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ABSTRACT
Multiparty garbling is the most popular approach for constant-

round secure multiparty computation (MPC). Despite being the

focus of significant research effort, instantiating prior approaches

to multiparty garbling results in constant-round MPC that can not

realistically accommodate large numbers of parties. In this work

we present the first global-scale multiparty garbling protocol. The

per-party communication complexity of our protocol decreases as
the number of parties participating in the protocol increases—for

the first time matching the asymptotic communication complex-

ity of non-constant round MPC protocols. Our protocol achieves

malicious security in the honest-majority setting and relies on the

hardness of the Learning Party with Noise assumption.
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1 INTRODUCTION
Secure multiparty computation (MPC) [20, 28, 50, 86] is a class of

cryptographic protocols that allows mutually distrusting parties to

compute a function over hidden inputs. Since the eighties—when

the first feasibility results were established—continuous progress

has been made towards improving the efficiency of MPC protocols

along various dimensions. Such improvements have resulted in the

creation of toolchains for MPC (e.g., [14, 39, 57, 72, 73]) that are

concretely efficiency for some limited applications; as a result, MPC
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has been deployed in industry [24, 82], government [6], and for

social good [66, 80].

Global-Scale MPC. Although enthusiasm for MPC is growing,

the ability to deploy MPC is hampered by existing protocol’s lack of

scalability. Existing deployments have been forced to use only a few

computational parties co-located in the same geographical area in

an effort to reduce latency. While these deployment choices make

current-generation MPC protocols concretely efficient, they make

it harder to believe the non-collusion assumptions required for

maintaining privacy. Specifically, it may be feasible for an attacker

to convince a small number of parties into releasing their view of

the protocol, compromising the confidentiality of party’s inputs.

Co-location either requires the use of cloud computing resources

(introducing another attack surface) or parties that are already
geographically close to one another, increasing the chances that

they have some preexisting relationship. Tomitigate these problems,

there is a need for MPC protocols that scale, both in terms of the

number of parties, and the robustness to geographical diversity of

those parties.

Due to a significant line of recent work [12, 31, 42, 52, 53, 55, 83],

we now know of protocols that scale gracefully as the number of par-

ties increases—state-of-the-art protocols have the communication

complexity independent of the number of parties and are concretely

efficient [42, 53]. Generally, these protocols dictate that parties

jointly compute circuits in a gate-by-gate fashion, meaning that the

computation requires communication rounds proportional to the

depth of the circuit being computed. Unfortunately, network latency

between parties is a key determinant of the protocol runtime in

gate-by-gate protocols (see, e.g. [85] for a discussion), so even these

state-of-the-art protocols fall short when protocol participants are

globally distributed.

Constant round MPC protocols [11, 16, 18, 32, 46, 58–60, 64, 68,

76, 85, 86] are more appropriate for high latency settings, as the

number of times parties must communicate is independent of the

circuit size. There are two well-studied approaches to constant-

round MPC—one based on fully-homomorphic encryption [49]

and another based on garbled circuits [11, 86]. The latter has been

studied more extensively because of its better potential for efficient

solutions (despite incurring asymptotically worse communication).

The second approach follows a template first proposed by Beaver,

Micali, and Rogaway (BMR) [11]: the parties first execute a garbling
phase, in which they jointly compute a garbled circuit of the desired
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functionality within an MPC protocol. The garbling phase is then

followed by an output evaluation phase, in which the parties ex-

change inputs and evaluate the garbled circuit. Since garbled gates

can be computed in parallel, the resulting protocol has constant

rounds. Throughout this work we refer to the process of jointly

computing the garbled circuit as multiparty garbling.

Barriers to Efficient, Scalable Multiparty Garbling. Although mul-

tiparty garbling is a well-studied approach for constant-round MPC,

existing proposals cannot realistically be used to perform global-

scale computations. Asymptotically efficient constructions of the

BMR template can be obtained by making non-black-box use of

cryptography used during garbling [11], but representing the cryp-

tography as circuitry introduces prohibitive overheads.

The best known black-box multiparty garbling protocols, on

the other hand, require per-gate total communication (and com-

putation) that is quadratic in the number of parties [16, 18, 32, 58–
60, 68, 85], meaning these protocols scale poorly with the number of

parties. As is common in the literature on efficientMPC, theseworks

split the garbling phase into a circuit independent pre-processing
phase and a circuit dependent garbling phase. Recent works [16, 18]
have demonstrated methods that reduce the complexity of the

circuit-dependent garbling phase and output evaluation phase to

be linear in the number of parties, but still require a pre-processing

phase with quadratic complexity.

Thus, overall, the quadratic barrier stands for efficient multi-

party garbling—in both the honest and dishonest majority settings.

This poses a major barrier for global-scale computations; the com-

bination of the quadratic dependence on the number of parties

and the fact that garbling inevitably increases the circuit size by a

multiplicative factor dependent on the security parameter results

in impractical solutions, even for moderately-sized circuits. We

therefore ask the following question:

Can we design an efficient and scalable multiparty garbling protocol?

We answer this question in the affirmative, taking a significant

step towards efficient, global-scale, constant-round MPC.

1.1 Our Contributions
We present a new scalable constant-round multiparty garbling pro-

tocol for boolean circuits in the honest-majority setting, where

the total per-party communication complexity (see below) in our

protocol decreases as the number of parties increase. To design this

protocol, we combine several recent advances in efficient MPC and

carefully compose them using bespoke subprotocols. In more detail,

our protocol has the following features:

– Communication Complexity: The total communication com-

plexity of the protocol is independent of the number of parties

(i.e., is O(|C|),1 where C is the circuit being computed), meaning

that the per-party communication actually decreases as the num-

ber of parties increases. Similar to prior constant round MPC

protocols [11, 16, 18, 32, 58–60, 68, 76, 85], our protocol utilizes a

1
The O(·) notation suppresses linear terms in the security parameter and other

logarithmic terms (independent of circuit size).

single round of broadcast to reconstruct the circuit to all parties,

but otherwise runs over point-to-point channels.
2

– Computation Complexity: The per-party computation com-

plexity of the protocol is independent of the number of parties

(i.e., the total computation complexity of the protocol is O(𝑛 |C|)).
This computational complexity is inherent in the constant-round

BMR template, as each party needs to evaluate the garbled circuit.
– Security and Assumptions: Our protocol achieves malicious
security against 𝑡 < 𝑛−2ℓ+1

2
corrupt parties, where ℓ ≥ 1 is a

tunable parameter induced by the use of packed secret sharing
3
.

The security of our construction relies on the Learning Parity

with Noise over Large Fields (LPN) assumption. The use of LPN in

our construction demonstrates that “less-powerful” assumptions

(i.e., ones that are not known to imply FHE) are sufficient for

designing efficient and scalable constant round MPC.

Our protocol is the first constant-round MPC to asymptotically

match the best known communication complexity of concretely effi-

cient, gate-by-gateMPCprotocols without using fully-homomorphic

encryption.
4
As such, our protocol demonstrates a path towards

practical MPC in high-latency settings, where gate-by-gate proto-

cols typically struggle.

Our Techniques. We use the following techniques to achieve our

result:

– Generic Approach for Honest Majority. We first identify an

approach for scalable multiparty garbling in the honest majority

setting. In this approach, we rely on encryption schemes where

given shares of the key, message and randomness, it is possible to

non-interactively obtain shares of the corresponding ciphertext.

Such encryption schemes have been used in the recent works

by Ben-Efraim et al. [16, 18] in order to optimize the efficiency

of the output evaluation phase. Our main observation is that

this approach can be successfully “married” with packed secret-

sharing (and other) techniques including ones from a recent work

by Goyal et al. [54] to compute garbled circuits with O(|C|) total
communication.

– Instantiation. We instantiate our approach with an encryption

scheme based on the learning parity with noise (LPN) assumption

over large fields. This leads to unique challenges in the honest

majority setting. In particular, we custom design efficient sub-

protocols that enable distributed generation of the cryptographic

material used in this encryption scheme. Finally, we show how

to augment the above approach using known techniques [12, 31,

38, 54] to achieve malicious security.

Evaluation and Analysis. To evaluate the efficiency of our con-

struction, we (1) implement the semi-honest secure version of our

protocol and use it to evaluate popular MPC benchmark circuits,

and (2) programmatically estimate the concrete computation and

communication costs of our maliciously secure protocol.

Our benchmarks of the semi-honest secure version of our proto-

col indicates that it is practical and scalable. Garbling the AES-128

2
We note that because the broadcast channel is used only in the final round, this

broadcast channel is particularly well suited to implementation via a website, where

parties can post their shares and then download the garbled circuit at a later time.

3ℓ corresponds to the number of secrets packed into one share. We refer the reader to

Section 2 for more details.

4
Up to a security parameter factor, introduced from encrypting each gate.
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circuit takes around 126s even when 512 parties participate in the

protocol, with the circuit dependent phase constituting just 15.5s.

Moreover, the runtimes of the protocol does not seem to vary signif-

icantly with the number of parties and depends mainly on the size

of the circuit being evaluated. Our analysis suggests that our proto-

col outperforms prior works on multiparty garbling in the honest

majority setting [19], especially when run with a large number of

parties.

