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Abstract
An intelligent cockpit is now crucial in automobiles, not

just to provide digital instrumentation and in-vehicle controls
but also to offer a wide range of entertainment functional-
ities. To cater to the demands of these intelligent vehicles,
the automotive industry starts employing virtualization tech-
nology to offer a unified hardware and software architecture
that can simplify system management and enhance resource
utilization. Particularly in the domain of intelligent cockpits,
virtualization can tightly integrate systems with different crit-
icality levels (e.g., safety and real-time) on a single hardware
platform, improving inter-system communication quality and
the timely response to user-initiated requests. Currently, mi-
crohypervisor virtualization has been used in production to
achieve intelligent automobile cockpit. However, in addition
to the performance concern and high production costs, this
solution is suffering from the global shortage of chips capable
of running microhypervisor systems.

Our key insight is that, most functions within intelligent
cockpit systems are non-safety-critical and non-real-time mul-
timedia tasks. Based on this characteristic, in this paper we
present AutoVP, a new cockpit virtualization architecture. The
hardware foundation of AutoVP consists of two low-cost
chips: 1) a consumer-grade System-on-Chip (SoC) multi-core
processor as the main chip; 2) a typical automotive-grade
Microcontroller Unit (MCU) as the auxiliary chip. The MCU
auxiliary chip is responsible for hosting real-time and safety-
critical tasks, while the SoC main chip primarily handles mul-
timedia tasks, such as entertainment systems and digital instru-
mentation. Further more, we construct an Android container
virtual environment on the SoC main chip. This environment
integrates multiple media functions onto a single chip, result-
ing in efficient utilization of chip computational resources
and high system scalability. Our comparative performance
evaluation demonstrates that AutoVP is a cost-effective and
efficient solution to build intelligent cockpits.

*Operational Systems Track
†Corresponding authors.

1 Introduction

The automotive electrical and electronic systems comprise
hundreds of sensors, actuators, and Electronic Control Units
(ECUs). These units are responsible for running various
subsystems, such as instrumentation, entertainment, and ad-
vanced driver assistance systems. They collaborate while re-
maining relatively independent, ensuring the highest level of
performance, safety, and functionality. Today’s automobiles
are approaching the limits of their complexity. In the future,
the automotive industry will provide always-connected vehi-
cles, operating advanced autonomous driving functions and
an increasing array of cutting-edge applications. In this envi-
ronment, both the hardware and software components within
vehicles are experiencing exponential growth in line with the
increasing number of applications, leading to an explosion in
the complexity of vehicle architectures [1]. Furthermore, the
proliferation of connectivity and applications also results in a
larger attack surface [2]. This distributed computing architec-
ture is making automotive electrical and electronic systems
increasingly bulky, with challenges emerging in wiring, ther-
mal management, and power distribution [3].

A promising approach to address the aforementioned prob-
lem involves the adoption of a virtualization solution. Virtu-
alization primarily serves the purpose of integrating multi-
ple business subsystems that originally operated on different
ECUs [4, 5], thus reducing software and hardware costs, and
shortening product time-to-market. At the beginning of the
21st century, this technology was first adopted as a centralized
software technique for avionics systems [6]. Nowadays, sev-
eral commercial virtualization solutions in the market have
achieved significant success in safety-critical applications,
including aerospace, national defense, and healthcare. There
is currently a drive to promote virtualization as the preferred
integrated solution within the automotive electrical and elec-
tronic architecture [1].

In the automotive landscape, vehicles can be categorized
into various functional domains, including the Powertrain
domain, Chassis domain, Body/Comfort domain, Cockpit/In-



fotainment domain, and Autonomous Driving domain [7].
The Cockpit/Infotainment domain encompasses both safety-
critical tasks such as instrumentation and driver assistance, as
well as non-critical multimedia entertainment functions like
central control and heads-up displays. These subsystems op-
erate relatively independently while collaborating, interacting
directly with users to provide intelligent experiences [8, 9].
By employing a centralized virtualization solution to inte-
grate multiple subsystems within the Cockpit/Infotainment
domain, it can reduce costs, enhance collaborative processing
efficiency, and optimize user experience.

