Scalable Multiparty Garbling

Gabrielle Beck
Johns Hopkins University
Baltimore, USA

Aarushi Goel
NTT Research
Sunnyvale, USA

Aditya Hegde
Johns Hopkins University
Baltimore, USA

becgabri@cs.jhu.edu aarushi.goel@ntt-research.com ahegde@cs.jhu.edu
Abhishek Jain Zhengzhong Jin Gabriel Kaptchuk
Johns Hopkins University and NTT = Massachusetts Institute of Technology Boston University
Research Cambridge, USA Boston, USA
Baltimore and Sunnyvale, USA zzjin@mit.edu kaptchuk@bu.edu
abhishek@cs.jhu.edu
ABSTRACT has been deployed in industry [24, 82], government [6], and for

Multiparty garbling is the most popular approach for constant-
round secure multiparty computation (MPC). Despite being the
focus of significant research effort, instantiating prior approaches
to multiparty garbling results in constant-round MPC that can not
realistically accommodate large numbers of parties. In this work
we present the first global-scale multiparty garbling protocol. The
per-party communication complexity of our protocol decreases as
the number of parties participating in the protocol increases—for
the first time matching the asymptotic communication complex-
ity of non-constant round MPC protocols. Our protocol achieves
malicious security in the honest-majority setting and relies on the
hardness of the Learning Party with Noise assumption.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols.

KEYWORDS

mpc, garbling, packed secret sharing, constant rounds

ACM Reference Format:

Gabrielle Beck, Aarushi Goel, Aditya Hegde, Abhishek Jain, Zhengzhong Jin,
and Gabriel Kaptchuk. 2023. Scalable Multiparty Garbling. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26-30, 2023, Copenhagen, Denmark. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623132

1 INTRODUCTION

Secure multiparty computation (MPC) [20, 28, 50, 86] is a class of
cryptographic protocols that allows mutually distrusting parties to
compute a function over hidden inputs. Since the eighties—when
the first feasibility results were established—continuous progress
has been made towards improving the efficiency of MPC protocols
along various dimensions. Such improvements have resulted in the
creation of toolchains for MPC (e.g., [14, 39, 57, 72, 73]) that are
concretely efficiency for some limited applications; as a result, MPC

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623132

social good [66, 80].

Global-Scale MPC. Although enthusiasm for MPC is growing,
the ability to deploy MPC is hampered by existing protocol’s lack of
scalability. Existing deployments have been forced to use only a few
computational parties co-located in the same geographical area in
an effort to reduce latency. While these deployment choices make
current-generation MPC protocols concretely efficient, they make
it harder to believe the non-collusion assumptions required for
maintaining privacy. Specifically, it may be feasible for an attacker
to convince a small number of parties into releasing their view of
the protocol, compromising the confidentiality of party’s inputs.
Co-location either requires the use of cloud computing resources
(introducing another attack surface) or parties that are already
geographically close to one another, increasing the chances that
they have some preexisting relationship. To mitigate these problems,
there is a need for MPC protocols that scale, both in terms of the
number of parties, and the robustness to geographical diversity of
those parties.

Due to a significant line of recent work [12, 31, 42, 52, 53, 55, 83],
we now know of protocols that scale gracefully as the number of par-
ties increases—state-of-the-art protocols have the communication
complexity independent of the number of parties and are concretely
efficient [42, 53]. Generally, these protocols dictate that parties
jointly compute circuits in a gate-by-gate fashion, meaning that the
computation requires communication rounds proportional to the
depth of the circuit being computed. Unfortunately, network latency
between parties is a key determinant of the protocol runtime in
gate-by-gate protocols (see, e.g. [85] for a discussion), so even these
state-of-the-art protocols fall short when protocol participants are
globally distributed.

Constant round MPC protocols [11, 16, 18, 32, 46, 58—60, 64, 68,
76, 85, 86] are more appropriate for high latency settings, as the
number of times parties must communicate is independent of the
circuit size. There are two well-studied approaches to constant-
round MPC—one based on fully-homomorphic encryption [49]
and another based on garbled circuits [11, 86]. The latter has been
studied more extensively because of its better potential for efficient
solutions (despite incurring asymptotically worse communication).

The second approach follows a template first proposed by Beaver,
Micali, and Rogaway (BMR) [11]: the parties first execute a garbling
phase, in which they jointly compute a garbled circuit of the desired

https://doi.org/10.1145/3576915.3623132
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623132
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623132&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

functionality within an MPC protocol. The garbling phase is then
followed by an output evaluation phase, in which the parties ex-
change inputs and evaluate the garbled circuit. Since garbled gates
can be computed in parallel, the resulting protocol has constant
rounds. Throughout this work we refer to the process of jointly
computing the garbled circuit as multiparty garbling.

Barriers to Efficient, Scalable Multiparty Garbling. Although mul-
tiparty garbling is a well-studied approach for constant-round MPC,
existing proposals cannot realistically be used to perform global-
scale computations. Asymptotically efficient constructions of the
BMR template can be obtained by making non-black-box use of
cryptography used during garbling [11], but representing the cryp-
tography as circuitry introduces prohibitive overheads.

The best known black-box multiparty garbling protocols, on
the other hand, require per-gate total communication (and com-
putation) that is quadratic in the number of parties [16, 18, 32, 58—
60, 68, 85], meaning these protocols scale poorly with the number of
parties. As is common in the literature on efficient MPC, these works
split the garbling phase into a circuit independent pre-processing
phase and a circuit dependent garbling phase. Recent works [16, 18]
have demonstrated methods that reduce the complexity of the
circuit-dependent garbling phase and output evaluation phase to
be linear in the number of parties, but still require a pre-processing
phase with quadratic complexity.

Thus, overall, the quadratic barrier stands for efficient multi-
party garbling—in both the honest and dishonest majority settings.
This poses a major barrier for global-scale computations; the com-
bination of the quadratic dependence on the number of parties
and the fact that garbling inevitably increases the circuit size by a
multiplicative factor dependent on the security parameter results
in impractical solutions, even for moderately-sized circuits. We
therefore ask the following question:

Can we design an efficient and scalable multiparty garbling protocol?

We answer this question in the affirmative, taking a significant
step towards efficient, global-scale, constant-round MPC.

1.1 Our Contributions

We present a new scalable constant-round multiparty garbling pro-
tocol for boolean circuits in the honest-majority setting, where
the total per-party communication complexity (see below) in our
protocol decreases as the number of parties increase. To design this
protocol, we combine several recent advances in efficient MPC and
carefully compose them using bespoke subprotocols. In more detail,
our protocol has the following features:

- Communication Complexity: The total communication com-
plexity of the protocol is independent of the number of parties
(ie., is O(|C|),! where C is the circuit being computed), meaning
that the per-party communication actually decreases as the num-
ber of parties increases. Similar to prior constant round MPC
protocols [11, 16, 18, 32, 58-60, 68, 76, 85], our protocol utilizes a

The O(-) notation suppresses linear terms in the security parameter and other
logarithmic terms (independent of circuit size).

2159

Gabrielle Beck et al.

single round of broadcast to reconstruct the circuit to all parties,
but otherwise runs over point-to-point channels.?
Computation Complexity: The per-party computation com-
plexity of the protocol is independent of the number of parties
(i.e., the total computation complexity of the protocol is O (n|C|)).
This computational complexity is inherent in the constant-round
BMR template, as each party needs to evaluate the garbled circuit.
Security and Assumptions: Our protocol achieves malicious
security against t < % corrupt parties, where £ > 1is a
tunable parameter induced by the use of packed secret sharing?>.
The security of our construction relies on the Learning Parity
with Noise over Large Fields (LPN) assumption. The use of LPN in
our construction demonstrates that “less-powerful” assumptions
(i.e., ones that are not known to imply FHE) are sufficient for
designing efficient and scalable constant round MPC.

Our protocol is the first constant-round MPC to asymptotically
match the best known communication complexity of concretely effi-
cient, gate-by-gate MPC protocols without using fully-homomorphic
encryption.* As such, our protocol demonstrates a path towards
practical MPC in high-latency settings, where gate-by-gate proto-
cols typically struggle.

Our Techniques. We use the following techniques to achieve our
result:

- Generic Approach for Honest Majority. We first identify an
approach for scalable multiparty garbling in the honest majority
setting. In this approach, we rely on encryption schemes where
given shares of the key, message and randomness, it is possible to
non-interactively obtain shares of the corresponding ciphertext.
Such encryption schemes have been used in the recent works
by Ben-Efraim et al. [16, 18] in order to optimize the efficiency
of the output evaluation phase. Our main observation is that
this approach can be successfully “married” with packed secret-
sharing (and other) techniques including ones from a recent work
by Goyal et al. [54] to compute garbled circuits with O(|C|) total
communication.

Instantiation. We instantiate our approach with an encryption
scheme based on the learning parity with noise (LPN) assumption
over large fields. This leads to unique challenges in the honest
majority setting. In particular, we custom design efficient sub-
protocols that enable distributed generation of the cryptographic
material used in this encryption scheme. Finally, we show how
to augment the above approach using known techniques [12, 31,
38, 54] to achieve malicious security.

Evaluation and Analysis. To evaluate the efficiency of our con-
struction, we (1) implement the semi-honest secure version of our
protocol and use it to evaluate popular MPC benchmark circuits,
and (2) programmatically estimate the concrete computation and
communication costs of our maliciously secure protocol.

Our benchmarks of the semi-honest secure version of our proto-
col indicates that it is practical and scalable. Garbling the AES-128

2We note that because the broadcast channel is used only in the final round, this
broadcast channel is particularly well suited to implementation via a website, where
parties can post their shares and then download the garbled circuit at a later time.
3¢ corresponds to the number of secrets packed into one share. We refer the reader to
Section 2 for more details.

4Up to a security parameter factor, introduced from encrypting each gate.

Scalable Multiparty Garbling

circuit takes around 126s even when 512 parties participate in the
protocol, with the circuit dependent phase constituting just 15.5s.
Moreover, the runtimes of the protocol does not seem to vary signif-
icantly with the number of parties and depends mainly on the size
of the circuit being evaluated. Our analysis suggests that our proto-
col outperforms prior works on multiparty garbling in the honest
majority setting [19], especially when run with a large number of
parties.

Our estimates for the computation and communication costs of
the maliciously secure protocol also suggest that the runtime of the
protocol is practical and mainly depends on the size of the circuit
being evaluated and does not vary significantly with the number of
parties. We compare the performance of our protocols with prior
works on efficient, maliciously secure, multiparty garbling [16, 85].
While prior works suffer from higher asymptotic overhead, our
analysis indicates that even the concrete communication cost of
our protocol is lower than those of prior works for n > 350. In this
setting, our protocol achieves the lowest communication cost com-
pared to existing solutions for multiparty garbling. Moreover, since
our benchmarks and estimates suggests that runtimes are mostly
independent of the number of parties, we believe our approach
provides a viable solution for large scale computations with many
participants.

2 PRELIMINARIES

We use x to denote a vector and (x); to denote the i-th element in
the vector. We use [a, b] where a < b to denote the set of integers
{a,a+1,...,b}. In this work, we design an honest majority MPC
protocol that achieves security with abort against an static adver-
sary in the client-server model. We provide formal definitions of
this model in the full version. Let n denote the number of servers
(which we call parties, for simplicity) and ¢ denote the number of
parties the adversary can corrupt. We assume that the parties have
access to both point-to-point private and authenticated synchro-
nous channels and a public synchronous broadcast channel, each
of which has “unit” cost.