Our estimates for the computation and communication costs of

the maliciously secure protocol also suggest that the runtime of the

protocol is practical and mainly depends on the size of the circuit

being evaluated and does not vary significantly with the number of

parties. We compare the performance of our protocols with prior

works on efficient, maliciously secure, multiparty garbling [16, 85].

While prior works suffer from higher asymptotic overhead, our

analysis indicates that even the concrete communication cost of

our protocol is lower than those of prior works for 𝑛 ≥ 350. In this

setting, our protocol achieves the lowest communication cost com-

pared to existing solutions for multiparty garbling. Moreover, since

our benchmarks and estimates suggests that runtimes are mostly

independent of the number of parties, we believe our approach

provides a viable solution for large scale computations with many

participants.

2 PRELIMINARIES
We use x to denote a vector and (x)𝑖 to denote the 𝑖-th element in

the vector. We use [𝑎, 𝑏] where 𝑎 ≤ 𝑏 to denote the set of integers

{𝑎, 𝑎 + 1, . . . , 𝑏}. In this work, we design an honest majority MPC

protocol that achieves security with abort against an static adver-

sary in the client-server model. We provide formal definitions of

this model in the full version. Let 𝑛 denote the number of servers

(which we call parties, for simplicity) and 𝑡 denote the number of

parties the adversary can corrupt. We assume that the parties have

access to both point-to-point private and authenticated synchro-

nous channels and a public synchronous broadcast channel, each

of which has “unit” cost.

Secret Sharing. In this work we use the packed Shamir secret

sharing scheme introduced by Franklin and Yung [44], a general-

ization of the Shamir secret sharing scheme [81] where each share

corresponds to ℓ secrets. We denote a degree d Shamir sharing of a

value 𝑥 as [𝑥]d. Building on an approach by Goyal et al. [54], We

denote a degree-d packed Shamir sharing of a vector x as [x |pos]d,
where pos is a set of positions in which the values of x are stored;

when pos takes on a default value, we may just write [x]. We refer

the reader to [54] for more details and defer a complete description

of the scheme to the full version.

Error Correcting Codes. Let 𝑄, 𝐿, 𝑑, 𝑞 be integers. An [𝑄, 𝐿, 𝑑]𝑞
error correcting code is a pair of algorithms ECC = (Enc,Dec),
where the encoding algorithm Enc takes a message m ∈ [1, 𝑞]𝐿 as

input, and outputs a codeword in [1, 𝑞]𝑄 . The decoding algorithm

Dec takes a potentially corrupted codeword as input, and recovers

the message. The distance of the code is the minimum Hamming

distance between any two different codewords. We now discuss two

properties of error correcting codes required in the construction

of our protocol. We defer the proof of these properties to the full

version.

Theorem 2.1. Let𝐶 = {c | c = G·m} ⊆ F𝑄 be an [𝑄, 𝐿, 𝑑]-binary
linear code with generating matrix G ∈ F𝑄×𝐿 , then any sub-matrices
consisted of (𝑄 − 𝑑 + 1)-rows of G is full rank.

Theorem 2.2. Let 𝐶 be a code with parameters [𝑄, 𝐿, 𝑑]𝑞 and 𝐶′

be another code with parameters [𝑄 ′, 𝐿′, 𝑑′]𝑞′ , where 𝑞 = 2
𝐿′ , then

the concatenated code 𝐶 ◦𝐶′ has parameters [𝑄 ·𝑄 ′, 𝐿 · 𝐿′]𝑞′ with
distance at least 𝑑 · 𝑑′.

LPN Assumption and LPN Based Encryption. Our protocols rely
on the Learning Parity with Noise (LPN) assumption over large

fields that has also been used in a number of prior works [2, 3, 25,

62, 63]. We use a variation of the assumption stated by Boyle et

al. [25]. In short, this assumption holds if it is difficult to distinguish

the tuple (A,A · s + e) and a random tuple, where A, s are sampled

from the uniform distribution and e is a noise vector with small

Hamming weight sampled from Ber𝜏lpn . A formal description of the

assumption will be provided in the full version.

Given a [𝑄ecc, 𝐿ecc, 𝑑]2 error-correcting code, we construct an

CPA-secure encryption scheme under the LPN assumption with

message spaceM = F𝐿ecc as follows:

• LPN.Keygen(1𝜅𝑐 ) : Sample s← F𝐿lpn uniformly at random.

• LPN.Enc(x, s) : To encrypt a message x under the key s, first
sample A ← F𝐿lpn×𝑄ecc

uniformly at random and sample 𝝐 ←
Ber𝑄ecc

𝜏lpn
. Output (A, s · A + 𝝐 + ECC.Enc(x)) as the ciphertext.

• LPN.Dec((A, c), s) : Decrypt the ciphertext c using s by comput-

ing ECC.Dec(c − s · A).
Note that security follows from the fact that (A, s · A + 𝝐 +

ECC.Enc(x)) is computationally indistinguishable from (A, r +
ECC.Enc(x)) where r ← F𝑄ecc

is sampled uniformly at random.

Correctness holds because c − s · A = 𝝐 + ECC.Enc(x) and if the

Hamming weight of the noise 𝝐 is no greater than ⌊(𝑑 − 1)/2⌋, then
the error correcting code can decrypt the message correctly.

3 BACKGROUND
BMR Constant Round Protocol Template. In their seminal work,

Beaver, Micali, and Rogaway (BMR) [11] outline a template for con-

structing constant round MPC. The parties first perform a garbling
phase by taking a generic (i.e. non-constant round) MPC protocol

and using it to compute a garbled circuit of the functionality—

rather than computing the function itself. The parties then initiate

an output evaluation phase, in which they locally evaluate the gar-

bled circuit to recover the function output. Because the garbling

procedure is not inherently sequential, the tables can all be com-

puted in parallel. Since computing each garbled table can be done

in a constant number of rounds (by using an appropriate encryp-

tion scheme), the resulting protocol is itself constant round. Since

the introduction of the BMR template, a long sequence of works

(e.g., [16, 18, 32, 58–60, 68, 76, 85]) have investigated the efficiency

of running protocols within the BMR template, leading to several

improvements.

Black-Box Use of Cryptography. Beaver, Micali, and Rogaway’s

initial protocol proposed making non-black box use of the garbling

algorithm of the garbled circuit scheme. For a gate 𝑔 with input
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wires 𝑎, 𝑏 and output wire 𝑐 computing the function 𝑓 : {0, 1}2 →
{0, 1}, the row of the garbled table corresponding to inputs 𝛼, 𝛽 ∈
{0, 1} is computed as

𝑐𝑡𝛼,𝛽 = PRFk𝑎,𝛼 (𝑔) ⊕ PRFk𝑏,𝛽 (𝑔) ⊕ k𝑐,𝑓 (𝛼,𝛽 )

where k𝑎,𝛼 is a random key/label associated with the wire 𝑎 and

the value 𝛼 ∈ {0, 1}. While conceptually simple, the explicit circuit

representation of PRF will be massive, resulting in an inefficient

concrete construction. To obtain an efficient black-box solution, the
PRFmust somehow be evaluated outside the MPC protocol without

compromising privacy or correctness.

Damgård and Ishai [32] devised an intuitive way to accomplish

this goal: each party P𝑚 ∈ {P1, . . . , P𝑛} independently samples a

pair of labels (k𝑚
𝑐,0

, k𝑚
𝑐,1
) for each wire 𝑐 in the circuit. The parties

then combine these independent labels into a single label containing

𝑛 keys within the MPC protocol as

(k1𝑐,0∥ . . . ∥k
𝑛
𝑐,0 , k

1

𝑐,1∥ . . . ∥k
𝑛
𝑐,1) .

The parties then encrypt the combined labels by feeding locally

expanded PRFs into the MPC. Thus the garbled table for gate 𝑔

with input wires 𝑎, 𝑏 and output wire 𝑐 implementing the function

𝑓 is computed as follows for inputs 𝛼, 𝛽 ∈ {0, 1} and party index

𝑗 ∈ [𝑛]: 5

𝑐𝑡
𝑗

𝛼,𝛽
=

𝑛⊕
𝑚=1

PRFk𝑚𝑎,𝛼 (𝑔∥ 𝑗) ⊕
𝑛⊕

𝑚=1

PRFk𝑚
𝑏,𝛽
(𝑔∥ 𝑗) ⊕ k𝑗

𝑐,𝑓 (𝛼,𝛽 )

In other words, the garbled table for each gate consists of 4𝑛 cipher-

texts, where each ciphertext is computed using 𝑛 keys. Subsequent

to the initial presentation of this protocol [32], Lindell et al. [68]

showed that this approach can be extended to the malicious security

case by incorporating simple local checks performed by the parties

during the output evaluation phase.

Permuting Ciphertexts. There is one significant element of the

BMR template that we have so far not addressed: the rows of each

garbled table must be permuted so that its position in the table

reveals nothing about its value. In practice, most prior works do

this by sampling a random “mask” bit 𝜆𝑐 ∈ {0, 1} associated with

each wire 𝑐 . These bits are then used to select the order of the

permutation of the table within the MPC.