Currently, commercial intelligent cockpit virtualization
products are dominated by the hypervisor-based solution [10,
11], such as QNX Hypervisor [12], INTEGRITY Multivi-
sor [13], and PikeOS Hypervisor [14]. They enable the opera-
tion of multiple virtual systems on a single set of hardware
(e.g., ECU), with each virtual system running in a relatively
independent virtual environment, hosting different functions.

These vehicle hypervisor solutions typically adopt a micro-
kernel architecture [15, 16]. However, compared with user-
attractive Android applications, microkernel architecture has
a notable drawback, namely the absence of a rich software
ecosystem [17–21]. For instance, if the cockpit needs to run
advanced driver assistance systems (ADAS) functions (e.g.,
automated parking), they require support for deep learning,
computer vision, video encoding/decoding, and 3D graphics,
necessitating substantial resource investment for development.
Furthermore, existing hypervisor solutions must handle both
safety-critical tasks and complex multimedia operations, lead-
ing to specific hardware requirements. Consumer-grade SoC
chips or even standard automotive-grade MCU chips fail to
meet these demands. Automotive-grade SoC chips are capa-
ble of accommodating such intricate software systems [22],
but their development entails significant challenges and high
production costs. Even worse, the auto industry is facing a
global shortage of automotive-grade SoC chips [23–25].

We have three observations motivating a new cockpit vir-
tualization design: 1) only a minority of functions within an
intelligent cockpit are safety-critical (e.g., instrumentation and
driver assistance), while the majority of modules classified
as non-critical operations (e.g., all multimedia entertainment
tasks); 2) a typical automotive-grade MCU chip can host
these real-time and safety-critical functions, while a cheap
consumer-grade SoC chip (e.g., smartphone chips) can han-
dle the remaining non-critical functions; 3) these two kinds
of chips are affordable, and they have not been significantly
impacted by recent supply chain shortages. As a result, this
paper presents a cost-effective virtualization architecture for
constructing an intelligent cockpit, called AutoVP.

As shown in Figure 1, AutoVP employs Android container
technology [26, 27] to integrate non-safety-critical subsys-
tems, such as instrument display, central control system, and
passenger entertainment system, into a single entity, which
is deployed on a cheap consumer-grade SoC chip. Container
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Figure 1: AutoVP’s mixed-criticality decoupled design.

is a lightweight virtualization technology [28–30] that can
efficiently leverages the computational power of the SoC chip
while ensuring the independent operation of each business
subsystem, thereby enhancing service quality. Safety-critical
tasks such as safety monitoring and vehicle bus, are handled
by an automotive-grade MCU chip. Interconnection between
the SoC chip and MCU chip is facilitated through inter-chip
communication technologies, forming a complete intelligent
cockpit system. Please note that AutoVP’s mixed-criticality
decoupled design also complies with automotive functional
safety requirements, as outlined in ISO 26262 [31].

We developed a new Android container framework on top
of Cells [26, 27]. This container imposes no specific hard-
ware requirements and incurs very small virtualization perfor-
mance overhead, making it suitable for widespread deploy-
ment across various low-power SoC chips. Besides, in the
automotive industry, the deployment of safety-critical tasks
using automotive-grade MCU chips is a well-established and
mature method [32]. In addition to container-based virtualiza-
tion, AutoVP’s differences in design also involve monitoring
mechanisms, implementing corrective measures for abnormal
behaviors, and ultimately isolating the safety-critical tasks
from the business functions. Hence, deploying the AutoVP-
powered cockpit system within intelligent vehicles is rela-
tively straightforward.