Secret Sharing. In this work we use the packed Shamir secret
sharing scheme introduced by Franklin and Yung [44], a general-
ization of the Shamir secret sharing scheme [81] where each share
corresponds to £ secrets. We denote a degree d Shamir sharing of a
value x as [x]q4. Building on an approach by Goyal et al. [54], We
denote a degree-d packed Shamir sharing of a vector x as [x |pos],
where pos is a set of positions in which the values of x are stored;
when pos takes on a default value, we may just write [x]. We refer
the reader to [54] for more details and defer a complete description
of the scheme to the full version.

Error Correcting Codes. Let Q, L, d, q be integers. An [Q, L,d]q4
error correcting code is a pair of algorithms ECC = (Enc, Dec),
where the encoding algorithm Enc takes a message m € [1, g]" as
input, and outputs a codeword in [1, q]Q. The decoding algorithm
Dec takes a potentially corrupted codeword as input, and recovers
the message. The distance of the code is the minimum Hamming
distance between any two different codewords. We now discuss two
properties of error correcting codes required in the construction

2160

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

of our protocol. We defer the proof of these properties to the full
version.

TuroreM 2.1. LetC = {c | ¢ = G-m} C FQ bean[Q, L, d]-binary
linear code with generating matrix G € FQXL, then any sub-matrices
consisted of (Q — d + 1)-rows of G is full rank.

THEOREM 2.2. Let C be a code with parameters [Q,L,d]q and C’
be another code with parameters [Q’, L, d’]q', where q = 2L then
the concatenated code C o C’ has parameters [Q - Q',L - L]y with
distance at leastd - d’.

LPN Assumption and LPN Based Encryption. Our protocols rely
on the Learning Parity with Noise (LPN) assumption over large
fields that has also been used in a number of prior works [2, 3, 25,
62, 63]. We use a variation of the assumption stated by Boyle et
al. [25]. In short, this assumption holds if it is difficult to distinguish
the tuple (A, A - s + e) and a random tuple, where A, s are sampled
from the uniform distribution and e is a noise vector with small
Hamming weight sampled from Bery . A formal description of the
assumption will be provided in the full version.

Given a [Qecc, Lece, d] 5 error-correcting code, we construct an
CPA-secure encryption scheme under the LPN assumption with
message space M = Flece as follows:

o LPN.Keygen(1¥¢) : Sample s « Flen uniformly at random.

e LPN.Enc(x,s) : To encrypt a message x under the key s, first
sample A « Flpn*Qecc yniformly at random and sample € «
BerTQI:SC. Output (A,s - A+ € + ECC.Enc(x)) as the ciphertext.

e LPN.Dec((A,c),s) : Decrypt the ciphertext ¢ using s by comput-
ing ECC.Dec(c—s - A).

Note that security follows from the fact that (A,s - A + € +
ECC.Enc(x)) is computationally indistinguishable from (A,r +
ECC.Enc(x)) where r « F%« is sampled uniformly at random.
Correctness holds because ¢ — s - A = € + ECC.Enc(x) and if the
Hamming weight of the noise € is no greater than | (d — 1)/2], then
the error correcting code can decrypt the message correctly.

3 BACKGROUND

BMR Constant Round Protocol Template. In their seminal work,
Beaver, Micali, and Rogaway (BMR) [11] outline a template for con-
structing constant round MPC. The parties first perform a garbling
phase by taking a generic (i.e. non-constant round) MPC protocol
and using it to compute a garbled circuit of the functionality—
rather than computing the function itself. The parties then initiate
an output evaluation phase, in which they locally evaluate the gar-
bled circuit to recover the function output. Because the garbling
procedure is not inherently sequential, the tables can all be com-
puted in parallel. Since computing each garbled table can be done
in a constant number of rounds (by using an appropriate encryp-
tion scheme), the resulting protocol is itself constant round. Since
the introduction of the BMR template, a long sequence of works
(e.g., [16, 18, 32, 58-60, 68, 76, 85]) have investigated the efficiency
of running protocols within the BMR template, leading to several
improvements.

Black-Box Use of Cryptography. Beaver, Micali, and Rogaway’s
initial protocol proposed making non-black box use of the garbling
algorithm of the garbled circuit scheme. For a gate g with input

CCS *23, November 26-30, 2023, Copenhagen, Denmark

wires a, b and output wire ¢ computing the function f : {0,1}% —
{0, 1}, the row of the garbled table corresponding to inputs «, ff €
{0, 1} is computed as

Clop = PRFka,a (9)® PRFkb’ﬁ (9@ kc,f(a,ﬂ)

where k, , is a random key/label associated with the wire a and
the value a € {0, 1}. While conceptually simple, the explicit circuit
representation of PRF will be massive, resulting in an inefficient
concrete construction. To obtain an efficient black-box solution, the
PRF must somehow be evaluated outside the MPC protocol without
compromising privacy or correctness.

Damgard and Ishai [32] devised an intuitive way to accomplish
this goal: each party P,, € {P1,...,P,} independently samples a
pair of labels (kg’o , kg’l) for each wire c in the circuit. The parties
then combine these independent labels into a single label containing
n keys within the MPC protocol as

(kgoll- - IIKE g kL1l (1K)

The parties then encrypt the combined labels by feeding locally
expanded PRFs into the MPC. Thus the garbled table for gate g
with input wires a, b and output wire ¢ implementing the function
f is computed as follows for inputs «, f € {0, 1} and party index
jem:?

n n
j _ . . J
ct] 5= g}l PRFym (gll)) ® g}l PRFgr (g1) @ K.)

In other words, the garbled table for each gate consists of 4n cipher-
texts, where each ciphertext is computed using n keys. Subsequent
to the initial presentation of this protocol [32], Lindell et al. [68]
showed that this approach can be extended to the malicious security
case by incorporating simple local checks performed by the parties
during the output evaluation phase.

Permuting Ciphertexts. There is one significant element of the
BMR template that we have so far not addressed: the rows of each
garbled table must be permuted so that its position in the table
reveals nothing about its value. In practice, most prior works do
this by sampling a random “mask” bit A, € {0, 1} associated with
each wire c. These bits are then used to select the order of the
permutation of the table within the MPC.

Barriers to Scalable Multiparty Garbling. Existing techniques dis-
cussed so far, that make black-box use of cryptography are inher-
ently not scalable. Since each party contributes to encrypting every
other party’s key, the circuit representation of garbling each gate is
of size O(n?).% Thus, when running the garbling phase, the overall
communication complexity will be at least quadratic in n (which
clearly doesn’t scale well as n grows)—no matter the efficiency of
the MPC protocol used. Thus, reducing the size of the garbled tables
is a necessary condition for scalable multiparty garbling.

5In the technical overview, we don’t explicitly discuss how rows in the garbled table are
permuted. We do this using standard point-and-permute [11] techniques by sampling
random bit-masks for every wire in the circuit.

Throughout the technical overview, we will generally omit the security parameter
from our asymptotic notation, as our focus is the dependence on the number of parties.

2161

Gabrielle Beck et al.

Reducing the Number of Ciphertexts. Motivated by the desire to
optimize the output evaluation phase of multiparty garbling, Ben-
Efraim et al. [18] demonstrate a method in the dishonest majority
setting for computing garbled tables with a constant number of
ciphertexts without relying on non-black box use of cryptography.
At the heart of their approach is a PRF that has key homomorphism
[22]. If each party has a share of the wire key, encryption can be
computed by (1) parties locally evaluating the PRF on their shares
of the key, and (2) homomorphically combining the PRF outputs.

4 SCALABLE MULTIPARTY GARBLING IN
THE HONEST MAJORITY SETTING

Linearly key-homomorphic PRFs are presently only known based
on the Decisional Diffie-Hellman assumption in the random or-
acle model [22]. Ben Efraim et al. [16, 18] devised a way around
the lack of key-homomorphic PRFs by using ring LWE and LPN
(over boolean field) based encryption scheme (that allow parties
to locally compute shares of the ciphertext, given shares of key,
message and randomness), instead of a linearly key-homomorphic
pseudo-random function. We build upon this approach to achieve
better efficiency guarantees in the honest majority setting. When
switching to the honest majority setting, we can leverage threshold
secret sharing instead of additive secret sharing.

Following the above general approach of Ben-Efraim et al., we
want parties to be able to locally compute shares of a single ci-
phertext, such that the ciphertext can be reconstructed during the
output evaluation phase. Specifically, let the encryption scheme be
such that [ct] = ENC ([key], [msg]; [rand]). Further, let us imag-
ine that for each gate g computing the function f, in addition to
holding secret shares of the keys corresponding to the input wires
a, b and output wire c, the parties also hold secret shares of some
randomness for the encryption scheme. We want each party P, to
locally compute its share of the row «, f € {0, 1} as

(et pl,,, = ENC ((Ikaal, @ kog,,) Kepap] i [l

Here [ka’a]m D [kh,ﬁ]m correspond to shares of the key used to
encrypt message k. (4, 5) using randomness ry g.

Roadmap Ahead. Given the discussion so far, we use the follow-
ing roadmap to achieve our results.

e Using an appropriate encryption scheme: As mentioned
earlier, Ben Efraim et al. [16, 18] observe that ring-LWE and
LPN based encryption schemes satisfy the above properties and
demonstrate how they can be used in the dishonest majority
setting. These properties are also satisfied over threshold secret
shares. In Section 5.1, we discuss which encryption scheme works
better for us in the honest majority setting. Moreover, our choice
of encryption scheme dictates the distribution from which the
keys and randomness are sampled. In Section 5, we also discuss
how to obtain threshold secret shares of the keys and randomness
sampled from the appropriate distribution.

Achieving malicious security: As observed in prior work,
achieving malicious security in multiparty garbling involves pro-
tecting against two types of attacks: (1) malicious adversaries
manipulating the MPC protocol used to compute the garbled

Scalable Multiparty Garbling

circuit, and (2) malicious adversaries injecting errors into the
garbled circuit by using inconsistent inputs.

Towards addressing the first type of attack, we note that a long
history of active research on honest majority malicious security
compilers [31, 37, 45, 47, 48, 56, 67, 77] has significantly reduced
the overhead of malicious security. In principle, these techniques
can be lifted into the multiparty garbling setting; we note that
when we instantiate our protocol, adapting these techniques will
require some care, which we discuss in more detail in Section
5.5.

Let us now discuss defense against the second type of attacks. We
note that in the honest majority regime, when using an encryp-
tion scheme with the above property, it is not actually possible
for the malicious players to manipulate the value of the cipher-
text directly, as the ciphertext within a threshold secret sharing
is uniquely defined by the honest parties’ shares. Indeed, this is
much more of an immediate problem in the dishonest majority
setting, where additive shares are more commonly used. How-
ever, we need to ensure that the keys and randomness used in
the encryption are sampled from the correct distribution by pre-
venting the adversary from influencing the sampling process.
Fortunately, we observe that our approach for handling the first
type of attacks can also be used to counter this attack. We defer
discussion on how to address these attacks in Section 5.5.

MPC with O(|C|) communication: With a garbled circuit with
gate representations that are constant in the number of parties,
the question is what protocol should the parties use to create
the garbled circuit. Thankfully, MPC protocols with O(|C]) to-
tal communication have been the subject of significant research
efforts [12, 33, 34, 47, 52-54]. All of these protocols rely heav-
ily on threshold packed secret sharing schemes [44], a “Single-
Instruction-Multiple-Data” (SIMD) version of threshold secret
sharing schemes [81]. By operating on O(n) elements at a time
and using efficient multiplication protocols (e.g. [36]), these pro-
tocols are able to achieve total communication complexity inde-
pendent of the number of parties. In particular, we rely on the
techniques from a recent work by Goyal et al. [54], which is an
efficient, non-constant round MPC for general circuits.