Barriers to Scalable Multiparty Garbling. Existing techniques dis-

cussed so far, that make black-box use of cryptography are inher-

ently not scalable. Since each party contributes to encrypting every
other party’s key, the circuit representation of garbling each gate is

of size O
(
𝑛2

)
.
6
Thus, when running the garbling phase, the overall

communication complexity will be at least quadratic in 𝑛 (which

clearly doesn’t scale well as 𝑛 grows)—no matter the efficiency of

the MPC protocol used. Thus, reducing the size of the garbled tables

is a necessary condition for scalable multiparty garbling.

5
In the technical overview, we don’t explicitly discuss how rows in the garbled table are

permuted. We do this using standard point-and-permute [11] techniques by sampling

random bit-masks for every wire in the circuit.

6
Throughout the technical overview, we will generally omit the security parameter

from our asymptotic notation, as our focus is the dependence on the number of parties.

Reducing the Number of Ciphertexts. Motivated by the desire to

optimize the output evaluation phase of multiparty garbling, Ben-

Efraim et al. [18] demonstrate a method in the dishonest majority

setting for computing garbled tables with a constant number of

ciphertexts without relying on non-black box use of cryptography.

At the heart of their approach is a PRF that has key homomorphism

[22]. If each party has a share of the wire key, encryption can be

computed by (1) parties locally evaluating the PRF on their shares

of the key, and (2) homomorphically combining the PRF outputs.

4 SCALABLE MULTIPARTY GARBLING IN
THE HONEST MAJORITY SETTING

Linearly key-homomorphic PRFs are presently only known based

on the Decisional Diffie-Hellman assumption in the random or-

acle model [22]. Ben Efraim et al. [16, 18] devised a way around

the lack of key-homomorphic PRFs by using ring LWE and LPN

(over boolean field) based encryption scheme (that allow parties

to locally compute shares of the ciphertext, given shares of key,

message and randomness), instead of a linearly key-homomorphic

pseudo-random function. We build upon this approach to achieve

better efficiency guarantees in the honest majority setting. When

switching to the honest majority setting, we can leverage threshold
secret sharing instead of additive secret sharing.

Following the above general approach of Ben-Efraim et al., we

want parties to be able to locally compute shares of a single ci-

phertext, such that the ciphertext can be reconstructed during the

output evaluation phase. Specifically, let the encryption scheme be

such that [𝑐𝑡] = ENC ( [key], [msg]; [rand]). Further, let us imag-

ine that for each gate 𝑔 computing the function 𝑓 , in addition to

holding secret shares of the keys corresponding to the input wires

𝑎, 𝑏 and output wire 𝑐 , the parties also hold secret shares of some

randomness for the encryption scheme. We want each party P𝑚 to

locally compute its share of the row 𝛼, 𝛽 ∈ {0, 1} as

[𝑐𝑡𝛼,𝛽 ]𝑚 = ENC
((
[k𝑎,𝛼 ]𝑚 ⊕ [k𝑏,𝛽 ]𝑚

)
, [k𝑐,𝑓 (𝛼,𝛽 ) ]𝑚 ; [𝑟𝛼,𝛽 ]𝑚

)
.

Here [k𝑎,𝛼 ]𝑚 ⊕ [k𝑏,𝛽 ]𝑚 correspond to shares of the key used to

encrypt message k𝑐,𝑓 (𝛼,𝛽 ) using randomness 𝑟𝛼,𝛽 .

Roadmap Ahead. Given the discussion so far, we use the follow-

ing roadmap to achieve our results.

• Using an appropriate encryption scheme: As mentioned

earlier, Ben Efraim et al. [16, 18] observe that ring-LWE and

LPN based encryption schemes satisfy the above properties and

demonstrate how they can be used in the dishonest majority

setting. These properties are also satisfied over threshold secret

shares. In Section 5.1, we discuss which encryption schemeworks

better for us in the honest majority setting. Moreover, our choice

of encryption scheme dictates the distribution from which the

keys and randomness are sampled. In Section 5, we also discuss

how to obtain threshold secret shares of the keys and randomness

sampled from the appropriate distribution.

• Achieving malicious security: As observed in prior work,

achieving malicious security in multiparty garbling involves pro-

tecting against two types of attacks: (1) malicious adversaries

manipulating the MPC protocol used to compute the garbled
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circuit, and (2) malicious adversaries injecting errors into the

garbled circuit by using inconsistent inputs.
Towards addressing the first type of attack, we note that a long

history of active research on honest majority malicious security

compilers [31, 37, 45, 47, 48, 56, 67, 77] has significantly reduced

the overhead of malicious security. In principle, these techniques

can be lifted into the multiparty garbling setting; we note that

when we instantiate our protocol, adapting these techniques will

require some care, which we discuss in more detail in Section

5.5.

Let us now discuss defense against the second type of attacks. We

note that in the honest majority regime, when using an encryp-

tion scheme with the above property, it is not actually possible

for the malicious players to manipulate the value of the cipher-

text directly, as the ciphertext within a threshold secret sharing

is uniquely defined by the honest parties’ shares. Indeed, this is

much more of an immediate problem in the dishonest majority
setting, where additive shares are more commonly used. How-

ever, we need to ensure that the keys and randomness used in

the encryption are sampled from the correct distribution by pre-

venting the adversary from influencing the sampling process.

Fortunately, we observe that our approach for handling the first

type of attacks can also be used to counter this attack. We defer

discussion on how to address these attacks in Section 5.5.

• MPCwith O(|C|) communication:With a garbled circuit with

gate representations that are constant in the number of parties,

the question is what protocol should the parties use to create

the garbled circuit. Thankfully, MPC protocols with O(|C|) to-
tal communication have been the subject of significant research

efforts [12, 33, 34, 47, 52–54]. All of these protocols rely heav-

ily on threshold packed secret sharing schemes [44], a “Single-

Instruction-Multiple-Data” (SIMD) version of threshold secret

sharing schemes [81]. By operating on O(𝑛) elements at a time

and using efficient multiplication protocols (e.g. [36]), these pro-

tocols are able to achieve total communication complexity inde-

pendent of the number of parties. In particular, we rely on the

techniques from a recent work by Goyal et al. [54], which is an

efficient, non-constant round MPC for general circuits.

5 INSTANTIATING OUR APPROACH
With the overview outlined above acting as a clear roadmap to

constructing scalable multiparty garbling scheme, we now explore

how we can instantiate the necessary primitives and subprotocols.

5.1 Choice of Encryption Scheme
LWE and LPN based secret-key encryption schemes are of the form

k ·A+ e+L(m), where k is the key vector, A is a public matrix, e is
the random error vector, m is the message vector and L is a public

linear function. Since, A, L is public, computing the ciphertext only

requires linear operations over the key vector k, message vector m
and the error vector e. This essentially implies that if the parties

hold shares of k, e and the message m, they can locally compute

shares of the corresponding ciphertext without interaction. We

note that, depending on the maximum fan-out fanoutmax across

all gates in a given circuit, the number of unique A matrices that

we require in general is 8 × fanoutmax [18]. Since these are public

matrices, we can generate them a priori.
Compatibility between the encryption scheme that we use and

known efficient techniques for honest majority MPC will dictate

the overall efficiency and scalability of our multiparty garbling

scheme. In instantiating this template, we will use use the straight-

forward equivalent of this encryption scheme based on LPN over a

large field (similar assumptions have been used in several recent

works [25, 41, 63]). To justify these choices, we briefly discuss the

alternative assumptions that we could use—LWE and boolean LPN—

and demonstrate why LPN over large fields is the most appropriate

choice for our application.

LWE vs LPN. Several prior works prefer LPN over LWE for ef-

ficiency reasons. Unlike LPN, LWE is known to imply FHE and

is believed to be a “more-powerful” assumption than LPN. As a

result, in general, parameter sizes in LWE tend to be larger than

the ones required in LPN. Moreover, the matrix A in LPN is the

generator matrix corresponding to a probabilistic code generation

algorithm. It is possible to choose matrices, where each column

contains a small (constant) number of random non-zero coordi-

nates, without weakening the security of LPN [1, 3]. Using such a

matrix, computing k · A for any vector k can be done in time linear

in the length of k. On the other hand, to the best of our knowledge,

no such optimizations are known in LWE and hence computing

k · A requires time quadratic in the length of k. As such, we can
believe that LPN poses a more fruitful direction for instantiating

our template.

LPN over a boolean field vs. LPN over a larger field. The LPN-

based encryption of a message m requires encoding m using a

linear error correcting code ECC.Enc, and adding the result to the

output of the random function k ·A + e. As such, the size of an LPN

ciphertext depends on both (1) the efficiency of existing ECC.Enc,
and (2) the best known attacks on the LPN assumption. LPN over

large fields outperforms LPN over boolean fields in both criteria:

(1) ECC.Enc’s in larger fields tend to have better rates than binary

ECC.Enc, and (2) in the large field setting, there exist variants of

the LPN assumption (see [25, 43] for a detailed discussion) where

the best known attack remains the same as in the boolean regime.