We compared AutoVP with a commercial hypervisor prod-
uct on the same automotive-grade platform. Our extensive
performance experiments demonstrate that AutoVP incurs
significantly lower performance overhead. When examining
various aspects such as CPU overhead, memory usage, power
consumption, startup time, peripheral performance, and frame
rate, AutoVP’s container outperforms the hypervisor solution.

In a nutshell, we make the following key contributions:

• We propose a mixed-criticality decoupled architecture
to address the need for centralized deployment of vari-
ous business subsystems within the intelligent cockpit
domain, all while offering ease of construction, low pro-
duction costs, and small performance overhead.

• We present a new Android container framework tailed
for intelligent cockpits. Our work represents the latest
progress in mobile container-based virtualization, and it
is an ideal solution to host the non-safety-critical subsys-
tems that require display screens for user interaction.



• Our evaluation and real-world deployment demonstrate
that AutoVP is a viable in-vehicle virtualization alterna-
tive to mitigate the ongoing automotive chip crisis.

Real-world Deployment AutoVP has been deployed in two
flagship electric vehicle models under a leading automotive
manufacturer.* The installation volume in the past year has
exceeded one million units.
Open Source We have released a prototype of AutoVP’s
container to facilitate reproduction and reuse, as all found at
https://github.com/jianglin-code/AutoVP.

2 Background and Related Work

In this section, we first provide background information on
the evolution of in-car virtualization. We also review existing
approaches for intelligent cockpit virtualization and identify
their limitations, which have prompted our work. Next, we
underline the need of using the Linux container technology
for in-car virtualization. Finally, we introduce the specific
Android container framework that we leverage to implement
AutoVP’s container.

2.1 The Development of In-Car Virtualization
With the emergence of multi-core embedded System-on-Chip
(SoC) devices, the integration of multiple applications with
varying levels of criticality on a single platform has be-
come increasingly popular. This platform is referred to as
a mixed-criticality system, which needs to meet various re-
quirements, including real-time constraints, operating system
(OS) scheduling, and memory/OS isolation [33].

The cockpit system of intelligent vehicles represents a typi-
cal mixed-criticality system. It comprises non-critical subsys-
tems such as entertainment, networking, and voice systems,
as well as safety-critical subsystems like the vehicle bus and
advanced driver assistance systems (ADAS). The non-critical
subsystems often involve multimedia subsystems that rely on
hardware modules for tasks such as display, encoding/decod-
ing, networking, AI, and voice processing. Therefore, these
subsystems are typically deployed on SoC chips to provide
users with a seamless intelligent experience. On the other
hand, safety-critical subsystems must adhere to functional
safety requirements to ensure error-free operation [31]. They
are usually deployed on automotive-grade MCU chips, offer-
ing users a stable safety and automated experience.

A key challenge in the design of mixed-criticality systems
is the isolation of software applications with varying degrees
of criticality on a common hardware platform. In the automo-
tive domain, a common practice for isolating safety-critical
applications is through the proliferation of multiple hardware
Electronic Control Units (ECUs). These control units are

*Until the publication of this paper, we have not been granted authoriza-
tion to disclose the name of the automotive manufacturer.
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Figure 2: In-vehicle microhypervisor architecture.

dedicated to various tasks, including basic operations like
intelligent infotainment, as well as critical functions such
as automated parking and adaptive cruise control. However,
this approach is highly inefficient, as many of the resources
within these ECUs often remain underutilized. However, with
the evolution of multi-core architectures and the introduction
of new hardware extensions such as virtualization, securely
executing multiple applications on the same platform while
reducing costs and vehicle weight to enhance resource utiliza-
tion has become feasible [33].

Virtualization is considered a solution for isolating oper-
ating systems within virtual machines, and its advantages
include cost reduction through the abstraction of the host plat-
form [10]. Additionally, features provided by a hypervisor,
such as the abstraction of memory, CPU, and interrupts, aid
in the isolation of operating systems. This approach, as exem-
plified by commercial products like QNX Hypervisor [12],
INTEGRITY Multivisor [13], and PikeOS Hypervisor [14],
can be applied to create mixed-criticality systems. A common
industry practice is to employ a hypervisor system with a
microkernel architecture to ensure real-time capabilities and
functional safety [15, 19]. We will further discuss the pros
and cons of this approach in §2.2 and §2.3.

