gen algorithm takes the security
parameter 1λ as input and a weighted access structure with privacy threshold
t and reconstruction threshold T as inputs. It outputs a public key pk and a
set of secret-key shares {ski}n

i=1, where ski is given to the ith party.
– c ← Enc(pk,m): The Enc algorithm takes as input the public key pk, a message

m, and outputs a ciphertext c.
– μ ← PartialDec(S, sk′, c): The PartialDec algorithm takes as input a subset

S ⊆ [n], secret-key share sk′, ciphertext c, and outputs partial decryption μ.
– m ← Reconstruct({μi}i∈S , c): The Reconstruct is a deterministic algorithm

that takes as input a set of partial decryptions {μi}i∈S from a subset S of
parties, a ciphertext c, and outputs a message m. When fails, it outputs ⊥.

It shall satisfy the following guarantees.

– Statistical Correctness. For any weighted access structure ({wi}n
i=1, T, t),

authorized subset S ⊆ [n], and message m, it holds that

Pr

⎡

⎢
⎢
⎢
⎣

m∗ = m :

(pk, {ski}n
i=1) ← Gen(1λ, {w1}N

i=1, T, t)
c ← Enc(pk,m)

∀i ∈ S : μi ← PartialDec(S, ski, c)
m∗ ← Reconstruct({μi}i∈S , c)

⎤

⎥
⎥
⎥
⎦

� 1 − negl(λ).

16 The term p/N will always be small since p is the product of the adversary’s pi,
which is at most 2t. The WRSS scheme requires that whenever we pick a random
lift integer, we shall always pick a domain much larger than 2t.
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– ε-Strong CPA Security. For any PPT adversary A, any weighted access
structure ({wi}n

i=1, T, t), and any unauthorized subset S ⊆ [n], it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b∗ = b :

(pk, {ski}n
i=1) ← Gen(1λ, {w1}N

i=1, T, t)

(m0,m1) ← AO(·)(pk, {sk}i∈S)
b ← {0, 1}; c ← Enc(pk,mb)

b∗ ← AO(·)(pk, {ski}i∈S ,m0,m1, c)

⎤

⎥
⎥
⎥
⎥
⎦

� 1/2 + ε.

Here, the oracle O(A,B,m) takes as input an authorized set A and a subset
B such that B ∪S is unauthorized, and a message m. Its outputs are sampled
from the following distribution

{
c ← Enc(pk,m), ∀i ∈ B, μi = PartialDec(A, ski, c)

Output
(
c, {μi}i∈B

)

}

.

In other words, the adversary is given access to the partial decryption oracle
on honestly sampled ciphertexts.

Remark 3. We notice that, in the threshold setting, the plain CPA security
(where the adversary does not have any access to partial decryption) is trivial
to achieve. For instance, consider the following trivial scheme. Take any CPA-
secure PKE scheme and any secret-sharing scheme. Sample the public key and
secret key pair from the underlying PKE scheme and secret share the secret key
with all parties. Now, the partial decryption algorithm simply outputs the secret
share. Observe that even this scheme satisfies the plain CPA security.
Due to this observation, we consider a stronger definition, where the adversary
has access to partial decryption on ciphertexts that are honestly sampled. This
stronger CPA-security definition excludes the trivial construction above.

6.1 Building Blocks

ElGamal Encryption. Our construction is based on the ElGamal encryption
system. Let us recall it. In the ElGamal encryption scheme, a group G with order
p and generator g is sampled as (G, g) ← Setup(1λ). The secret key sk and public
key pk are sampled as s and gs where s ← Fp. To encrypt a message m, one
sample a random r ← Fp, and the ciphertext is defined as (m · pkr, gr). Given
a ciphertext (c1, c2), one could decrypt it as c1 · c−sk

2 . This encryption scheme is
semantically secure as long as the Decisional Diffie-Hellman (DDH) problem is
hard in G, which states that the following two distributions are computationally
indistinguishable