As a result, LPN over large fields provides equivalent levels of se-

curity with smaller parameter sizes. We note that this tradeoff is not

always absolute: while LPN over larger fields might admit shorter

vectors k, e and a smaller matrix A, representing each element

requires multiple bits, which could result in the total representation

that is larger than the equivalent construction from LPN over a

boolean field.

We observe that in our setting it is still less efficient to use LPN

over a boolean field because the parties run an MPC protocol to

generate and use the cryptographic key material. Recall that since

we rely on techniques from [54], we need to work in a field of size

O(|C|). Thus, the parties will have to use a larger field irrespective
of our choice of the cryptographic assumption. As such, LPN over a

boolean field becomes wasteful in the context of our protocol—each

bit will be represented in a large field anyhow—undermining the

potential advantage of working with LPN over a boolean fields.
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5.2 Sub-Protocol for Generating Errors
The errors in our LPN-based encryption are sampled from a Bernoulli

distribution over F, i.e., every element of the error vector is a ran-

dom non-zero element in F with probability
1

𝑝 and zero with prob-

ability 1− 1

𝑝 , where 𝑝 is derived from the parameter choices. While

efficient distributed protocols for generating shares of uniform ran-

dom values in the field are known due to Damgård et al. [36] and

Beerliova-Trubiniova et al. [13], to our knowledge, no such pro-

tocols are known for generating shares of values from this biased
distribution.

To generate shares of biased bits, we use the following observa-

tion. Let us assume that 𝑝 is a power of 2, i.e., of the form 𝑝 = 2
𝜏lpn

. It

is now easy to see that the product of 𝜏lpn random bits will be 1 with

probability 1/𝑝 and 0 with probability (𝑝 − 1)/𝑝 . To implement this

idea, the parties can use our random bit sharing protocol (described

below in Section 5.3) to sample shares of 𝜏lpn random bits and then

multiply them to get a sharing of the appropriately-biased bit. If 𝜏lpn
is constant, these multiplications can be done in a constant number

of rounds. Moreover, to ensure that our total communication is

O(|C|), we generate these shares in packed secret sharing form.

We choose our LPN parameters to ensure that 𝑝 is a power of 2.

We note that this does not affect our other parameters becausewe

can choose the Reed-Solomon codes properly to correct a constant

fraction of errors. For LPN security, the LPN instance is more secure

when the noise rate is larger, and constant noise rate was referred

to as high noise LPN in the literature [40].

5.3 Sub-Protocol For Secret Sharing Bits/Masks
Our final required subprotocol is one for generating secret shares of

random bits, both to be used as masks for permuting the ciphertexts

(see end of Section 3) and for LPN encryption (see Section 5.2).

We choose to work in a Galois Field of characteristic 2. Tech-

niques used in the dishonest majority setting [38, 68] for sampling

shares of random bits are not helpful here, since they require O(𝑛)
communication (for sharing each bit) in the honest majority setting.

Efficient honest majority techniques [13, 36] are known for gener-

ating secret shares of an unknown random value in the field. These

techniques however, necessarily require the field from which ran-

dom values are sampled to be linear in the number of parties. More

recently, Cascudo et al. [27] proposed a way to extend these ideas

for generating shares of uniform random binary values
7
embedded

in a bigger field F, with a similar efficiency.

We start by recalling the standard technique [13, 36] used for

generating shares of random values in the field in batches, using
a Vandermonde matrix of size 𝑛 × (𝑛 − 𝑡). Specifically, each party

secret shares a random value in the field, and then each party

locally multiplies the shares that it receives from other parties with

the Vandermonde matrix. Since every square sub-matrix of size

(𝑛 − 𝑡) × (𝑛 − 𝑡) of a Vandermonde matrix is invertible and honest

parties are expected to secret share truly random values, the result

is that the parties obtain O(𝑛) secret shares of random, independent

values. Overall, with O
(
𝑛2

)
communication and computation, using

7
More generally, Cascudo et al. [27] proposed an idea for generating shares of random

values from any constant-sized field. In this work, we only focus on sampling from

the Boolean field.

the above approach, parties are able to generate O(𝑛) random
sharings.

To generate shares of random bits, it is not sufficient to require

the parties to simply start by secret sharing random bits instead of

random values in F. If the Vandermonde matrix contains elements

in F (as is the case in initial works [13, 36]), even if the parties

start with shares of bits, the shares obtained after multiplying input

shares with this matrix will be of elements in F rather than that of

bits. To address this issue, [27] observed that the generator matrix

of any binary linear error correcting code (denoted by binM) is a

super-invertible matrix over F2. The parties can now start by simply

secret sharing random bits and when they multiply these shares

with binM, the resulting shares will be of independent, random bits.

This allows us to generate O(𝑛) random bit sharings with O
(
𝑛2

)
communication and computation.

The same observation can also be used to generate packed se-
cret shares of random bit-vectors. Each party simply sends packed

secret sharing of vectors of random bits to the other parties. Each

party then multiplies the received shares with the super-invertible

bit matrix binM. This results in O(𝑛) packed secret sharings (con-

taining 𝑛 elements in each vector) with O
(
𝑛2

)
communication and

computation. A careful reader may have observed that this protocol

yields shares of bits only if the parties originally start with sharings

of bits (which cannot be guaranteed in the presence of malicious

adversaries). As such, this protocol is only secure against a semi-

honest adversary. We discuss malicious security for this protocol

in Section 5.5.

5.4 An Appropriate 𝑂 ( |C|) MPC protocol
As discussed earlier, packed secret-sharing scheme (PSS) is a poly-

nomial based linear secret sharing scheme that allows sharing a

vector of secrets v = {𝑣1, . . . , 𝑣ℓ }, where ℓ ∈ O(𝑛). Essentially, the
dealer samples a random polynomial 𝑞 of appropriate degree, such

that for each 𝑗 ∈ [ℓ], 𝑞(slotdef
𝑗
) = 𝑣 𝑗 and each party P𝑖 (for 𝑖 ∈ [𝑛])

gets a share 𝑞(𝑝𝑖 ) (where 𝑝𝑖 is a publicly known field element that

is unique to party P𝑖 ). Most existing O(|C|) MPC protocols use the

same set of slots/points slotdef
1

, . . . , slotdef
ℓ

in the polynomial for

embedding secrets in all packed secret sharings used throughout

the protocol. Using PSS, it is possible to evaluate a block of O(𝑛)
gates at the same multiplicative depth in the circuit, in one shot.

Goyal et al.’s protocol [54] is a non-constant round, gate-by-gate

evaluation style of protocol that slightly deviates from this approach.

In this protocol, a unique slot/field element slotC𝑔 is assigned for

every gate 𝑔 in the circuit and the following invariant is maintained

throughout the protocol: let 𝑔1, . . . , 𝑔ℓ be a block of gates that are

evaluated simultaneously using PSS and let z = {𝑧𝑔1 , . . . , 𝑧𝑔ℓ } be
output of these gates. Upon evaluating these gates, parties obtain

a packed secret sharing of z, where each 𝑧𝑔𝑗 is embedded at the

slot associated with gate 𝑔 𝑗 . Borrowing notion from [54], we use

[z |pos] to denote such a sharing, where pos = {slotC𝑔1 , . . . , slot
C
𝑔ℓ
}.

Evaluating a Block of Gates. We now explain in more detail how

a block of gates are evaluated in [54] using PSS. Let d denote the

degree of the PSS. Let 𝑔1, . . . , 𝑔ℓ be a block of multiplication or

addition gates that we wish to evaluate and let l = {𝑙𝑔1 , . . . , 𝑙𝑔ℓ }
be the set of left inputs to these gates. Further, let us assume that

that for each 𝑗 ∈ [ℓ], 𝑙𝑔𝑗 was the output of some gate ℎ 𝑗 . Given the
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above invariant, this means that for each 𝑗 ∈ [ℓ], there must exist

some degree-d packed secret sharing of the form [z𝑗 |pos𝑗 ]d, where
z𝑗 = {. . . , 𝑙𝑔𝑗 , . . .} and pos𝑗 = {. . . , slotCℎ 𝑗

, . . .}. The next steps are
as follows:

(1) Bringing all left inputs to the same PSS: In order to evaluate

𝑔1, . . . , 𝑔ℓ simultaneously, the first step is to bring all left inputs

𝑙𝑔1 , . . . , 𝑙𝑔ℓ in the same PSS. This can be done by allowing the

parties to locally multiply each [z𝑗 |pos𝑗 ]d with a degree-(ℓ−1)
PSS of a unit vector e𝑗 (i.e., where only the 𝑗-th term is 1 and

all other terms are 0) of the form [e𝑗 |posℎ]ℓ−1, where pos
ℎ =

{slotC
ℎ1

, . . . , slotC
ℎℓ
}. The resulting degree-(d + ℓ − 1) sharing

will be such that the value stored at position slotC
ℎ 𝑗

is 𝑙𝑔𝑗 and

the values stored at other positions in posℎ are all 0. Adding

all of these multiplied shares will result in shares of the form

[l |posℎ]d+ℓ−1 =
∑

𝑗∈[ℓ ] [z𝑗 |pos𝑗 ]d · [e𝑗 |pos
ℎ]ℓ−1.