Android Automotive [34] is a new vehicle OS based on
Android, designed to run in-vehicle infotainment systems
and pre-installed Android applications. However, Android
Automotive is not a virtualization solution and thus lacks a
mechanism for system isolation. If several different types of
services are running on the same Android Automotive system
at the same time, sharing system resources, such as network,
storage, multimedia, etc., these services will interfere with
each other, affecting the user experience and in-vehicle safety.

2.2 Microkernel + Hypervisor
Embedded systems in vehicles often adopt microkernel-based
operating systems due to their inherent real-time and security
features. Such microkernel OSs are responsible for hosting
safety-critical tasks; besides, they employ hypervisor tech-
niques to run virtual OSs that have a richer software ecosys-
tem, addressing the limitation of their own software ecosys-

https://github.com/jianglin-code/AutoVP


Table 1: Comparison of three in-vehicle chips. The unit prices
displayed represent their median ranges.

Chips Production Unit Supply Chain
Cost Price ($) Shortages?

Automotive-grade SoC High 300∼500 Yes
Consumer-grade SoC Low 70∼150 No

Automotive-grade MCU Minimum 5∼10 No

tem [12–14]. Running this type of software-configured kernel
is referred to as a “microhypervisor,” which combines both
microkernel and hypervisor functionalities [35].

The microhypervisor is responsible for providing resource
containers, execution contexts, scheduling, inter-process com-
munication, and synchronization mechanisms for its user
mode. As shown in Figure 2, the user mode of the micro-
hypervisor can directly run applications, making it suitable
for executing real-time tasks, fast boot tasks, and functional
safety tasks, among others. Furthermore, the user mode of
the microhypervisor can also run virtual machines through a
virtual machine manager, making it suitable for running OSs
with a rich software ecosystem, such as virtual Linux systems.

From a functional safety perspective, because virtual OSs
have a vast software ecosystem that can support complex
hardware for business tasks, while the microhypervisor sys-
tem can directly host safety-critical tasks, this approach is a
feasible design for in-vehicle virtualization. The hypervisor
host domain serves as the guardian of the virtual machine
domain, similar to the role of an independent MCU.

2.3 Limitations of In-Vehicle Microhypervisor
However, in-vehicle microhypervisor solutions present two
significant challenges. One is the requirement for a specific
high-end hardware base, and the other is the performance
of inter-process communication (IPC), which can become a
bottleneck for the entire software-hardware system.

The microkernel can provide verified real-time capabilities
and a minimal trusted computing base for safety-sensitive ap-
plications, thus requiring a hardware platform with safety and
reliability. Furthermore, the microkernel can run complex mul-
timedia and intelligent AI tasks by executing virtual machines.
In this scenario, it demands a hardware foundation with sub-
stantial computational power, abundant peripheral modules
such as display units, GPU modules, AI components, and net-
work modules. Consumer-grade SoC chips lack safety and re-
liability assurances, while automotive-grade MCU chips often
cannot meet the computational and peripheral requirements of
complex multimedia tasks. Typically, automotive-grade SoC
chips are needed to simultaneously run safety-critical and
non-critical tasks. However, as shown in Table 1, the produc-
tion costs of automotive-grade SoC chips are exceptionally
high, and they are currently being adversely affected by global
supply chain shortages [23–25].
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Figure 3: The overview of Cells [26, 27]. Only the virtual
phone running in the foreground is displayed at any time.

Furthermore, within microkernels, any communication be-
tween different user processes is based on IPC, and this is an
operation-intensive process. For instance, if a client process
writes data to an external block device, it first communicates
with the file system, which then notifies the disk device driver
to write data to the block device. All communication is car-
ried out through IPC. Therefore, IPC performance is a crucial
technical metric for microkernels [36].