(g, ga, gb, gab) ≈ (g, ga, gb, gc),

where a, b, c ← Fp.
We need the following definitions regarding min-entropy and randomness extrac-
tor. For a distribution X, its min-entropy is defined as

H∞(X) = − log
(
max

x
Pr[X = x]

)
.
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Definition 4 (Randomness Extractor). A function Ext : {0, 1}n ×{0, 1}d →
{0, 1}m is called a (k, ε)-strong randomness extractor if, for all distributions X
over {0, 1}n such that H∞(X) � k, we have

SD
( (

s,Ext(X, s)
)

;
(
U{0,1}d , U{0,1}m

) )
� ε,

where the seed s is chosen uniformly at random from {0, 1}d.

For our purpose, we may use the leftover hash lemma [30] as a concrete instan-
tiation of the randomness extractor.

Definition 5 (Universal Hashing). A family of hash function {hk : {0, 1}λ →
{0, 1}α}k, where k ∈ {0, 1}β is called a universal hashing function family if, for
any two distinct inputs x, y ∈ {0, 1}λ, it holds that

Pr
k←{0,1}β

[hk(x) = hk(y)] = 1/2α.

Instantiation. We provide a simple instantiation as follows. Given a message
space {0, 1}λ, one picks α = λ/2 and β = λ. A message x ∈ {0, 1}λ is treated as a
vector (x1, x2) ∈ F2α ×F2α . Similarly, the index of the hash function k ∈ {0, 1}λ

is also treated as (k1, k2) ∈ F2α × F2α . Define the hash function output as

hk1,k2(x1, x2) = k1 · x1 + k2 · x2,

where the operations are over F2α . One may verify that it is indeed a universal
hash function.
For our purpose, observe that for any key (k1, k2) �= (0, 0) and any hash output
σ ∈ {0, 1}λ/2, it holds that

H∞
(
U{0,1}λ

∣
∣
∣ (k1, k2), hk1,k2

(
U{0,1}λ

)
= σ

)
= λ/2.

That is, a uniformly sampled message has at least λ/2 bits of entropy after being
conditioned on the hash function output.

6.2 Our Construction

Our construction based on the ElGamal encryption scheme is in Fig. 4.

Efficiency. The efficiency of our threshold encryption scheme inherits the effi-
ciency of the WRSS scheme as the size of the secret key share is O(wi). Moreover,
the partial decryption and reconstruction time is O(W ) + poly(λ), where W is
the total weights

∑
i∈S wi. This is because every party is computing an O(W )-

bit integer, i.e., ski · λi mod PS , which takes O(W ) time and the rest of the
reconstruction time is independent of the weight and takes poly(λ) time.
In comparison, if one uses Shamir’s secret sharing with the virtualization app-
roach, every party needs to interpolate a degree-(W −1) polynomial and evaluate
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it at 0. This needs at least W log W field operations based on fast Fourier trans-
form techniques, which takes at least O(W · λ) time.

Correctness. Observe that the decryption is correct as long as it finds the
correct index j∗. Furthermore, it might not find the correct j∗ if and only if
there is a collision for the universal hash function hk. By the property of the
universal hash function, for any j �= j∗, the probability of the collision between
j and j∗ is exp(−λ). Therefore, by union bound, the probability of incorrectness
is upper-bounded by n · exp(−λ).
We note that, with a slight modification, we can achieve perfect correctness.
That is, the encryptor can ensure the decryption is correct by picking a “good”
universal hash function.

Gen(1λ, {w1}n
i=1, T, t). The public key and secret keys are set up as follows.

– Sample (G, g) ← Setup(1λ) and s ← Fp.
– Set pk = s. Use the WRSS scheme with access structure ({w1}n

i=1, T, t) to
secret share s as s1, . . . , sn. Set ski = si.

Enc(pk, m). To encrypt a message m, one computes:

– Sample a random exponent r ← Fp, a hash function k ← {0, 1}β , and a seed
for the randomness extractor sd ← {0, 1}d.

– The ciphertext is defined as

m ⊕ Ext(sd, pkr), sd, gr, k, hk(pkr).