(2) Transforming to a PSS at default slots: We now want to trans-

form the above sharing [l |posℎ]d+ℓ−1 into a sharing of the form
[l |posdef]d, where posdef = {slotdef

1
, . . . slotdef

ℓ
} are some de-

fault slots used throughout the protocol that are independent

from the ones associated the gates. We will discuss how this

transformation is done shortly.

All the above steps are repeated for all the right input wire

values r = {𝑟𝑔1 , . . . , 𝑟𝑔𝑙 } to obtain a sharing of the form [r |posdef]d.
If 𝑔1, . . . , 𝑔ℓ were a block of addition gates, the parties can simply

add their respective shares in [l |posdef]d and [r |posdef]d to obtain
a sharing [z |posdef]d, where z = {(𝑙𝑔1 + 𝑟𝑔1 ), . . . , (𝑙𝑔ℓ + 𝑟𝑔ℓ )}. If
𝑔1, . . . , 𝑔ℓ were a block of multiplication gates, the parties can use

existing multiplication protocols [33] for computing packed shares

[z |posdef]d of the multiplied values, i.e., z = {(𝑙𝑔1 · 𝑟𝑔1 ), . . . , (𝑙𝑔ℓ ·
𝑟𝑔ℓ )}.

Finally, in order to comply with the invariant, the last step in

their protocol is to transform [z |posdef]d into [z |pos]d, where
pos = {slotC𝑔1 , . . . , slot

C
𝑔ℓ
} are the positions associated with gates

𝑔1, . . . , 𝑔ℓ . Next, we discuss how this transformation is done.

Share Transformation. Notice that in the above approach, we

need to switch between sharings of the form [x |pos
1
]𝑑1 and [x |pos2]𝑑2 .

This can be done easily if the parties have access to secret sharings of

random vectors of form [r |pos
1
]𝑛−1 and [r |pos2]𝑑2 . Indeed, given

such sharings, the parties can do the following: (1) locally compute

[x + r |pos
1
]𝑛−1, (2) reconstruct x + r, (3) compute [x + r |pos

2
]𝑑2

and finally, (4) subtract the random sharing to get [x |pos
2
]𝑑2 .

Prior approaches for generating such correlated random sharings

[r |pos
1
] and [r |pos

2
] required O

(
𝑛2

)
communication. Goyal et al.

[54] propose a novel idea that enables efficient generation of such

correlated randomness with O(𝑛) communication. Due to space

constraints, we details details to the Appendix.

KeyGeneration andGarbling. For ourmultiparty garbling scheme,

we also want to enable the parties to generate a secret sharing of

random keys. In order to do this with O(|C|) total communication,

we generate PSS of a random vector of keys. As discussed in Sec-

tion 5.3, this can be done quite efficiently using known techniques

[13, 36]. However, since shares of random values are generated in

“batches” using this technique, when used for generating PSS, the

secrets in the resulting packed shares are always stored at the same

slots. While generating we ensure that these slots are always the

default positions. This is also the case when we sample random

sharings of bit masks and computing shares of the error vectors.

When computing the ciphertext, we use the above share transfor-

mation protocol to move the above PSS of keys/masks/errors to

another PSS where these values are all stored at the different slots

associated with the gates/wires that they correspond to. We can

now easily compute the garbling functionality using these values

as input, and by relying on techniques from [54].

5.5 Adding Malicious Security
To ensure malicious security of our above approach, we need to

thwart the following type of attacks:

• Attack Type I: The malicious parties can cause the cipher-

texts to decrypt to an incorrect value by influencing error

generation.

• Attack Type II: Any other potential attacks during the gar-

bling phase (including at the time of key/mask generation),

we need to ensure that theMPCprotocol used for all the other

computations in the garbling phase is also secure against

malicious adversaries.

We first discuss how to handle the second type of attacks. Genkin

et al. [47, 48] observed that most semi-honest, secret sharing (and

packed secret sharing) based MPC protocols are also private against
malicious adversaries until parties reconstruct the output shares.
To add full-malicious security to such a protocol, the parties sim-

ply need to verify that the non-linear operations (i.e., non-scalar

multiplications) in the circuit were honestly computed before re-

constructing the output.

A recent line of works have showed how to incorporate these

malicious security checks efficiently in the honest majority setting

[31, 35, 38, 45]. The most popular kind of check is one where the

parties sample a random sharing of a global MAC key (say kmac),
which is essentially a random element in F. Throughout the proto-
col, the parties perform every computation twice to maintain the

following invariant: for every intermediate value 𝑧 in the computa-

tion for which the parties hold a secret sharing (or packed secret

sharing), they also hold a sharing of (kmac · 𝑧). At the end of the

parties compute a random linear combination of all the intermedi-

ate values and also compute a linear combination of all the MAC’ed

intermediate values and essentially check whether the outcome of

the second combination is kmac times that of the first combination.

When working on a large field (i.e., exponential in the security

parameter), it suffices to use a single MAC key. For smaller fields,

the above check needs to be repeated for different MAC keys (to

ensure negligible failure probability).

Goyal et al. [54] demonstrate how the above check seamlessly

extends to their protocol and techniques. We rely on similar ob-

servations to ensure malicious security of most of our garbling

protocol. Besides error generation, the only other sub-protocol that

we use is the random bit sharing protocol for generating shares of

masks. While this sub-protocol is already private against malicious

adversaries (which follows from the observation of Genkin et al.

[47, 48]), to ensure security of our garbling protocol, we also need

to ensure it actually outputs valid shares of bits and not any other
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field element. Indeed, if the adversary deviates from the protocol

description, it could cause the parties to output (potentially invalid

sharings) of any random field elements. The standard technique

for checking if any given element 𝑏 is 0 or 1, is to simply check if

𝑏2
?

= 𝑏. We use the same idea. Upon receiving PSS of bits from the

random bit sharing protocol, the parties multiply this sharing with

itself (correctness of this multiplication checked using the above

MAC based check) and at the end, we collective check if the above

condition (i.e., 𝑏2 = 𝑏) is met for all bits that were generated, in a

single shot.

To counter the first type of attack (i.e., one that originates from

incorrect error generation), we recall that the two main steps in

our error generation sub-protocol are: (1) generating packed shares

of random bits and (2) multiplying these bits. It is easy to see that

security and correctness of both these steps can be ensured using

the above ideas.

6 A SCALABLE MULTIPARTY GARBLING
PROTOCOL

Having now described how we can instantiate all of the required

components of our template, we can now proceed to describe the

full protocol. Due to space constraints, we only provide an informal

description of the semi-honest version of our protocol in Protocol 1

and defer the complete description of the malicious protocol and

the required subprotocols to the full version.

For completeness, we provide a summary of the full protocol with

malicious security below. Our protocol consists of three phases:

circuit independent preprocessing, garbling, and reconstruction

with evaluation.

In the circuit independent preprocessing phase, parties gener-

ate the randomness that is needed to permute, encrypt and create

the garbled circuit. This mainly consists of enough packed secret

sharings of wire keys and masks to cover all wires in the circuit

which will be used to create the individual garbled tables. Because

the LPN encryption scheme also requires additive errors from a

particular distribution and are not dependent on any later compu-

tation, we also choose to generate these values in this phase. To

achieve malicious security, a global mac key is also generated and

is used to authenticate the shares in the keys and mask values on

each wire. Additionally, because malicious parties may cause our

randomness generation to output values that are not of the correct

distribution, we retain some information for consistency checks

that are needed on both randomness for LPN error generation and

the randomly generated masks.

After key material has been generated, parties enter an online

garbling phase. The first step of garbling is to take the packed

secret shares and to move them out into positions that correspond

to their positions associated with the gates in the circuit. This can

be done using the share transformation algorithm of [54]. We now

chunk up the gates in our circuit into packs of size ℓ . For each

set of ℓ gates, we create new packed shares, packing together all

input wire keys of the same type and value (where type is one of

left,right, or out and wire value is 0 or 1), all output keys of the

same value, and all output masks of the same type. The masks

can now be used to select what output rows of the garbled tables

will correspond to particular inputs and then in turn these selector

bits can be used to select the output key for this row of the table.

After obliviously selecting the selector bits and keys to encrypt, the

LPN encryption scheme is used to encrypt the ciphertext using the

packed secret shares of input keys and LPN errors generated in the

circuit independent pre-processing step. We also generate packed

shares for the input values, packing together input wire masks

that belong to the same input client, as an optimization. Finally,

throughout this whole phase, for every new value we compute, we

also compute authentication tags. At the end of the garbling phase,

we check that all these intermediate tags were computed correctly

and finally run the consistency checks from the preprocessing phase.

Note that at this point in time nothing sensitive has been computed,

as we are just constructing the garbled circuit and no sensitive

input from clients has been given.