5 INSTANTIATING OUR APPROACH

With the overview outlined above acting as a clear roadmap to
constructing scalable multiparty garbling scheme, we now explore
how we can instantiate the necessary primitives and subprotocols.

5.1 Choice of Encryption Scheme

LWE and LPN based secret-key encryption schemes are of the form
k-A+e+ L(m), where k is the key vector, A is a public matrix, e is
the random error vector, m is the message vector and £ is a public
linear function. Since, A, L is public, computing the ciphertext only
requires linear operations over the key vector k, message vector m
and the error vector e. This essentially implies that if the parties
hold shares of k, e and the message m, they can locally compute
shares of the corresponding ciphertext without interaction. We
note that, depending on the maximum fan-out fanoutmax across
all gates in a given circuit, the number of unique A matrices that

2162

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

we require in general is 8 X fanoutmax [18]. Since these are public
matrices, we can generate them a priori.

Compatibility between the encryption scheme that we use and
known efficient techniques for honest majority MPC will dictate
the overall efficiency and scalability of our multiparty garbling
scheme. In instantiating this template, we will use use the straight-
forward equivalent of this encryption scheme based on LPN over a
large field (similar assumptions have been used in several recent
works [25, 41, 63]). To justify these choices, we briefly discuss the
alternative assumptions that we could use—LWE and boolean LPN—
and demonstrate why LPN over large fields is the most appropriate
choice for our application.

LWE vs LPN. Several prior works prefer LPN over LWE for ef-
ficiency reasons. Unlike LPN, LWE is known to imply FHE and
is believed to be a “more-powerful” assumption than LPN. As a
result, in general, parameter sizes in LWE tend to be larger than
the ones required in LPN. Moreover, the matrix A in LPN is the
generator matrix corresponding to a probabilistic code generation
algorithm. It is possible to choose matrices, where each column
contains a small (constant) number of random non-zero coordi-
nates, without weakening the security of LPN [1, 3]. Using such a
matrix, computing k - A for any vector k can be done in time linear
in the length of k. On the other hand, to the best of our knowledge,
no such optimizations are known in LWE and hence computing
k - A requires time quadratic in the length of k. As such, we can
believe that LPN poses a more fruitful direction for instantiating
our template.

LPN over a boolean field vs. LPN over a larger field. The LPN-
based encryption of a message m requires encoding m using a
linear error correcting code ECC.Enc, and adding the result to the
output of the random function k - A +e. As such, the size of an LPN
ciphertext depends on both (1) the efficiency of existing ECC.Enc,
and (2) the best known attacks on the LPN assumption. LPN over
large fields outperforms LPN over boolean fields in both criteria:
(1) ECC.EncC’s in larger fields tend to have better rates than binary
ECC.Enc, and (2) in the large field setting, there exist variants of
the LPN assumption (see [25, 43] for a detailed discussion) where
the best known attack remains the same as in the boolean regime.

As aresult, LPN over large fields provides equivalent levels of se-
curity with smaller parameter sizes. We note that this tradeoff is not
always absolute: while LPN over larger fields might admit shorter
vectors k, e and a smaller matrix A, representing each element
requires multiple bits, which could result in the total representation
that is larger than the equivalent construction from LPN over a
boolean field.

We observe that in our setting it is still less efficient to use LPN
over a boolean field because the parties run an MPC protocol to
generate and use the cryptographic key material. Recall that since
we rely on techniques from [54], we need to work in a field of size
O(|C|). Thus, the parties will have to use a larger field irrespective
of our choice of the cryptographic assumption. As such, LPN over a
boolean field becomes wasteful in the context of our protocol—each
bit will be represented in a large field anyhow—undermining the
potential advantage of working with LPN over a boolean fields.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

5.2 Sub-Protocol for Generating Errors

The errors in our LPN-based encryption are sampled from a Bernoulli
distribution over F, i.e., every element of the error vector is a ran-
dom non-zero element in F with probability ’% and zero with prob-

ability 1 — ’% where p is derived from the parameter choices. While
efficient distributed protocols for generating shares of uniform ran-
dom values in the field are known due to Damgard et al. [36] and
Beerliova-Trubiniova et al. [13], to our knowledge, no such pro-
tocols are known for generating shares of values from this biased
distribution.

To generate shares of biased bits, we use the following observa-
tion. Let us assume that p is a power of 2, i.e., of the form p = 2%n It
is now easy to see that the product of 7j,,, random bits will be 1 with
probability 1/p and 0 with probability (p —1)/p. To implement this
idea, the parties can use our random bit sharing protocol (described
below in Section 5.3) to sample shares of 7jp, random bits and then
multiply them to get a sharing of the appropriately-biased bit. If 7/,
is constant, these multiplications can be done in a constant number
of rounds. Moreover, to ensure that our total communication is
O(|C|), we generate these shares in packed secret sharing form.
We choose our LPN parameters to ensure that p is a power of 2.

We note that this does not affect our other parameters because we
can choose the Reed-Solomon codes properly to correct a constant
fraction of errors. For LPN security, the LPN instance is more secure
when the noise rate is larger, and constant noise rate was referred
to as high noise LPN in the literature [40].

5.3 Sub-Protocol For Secret Sharing Bits/Masks

Our final required subprotocol is one for generating secret shares of
random bits, both to be used as masks for permuting the ciphertexts
(see end of Section 3) and for LPN encryption (see Section 5.2).

We choose to work in a Galois Field of characteristic 2. Tech-
niques used in the dishonest majority setting [38, 68] for sampling
shares of random bits are not helpful here, since they require O (n)
communication (for sharing each bit) in the honest majority setting.
Efficient honest majority techniques [13, 36] are known for gener-
ating secret shares of an unknown random value in the field. These
techniques however, necessarily require the field from which ran-
dom values are sampled to be linear in the number of parties. More
recently, Cascudo et al. [27] proposed a way to extend these ideas
for generating shares of uniform random binary values 7 embedded
in a bigger field F, with a similar efficiency.

We start by recalling the standard technique [13, 36] used for
generating shares of random values in the field in batches, using
a Vandermonde matrix of size n X (n — t). Specifically, each party
secret shares a random value in the field, and then each party
locally multiplies the shares that it receives from other parties with
the Vandermonde matrix. Since every square sub-matrix of size
(n—=1) X (n—t) of a Vandermonde matrix is invertible and honest
parties are expected to secret share truly random values, the result
is that the parties obtain O(n) secret shares of random, independent
values. Overall, with O (n?) communication and computation, using

"More generally, Cascudo et al. [27] proposed an idea for generating shares of random
values from any constant-sized field. In this work, we only focus on sampling from
the Boolean field.

2163

Gabrielle Beck et al.

the above approach, parties are able to generate O(n) random
sharings.

To generate shares of random bits, it is not sufficient to require
the parties to simply start by secret sharing random bits instead of
random values in F. If the Vandermonde matrix contains elements
in F (as is the case in initial works [13, 36]), even if the parties
start with shares of bits, the shares obtained after multiplying input
shares with this matrix will be of elements in F rather than that of
bits. To address this issue, [27] observed that the generator matrix
of any binary linear error correcting code (denoted by binM) is a
super-invertible matrix over Fy. The parties can now start by simply
secret sharing random bits and when they multiply these shares
with binM, the resulting shares will be of independent, random bits.
This allows us to generate O(n) random bit sharings with O (n?)
communication and computation.

The same observation can also be used to generate packed se-
cret shares of random bit-vectors. Each party simply sends packed
secret sharing of vectors of random bits to the other parties. Each
party then multiplies the received shares with the super-invertible
bit matrix binM. This results in O(n) packed secret sharings (con-
taining n elements in each vector) with O(nz) communication and
computation. A careful reader may have observed that this protocol
yields shares of bits only if the parties originally start with sharings
of bits (which cannot be guaranteed in the presence of malicious
adversaries). As such, this protocol is only secure against a semi-
honest adversary. We discuss malicious security for this protocol
in Section 5.5.

5.4 An Appropriate O(|C|) MPC protocol

As discussed earlier, packed secret-sharing scheme (PSS) is a poly-
nomial based linear secret sharing scheme that allows sharing a
vector of secrets v = {v1,...,vp}, where £ € O(n). Essentially, the
dealer samples a random polynomial g of appropriate degree, such
that for each j € [¢], q(sIot?ef) = vj and each party P; (for i € [n])
gets a share q(p;) (where p; is a publicly known field element that
is unique to party P;). Most existing O(|C|) MPC protocols use the
same set of slots/points slot‘lj‘“'f, e slot?Ef in the polynomial for
embedding secrets in all packed secret sharings used throughout
the protocol. Using PSS, it is possible to evaluate a block of O(n)
gates at the same multiplicative depth in the circuit, in one shot.
Goyal et al.’s protocol [54] is a non-constant round, gate-by-gate
evaluation style of protocol that slightly deviates from this approach.
In this protocol, a unique slot/field element slot;: is assigned for
every gate g in the circuit and the following invariant is maintained
throughout the protocol: let g4, . . ., g¢ be a block of gates that are
evaluated simultaneously using PSS and let z = {zg,,...,z4,} be
output of these gates. Upon evaluating these gates, parties obtain
a packed secret sharing of z, where each z;; is embedded at the
slot associated with gate g;. Borrowing notion from [54], we use

C C
gl""’S[Otgg}'

[z |pos] to denote such a sharing, where pos = {slot

Evaluating a Block of Gates. We now explain in more detail how
a block of gates are evaluated in [54] using PSS. Let d denote the
degree of the PSS. Let gy, ...,gr be a block of multiplication or
addition gates that we wish to evaluate and let 1 = {ly,,...,ls,}
be the set of left inputs to these gates. Further, let us assume that

that for each j € [f], l;, was the output of some gate h;. Given the

Scalable Multiparty Garbling

above invariant, this means that for each j € [¢], there must exist
some degree-d packed secret sharing of the form [z; |pos;] ;, where

zj={...lg, ...} and pos; = {...,slotg,...}. The next steps are
J

as follows:

(1) Bringing all left inputs to the same PSS: In order to evaluate
g1, - - ., ge simultaneously, the first step is to bring all left inputs
lg, ..., 14, in the same PSS. This can be done by allowing the
parties to locally multiply each [z; [pos;] d with a degree-(£—1)
PSS of a unit vector e;j (i.e., where only the j-th term is 1 and

all other terms are 0) of the form [e; |posh] where posh =

-1
{slotcl, .. .,slotg[}. The resulting degree-(d + ¢ — 1) sharing

will be such that the value stored at position sIot%» is Iy, and
J

the values stored at other positions in posh are all 0. Adding
all of these multiplied shares will result in shares of the form
[1|P05h]d+z’71 = Zje[[] [Zj |P05j]d : [ej |P05h]g,1v
Transforming to a PSS at default slots: We now want to trans-
form the above sharing [1|pos”],,_; into a sharing of the form
[1|posgesl 4, Where posyer = {slot‘ljef, . sIot?ef} are some de-
fault slots used throughout the protocol that are independent
from the ones associated the gates. We will discuss how this
transformation is done shortly.