2.4 Linux Container for In-Car Virtualization
One way to address the challenges discussed in §2.3 is to com-
bine a consumer-grade SoC chip with an automotive-grade
MCU chip. High-computational tasks like deep learning, com-
puter vision, video encoding/decoding, and 3D graphics run
on the ordinary SoC chip, while critical tasks run on the
MCU chip. This approach not only alleviates the shortages of
automotive-grade SoC chips but also reduces costs. Further-
more, this combined chip structure does not require the use of
a complicated microhypervisor. Instead, the Linux container
technology, together with an independent MCU solution, can
better meet the “one-core, multiple-screen” requirements of
intelligent cockpits [37]. The entire solution involves isolat-
ing non-critical subsystems using the container technology to
ensure software service quality. Simultaneously, it employs a
dedicated MCU chip to host safety-critical tasks.

2.5 Android Container Framework
The Linux container technique used by AutoVP is derived
from the Cells project [26, 27], a lightweight Android virtual-
ization framework. It enables multiple containerized Android
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co-driver can have their own in-vehicle infotainment systems running on isolated Android containers.

instances to run simultaneously on the same mobile device
in an isolated manner. As shown in Figure 3, Cells intro-
duces the concept of foreground and background container
systems, where only one container system is displayed in the
foreground while others operate in the background. Cells im-
plements a new device namespace mechanism and user-level
proxy method, which, in conjunction with Linux namespaces,
allows for the multiplexing of hardware resources across mul-
tiple containerized Android instances while providing nearly
lossless performance.

However, the foreground-background design used by Cells
is not applicable to the automotive application scenario, in
which, each virtual system needs to directly provide services
to users simultaneously; in other words, all virtual systems
must be running in the foreground. Additionally, Cells pri-
marily focuses on how to share hardware resources among
multiple virtual Android systems through software virtual-
ization methods. In contrast, in the automotive application
scenario, the emphasis is on isolating and decoupling multiple
virtual systems and reducing interference between them.

Therefore, the virtualization methods of Cells, such as user-
level proxy and mutual-exclusion use of hardware modules,
may not be applicable in automotive cockpits. Furthermore,
in Cells, all virtual phones share hardware resources such as
CPU and memory. When multiple virtual phones run simulta-
neously, they contend for these resources, leading to mutual
interference. In automotive systems, hardware resources also
need to be forcibly isolated.

3 AutoVP Overview

Figure 4 illustrates the architecture of AutoVP, including the
mixed-criticality decoupled design using two low-cost chips.
The consumer-grade SoC chip runs a root namespace and two
container spaces. The root namespace runs AutoVP’s con-
trol plane ( 0 in Figure 4), which has a small software stack
primarily responsible for managing the startup, shutdown, re-
source allocation, and isolation functions of container systems.
The other two container spaces are dedicated to instrument
cluster (IC) display and in-vehicle infotainment (IVI) func-
tions, respectively. These container systems have undergone
software-based resource isolation for CPU, memory, and pe-
ripheral resources. Additionally, the separate MCU chip hosts
safety-critical operations, such as safety monitoring and Con-
troller Area Network (CAN bus). Interconnection between the
SoC chip and MCU chip is facilitated through inter-chip com-
munication technologies such as Serial Peripheral Interface
(SPI). AutoVP employs software virtualization techniques for
various devices such as binder, WiFi network, and sensors,
allowing multiple virtual systems to simultaneously utilize
these devices.

The container hosting the instrument cluster display ( 1 in
Figure 4) consists of the Qt framework abstraction layer [38],
Qt native API, Qt UI, CAN message parsing service, and in-
strument display app. The vehicle data required for the digital
instrumentation comes from the vehicle standard communi-
cation service running on the MCU chip. The instrument
display app on the SoC chip exchanges data with the MCU
chip through the SPI interface ( 3 in Figure 4). This con-



tainer needs to occupy GPU and display hardware resources
to visualize instrument graphical interfaces.