In the last phase - reconstruction and evaluation - we start off by

broadcasting input wire mask shares to the relevant parties. Clients

add their input to the reconstructed mask, broadcast the results,

and all parties can then compute a sharing of that client’s input.

This sharing of the client’s input bit can then be used to also select

for the wire key corresponding to the client’s chosen value. All

the garbled tables are reconstructed, along with the clients input

and the output masks of the protocol (to ensure every party gets

output). The rest of the protocol is a non-interactive evaluation of

the garbled circuit.

7 PROTOCOL EVALUATION AND ANALYSIS
In this section, we attempt to get a better picture of the concrete

performance of our protocol by analyzing its communication and

computation costs. We first discuss some modifications to the pro-

tocol that improve its performance in practice followed by a discus-

sion on the choice of optimal parameters for LPN and the binary

super-invertible matrix. We then discuss the performance of our

semi-honest and maliciously secure protocols and compare it to

those of prior works. Our analysis will be centered around the

performance of the pre-processing and garbling phases which con-

stitute the communication intensive parts of our protocol.

7.1 Practical Protocol Optimizations
The following optimizations can help reduce the concrete costs of

the protocol.

(1) Pack circuit input wires separately. Instead of packing keys

and masks for blocks of all wires in the circuit together, sep-

arately pack the keys and masks for circuit input wires and

the remaining wires (which correspond to output wires of in-

dividual gates) in the circuit. Then, kout
𝑏

and 𝜆out need not be

computed in step 2 as they are equal to the values sampled in

the pre-processing phase.

(2) Pack XOR and AND gates separately. One way to choose

gates to pack together in step 2 is to only pack the ciphertexts

for garbled tables of the same gate type together, instead of pack-

ing by some arbitrary metric. While this does lead to slightly

inefficient packing, it allows us to simplify parts of step 4. Oth-

erwise, we would need to create packed shares of masks for

each function gates could be computing and then for each gate

select the mask from the relevant packed share.
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Protocol 1: Semi-Honest Garbling Protocol

Pre-processing Phase:
(1) For 𝑗 ∈ [1, 𝑊

ℓ
] where𝑊 is the number of wires within the

circuit, parties compute packed shares of a random mask [𝜆],
and packed sharings of keys { [k𝑏

𝑖
] }𝑖∈ [1,𝐿lpn ],𝑏∈{0,1}

(2) For 𝑗 ∈ [1, 𝐺
ℓ
] where 𝐺 is the number of gates, 𝑘 ∈

{0, 1 . . . 3}, generate packed LPN errors { [𝜖𝑖 ] }𝑖∈ [1,𝑄lpn ]

Garbling Phase:
(1) Transform packed shares of wires and keys from de-

fault positions to associated wire value positions pos as

{ [k0
𝑖
|pos] }𝑖∈ [1,𝐿lpn ] , { [k

1

𝑖
|pos] }𝑖∈ [1,𝐿lpn ] , [𝜆 |pos]

(2) For 𝑗 ∈ [1, 𝐺
ℓ
], create new packed shares select-

ing all keys associated with the {left, right, out} in-

put wires having value {0, 1}, and all wire masks de-

noted as { [k𝑚
𝑏,𝑖
|pos] }𝑖∈ [1,𝐿lpn ],𝑏∈{0,1}, [𝜆𝑚 |pos] for 𝑚 ∈

{left, right, out}
(3) Transform new packed shares to their default positions

(4) Select the plaintext to encrypt. For 𝛼, 𝛽 ∈ {0, 1}, compute

the packed select bit determining output key for left wire

value 𝛼 and right wire value 𝛽 according to gate function

type. Let the result be [s𝛼,𝛽 ]. For each 𝑖 ∈ [1, 𝐿lpn ] securely
compute [kactive ] = [s𝛼,𝛽𝑖

] · ( [kout
1,𝑖
] − [kout

0,𝑖
] ) + [kout

0,𝑖
] to

obtain packed shares of keys to encrypt.

(5) Encode the plaintext and encrypt. Run an encoding procedure

on a message containing [kactive ] concatenated with 𝑠 . Run

the LPN encryption algorithm using as the key for each 𝑖 ∈
[1, 𝐿lpn ], [kleft𝛼,𝑖 ] + [k

right
𝛽,𝑖
] and errors { [𝜖𝑖 ] }𝑖∈ [1,𝑄lpn ]

(6) For each input wire, pack together shares belonging to the

same party and all keys associated with 0 and 1 values on

these wires

Garbling Reconstruction and Evaluation
(1) For each client who will provide value on an input wire 𝑤,

broadcast sharings in [𝜆𝑤 ] to the party to allow reconstruc-

tion of 𝜆𝑤 . The client then broadcasts its masked input, from

which can derive input shares of the mask and input keys

(2) For all packs of gates, for all rows in the circuit, reconstruct

the ciphertexts { [c𝑖 ]𝑖∈ [1,𝑄lpn ] } and all output masks for the

circuit.

(3) Evaluate the garbled circuit.

(3) Reduce cost for computing mask bits. For AND gates, we

only need one multiplication to compute [s𝛼,𝛽
𝑖
] across all 𝛼, 𝛽 ∈

{0, 1} for a given 𝑖 ∈ [1, 𝐿lpn]. This reduces the cost of garbling
an AND gate by 3 multiplications. See [84] for more details.

(4) Replacing expensive protocolswith degree reductionwher-
ever possible. Sometimes in the protocol, we need to per-

form a degree reduction on shares without changing their po-

sitions. For efficiency reasons, rather than use heavy weight

sub-protocols that provide functionality which subsumes this,

we generate random shares of degree 𝑡 and 2𝑡 and perform a

leader-based degree reduction similar to what is done in secure

multiplication.

7.2 LPN Parameters
Our analysis of the security of LPN over larger fields follows that

of Liu et al. [70]. The LPN parameters provide a trade-off between

the security provided by the garbled circuit as well as the cor-

rectness error when evaluating the garbled circuit. Specifically, to

correctly decrypt the ciphertext during evaluation, the weight of

the noise vector e, which follows the binomial distribution, should

be lesser than half the distance of the error correcting code. Namely,

Pre [weight(e) ≤ ⌊(𝑑 − 1)/2⌋] = Pr[Binom(𝑄, 𝜏) ≤ ⌊(𝑑 − 1)/2⌋].
On the other hand, a noise vector with very small weight would

lower security.

For our protocols, we set the noise rate 𝜏 of our LPN-based

encryption to be a constant, and require only a polynomial number

of samples. We choose the parameters of a Reed-Solomon code to

correct constant fraction of errors. To find the best parameters, we

fix the noise rate 𝜏lpn and use binary search to find 𝑄 and 𝑉 such

that the distance 𝑑 = 𝑄 −𝑉 + 1 of the Reed-Solomon code satisfies

Pr[Binom(𝑄, 𝜏) ≤ ⌊(𝑑 − 1)/2⌋] ≤ 2
−40,

while ensuring that the LPN parameters (𝑄,𝑉 , 𝜏) provide 80-bits
of security, as determined using the Python script provided by Liu

et al. [70].

We find that for a correctness error of 2
−40

,𝑄 = 555,𝑉 = 127, 𝜏 =

2
−2

are the optimal parameters for achieving 80-bit security and𝑄 =

785,𝑉 = 214, 𝜏 = 2
−2

are the optimal parameters for achieving 128-

bit security. For the Reed-Solomon code we choose [555, 128, 428]𝑞
and [785, 215, 571]𝑞 respectively for 80-bit and 128-bit security.

7.3 Parameters for Binary Super-Invertible
Matrices

We use a concatenation of an outer Reed Solomon code and an inner

binary error-correcting code to obtain the binary super-invertible

matrix.

In more detail, let the Reed Solomon code parameters be [𝑄𝑟 , 𝐿𝑟 ,

𝑑𝑟 ]𝑞 , where 𝑑𝑟 = 𝑄𝑟 − 𝐿𝑟 + 1 and 𝑞 ≥ 𝑄𝑟 is a power of 2. Let the

inner code parameters be [𝑄𝑖 , 𝐿𝑖 , 𝑑𝑖 ]2 with 𝑞 = 2
𝐿𝑖
. Then by Theo-

rem 2.2, the concatenated code has parameters [𝑄𝑟𝑄𝑖 , 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖 ]2.
Hence, we need 𝑄𝑟𝑄𝑖 ≥ 𝑄 . However, when 𝑄𝑟𝑄𝑖 > 𝑄 , then we

need to truncate (𝑄𝑟𝑄𝑖 −𝑄)-rows of the generating matrix. This

causes a loss of (𝑄𝑟𝑄𝑖 − 𝑄) in the distance, and we thus obtain

a [𝑄, 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖 − (𝑄𝑟𝑄𝑖 −𝑄)]2-code. By Theorem 2.1, if we have

⌊𝑄/3⌋ malicious parties, thenwe need𝑑𝑟𝑑𝑖−(𝑄𝑟𝑄𝑖−𝑄)+1 ≥ ⌊𝑄/3⌋.
In summary, we need to choose the parameters which maximize

message length 𝐿𝑟𝐿𝑖 with the following constraints.