All the above steps are repeated for all the right input wire
valuest = {rg,,...,rg,} to obtain a sharing of the form [r [posy.¢] 4-
If g1, ..., gr were a block of addition gates, the parties can simply
add their respective shares in [1|posger]4 and [r |posg.]4 to obtain
a sharing [z |posyesly, where z = {(Ig; +rg,),....(lg, +14,)}. If
g1, - - ., g¢ were a block of multiplication gates, the parties can use
existing multiplication protocols [33] for computing packed shares
[z|posgef]y of the multiplied values, i.e., z = {(ly, - 1g,), ..., (g, -
Tge)}-

Finally, in order to comply with the invariant, the last step in
their protocol is to transform [z|posg.s]4 into [z |pos]y, where
pos = {slotgcl, . .,slotgcl} are the positions associated with gates
g1, - - -, ge- Next, we discuss how this transformation is done.

Share Transformation. Notice that in the above approach, we

need to switch between sharings of the form [x |pos;] d and [x |posz]d2 .

This can be done easily if the parties have access to secret sharings of
random vectors of form [r |pos;],,_; and [r |P052]d2~ Indeed, given
such sharings, the parties can do the following: (1) locally compute
[x +r1]|pos;],_;, (2) reconstruct x +r, (3) compute [x +r |p052]d2
and finally, (4) subtract the random sharing to get [x [pos,] by

Prior approaches for generating such correlated random sharings
[r|pos;] and [r|pos,] required O(nz) communication. Goyal et al.
[54] propose a novel idea that enables efficient generation of such
correlated randomness with O(n) communication. Due to space
constraints, we details details to the Appendix.

Key Generation and Garbling. For our multiparty garbling scheme,
we also want to enable the parties to generate a secret sharing of
random keys. In order to do this with O(|C|) total communication,
we generate PSS of a random vector of keys. As discussed in Sec-
tion 5.3, this can be done quite efficiently using known techniques
[13, 36]. However, since shares of random values are generated in
“batches” using this technique, when used for generating PSS, the

2164

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

secrets in the resulting packed shares are always stored at the same
slots. While generating we ensure that these slots are always the
default positions. This is also the case when we sample random
sharings of bit masks and computing shares of the error vectors.
When computing the ciphertext, we use the above share transfor-
mation protocol to move the above PSS of keys/masks/errors to
another PSS where these values are all stored at the different slots
associated with the gates/wires that they correspond to. We can
now easily compute the garbling functionality using these values
as input, and by relying on techniques from [54].

5.5 Adding Malicious Security

To ensure malicious security of our above approach, we need to
thwart the following type of attacks:

o Attack Type I: The malicious parties can cause the cipher-
texts to decrypt to an incorrect value by influencing error
generation.

o Attack Type II: Any other potential attacks during the gar-
bling phase (including at the time of key/mask generation),
we need to ensure that the MPC protocol used for all the other
computations in the garbling phase is also secure against
malicious adversaries.

We first discuss how to handle the second type of attacks. Genkin
et al. [47, 48] observed that most semi-honest, secret sharing (and
packed secret sharing) based MPC protocols are also private against
malicious adversaries until parties reconstruct the output shares.
To add full-malicious security to such a protocol, the parties sim-
ply need to verify that the non-linear operations (i.e., non-scalar
multiplications) in the circuit were honestly computed before re-
constructing the output.

A recent line of works have showed how to incorporate these
malicious security checks efficiently in the honest majority setting
[31, 35, 38, 45]. The most popular kind of check is one where the
parties sample a random sharing of a global MAC key (say kmac),
which is essentially a random element in F. Throughout the proto-
col, the parties perform every computation twice to maintain the
following invariant: for every intermediate value z in the computa-
tion for which the parties hold a secret sharing (or packed secret
sharing), they also hold a sharing of (kmac - z). At the end of the
parties compute a random linear combination of all the intermedi-
ate values and also compute a linear combination of all the MAC’ed
intermediate values and essentially check whether the outcome of
the second combination is kmac times that of the first combination.
When working on a large field (i.e., exponential in the security
parameter), it suffices to use a single MAC key. For smaller fields,
the above check needs to be repeated for different MAC keys (to
ensure negligible failure probability).

Goyal et al. [54] demonstrate how the above check seamlessly
extends to their protocol and techniques. We rely on similar ob-
servations to ensure malicious security of most of our garbling
protocol. Besides error generation, the only other sub-protocol that
we use is the random bit sharing protocol for generating shares of
masks. While this sub-protocol is already private against malicious
adversaries (which follows from the observation of Genkin et al.
[47, 48]), to ensure security of our garbling protocol, we also need
to ensure it actually outputs valid shares of bits and not any other

CCS *23, November 26-30, 2023, Copenhagen, Denmark

field element. Indeed, if the adversary deviates from the protocol
description, it could cause the parties to output (potentially invalid
sharings) of any random field elements. The standard technique
for checking if any given element b is 0 or 1, is to simply check if

b2 £ b. We use the same idea. Upon receiving PSS of bits from the
random bit sharing protocol, the parties multiply this sharing with
itself (correctness of this multiplication checked using the above
MAC based check) and at the end, we collective check if the above
condition (i.e., b? = b) is met for all bits that were generated, in a
single shot.

To counter the first type of attack (i.e., one that originates from
incorrect error generation), we recall that the two main steps in
our error generation sub-protocol are: (1) generating packed shares
of random bits and (2) multiplying these bits. It is easy to see that
security and correctness of both these steps can be ensured using
the above ideas.

6 A SCALABLE MULTIPARTY GARBLING
PROTOCOL

Having now described how we can instantiate all of the required
components of our template, we can now proceed to describe the
full protocol. Due to space constraints, we only provide an informal
description of the semi-honest version of our protocol in Protocol 1
and defer the complete description of the malicious protocol and
the required subprotocols to the full version.

For completeness, we provide a summary of the full protocol with
malicious security below. Our protocol consists of three phases:
circuit independent preprocessing, garbling, and reconstruction
with evaluation.

In the circuit independent preprocessing phase, parties gener-
ate the randomness that is needed to permute, encrypt and create
the garbled circuit. This mainly consists of enough packed secret
sharings of wire keys and masks to cover all wires in the circuit
which will be used to create the individual garbled tables. Because
the LPN encryption scheme also requires additive errors from a
particular distribution and are not dependent on any later compu-
tation, we also choose to generate these values in this phase. To
achieve malicious security, a global mac key is also generated and
is used to authenticate the shares in the keys and mask values on
each wire. Additionally, because malicious parties may cause our
randomness generation to output values that are not of the correct
distribution, we retain some information for consistency checks
that are needed on both randomness for LPN error generation and
the randomly generated masks.

After key material has been generated, parties enter an online
garbling phase. The first step of garbling is to take the packed
secret shares and to move them out into positions that correspond
to their positions associated with the gates in the circuit. This can
be done using the share transformation algorithm of [54]. We now
chunk up the gates in our circuit into packs of size ¢. For each
set of ¢ gates, we create new packed shares, packing together all
input wire keys of the same type and value (where type is one of
left,right, or out and wire value is 0 or 1), all output keys of the
same value, and all output masks of the same type. The masks
can now be used to select what output rows of the garbled tables
will correspond to particular inputs and then in turn these selector

2165

Gabrielle Beck et al.

bits can be used to select the output key for this row of the table.
After obliviously selecting the selector bits and keys to encrypt, the
LPN encryption scheme is used to encrypt the ciphertext using the
packed secret shares of input keys and LPN errors generated in the
circuit independent pre-processing step. We also generate packed
shares for the input values, packing together input wire masks
that belong to the same input client, as an optimization. Finally,
throughout this whole phase, for every new value we compute, we
also compute authentication tags. At the end of the garbling phase,
we check that all these intermediate tags were computed correctly
and finally run the consistency checks from the preprocessing phase.
Note that at this point in time nothing sensitive has been computed,
as we are just constructing the garbled circuit and no sensitive
input from clients has been given.

In the last phase - reconstruction and evaluation - we start off by
broadcasting input wire mask shares to the relevant parties. Clients
add their input to the reconstructed mask, broadcast the results,
and all parties can then compute a sharing of that client’s input.
This sharing of the client’s input bit can then be used to also select
for the wire key corresponding to the client’s chosen value. All
the garbled tables are reconstructed, along with the clients input
and the output masks of the protocol (to ensure every party gets
output). The rest of the protocol is a non-interactive evaluation of
the garbled circuit.

7 PROTOCOL EVALUATION AND ANALYSIS

In this section, we attempt to get a better picture of the concrete
performance of our protocol by analyzing its communication and
computation costs. We first discuss some modifications to the pro-
tocol that improve its performance in practice followed by a discus-
sion on the choice of optimal parameters for LPN and the binary
super-invertible matrix. We then discuss the performance of our
semi-honest and maliciously secure protocols and compare it to
those of prior works. Our analysis will be centered around the
performance of the pre-processing and garbling phases which con-
stitute the communication intensive parts of our protocol.

7.1 Practical Protocol Optimizations

The following optimizations can help reduce the concrete costs of
the protocol.

(1) Pack circuit input wires separately. Instead of packing keys
and masks for blocks of all wires in the circuit together, sep-
arately pack the keys and masks for circuit input wires and
the remaining wires (which correspond to output wires of in-
dividual gates) in the circuit. Then, kg“t and Aoyt need not be

computed in step 2 as they are equal to the values sampled in
the pre-processing phase.
Pack XOR and AND gates separately. One way to choose
gates to pack together in step 2 is to only pack the ciphertexts
for garbled tables of the same gate type together, instead of pack-
ing by some arbitrary metric. While this does lead to slightly
inefficient packing, it allows us to simplify parts of step 4. Oth-
erwise, we would need to create packed shares of masks for
each function gates could be computing and then for each gate
select the mask from the relevant packed share.

@

Scalable Multiparty Garbling

Protocol 1: Semi-Honest Garbling Protocol
Pre-processing Phase:

(1) For j € [1, Y] where W is the number of wires within the
circuit, parties compute packed shares of a random mask [A],
and packed sharings of keys {[k?]};¢ [1.Lypn L bE (0.1}

(2) For j € [1,€] where G is the number of gates, k €
4
{0,1...3}, generate packed LPN errors {[ei]}iE[LQIPn]

Garbling Phase:

(1) Transform packed shares of wires and keys from de-
fault positions to associated wire value positions pos as
{[k?|P05] }ie[l,Llpn], {[k}\POS]}is[l,Llpn], [Alpos]

(2) For j € [, %], create new packed shares select-
ing all keys associated with the {left,right,out} in-
put wires having value {0,1}, and all wire masks de-
noted as {[k}’;Ipos]}ie(y,ryy,1bef01)> [Am(pos] for m €
{left, right, out}

(3) Transform new packed shares to their default positions

(4) Select the plaintext to encrypt. For a, f € {0, 1}, compute
the packed select bit determining output key for left wire
value « and right wire value f according to gate function
type. Let the result be [s®#]. For each i € [1, Lipn] securely

compute [Kyerive] = [577] - ([K94] = [Kg4]) + [k to
obtain packed shares of keys to encrypt.

Encode the plaintext and encrypt. Run an encoding procedure
on a message containing [Kactive] concatenated with s. Run
the LPN encryption algorithm using as the key for each i €
[1, Lipn], (K] + [KE™] and errors {[€]}ie[1.0,,1

For each input wire, pack together shares belonging to the
same party and all keys associated with 0 and 1 values on
these wires

5

=

—
=
=

Garbling Reconstruction and Evaluation

(1) For each client who will provide value on an input wire w,
broadcast sharings in [A,,] to the party to allow reconstruc-
tion of A,,. The client then broadcasts its masked input, from
which can derive input shares of the mask and input keys

(2) For all packs of gates, for all rows in the circuit, reconstruct
the ciphertexts {[c;];e [1Qipn] } and all output masks for the
circuit.