μ ← PartialDec(S, sk′, c). The partial decryption is defined as follows. Note that
the authorized set S implicitly defined PS =

∏
i∈S pi and also the Lagrange

coefficients λi. That is, the unique integer λi that satisfies

λi = 1 mod pi and ∀j ∈ S \ {i}, λi = 0 mod pj .

Parse the ciphertext c as above and the partial decryption outputs

(gr)(sk
′·λi mod PS) .

m ← Reconstruct({μi}i∈S , c). Given all the partial decryptions {μi}i∈S , the recon-

struction does the following. It set μ =
∏

i∈S μi and computes

μ, μ · (gr)−PS , . . . , μ · (gr)−(|S|−1)·PS .

It checks if there exists an j such that

hk

(
μ · (gr)−j·PS

)
= hk(pkr).

If such an j does not exist, it output ⊥; otherwise, it finds any such j∗ and outputs

c ⊕ Ext
(
sd, μ · (gr)−j∗·PS

)
.

Fig. 4. Our Efficient Threshold Encryption Scheme
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Security. We now show the CPA security of our weighted public-key threshold
encryption scheme. In particular, in the generic group model [39], we shall prove
that our scheme satisfies ε-strong CPA-security where ε = poly(λ)/pmin where
pmin = mini pi. Therefore, as long as the minimum weight is large enough, e.g.,
wmin � log2 λ, our threshold encryption scheme satisfies the negl(λ)-strong CPA
security.
We briefly explain why pmin needs to be large, and we need the generic group
model (instead of DDH). Note that if wi is small, the total possibility of the secret
share of party Pi is also small 2O(wi). Therefore, given the partial decryption
output of Pi, one could use an exhaustive search (in time pi) to find the exact
si. Therefore, it is inevitable that the security depends on the minimum wi.
Next, our proof relies on the generic group model as our WRSS is non-linear.
In particular, for a linear partial decryption, given gsi , one could easily simulate
(gr, (gsi)r), where r ← Fp. However, in our case, given gsi , it is not clear how
to simulate (gr, (gr)(si·λi mod N)). Therefore, we have to rely on the generic
group to argue that this distribution is indistinguishable from two random group
elements. Due to space constraints, the full proof is deferred to the full version
of this paper.

7 Efficient Weighted Threshold Signature

ECDSA Signature Scheme
Let G be the elliptic curve base point which generates a subgroup of some prime
order q. Let H(·) be a cryptographic hash function. We use a × G to denote the
multiplication of curve point G by a scalar a.

– Gen(1λ) : Sample signing key as sk ← Fq and then set verification key as
vk = sk × G.

– Sign(sk, m) : Sample random element k ← Fq. Compute curve point (rx, ry) =
k × G and let r = rx. Then set σ = k−1 · (H(m) + r · sk). Output (r, σ).

– Verify(vk, m, (r, σ)) : Compute (rx, ry) = σ−1 ·H(m)×G+σ−1 · r × vk. Then,
output 1 if and only if rx = r.

Fig. 5. ECDSA Signature

We show how to apply our weighted MPC protocol in the context of threshold
signatures. More specifically, we show how to construct a weighted multiparty
signing protocol for ECDSA signatures. Such protocol is also known as weighted
threshold signature.

7.1 ECDSA Signatures

We first briefly recall the ECDSA signature scheme in Fig. 5.
Following the same general framework as previous approaches [24,33], our
weighted threshold ECDSA signature scheme starts with a WRSS of the secret
signing key sk among all parties. We described this step next.
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Weighted Threshold ECDSA Key Generation Functionality
FGen(1

λ, T, t) :
FGen takes as input the security parameter 1λ and CRT-based weighted (Ramp)
secret-sharing scheme with respect to reconstruction threshold T and privacy
threshold t. Then it does the following:
1. Sample a secret signing key sk ← Fq. Then it sets verification key as vk =

sk × G.
2. Generate a WRSS of sk : {[sk]i} ← Share(P, T, t, sk). Then send (vk, {[sk]i})

to each party i.