𝑄𝑟 ·𝑄𝑖 ≥ 𝑄

𝑞 = 2
𝐿𝑖 ≥ 𝑄𝑟

𝑄𝑟 ·𝑄𝑖 − 𝑑𝑟 · 𝑑𝑖 ≤ 𝑄 − ⌊𝑄/3⌋ .

In our setting, we assume 𝑄 = 𝑛, i.e., the number of parties. If

we use Reed Solomon Codes and the inner code with constant rate,

then the resulting concetenation code will also have constant rate.

In this case, it is easy to see that 𝐿𝑟𝐿𝑖 ∈ O(𝑛). We can now use

the generator matrix of [𝑄, 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖 − (𝑄𝑟𝑄𝑖 −𝑄)]2-code as our
binary super-invertible matrix. The dimension of this matrix will

be 𝑄 × 𝐿𝑟𝐿𝑖 , i.e., 𝑛 × O(𝑛), which is what we want.

For concrete parameters, we take the BCH codes [23] as the

inner codes, and use a Python script to enumerate all combinations

of the Reed Solomon codes and the BCH codes to find the largest
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Circuit 𝑛 𝑡 ℓ
Pre-Processing Pre-Processing Size Garbling

Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)

AES-128

128 31 33 128.413 253.200 40.950 13.411 26.587

256 63 65 95.933 107.270 21.212 10.262 13.749

512 127 129 110.776 58.742 12.543 15.527 8.094

SHA-256

128 31 33 - - 152.536 46.167 99.028

256 63 65 453.787 402.479 79.155 39.271 51.294

512 127 129 441.084 213.369 41.888 40.797 27.074

Table 1: Runtime and per party communication cost of our implementation of the semi-honest variant of our protocol when
each party is run with 2 threads. 𝑛 is the number of parties, 𝑡 = ⌊(𝑛 − 1)/4⌋ is the corruption threshold, and ℓ is the packing
parameter. The security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 80. AES-128 has 36663 gates and SHA-256 has 114107 gates.

possible 𝐿𝑟 . Our script also enumerates random linear codes achiev-

ing Gilbert–Varshamov bound as the inner code. Here we list some

concrete parameters. For𝑛 = 256 and 𝑡 = 63, we choose [16, 6, 11]
2
7 -

Reed Solomon code concatenated with [16, 7, 6]2-BCH code. For

𝑛 = 512 and 𝑡 = 127, we choose [32, 11, 22]
2
7 -Reed Solomon code

concatenated with [16, 7, 6]2-BCH code.

7.4 Evaluation of our Semi-Honest Secure
Protocol

To evaluate the concrete performance of our protocol, we imple-

ment the semi-honest variant in Rust
8
and benchmark its perfor-

mance in realistic deployment scenarios, executing common circuits

with hundreds of parties located in different regions of the US. To

do this we make use of publicly available cloud services provided

by AWS. Our network set-up consists of a number of c4.large
instances spread across the following AWS regions: us-east-1,
us-east-2, and us-west-2. A c4.large is equipped with Intel(R)

Xeon(R) E5-2666 processor and consists of 2 vCPUs and 3.75 GB of

RAM. We used the MATRIX library [9] to orchestrate experiments

over AWS. Our implementation is multi-threaded and makes use of

asynchronous I/O to run protocols concurrently. We use the Fast

Galois Field Arithmetic Library [79] for finite field arithmetic in

our implementation and use the circuit descriptions available at [5]

for our experiments. We run each experiment 5 times and report

the average.

Table 1 summarizes the runtime and communication cost of

the pre-processing and garbling phases as well as the size of the

pre-processing material output by each party at the end of the pre-

processing phase when garbling the AES-128 and SHA-256 circuits

with 128, 256, and 512 parties whilst tolerating 𝑡 = ⌊(𝑛 − 1)/4⌋
corruptions. Our benchmarks indicate that our protocol is practical

and can scale to a large number of parties since the runtime does

not vary significantly with the number of parties and depends

mainly on the size of the circuit being evaluated. The pre-processing

phase for AES-128 takes a maximum of 128.4s and for SHA-256

takes a maximum of 453.8s. The garbling phase takes at most 15.5s

for AES-128 and at most 46.1s for SHA-256. As expected, the per-

party communication cost as well as the size of the pre-processing

material decreases as the number of parties increases, owing to the

𝑂 ( |𝐶 |) communication complexity. Our implementation’s memory

8
github.com/adishegde/scalable_garbling

consumption exceeded the c4.large instance’s 3.75 GB limit when

running the pre-processing phase for SHA-256 with 128 parties. We

note that such overheads in memory can be avoided by generating

the pre-processing material in smaller batches instead of computing

it all at once in the minimum number of rounds.

Table 2 compares the performance of the protocol with different

corruption thresholds, when garbling AES-128 with 256 parties. We

observe that both the runtime and communication costs decrease

with the corruption threshold. Specifically, when tolerating
1

6
-th

corruption instead of
1

3
-rd corruption, we notice a 2.7× improve-

ment in the runtime for pre-processing and a 1.8× improvement in

the runtime for the garbling phase. A minor irregularity is observed

in the runtime of the garbling phase where it increases by 0.73s

when tolerating
1

6
-th corruption compared to when tolerating

1

5
-th

corruption. Note that a smaller corruption threshold 𝑡 implies a

larger packing parameter ℓ which in turn implies computing over

fewer secret shares to garble the same circuit. However, a larger

packing parameter also requires sharing secrets over a larger de-

gree polynomial and increases the computation required per share.

While the net effect implies constant computation complexity, the

observed irregularity might be an artifact of the implementation

due to the discussed effects of a larger packing parameter.

7.4.1 Comparison to PriorWork. Ben-Efraim andOmri [19] present

efficient multiparty garbling protocols in the honest majority set-

ting. We restrict our discussion to their semi-honest secure pro-

tocols since they do not instantiate the pre-processing phase for

their maliciously secure protocols and provide benchmarks only

for the former. They present two semi-honest protocols: BGW3opt
that can tolerate up to 𝑡 < 𝑛

2
corruptions and the more efficient

BGW2opt protocol that is secure up to 𝑡 < 𝑛
3
corruptions, both of

which have quadratic computation and communication complexity

in the number of parties 𝑛. We compare the performance of our

semi-honest protocol when run with 𝑡 =
(𝑛−1)

3
to the performance

of BGW2opt. BGW2opt has a total runtime of 0.109s when garbling

AES-128 with 13 parties over LAN. Scaling the runtime, given the

protocol’s quadratic growth in computation and communication

costs with the number of parties, suggests that the protocol would

take at least 42.27s to garble AES-128 with 256 parties over LAN. In

comparison, from Table 2, our protocol takes a total of 218.67s to

garble AES-128with 256 parties. Thus, our semi-honest protocol has

comparable performance despite being run over a network with
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𝑡 ℓ
Pre-Processing Pre-Processing Size Garbling

Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)

85 = ⌊(𝑛 − 1)/3⌋ 43 200.904 326.251 45.568 17.777 28.530

63 = ⌊(𝑛 − 1)/4⌋ 65 95.933 107.270 21.212 10.262 13.749

51 = ⌊(𝑛 − 1)/5⌋ 77 75.935 77.011 16.486 8.964 10.841

42 = ⌊(𝑛 − 1)/6⌋ 86 72.441 62.195 13.456 9.696 8.955

Table 2: Comparison of the runtime and per party communication of the semi-honest variant of our protocol with different
corruption thresholds when garbling the AES-128 circuit with 𝑛 = 256 parites where each party is run with 2 threads. 𝑡 is the
corruption threshold, and ℓ is the packing parameter. The security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 80.

lower bandwidth and higher latency. Moreover, BGW2opt takes
34.17s to garble SHA-256 with 31 parties over LAN which would

imply a runtime of at least 2330.38s when garbling SHA-256 with

256 parties over LAN. On the other hand, scaling the runtime of

our protocol from Table 2, we expect our protocol to take 680.61s

when garbling SHA-256 with 256 parties whilst tolerating
1

3
-rd

corruption. This indicates that for larger circuits, our protocol out-

performs BGW2opt despite being run over a slower network while

for smaller circuits we expect our protocol to have similar or better

runtimes when run over identical network conditions.

7.5 Evaluation Of Maliciously Secure Protocol
While we do not implement our maliciously secure protocol, we

evaluate its performance by estimating its communication and

computation costs. To estimate communication costs, we wrote a

python script that outputs the communication required for each

phase of the protocol by computing the number of bits communi-

cated by all parties in every sub-protocol. To estimate the concrete

computation costs of our protocol, we first benchmarked the time

required for individual field operations (addition and multiplica-

tion) followed by programmatically estimating the total number of

field operations carried out in a protocol execution using a python
script. As in our implementation of the semi-honest protocol, we

used the Fast Galois Field Arithmetic Library [79] for field arith-

metic. We found that on a c4.large instance (cf. Section 7.4), a field
multiplication takes an average time of 5.6319e-10s and a field mul-

tiplication takes on average 1.0079e-8s. For the sake reproducibility,

the scripts used for estimating the communication and computation

costs as well as benchmarking the time for field operations have

been included in the associated github repository
9
.