(3) Evaluate the garbled circuit.

(3) Reduce cost for computing mask bits. For AND gates, we

only need one multiplication to compute [s?’ﬁ Jacrossalla, f €
{0,1} for a given i € [1, Ljp,]. This reduces the cost of garbling
an AND gate by 3 multiplications. See [84] for more details.
(4) Replacing expensive protocols with degree reduction wher-

ever possible. Sometimes in the protocol, we need to per-
form a degree reduction on shares without changing their po-
sitions. For efficiency reasons, rather than use heavy weight
sub-protocols that provide functionality which subsumes this,
we generate random shares of degree ¢ and 2t and perform a
leader-based degree reduction similar to what is done in secure
multiplication.

7.2 LPN Parameters

Our analysis of the security of LPN over larger fields follows that
of Liu et al. [70]. The LPN parameters provide a trade-off between

2166

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the security provided by the garbled circuit as well as the cor-
rectness error when evaluating the garbled circuit. Specifically, to
correctly decrypt the ciphertext during evaluation, the weight of
the noise vector e, which follows the binomial distribution, should
be lesser than half the distance of the error correcting code. Namely,
Pre[weight(e) < | (d —1)/2]] = Pr[Binom(Q,7) < [(d —1)/2]].
On the other hand, a noise vector with very small weight would
lower security.

For our protocols, we set the noise rate 7 of our LPN-based
encryption to be a constant, and require only a polynomial number
of samples. We choose the parameters of a Reed-Solomon code to
correct constant fraction of errors. To find the best parameters, we
fix the noise rate 7, and use binary search to find Q and V such
that the distance d = Q — V + 1 of the Reed-Solomon code satisfies

Pr[Binom(Q,7) < |(d —1)/2]] < 27%,

while ensuring that the LPN parameters (Q, V, 7) provide 80-bits
of security, as determined using the Python script provided by Liu
et al. [70].

We find that for a correctness error of 2749, Q =555V =127,7 =
272 are the optimal parameters for achieving 80-bit security and Q =
785,V = 214,17 = 2”2 are the optimal parameters for achieving 128-
bit security. For the Reed-Solomon code we choose [555, 128, 428]4
and [785, 215, 571] 4 respectively for 80-bit and 128-bit security.

7.3 Parameters for Binary Super-Invertible
Matrices

We use a concatenation of an outer Reed Solomon code and an inner
binary error-correcting code to obtain the binary super-invertible
matrix.

In more detail, let the Reed Solomon code parameters be [Q, Ly,
drlq, where dr = Qr — Ly + 1 and q 2 Qy is a power of 2. Let the
inner code parameters be [Q;, L;, d;]2 with q = 2Li Then by Theo-
rem 2.2, the concatenated code has parameters [Q,Q;, LrL;, drdi]2.
Hence, we need Q,Q; > Q. However, when Q,Q; > Q, then we
need to truncate (Q,Q; — Q)-rows of the generating matrix. This
causes a loss of (Q,Q; — Q) in the distance, and we thus obtain
a [Q,LyLi,drdi — (QrQi — Q)]2-code. By Theorem 2.1, if we have
| Q/3] malicious parties, then we need d,d; —(Q,Q;—Q)+1 > [Q/3].
In summary, we need to choose the parameters which maximize
message length L, L; with the following constraints.

Qr'QiZQ
q=2Li 2 Qr
Qr-Qi—dr-di <Q-10Q/3].

In our setting, we assume Q = n, i.e.,, the number of parties. If
we use Reed Solomon Codes and the inner code with constant rate,
then the resulting concetenation code will also have constant rate.
In this case, it is easy to see that L,L; € O(n). We can now use
the generator matrix of [Q, L, L;, drd; — (QrQ; — Q)]2-code as our
binary super-invertible matrix. The dimension of this matrix will
be Q X L,L;, i.e., n X O(n), which is what we want.

For concrete parameters, we take the BCH codes [23] as the
inner codes, and use a Python script to enumerate all combinations
of the Reed Solomon codes and the BCH codes to find the largest

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Gabrielle Beck et al.

Circuit " : p Pre-Processing Pre-Processing Size Garbling
Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)
128 31 33 128.413 253.200 40.950 13.411 26.587
AES-128 256 63 65 95.933 107.270 21.212 10.262 13.749
512 127 129 110.776 58.742 12.543 15.527 8.094
128 31 33 - - 152.536 46.167 99.028
SHA-256 256 63 65 453.787 402.479 79.155 39.271 51.294
512 127 129 441.084 213.369 41.888 40.797 27.074

Table 1: Runtime and per party communication cost of our implementation of the semi-honest variant of our protocol when
each party is run with 2 threads. n is the number of parties, t = | (n — 1)/4] is the corruption threshold, and ? is the packing
parameter. The security parameters are set to x; = 40 and k. = 80. AES-128 has 36663 gates and SHA-256 has 114107 gates.

possible L,. Our script also enumerates random linear codes achiev-
ing Gilbert-Varshamov bound as the inner code. Here we list some
concrete parameters. For n = 256 and ¢t = 63, we choose [16, 6, 11]57-
Reed Solomon code concatenated with [16, 7, 6]2-BCH code. For
n =512 and t = 127, we choose [32, 11, 22],7-Reed Solomon code
concatenated with [16,7, 6]2-BCH code.

7.4 Evaluation of our Semi-Honest Secure
Protocol

To evaluate the concrete performance of our protocol, we imple-
ment the semi-honest variant in Rust 8 and benchmark its perfor-
mance in realistic deployment scenarios, executing common circuits
with hundreds of parties located in different regions of the US. To
do this we make use of publicly available cloud services provided
by AWS. Our network set-up consists of a number of c4.large
instances spread across the following AWS regions: us-east-1,
us-east-2, and us-west-2. A c4.large is equipped with Intel(R)
Xeon(R) E5-2666 processor and consists of 2 vCPUs and 3.75 GB of
RAM. We used the MATRIX library [9] to orchestrate experiments
over AWS. Our implementation is multi-threaded and makes use of
asynchronous I/O to run protocols concurrently. We use the Fast
Galois Field Arithmetic Library [79] for finite field arithmetic in
our implementation and use the circuit descriptions available at [5]
for our experiments. We run each experiment 5 times and report
the average.

Table 1 summarizes the runtime and communication cost of
the pre-processing and garbling phases as well as the size of the
pre-processing material output by each party at the end of the pre-
processing phase when garbling the AES-128 and SHA-256 circuits
with 128, 256, and 512 parties whilst tolerating t = | (n — 1)/4]
corruptions. Our benchmarks indicate that our protocol is practical
and can scale to a large number of parties since the runtime does
not vary significantly with the number of parties and depends
mainly on the size of the circuit being evaluated. The pre-processing
phase for AES-128 takes a maximum of 128.4s and for SHA-256
takes a maximum of 453.8s. The garbling phase takes at most 15.5s
for AES-128 and at most 46.1s for SHA-256. As expected, the per-
party communication cost as well as the size of the pre-processing
material decreases as the number of parties increases, owing to the
O(|C|) communication complexity. Our implementation’s memory

8github.com/adishegde/scalable_garbling

2167

consumption exceeded the c4.large instance’s 3.75 GB limit when
running the pre-processing phase for SHA-256 with 128 parties. We
note that such overheads in memory can be avoided by generating
the pre-processing material in smaller batches instead of computing
it all at once in the minimum number of rounds.

Table 2 compares the performance of the protocol with different
corruption thresholds, when garbling AES-128 with 256 parties. We
observe that both the runtime and communication costs decrease
with the corruption threshold. Specifically, when tolerating %—th
corruption instead of %—rd corruption, we notice a 2.7X improve-
ment in the runtime for pre-processing and a 1.8x improvement in
the runtime for the garbling phase. A minor irregularity is observed
in the runtime of the garbling phase where it increases by 0.73s
when tolerating %—th corruption compared to when tolerating %—th
corruption. Note that a smaller corruption threshold ¢ implies a
larger packing parameter ¢ which in turn implies computing over
fewer secret shares to garble the same circuit. However, a larger
packing parameter also requires sharing secrets over a larger de-
gree polynomial and increases the computation required per share.
While the net effect implies constant computation complexity, the
observed irregularity might be an artifact of the implementation
due to the discussed effects of a larger packing parameter.

7.4.1 Comparison to Prior Work. Ben-Efraim and Omri [19] present
efficient multiparty garbling protocols in the honest majority set-
ting. We restrict our discussion to their semi-honest secure pro-
tocols since they do not instantiate the pre-processing phase for
their maliciously secure protocols and provide benchmarks only
for the former. They present two semi-honest protocols: BGW 3ot
that can tolerate up to t < % corruptions and the more efficient
BGW2qt protocol that is secure up to ¢ < § corruptions, both of
which have quadratic computation and communication complexity
in the number of parties n. We compare the performance of our
semi-honest protocol when run with t = @ to the performance
of BGW2pt. BGW24pt has a total runtime of 0.109s when garbling
AES-128 with 13 parties over LAN. Scaling the runtime, given the
protocol’s quadratic growth in computation and communication
costs with the number of parties, suggests that the protocol would
take at least 42.27s to garble AES-128 with 256 parties over LAN. In
comparison, from Table 2, our protocol takes a total of 218.67s to
garble AES-128 with 256 parties. Thus, our semi-honest protocol has
comparable performance despite being run over a network with

https://github.com/adishegde/scalable_garbling

Scalable Multiparty Garbling

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Pre-Processing

Pre-Processing Size Garbling

! Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)
85=|(n—-1)/3] 43 200.904 326.251 45.568 17.777 28.530
63=|(n—1)/4] 65 95.933 107.270 21.212 10.262 13.749
51=|(n-1)/5] 77 75.935 77.011 16.486 8.964 10.841
42=|(n-1)/6] 86 72.441 62.195 13.456 9.696 8.955

Table 2: Comparison of the runtime and per party communication of the semi-honest variant of our protocol with different
corruption thresholds when garbling the AES-128 circuit with n = 256 parites where each party is run with 2 threads. ¢ is the
corruption threshold, and ¢ is the packing parameter. The security parameters are set to ks = 40 and x. = 80.

lower bandwidth and higher latency. Moreover, BGW2,pt takes
34.17s to garble SHA-256 with 31 parties over LAN which would
imply a runtime of at least 2330.38s when garbling SHA-256 with
256 parties over LAN. On the other hand, scaling the runtime of
our protocol from Table 2, we expect our protocol to take 680.61s
when garbling SHA-256 with 256 parties whilst tolerating %—rd
corruption. This indicates that for larger circuits, our protocol out-
performs BGW2,pt despite being run over a slower network while
for smaller circuits we expect our protocol to have similar or better
runtimes when run over identical network conditions.

7.5 Evaluation Of Maliciously Secure Protocol

While we do not implement our maliciously secure protocol, we
evaluate its performance by estimating its communication and
computation costs. To estimate communication costs, we wrote a
python script that outputs the communication required for each
phase of the protocol by computing the number of bits communi-
cated by all parties in every sub-protocol. To estimate the concrete
computation costs of our protocol, we first benchmarked the time
required for individual field operations (addition and multiplica-
tion) followed by programmatically estimating the total number of
field operations carried out in a protocol execution using a python
script. As in our implementation of the semi-honest protocol, we
used the Fast Galois Field Arithmetic Library [79] for field arith-
metic. We found that on a c4. 1large instance (cf. Section 7.4), a field
multiplication takes an average time of 5.6319e-10s and a field mul-
tiplication takes on average 1.0079e-8s. For the sake reproducibility,
the scripts used for estimating the communication and computation
costs as well as benchmarking the time for field operations have
been included in the associated github repository”.