The second container ( 2 in Figure 4) runs a complete
Android system. It is responsible for hosting complex in-
vehicle infotainment functions such as high-definition navi-
gation map, voice broadcasting, Bluetooth headset, and WiFi
network services. It also provides smooth interactive func-
tions to respond promptly to user command operations. This
container occupies most of the SoC chip’s hardware resources,
such as GPU, display, WiFi, camera, Bluetooth, and USB.

Both the two containers are configured with independent
touchscreens for user operations. The display and input sub-
systems of the two containers are completely independent.
Please note that AutoVP supports multiple Android contain-
ers. For example, two isolated Android containers ( 2 vs. 6
in Figure 4) can host separate in-vehicle infotainment systems
for the driver and co-driver, respectively.

For safety-critical functions, AutoVP utilizes a hardware-
based isolation by employing an external MCU chip to host
them ( 4 in Figure 4). This MCU chip is responsible for run-
ning safety-critical functions such as automotive regulation
communication on an embedded real-time OS, serving as a
guardian system to the main SoC chip.

4 In-Vehicle Container Implementation

The development of an in-vehicle container presents a
plethora of challenges, ranging from intricate hardware re-
source multiplexing to the need for a fine-grained isolation
mechanism, and to interactions with safety-critical tasks. In
this regard, AutoVP has made significant advancements over
the Cells solution [26, 27]† to fulfill the requirements of an
intelligent cockpit. Unlike Cells, AutoVP does not rely on the
foreground-background container system design. Instead, all
container systems operate in the foreground. Therefore, our
approach’s crux is to ensure that these virtual systems operate
independently without interfering with each other.

Compared to Cells, AutoVP’s container mainly differs in
three perspectives: device virtualization methods, isolation,
and monitoring mechanisms. AutoVP’s monitoring mecha-
nism allows for the early detection of potential failures in
complex systems running on the SoC chip. We will introduce
them in the follow-up subsections.

4.1 Device Virtualization Methods
AutoVP’s device virtualization involves a significant work-
load, encompassing various board-level and peripheral de-
vices. In particular, the device virtualization methods can be
summarized as follows.

†Cells’s virtualization methods to many hardware devices (e.g., filesystem,
network, display, and power) have been obsolete since Android 6.0.

Table 2: The list of virtualized devices and services. Virtualiza-
tion method ID: (1) multiple identical devices; (2) kernel-level
device virtualization; (3) user-level device virtualization.

Virtualization Virtualized
Method ID Devices and Services

(1) Display, Input, Audio, Bluetooth

(2) Binder, Power Management, Network
Sensors, GPS, SELinux

(3) WiFi, Adb

1. Multiple Identical Devices: In this approach, the hard-
ware base supports multiple instances of the same type
of device, each serving different virtual systems. For in-
stance, in an automotive cockpit, there may be multiple
touchscreen displays. These displays can be allocated
to different virtual systems by modifying the system
configuration.

2. Kernel-level Device Virtualization: In cases where the
hardware base is equipped with a single device, such as
power management, we made modifications to the kernel
power driver to provide data isolation and multiplexing
capabilities for that hardware module, allowing the hard-
ware module to respond to power control requests from
multiple virtual systems simultaneously.

3. User-level Device Virtualization: In scenarios where vir-
tualization at the kernel level for complex devices is chal-
lenging, like the WiFi module, modifications are made to
the user-level WiFi service process. Then, we implement
a system-level IPC mechanism to enable multiple virtual
systems to share the WiFi functionality provided by the
customized WiFi service process.