In order to build a weighted multiparty signing protocol for ECDSA signing
functionality, we begin by describing the ideal signing functionality, step by step
as follows:

ECDSA Signing Functionality FSign

1. Generate a secret random value k ← Fq, and then compute (public) group
element k × G.

2. Parse k × G as curve point (rx, ry).
3. Compute multiplication between inverse of secret random value k and secret

signing key sk. We denote this by s = k−1 · sk.
4. Compute two scalar multiplications: k−1 · H(m) and rx · s.
5. Add up the above two values and obtain σ.

Our weighted MPC protocol will proceed as follows: For the first step of signing,
the secret random value k shall be contributed by all parties. More specifically,
each party i will sample its own secret random value ki, broadcast the group
element ki×G, and then distribute the WRSS of ki among all parties. This allows
each party to obtain a share of the combined random value k =

∑
i∈[n] ki as well

as the group element k × G =
∑

i∈[n] ki × G. The subsequent steps naturally fit
into our MPC protocol: step 2 only incurs public operations, and step 5 only
incurs addition, both of which can be computed locally by every party. Step
3 involves first computing the inversion k−1 and then multiplying it with sk.
Using the inversion protocol as suggested in [6], these operations can be handled
via FMult and FOpen. Finally, step 4 involves scalar multiplications. While in our
weighted MPC protocol parties need to run degree reduction to keep the integer
value of share small for subsequent multiplications; here each party can perform
scalar multiplication locally since there are no multiplications afterward.

We describe our weighted multiparty ECDSA signing protocol which realizes
the ideal ECDSA signing functionality in Fig. 6. We split our signing protocol
into two phases: a pre-signing protocol which only depends on the shares of the
signing key, followed by a non-interactive signing protocol which depends on the
actual message.

Correctness and Security. Both correctness and security of our weighted
multiparty ECDSA signing protocol follow from these of weighted MPC protocol.
The only catch is that we also need to simulate the value ki × G sent by each
honest party. However, since those values form an additive sharing of k×G, they
can be simulated given only k × G.
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Weighted Threshold ECDSA Signing Protocol
Let there be a total of n parties where each party i has base pi, its secret input
[sk]i, public input vk and m. Let S ⊆ [n] be the subset of parties participating in
the weighted threshold ECDSA signing protocol and let W be the total weight
of these parties. We will rely on the following protocols: (FRandom, FMult, FOpen).

Pre-signing Phase

1. Parties generate CRT shares of random values {[γ]i}i∈S ← FRandom(γ =∑
i∈S γi), and {[k]i}i∈S ← FRandom(k =

∑
i∈S ki). Each party i also broadcasts

ki × G.
2. Parties compute {[δ]i}i∈S = FMult({[γ]i}i∈S , {[k]i}i∈S), and {[θ]i}i∈S =

FMult({[γ]i}i∈S , {[sk]i}i∈S).
3. Parties compute δ = FOpen({[δ]i}i∈S)). Then they compute R =

∑
i∈S ki × G

and set curve point R = (rx, ry)
4. Each party i computes [σ0]i = δ−1 · [γ]i and [σ1]i = rx · δ−1 · [θ].

Note that [σ0]i is a share of k−1 and [σ1]i is a share of k−1 · sk.
5. Each party i saves the values (rx, [σ0]i, [σ

1]i).

Signing Phase

1. Each party i locally computes [σ]i = H(m) · [σ0]i + [σ1]i.
2. Parties compute σ = FOpen({[σ]i}i∈S)). The signature of m is (σ, rx).

Fig. 6. Weighted Threshold ECDSA Signing

Efficiency. The aforementioned pre-signing phase involves three rounds. How-
ever, instead of having the parties perform a multiplication protocol on [γ]i · [k]i
and then open the result, we can directly let the parties open the multiplication
of their local shares, thus bringing the pre-signing phase to two rounds. The
communication cost per party in the pre-signing phase is O(W + λ).
The online signing phase is non-interactive. Each party i broadcasts a share of
final signature [σ]i which has size O(wi).
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