Table 3 summarizes the estimated computation and communica-
tion costs for garbling AES-128 and SHA-256 with 128, 256, and 512
parties whilst tolerating t = | (n — 1) /4] corruptions. As expected,
the per party communication cost decreases significantly with an
increase in the number of parties. The communication required
for the maliciously secure pre-processing and garbling phases is
around 5.05X and 5.89x the communication required for the semi-
honest secure pre-processing and garbling phases respectively. To
better understand how the computational overhead affects the total
runtime, we estimated the computation time for the semi-honest
protocol too and found that the runtime of our implementation
(cf. Section 7.4) was on average 3.14X the estimated computation

9github.com/adishegde/scalable_garbling

2168

time for the pre-processing phase and 2.54X the estimated compu-
tation time for the garbling phase. It is reasonable to expect that
the relationship between the estimated computation time and total
runtime would be similar for the malicious protocol. Thus, the ma-
liciously secure protocol is expected to have reasonable runtime in
practice, and as in the case of the semi-honest protocol the runtime
is not expected to vary significantly with the number of parties but
depend mainly on the size of the circuit being evaluated.

7.5.1 Comparison To Prior Works. Ben-Efraim et al. [16] construct
a BMR-style protocol in the dishonest majority setting which only
requires O(n) communication per party in the garbling phase and
makes use of a somewhat similar LPN-based encryption scheme.
We also compare our protocol against the authenticated garbling
protocol of Wang et al. [85] which we denote by WRK17b. While
WRK17b and the protocol of [16] can tolerate at most t = n — 1
corruptions when run with n parties, Ben-Efraim et al. [16] pro-
pose an efficient variant when tolerating a sub-optimal corruption
threshold. Specifically, assuming the presence of n/c honest par-
ties, where 1 < ¢ < n, allows for a more communication efficient
protocol especially when n/c > ks. As done in the performance
evaluation of [16], we set ¢ = 5 for the purpose of our analysis
and refer to this protocol as BCOOSS21. Since the protocols we
compare tolerate a different corruption threshold, we consider the
case when all protocols are run with the same number of parties
as well as when each protocol is run with a different number of
parties but tolerates the same number of corruptions. We set the
corruption threshold to t = | (n — 1) /4] for our protocol in all cases.
Wherever required, we extrapolate the benchmarks reported in [85]
and [16] to estimate the communication cost of the protocols when
run with a larger number of parties. We use linear interpolation
for this extrapolation since the per party communication cost of
WRK17b in the pre-processing and garbling phases and BCOOSS21
in the pre-processing phase, grows linearly with the total number
of parties.

Figure 1 summarizes the per party communication cost of the
protocols when each protocol is run with the same number of
parties to garble AES-128. In the pre-processing phase, the com-
munication cost of WRK17b and BCOOSS21 is around 0.61x and
6.19x the communication cost of our protocol respectively when
n = 250 and increases to around 4.04X and 42.39X the communica-
tion cost of our protocol when n = 650. In the garbling phase, the
communication cost of WRK17b and BCOOSS21 is around 0.80%
and 0.73% the communication cost of our protocol when n = 250
and increases to around 5.37X and 1.86X the communication cost

https://github.com/adishegde/scalable_garbling

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Circuit " ‘ p Pre-Processing Garbling
Comp. Time (s) Comm. (MB) | Comp. Time (s) Comm. (MB)
128 31 33 ~ 200 ~ 1168 ~ 21 ~ 163
AES-128 256 63 65 ~ 199 ~ 573 ~ 19 ~ 83
512 127 129 ~ 202 =~ 292 ~ 18 ~ 42
128 31 33 ~ 737 ~ 4301 ~ 79 ~ 602
SHA-256 256 63 65 ~ 735 ~ 2111 ~ 71 =~ 308
512 127 129 ~ 744 ~ 1075 ~ 67 ~ 155

Gabrielle Beck et al.

Table 3: Estimated computation time and per party communication cost of the maliciously secure protocol when each party is
run with 2 threads. n is the number of parties, t = | (n — 1)/4] is the corruption threshold, and ¢ is the packing parameter. The
security parameters are set to x; = 40 and k. = 80. AES-128 has 36663 gates and SHA-256 has 114107 gates.

—e— WRK17b
BCOOSS21
—e— This Work

— [=
N 'S o

—
o

Estimated communication cost (GB)
©

—_ e

250

300 350 400 450 500

Number of parties

550 600 650

(a) Pre-processing phase

—e— WRK17b
BCOOsSS21
—e— This Work

— N} N}
w =} 133
=3 S =}

Estimated communication cost (MB)
=
o

50

250 300 350 400 450 500

Number of parties

550 600 650

(b) Garbling phase

Figure 1: Comparison of estimated per party communication cost when garbling AES-128 with different multiparty garbling

protocols, where each protocol is run with the same number of parties. We set the corruption threshold to ¢ = [@J for our
protocol. The security parameters are set to ks = 40 and x. = 128 for all protocols.

of our protocol when n = 650. Thus, the overall communication
costs of our protocol, across both phases, is lower than that of
WRK17b starting at around 350 parties while it is lower than that
of BCOOSS21 even with 250 parties.

Figure 2 summarizes the per party communication cost of the
protocols when each protocol tolerates the same number of cor-
ruptions when garbling AES-128. In this case, our protocol is run
with approximately 4x the number of parties as in WRK17b and
3.2X the number of parties as in BCOOSS21 to ensure that all pro-
tocols tolerate the same number of corruptions. The presence of
a large number of parties, leads to significantly lower communi-
cation overhead for our protocols compared to that of WRK17b
and BCOOSS21. In the pre-processing phase, the per party com-
munication cost of our protocol is 1.53% and 19.44X lower than
that of WRK17b and BCOOSS21 respectively when t = 200 and
up to 5.84% and 76.02x lower when t = 400. In the garbling phase,
the per party communication cost of WRK17b and BCOOSS21 is
around 2.05X and 2.3X the per party communication cost of our
protocol respectively when ¢ = 200, and up to 8.08% and 4.55X the
per party communication cost of our protocol when ¢ = 400. More-
over, as discussed previously, we do not expect the runtime of our

2169

protocols to change significantly with the number of parties and so
we expect our protocol to outperform WRK17b and BCOOSS21 in
these settings.

8 RELATED WORK

There is a long history of pushing towards O(|C)|) MPC [33, 34, 47],
that has recently resulted in linear round (ie. communication rounds
linear in the depth of the circuit) MPC protocols with O(|C)|)
communication complexity that are concretely efficient [12, 52-54].
Our work builds on techniques proposed in these works, but applies
them to the constant-round setting. Most relevant to our protocol,
we use the share transformation protocol proposed by Goyal et al.
[54] (see Section 5.4) as a subprotocol in order to achieve our result.

There are two popular templates for achieving constant round
MPC. The first relies on multiparty variants of fully homomorphic
encryption [7, 26, 51, 74, 75]. While improving the efficiency of
FHE is an active area of research, this approach currently remains
very far from practical. The second template, first proposed by
Beaver, Micali and Rogaway (BMR) [11] relies on the observation
that garbling a circuit [86] can be performed in constant depth.

Scalable Multiparty Garbling

—e— WRK17b
BCOOSS21
—e— This Work

-
N

—
o

Estimated communication cost (GB)
(=]

. .

200

225 250 275 300 325

Number of corruptions

350 375 400

(a) Pre-processing phase

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

—e— WRK17b
BCOOSS21
—e— This Work

Estimated communication cost (MB)
(=2}
o

'
o

\\

300

[N}
o

250 350 400 450 500

Number of corruptions

550 600 650

(b) Garbling phase

Figure 2: Comparison of estimated per party communication cost when garbling AES-128 with different multiparty garbling
protocols, where each protocol is run to tolerate the same number of corruptions. We set the number of parties to be n = 4t + 1
for our protocol. The security parameters are set to ks = 40 and k. = 128 for all protocols.

In our work, we focus on this second approach: the problem of
multiparty garbling.

The BMR approach has been the subject of significant research
and has recently lead to asymptotically efficient constructions with
garbled circuit specifications that can be evaluated quickly in prac-
tice [10, 16-18, 32, 46, 58—61, 68, 69, 76, 85]. While the original
approach required non-black-box use of cryptography, Damgard
and Ishai [32] proposed a black-box technique for multi party gar-
bling, paving the way towards more efficient constructions.

Ben-Efraim, Lindell, and Omri [18] showed how to leverage LWE
to garble a circuit with an evaluation complexity of O(n|C|) per-
party, improving on the prior O(n?|C|) per-party complexity of
Lindell et al. [68]. Ben-Efraim et al. [16] then further optimized
the output evaluation phase to require only O(|C|) per-party local
computation (after reconstruction) using an LPN based encryp-
tion scheme. Additionally, their protocol features a online garbling
phase with total communication complexity O (n|C|), but their cir-
cuit independent preprocessing phase still has total communication
complexity O(n2 |Cl). They achieve this result by reducing the size
of the garbled tables to be constant in the number of parties. Their
scheme uses an LPN-based encryption scheme that is both key-
homomorphic and message-homomorphic, further demonstrating
linearly homomorphic cryptographic primitives can produce con-
cretely efficient protocols [21, 29, 30, 38, 65, 78].

Finally we note that it is possible to garble arithmetic function-
alities [4, 8], at a high cost. Ben-Ephraim et al. [15] and Makri et
al. [71] study the feasibility of computing such function within a
MPC protocol.

ACKNOWLEDGMENTS

Gabriel Kaptchuk is supported by the National Science Founda-
tion under Grant #2030859 to the Computing Research Associa-
tion for the CIFellows Project and is supported by DARPA under
Agreement No. HR00112020021. Gabrielle Beck and Aditya Hegde
were supported by DARPA under Contract No. HR001120C0084.

2170

Aarushi Goel, Aditya Hegde, Abhishek Jain and Zhengzhong Jin
were supported in part by NSF CNS-1814919, NSF CAREER 1942789
and Johns Hopkins University Catalyst award. Abhishek Jain was
additionally supported in part by JP Morgan Faculty Award, and
research gifts from Ethereum, Stellar and Cisco. Zhengzhong Jin
was additionally supported in part by DARPA under Agreement
No. HR00112020023 and by an NSF grant CNS-2154149. This work
was done in part when Aarushi Goel and Zhengzhong Jin were
students at Johns Hopkins University. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the United States Government or DARPA.

REFERENCES

[1] Michael Alekhnovich. 2003. More on Average Case vs Approximation Complexity.
In 44th FOCS. IEEE Computer Society Press, 298-307. https://doi.org/10.1109/
SFCS.2003.1238204

Benny Applebaum, Jonathan Avron, and Christina Brzuska. 2015. Arithmetic
Cryptography: Extended Abstract. In ITCS 2015, Tim Roughgarden (Ed.). ACM,
143-151. https://doi.org/10.1145/2688073.2688114

Benny Applebaum, Ivan Damgérd, Yuval Ishai, Michael Nielsen, and Lior Zichron.
2017. Secure Arithmetic Computation with Constant Computational Overhead. In
CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.).
Springer, Heidelberg, 223-254. https://doi.org/10.1007/978-3-319-63688-7_8
Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. 2011. How to Garble
Arithmetic Circuits. In 52nd FOCS, Rafail Ostrovsky (Ed.). [EEE Computer Society
Press, 120-129. https://doi.org/10.1109/FOCS.2011.40

David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo
Sijacic, and Nigel Smart. [n. d.]. "Bristol Fashion” MPC Circuits. https://homes.
esat.kuleuven.be/~nsmart/MPC/

David Archer, Amy O’Hara, Rawane Issa, and Stephanie Straus. 2021. Sharing
Sensitive Department of Education Data Across Organizational Boundaries Using
Secure Multiparty Computation.