AutoVP employs the above methods to conduct specific
device virtualization work, resulting in the list as shown in
Table 2. Simultaneously, in order to meet the requirements of
smart cockpit applications, adjustments have been made to
the virtualization methods of certain modules.
One-Core, Multiple-Screen To fulfill the demand for a “one-
core, multiple-screen” smart cockpit, the SoC chip supports
multiple display interfaces, such as Camera Serial Interface
and DisplayPort, allowing the system to connect to multiple in-
dependent touchscreens. We configure separate touchscreens
for both the IC display container ( 1 in Figure 4) and the IVI
container ( 2 in Figure 4) to accommodate user interactions.
The display and input subsystems of these two containers are
entirely independent.
Inter-system Communication Within the automotive cock-
pit, multiple touchscreens are positioned in close proximity.
This configuration necessitates frequent collaboration among
these screens, such as sharing map services from the driver’s
in-vehicle infotainment (IVI) system to the instrument display
screen or sharing a video between the driver’s IVI and the



co-driver’s IVI systems. Therefore, the inter-system commu-
nication mechanism becomes pivotal.

AutoVP achieves this by virtualizing the binder IPC mech-
anism [39], ensuring that each virtual machine (VM) has its
own virtual binder node. The binder driver is a pseudo device
in the kernel and does not correspond to any actual hardware.
We modify the binder driver so that each VM has its own
independent set of data structures within the binder driver;
these binder data structures for different VMs do not interfere
with each other. Furthermore, we introduce a routing and for-
warding mechanism, adding “bridges” between virtual binder
nodes, making it easier for virtual machines to access each
other’s functional services. The virtual binder routing and
forwarding mechanism effectively meets the requirements for
inter-VM screen casting and data transmission. For instance,
AutoVP provides compositor image stacking services in the
IC display container, allowing the IVI container to access
the compositor service to project navigation maps onto the
instrument cluster display screen, thereby enhancing the user
experience.

4.2 Isolation Mechanisms
As an intelligent cockpit system, ensuring an isolation among
different functions is imperative to prevent interference be-
tween them. AutoVP achieves the isolation of various busi-
ness subsystems through several mechanisms within the host
system. First, it employs the chroot mechanism to isolate
the file system environment, thereby separating the software
stacks of each business subsystem. Second, it utilizes the
cgroups mechanism to allocate system hardware resources
such as CPU, memory, and peripherals, ensuring that high-
priority tasks have independent resources to execute critical
functions. Third, AutoVP employs the namespace mechanism
to segregate the kernel resources of different systems, effec-
tively hiding them from each other, thereby reducing inter-
system coupling and ensuring minimal interference among
the various business subsystems. Additionally, it leverages
the new MPAM (Memory System Resource Partitioning and
Monitoring) feature [40] to dynamically isolate resources like
cache and memory bandwidth, thus mitigating performance
interference between different workloads at the hardware level
and ensuring stable performance for high-priority tasks.
Cgroups AutoVP employs the cgroup mechanism [41] to iso-
late the hardware resources utilized by each business subsys-
tem, thus reducing coupling and interference between these
subsystems ( 5 in Figure 4). For instance, the cpuset subsys-
tem is used to allocate independent CPU cores and memory
nodes to task groups; the memory subsystem is employed
to allocate memory usage to task groups, and the devices
subsystem is utilized to allocate peripheral resources to task
groups. AutoVP, taking into account the characteristics of
each business subsystem, engages in precise management of
the hardware resources consumed by these subsystems. This

resctrl
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Figure 5: MPAM utilizes PARTID (Propagation of a Parti-
tion ID) and PMG (Performance Monitoring Group) to label
business groups, and it employs MSC (Memory-System Com-
ponent) configuration list for various hardware modules.

Table 3: Cache and memory bandwidth allocation strategies
for various business subsystems.