Table 3 summarizes the estimated computation and communica-

tion costs for garbling AES-128 and SHA-256 with 128, 256, and 512

parties whilst tolerating 𝑡 = ⌊(𝑛 − 1)/4⌋ corruptions. As expected,
the per party communication cost decreases significantly with an

increase in the number of parties. The communication required

for the maliciously secure pre-processing and garbling phases is

around 5.05× and 5.89× the communication required for the semi-

honest secure pre-processing and garbling phases respectively. To

better understand how the computational overhead affects the total

runtime, we estimated the computation time for the semi-honest

protocol too and found that the runtime of our implementation

(cf. Section 7.4) was on average 3.14× the estimated computation

9
github.com/adishegde/scalable_garbling

time for the pre-processing phase and 2.54× the estimated compu-

tation time for the garbling phase. It is reasonable to expect that

the relationship between the estimated computation time and total

runtime would be similar for the malicious protocol. Thus, the ma-

liciously secure protocol is expected to have reasonable runtime in

practice, and as in the case of the semi-honest protocol the runtime

is not expected to vary significantly with the number of parties but

depend mainly on the size of the circuit being evaluated.

7.5.1 Comparison To Prior Works. Ben-Efraim et al. [16] construct

a BMR-style protocol in the dishonest majority setting which only

requires 𝑂 (𝑛) communication per party in the garbling phase and

makes use of a somewhat similar LPN-based encryption scheme.

We also compare our protocol against the authenticated garbling

protocol of Wang et al. [85] which we denote by WRK17b. While

WRK17b and the protocol of [16] can tolerate at most 𝑡 = 𝑛 − 1

corruptions when run with 𝑛 parties, Ben-Efraim et al. [16] pro-

pose an efficient variant when tolerating a sub-optimal corruption

threshold. Specifically, assuming the presence of 𝑛/𝑐 honest par-
ties, where 1 < 𝑐 < 𝑛, allows for a more communication efficient

protocol especially when 𝑛/𝑐 > 𝜅𝑠 . As done in the performance

evaluation of [16], we set 𝑐 = 5 for the purpose of our analysis

and refer to this protocol as BCOOSS21. Since the protocols we

compare tolerate a different corruption threshold, we consider the

case when all protocols are run with the same number of parties

as well as when each protocol is run with a different number of

parties but tolerates the same number of corruptions. We set the

corruption threshold to 𝑡 = ⌊(𝑛 − 1)/4⌋ for our protocol in all cases.

Wherever required, we extrapolate the benchmarks reported in [85]

and [16] to estimate the communication cost of the protocols when

run with a larger number of parties. We use linear interpolation

for this extrapolation since the per party communication cost of

WRK17b in the pre-processing and garbling phases and BCOOSS21

in the pre-processing phase, grows linearly with the total number

of parties.

Figure 1 summarizes the per party communication cost of the

protocols when each protocol is run with the same number of

parties to garble AES-128. In the pre-processing phase, the com-

munication cost of WRK17b and BCOOSS21 is around 0.61× and
6.19× the communication cost of our protocol respectively when

𝑛 = 250 and increases to around 4.04× and 42.39× the communica-

tion cost of our protocol when 𝑛 = 650. In the garbling phase, the

communication cost of WRK17b and BCOOSS21 is around 0.80×
and 0.73× the communication cost of our protocol when 𝑛 = 250

and increases to around 5.37× and 1.86× the communication cost
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Circuit 𝑛 𝑡 ℓ
Pre-Processing Garbling

Comp. Time (s) Comm. (MB) Comp. Time (s) Comm. (MB)

AES-128

128 31 33 ≈ 200 ≈ 1168 ≈ 21 ≈ 163

256 63 65 ≈ 199 ≈ 573 ≈ 19 ≈ 83

512 127 129 ≈ 202 ≈ 292 ≈ 18 ≈ 42

SHA-256

128 31 33 ≈ 737 ≈ 4301 ≈ 79 ≈ 602

256 63 65 ≈ 735 ≈ 2111 ≈ 71 ≈ 308

512 127 129 ≈ 744 ≈ 1075 ≈ 67 ≈ 155

Table 3: Estimated computation time and per party communication cost of the maliciously secure protocol when each party is
run with 2 threads. 𝑛 is the number of parties, 𝑡 = ⌊(𝑛 − 1)/4⌋ is the corruption threshold, and ℓ is the packing parameter. The
security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 80. AES-128 has 36663 gates and SHA-256 has 114107 gates.
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Figure 1: Comparison of estimated per party communication cost when garbling AES-128 with different multiparty garbling
protocols, where each protocol is run with the same number of parties. We set the corruption threshold to 𝑡 = ⌊ (𝑛−1)

4
⌋ for our

protocol. The security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 128 for all protocols.

of our protocol when 𝑛 = 650. Thus, the overall communication

costs of our protocol, across both phases, is lower than that of

WRK17b starting at around 350 parties while it is lower than that

of BCOOSS21 even with 250 parties.

Figure 2 summarizes the per party communication cost of the

protocols when each protocol tolerates the same number of cor-

ruptions when garbling AES-128. In this case, our protocol is run

with approximately 4× the number of parties as in WRK17b and

3.2× the number of parties as in BCOOSS21 to ensure that all pro-

tocols tolerate the same number of corruptions. The presence of

a large number of parties, leads to significantly lower communi-

cation overhead for our protocols compared to that of WRK17b

and BCOOSS21. In the pre-processing phase, the per party com-

munication cost of our protocol is 1.53× and 19.44× lower than

that of WRK17b and BCOOSS21 respectively when 𝑡 = 200 and

up to 5.84× and 76.02× lower when 𝑡 = 400. In the garbling phase,

the per party communication cost of WRK17b and BCOOSS21 is

around 2.05× and 2.3× the per party communication cost of our

protocol respectively when 𝑡 = 200, and up to 8.08× and 4.55× the

per party communication cost of our protocol when 𝑡 = 400. More-

over, as discussed previously, we do not expect the runtime of our

protocols to change significantly with the number of parties and so

we expect our protocol to outperform WRK17b and BCOOSS21 in

these settings.

8 RELATEDWORK
There is a long history of pushing towards O(|C) |)MPC [33, 34, 47],

that has recently resulted in linear round (ie. communication rounds

linear in the depth of the circuit) MPC protocols with O(|C) |)
communication complexity that are concretely efficient [12, 52–54].

Our work builds on techniques proposed in these works, but applies

them to the constant-round setting. Most relevant to our protocol,

we use the share transformation protocol proposed by Goyal et al.

[54] (see Section 5.4) as a subprotocol in order to achieve our result.

There are two popular templates for achieving constant round

MPC. The first relies on multiparty variants of fully homomorphic

encryption [7, 26, 51, 74, 75]. While improving the efficiency of

FHE is an active area of research, this approach currently remains

very far from practical. The second template, first proposed by

Beaver, Micali and Rogaway (BMR) [11] relies on the observation

that garbling a circuit [86] can be performed in constant depth.
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Figure 2: Comparison of estimated per party communication cost when garbling AES-128 with different multiparty garbling
protocols, where each protocol is run to tolerate the same number of corruptions. We set the number of parties to be 𝑛 = 4𝑡 + 1
for our protocol. The security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 128 for all protocols.

In our work, we focus on this second approach: the problem of

multiparty garbling.

The BMR approach has been the subject of significant research

and has recently lead to asymptotically efficient constructions with

garbled circuit specifications that can be evaluated quickly in prac-

tice [10, 16–18, 32, 46, 58–61, 68, 69, 76, 85]. While the original

approach required non-black-box use of cryptography, Damgård

and Ishai [32] proposed a black-box technique for multi party gar-

bling, paving the way towards more efficient constructions.

Ben-Efraim, Lindell, and Omri [18] showed how to leverage LWE

to garble a circuit with an evaluation complexity of O(𝑛 |𝐶 |) per-
party, improving on the prior O

(
𝑛2 |𝐶 |

)
per-party complexity of

Lindell et al. [68]. Ben-Efraim et al. [16] then further optimized

the output evaluation phase to require only O(|𝐶 |) per-party local

computation (after reconstruction) using an LPN based encryp-

tion scheme. Additionally, their protocol features a online garbling

phase with total communication complexity O(𝑛 |𝐶 |), but their cir-
cuit independent preprocessing phase still has total communication

complexity O
(
𝑛2 |𝐶 |

)
. They achieve this result by reducing the size

of the garbled tables to be constant in the number of parties. Their

scheme uses an LPN-based encryption scheme that is both key-

homomorphic and message-homomorphic, further demonstrating

linearly homomorphic cryptographic primitives can produce con-

cretely efficient protocols [21, 29, 30, 38, 65, 78].

Finally we note that it is possible to garble arithmetic function-

alities [4, 8], at a high cost. Ben-Ephraim et al. [15] and Makri et

al. [71] study the feasibility of computing such function within a

MPC protocol.
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