Gilad Asharov, Abhishek Jain, Adriana Lopez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Communi-
cation, Computation and Interaction via Threshold FHE. In EUROCRYPT 2012
(LNCS, Vol. 7237), David Pointcheval and Thomas Johansson (Eds.). Springer,
Heidelberg, 483-501. https://doi.org/10.1007/978-3-642-29011-4_29

Marshall Ball, Tal Malkin, and Mike Rosulek. 2016. Garbling Gadgets for Boolean
and Arithmetic Circuits. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,
565-577. https://doi.org/10.1145/2976749.2978410

Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. 2018. An End-to-End
System for Large Scale P2P MPC-as-a-Service and Low-Bandwidth MPC for

[5

G

—
)

https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1145/2688073.2688114
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1109/FOCS.2011.40
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1145/2976749.2978410

CCS *23, November 26-30, 2023, Copenhagen, Denmark

[10

(11

[12]

[13]

[14]

(15

[16

[17

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Weak Participants. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang (Eds.). ACM Press, 695-712. https://doi.org/10.1145/
3243734.3243801

Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2020.
Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability.
In CRYPTO 2020, Part II (LNCS, Vol. 12171), Daniele Micciancio and Thomas
Ristenpart (Eds.). Springer, Heidelberg, 562-592. https://doi.org/10.1007/978-3-
030-56880-1_20

Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The Round Complexity
of Secure Protocols (Extended Abstract). In 22nd ACM STOC. ACM Press, 503-513.
https://doi.org/10.1145/100216.100287

Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. 2021. Order-
C Secure Multiparty Computation for Highly Repetitive Circuits. In EURO-
CRYPT 2021, Part II (LNCS, Vol. 12697), Anne Canteaut and Francois-Xavier
Standaert (Eds.). Springer, Heidelberg, 663-693. https://doi.org/10.1007/978-3-
030-77886-6_23

Zuzana Beerliova-Trubiniova and Martin Hirt. 2008. Perfectly-Secure MPC with
Linear Communication Complexity. In TCC 2008 (LNCS, Vol. 4948), Ran Canetti
(Ed.). Springer, Heidelberg, 213-230. https://doi.org/10.1007/978-3-540-78524-
8_13

Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system for
secure multi-party computation. In ACM CCS 2008, Peng Ning, Paul F. Syverson,
and Somesh Jha (Eds.). ACM Press, 257-266. https://doi.org/10.1145/1455770.
1455804

Aner Ben-Efraim. 2018. On Multiparty Garbling of Arithmetic Circuits. In ASI-
ACRYPT 2018, Part III (LNCS, Vol. 11274), Thomas Peyrin and Steven Galbraith
(Eds.). Springer, Heidelberg, 3-33. https://doi.org/10.1007/978-3-030-03332-3_1
Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini, Nigel P. Smart,
and Eduardo Soria-Vazquez. 2021. Large Scale, Actively Secure Computation
from LPN and Free-XOR Garbled Circuits. In EUROCRYPT 2021, Part III (LNCS,
Vol. 12698), Anne Canteaut and Frangois-Xavier Standaert (Eds.). Springer, Hei-
delberg, 33-63. https://doi.org/10.1007/978-3-030-77883-5_2

Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2016. Optimizing Semi-Honest
Secure Multiparty Computation for the Internet. In ACM CCS 2016, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi (Eds.). ACM Press, 578-590. https://doi.org/10.1145/2976749.2978347
Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2017. Efficient Scalable
Constant-Round MPC via Garbled Circuits. In ASTACRYPT 2017, Part I (LNCS,
Vol. 10625), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer, Heidelberg,
471-498. https://doi.org/10.1007/978-3-319-70697-9_17

Aner Ben-Efraim and Eran Omri. 2019. Concrete Efficiency Improvements
for Multiparty Garbling with an Honest Majority. In LATINCRYPT 2017 (LNCS,
Vol. 11368), Tanja Lange and Orr Dunkelman (Eds.). Springer, Heidelberg, 289-308.
https://doi.org/10.1007/978-3-030-25283-0_16

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In 20th ACM STOC. ACM Press, 1-10. https://doi.org/10.1145/62212.
62213

Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-
homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011
(LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, 169-188.
https://doi.org/10.1007/978-3-642-20465-4_11

Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
2013. Key Homomorphic PRFs and Their Applications. In CRYPTO 2013, Part I
(LNCS, Vol. 8042), Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg,
410-428. https://doi.org/10.1007/978-3-642-40041-4_23

R.C. Bose and D.K. Ray-Chaudhuri. 1960. On a class of error correcting binary
group codes. Information and Control 3, 1 (1960), 68-79. https://doi.org/10.1016/
50019-9958(60)90287-4

Sean Bowe, Ariel Gabizon, and Matthew D. Green. 2019. A Multi-party Protocol
for Constructing the Public Parameters of the Pinocchio zk-SNARK. In FC 2018
Workshops (LNCS, Vol. 10958), Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy
Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala (Eds.). Springer,
Heidelberg, 64-77. https://doi.org/10.1007/978-3-662-58820-8_5

Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing
Vector OLE. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, 896-912. https://doi.org/10.1145/3243734.
3243868

Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. 2017. Four Round
Secure Computation Without Setup. In TCC 2017, Part I (LNCS, Vol. 10677), Yael
Kalai and Leonid Reyzin (Eds.). Springer, Heidelberg, 645-677. https://doi.org/
10.1007/978-3-319-70500-2_22

Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. 2018.
Amortized Complexity of Information-Theoretically Secure MPC Revisited.
In CRYPTO 2018, Part Il (LNCS, Vol. 10993), Hovav Shacham and Alexandra
Boldyreva (Eds.). Springer, Heidelberg, 395-426. https://doi.org/10.1007/978-3-
319-96878-0_14

David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty Uncon-
ditionally Secure Protocols (Abstract) (Informal Contribution). In CRYPTO’87

2171

[29

[30

[32

[33

&
=)

[35

[36

[37

[39

[40

[41

[42

[43

(44

[45

[47

]

]

Gabrielle Beck et al.

(LNCS, Vol. 293), Carl Pomerance (Ed.). Springer, Heidelberg, 462.
//doi.org/10.1007/3-540-48184-2_43

Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler
Rosefield, and abhi shelat. 2020. Multiparty Generation of an RSA Modulus.
In CRYPTO 2020, Part III (LNCS, Vol. 12172), Daniele Micciancio and Thomas
Ristenpart (Eds.). Springer, Heidelberg, 64-93. https://doi.org/10.1007/978-3-
030-56877-1_3

Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio,
Tarik Riviere, abhi shelat, Muthu Venkitasubramaniam, and Ruihan Wang. 2020.
Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Major-
ity. Cryptology ePrint Archive, Report 2020/374. https://eprint.iacr.org/2020/374.
Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority MPC for Malicious
Adversaries. In CRYPTO 2018, Part III (LNCS, Vol. 10993), Hovav Shacham and
Alexandra Boldyreva (Eds.). Springer, Heidelberg, 34-64. https://doi.org/10.1007/
978-3-319-96878-0_2

Ivan Damgérd and Yuval Ishai. 2005. Constant-Round Multiparty Computation
Using a Black-Box Pseudorandom Generator. In CRYPTO 2005 (LNCS, Vol. 3621),
Victor Shoup (Ed.). Springer, Heidelberg, 378-394. https://doi.org/10.1007/
11535218_23

Ivan Damgard, Yuval Ishai, and Mikkel Kroigaard. 2010. Perfectly Secure Multi-
party Computation and the Computational Overhead of Cryptography. In EURO-
CRYPT 2010 (LNCS, Vol. 6110), Henri Gilbert (Ed.). Springer, Heidelberg, 445-465.
https://doi.org/10.1007/978-3-642-13190-5_23

Ivan Damgard, Yuval Ishai, Mikkel Krgigaard, Jesper Buus Nielsen, and Adam
Smith. 2008. Scalable Multiparty Computation with Nearly Optimal Work and
Resilience. In CRYPTO 2008 (LNCS, Vol. 5157), David Wagner (Ed.). Springer,
Heidelberg, 241-261. https://doi.org/10.1007/978-3-540-85174-5_14

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:
Breaking the SPDZ Limits. In ESORICS 2013 (LNCS, Vol. 8134), Jason Crampton,
Sushil Jajodia, and Keith Mayes (Eds.). Springer, Heidelberg, 1-18. https://doi.
0rg/10.1007/978-3-642-40203-6_1

Ivan Damgard and Jesper Buus Nielsen. 2007. Scalable and Unconditionally Secure
Multiparty Computation. In CRYPTO 2007 (LNCS, Vol. 4622), Alfred Menezes (Ed.).
Springer, Heidelberg, 572-590. https://doi.org/10.1007/978-3-540-74143-5_32
Ivan Damgard, Claudio Orlandi, and Mark Simkin. 2018. Yet Another Compiler for
Active Security or: Efficient MPC Over Arbitrary Rings. In CRYPTO 2018, Part I
(LNCS, Vol. 10992), Hovav Shacham and Alexandra Boldyreva (Eds.). Springer,
Heidelberg, 799-829. https://doi.org/10.1007/978-3-319-96881-0_27

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-
party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012
(LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidel-
berg, 643-662. https://doi.org/10.1007/978-3-642-32009-5_38

Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS 2015.
The Internet Society.

Nico Déttling. 2015. Low Noise LPN: KDM Secure Public Key Encryption and
Sample Amplification. In PKC 2015 (LNCS, Vol. 9020), Jonathan Katz (Ed.). Springer,
Heidelberg, 604-626. https://doi.org/10.1007/978-3-662-46447-2_27

Nico Déttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto
Trifiletti. 2017. TinyOLE: Efficient Actively Secure Two-Party Computation from
Oblivious Linear Function Evaluation. In ACM CCS 2017, Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 2263-2276.
https://doi.org/10.1145/3133956.3134024

Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. 2022.
TurboPack: Honest Majority MPC with Constant Online Communication. In
ACM CCS 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.).
ACM Press, 951-964. https://doi.org/10.1145/3548606.3560633

Andre Esser, Robert Kiibler, and Alexander May. 2017. LPN Decoded. In
CRYPTO 2017, Part II (LNCS, Vol. 10402), Jonathan Katz and Hovav Shacham (Eds.).
Springer, Heidelberg, 486-514. https://doi.org/10.1007/978-3-319-63715-0_17
Matthew K. Franklin and Moti Yung. 1992. Communication Complexity of Secure
Computation (Extended Abstract). In 24th ACM STOC. ACM Press, 699-710.
https://doi.org/10.1145/129712.129780

Jun Furukawa and Yehuda Lindell. 2019. Two-Thirds Honest-Majority MPC for
Malicious Adversaries at Almost the Cost of Semi-Honest. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM Press, 1557-1571. https://doi.org/10.1145/3319535.3339811

Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. 2012. Concurrently
Secure Computation in Constant Rounds. In EUROCRYPT 2012 (LNCS, Vol. 7237),
David Pointcheval and Thomas Johansson (Eds.). Springer, Heidelberg, 99-116.
https://doi.org/10.1007/978-3-642-29011-4_8

Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. 2015. Efficient Multi-
party Computation: From Passive to Active Security via Secure SIMD Circuits.
In CRYPTO 2015, Part II (LNCS, Vol. 9216), Rosario Gennaro and Matthew J. B.
Robshaw (Eds.). Springer, Heidelberg, 721-741. https://doi.org/10.1007/978-3-

https:

https://doi.org/10.1145/3243734.3243801
https://doi.org/10.1145/3243734.3243801
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1007/978-3-030-03332-3_1
https://doi.org/10.1007/978-3-030-77883-5_2
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-030-25283-0_16
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-030-56877-1_3
https://eprint.iacr.org/2020/374
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35

Scalable Multiparty Garbling

[48]

[49]

[50

[52]

[53]

[54]

[55

[56

[57]

[58]

[59]

[60]

[61]

[62

[63

[64]

[65]

[66]

662-48000-7_35

Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer.
2014. Circuits resilient to additive attacks with applications to secure computation.
In 46th ACM STOC, David B. Shmoys (Ed.). ACM Press, 495-504. https://doi.org/
10.1145/2591796.2591861

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
ACM STOC, Michael Mitzenmacher (Ed.). ACM Press, 169-178. https://doi.org/
10.1145/1536414.1536440

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218-229. https://doi.org/10.1145/28395.
28420

S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. 2015. Constant-Round MPC with
Fairness and Guarantee of Output Delivery. In CRYPTO 2015, Part II (LNCS,
Vol. 9216), Rosario Gennaro and Matthew J. B. Robshaw (Eds.). Springer, Heidel-
berg, 63-82. https://doi.org/10.1007/978-3-662-48000-7_4

S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. 2021. The More the
Merrier: Reducing the Cost of Large Scale MPC. In EUROCRYPT 2021, Part II
(LNCS, Vol. 12697), Anne Canteaut and Francois-Xavier Standaert (Eds.). Springer,
Heidelberg, 694-723. https://doi.org/10.1007/978-3-030-77886-6_24

Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. 2021. Unconditional
Communication-Efficient MPC via Hall’s Marriage Theorem. In CRYPTO 2021,
PartII (LNCS, Vol. 12826), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg,
Virtual Event, 275-304. https://doi.org/10.1007/978-3-030-84245-1_10

Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. 2022. Sharing Transfor-
mation and Dishonest Majority MPC with Packed Secret Sharing. In CRYPTO 2022,
Part1V (LNCS, Vol. 13510), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer,
Heidelberg, 3-32. https://doi.org/10.1007/978-3-031-15985-5_1

Vipul Goyal and Yifan Song. 2020. Malicious Security Comes Free in Honest-
Majority MPC. Cryptology ePrint Archive, Report 2020/134. https://eprint.iacr.
org/2020/134.

Vipul Goyal, Yifan Song, and Chenzhi Zhu. 2020. Guaranteed Output Delivery
Comes Free in Honest Majority MPC. In CRYPTO 2020, Part II (LNCS, Vol. 12171),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 618-646.
https://doi.org/10.1007/978-3-030-56880-1_22

Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
SoK: General Purpose Compilers for Secure Multi-Party Computation. In 2019
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 1220-1237.
https://doi.org/10.1109/SP.2019.00028

Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2018.
Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for
TinyOT). In ASIACRYPT 2018, Part Il (LNCS, Vol. 11274), Thomas Peyrin and
Steven Galbraith (Eds.). Springer, Heidelberg, 86-117. https://doi.org/10.1007/978-
3-030-03332-3_4

Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
2018. TinyKeys: A New Approach to Efficient Multi-Party Computation. In
CRYPTO 2018, Part III (LNCS, Vol. 10993), Hovav Shacham and Alexandra
Boldyreva (Eds.). Springer, Heidelberg, 3-33. https://doi.org/10.1007/978-3-
319-96878-0_1

Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low Cost Con-
stant Round MPC Combining BMR and Oblivious Transfer. In ASTACRYPT 2017,
Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer,
Heidelberg, 598-628. https://doi.org/10.1007/978-3-319-70694-8_21

Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2020. Low Cost Constant
Round MPC Combining BMR and Oblivious Transfer. Journal of Cryptology 33,
4 (Oct. 2020), 1732-1786. https://doi.org/10.1007/s00145-020-09355-y

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2009. Secure Arithmetic Com-
putation with No Honest Majority. In TCC 2009 (LNCS, Vol. 5444), Omer Reingold
(Ed.). Springer, Heidelberg, 294-314. https://doi.org/10.1007/978-3-642-00457-
518

Aayush Jain, Huijia Lin, and Amit Sahai. 2021. Indistinguishability obfusca-
tion from well-founded assumptions. In 53rd ACM STOC, Samir Khuller and
Virginia Vassilevska Williams (Eds.). ACM Press, 60-73. https://doi.org/10.1145/
3406325.3451093

Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In ACM CCS
2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi (Eds.). ACM Press, 830-842. https://doi.org/10.1145/
2976749.2978357

Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ
Great Again. In EUROCRYPT 2018, Part Il (LNCS, Vol. 10822), Jesper Buus Nielsen
and Vincent Rijmen (Eds.). Springer, Heidelberg, 158-189. https://doi.org/10.
1007/978-3-319-78372-7_6

Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin,
Mayank Varia, and Azer Bestavros. 2018. Accessible Privacy-Preserving Web-
Based Data Analysis for Assessing and Addressing Economic Inequalities. In

2172

(67

(68

[69

[70

[71

[72

=
&

(74

(75

[76]

k=
st

[78

[79

[80

(84

(85]

(86

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable

Societies (Menlo Park and San Jose, CA, USA) (COMPASS ’18). Association
for Computing Machinery, New York, NY, USA, Article 48, 5 pages. https:

//doi.org/10.1145/3209811.3212701

Yehuda Lindell and Ariel Nof. 2017. A Framework for Constructing Fast MPC over
Arithmetic Circuits with Malicious Adversaries and an Honest-Majority. In ACM
CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu (Eds.). ACM Press, 259-276. https://doi.org/10.1145/3133956.3133999
Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2015. Effi-
cient Constant Round Multi-party Computation Combining BMR and SPDZ.
In CRYPTO 2015, Part I (LNCS, Vol. 9216), Rosario Gennaro and Matthew J. B.
Robshaw (Eds.). Springer, Heidelberg, 319-338. https://doi.org/10.1007/978-3-
662-48000-7_16

Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. 2016. More Efficient
Constant-Round Multi-party Computation from BMR and SHE. In TCC 2016-
B, Part I (LNCS, Vol. 9985), Martin Hirt and Adam D. Smith (Eds.). Springer,
Heidelberg, 554-581. https://doi.org/10.1007/978-3-662-53641-4_21

Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. 2022. The Hardness of LPN over
Any Integer Ring and Field for PCG Applications. Cryptology ePrint Archive,
Report 2022/712. https://eprint.iacr.org/2022/712.

Eleftheria Makri and Tim Wood. 2019. Full-Threshold Actively-Secure Multiparty
Arithmetic Circuit Garbling. Cryptology ePrint Archive, Report 2019/1098. https:
//eprint.iacr.org/2019/1098.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay -
Secure Two-Party Computation System. In USENIX Security 2004, Matt Blaze
(Ed.). USENIX Association, 287-302.

Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. Cryptology ePrint Archive, Report 2018/403. https:
//eprint.iacr.org/2018/403.

Pratyay Mukherjee and Daniel Wichs. 2016. Two Round Multiparty Computation
via Multi-key FHE. In EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin
and Jean-Sébastien Coron (Eds.). Springer, Heidelberg, 735-763. https://doi.org/
10.1007/978-3-662-49896-5_26

Steven Myers, Mona Sergi, and abhi shelat. 2011. Threshold Fully Homomorphic
Encryption and Secure Computation. Cryptology ePrint Archive, Report 2011/454.
https://eprint.iacr.org/2011/454.

Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant
Round Maliciously Secure 2PC with Function-independent Preprocessing using
LEGO. In NDSS 2017. The Internet Society.

Peter Sebastian Nordholt and Meilof Veeningen. 2018. Minimising Communica-
tion in Honest-Majority MPC by Batchwise Multiplication Verification. In ACNS
18 (LNCS, Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer,
Heidelberg, 321-339. https://doi.org/10.1007/978-3-319-93387-0_17
Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. 2020. Overdrive2k:
Efficient Secure MPC over Z,x from Somewhat Homomorphic Encryption. In
CT-RSA 2020 (LNCS, Vol. 12006), Stanislaw Jarecki (Ed.). Springer, Heidelberg,
254-283. https://doi.org/10.1007/978-3-030-40186-3_12

James S. Plank. 2007. Fast Galois Field Arithmetic Library in C/C++.
//web.eecs.utk.edu/~jplank/plank/papers/CS-07-593/

Lucy Qin, Andrei Lapets, Frederick Jansen, Peter Flockhart, Kinan Dak Albab,
Ira Globus-Harris, Shannon Roberts, and Mayank Varia. 2019. From Usability to
Secure Computing and Back Again. Cryptology ePrint Archive, Report 2019/734.
https://eprint.iacr.org/2019/734.

Adi Shamir. 1979. How to Share a Secret. Communications of the Association for
Computing Machinery 22, 11 (Nov. 1979), 612-613.

Erik Taubeneck, Martin Thomson, Ben Savage, Benjamin Case, Daniel Masny,
Richa Jain, Taiki Yamaguchi, Alex Koshelev, Thurston Sandbery, Victor Miller,
and Shubho Sengupta. 2023. Interoperable Private Attribution (IPA).

Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich, and S. Dov
Gordon. 2019. Stormy: Statistics in Tor by Measuring Securely. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM Press, 615-632. https://doi.org/10.1145/3319535.3345650

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling
and Efficient Maliciously Secure Two-Party Computation. In ACM CCS 2017,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM Press, 21-37. https://doi.org/10.1145/3133956.3134053

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure
Multiparty Computation. In ACM CCS 2017, Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 39-56. https://doi.org/
10.1145/3133956.3133979

Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th FOCS. IEEE Computer Society Press, 162-167. https://doi.org/
10.1109/SFCS.1986.25

http:

https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-77886-6_24
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-031-15985-5_1
https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/s00145-020-09355-y
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2019/1098
https://eprint.iacr.org/2019/1098
https://eprint.iacr.org/2018/403
https://eprint.iacr.org/2018/403
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://eprint.iacr.org/2011/454
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-030-40186-3_12
http://web.eecs.utk.edu/~jplank/plank/papers/CS-07-593/
http://web.eecs.utk.edu/~jplank/plank/papers/CS-07-593/
https://eprint.iacr.org/2019/734
https://doi.org/10.1145/3319535.3345650
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Background
	4 Scalable Multiparty Garbling in the Honest Majority Setting
	5 Instantiating our Approach
	5.1 Choice of Encryption Scheme
	5.2 Sub-Protocol for Generating Errors
	5.3 Sub-Protocol For Secret Sharing Bits/Masks
	5.4 An Appropriate O(C) MPC protocol
	5.5 Adding Malicious Security

	6 A Scalable Multiparty Garbling Protocol
	7 Protocol Evaluation and Analysis
	7.1 Practical Protocol Optimizations
	7.2 LPN Parameters
	7.3 Parameters for Binary Super-Invertible Matrices
	7.4 Evaluation of our Semi-Honest Secure Protocol
	7.5 Evaluation Of Maliciously Secure Protocol

	8 Related Work
	Acknowledgments
	References