Business Subsystem Cache Memory Bandwidth

Instrument Cluster Display 70% 15%
( 1 in Figure 4)

In-Vehicle Infotainment 30% 80%
( 2 in Figure 4)

Root Namespace 0 5%
( 0 in Figure 4)

prevents resource contention among the business subsystems
during their operation, thereby avoiding mutual interference.
For example, in certain scenarios where the IVI container ( 2
in Figure 4) plays multiple videos, consuming a significant
amount of memory resources, this might lead to memory star-
vation in the IC display functions running in 1 of Figure 4.
By implementing resource isolation through the cgroup mech-
anism, AutoVP effectively ensures the long-term stability and
robust operation of each business subsystem.
Namespace AutoVP utilizes the namespace mechanism [42]
to isolate the kernel resources of each system, such as pro-
cesses, networking, file systems, and driver data. This separa-
tion allows multiple business subsystems to hide from each
other, reducing coupling between subsystems and striving to
ensure the independent operation of each business subsystem
without mutual interference. For instance, it becomes possible
to halt a specific business subsystem without affecting the
normal operation of other business subsystems.
MPAM MPAM (Memory System Resource Partitioning and
Monitoring) is a new feature introduced in ARM v8 [43],
enabling the allocation and monitoring of resources such as
cache, memory bandwidth, and SMMU (System Memory
Management Unit). This feature, operating at the hardware
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level, reduces the interference between different workloads,
ensuring the stability of high-priority task performance.

AutoVP leverages the hardware feature of MPAM to dy-
namically isolate resources at runtime for various business
subsystems. For instance, cache and memory bandwidth for
the IC display subsystem ( 1 in Figure 4) and the IVI sub-
system ( 2 in Figure 4) are isolated using MPAM. As shown
in Figure 5, different configurations of cache and memory
bandwidth access policies are tagged with PARTID (Propa-
gation of a Partition ID). These PARTIDs are then bound to
the IC display subsystem and the IVI subsystem, respectively.
Consequently, every time cache and memory resources are
accessed, the resource queries the resource usage policy of the
subsystem associated with the bound PARTID. This control
of resource utilization boundaries reduces resource conflicts
and competition when the IC display subsystem and the IVI
subsystem access cache and memory resources.

We empirically configure cache and memory bandwidth
allocation strategies for business subsystems based on their
specific characteristics, as outlined in Table 3. The IC display
subsystem, although much smaller compared to the IVI sub-
system, demands higher real-time performance. Therefore, it
is allocated a greater share of cache space and a smaller por-
tion of memory bandwidth. This resource allocation strategy
allows the instrument cluster subsystem to dominate more
than half of the cache resources, significantly enhancing cache
hit rates. Besides, it is also assigned 15% of the memory band-
width, reducing interference from the complex central control
Android container. By employing this configuration strategy
to elevate the priority of dynamic resource utilization for crit-
ical instrument cluster tasks, we are able to reduce IC display
function latency and improve stability.

4.3 Monitoring Mechanisms
In Figure 4, the subsystems built on top of the main SoC chip
primarily host non-safety-critical tasks. However, these sub-
systems include certain critical functions that have to interact
with safety-critical data. For example, the IC display sub-
system is responsible for displaying real-time vehicle infor-
mation such as speed, fuel consumption, warning indicators,
and other vehicle status data while the vehicle is in opera-
tion. These pieces of information are particularly crucial for
the driver during the driving process. As a result, AutoVP
needs to implement mechanisms for real-time monitoring of
such functions. These mechanisms are designed to determine
whether these critical functions are operating according to
the prescribed procedures. In the event of any irregularities
or malfunctions detected in these critical functions, the sys-
tem must promptly alert the driver and employ redundancy
mechanisms to rectify the abnormal functions.
kCollectD Kernel Module AutoVP establishes a monitoring
module within the system kernel. As shown in Figure 6, this
module, called kCollectD, periodically collects behavioral
data from critical entities within the system, analyzing and
assessing whether these entities are operating in accordance
with predefined procedures. The critical entities under scrutiny
include processes and kernel modules. The behavioral data
encompass various aspects such as which system interfaces
were invoked, which files were manipulated, the utilization
of heap and stack memory, the CPU time slices consumed,
and the number of frames rendered, among others. Given that
collecting behavioral data from these entities can incur per-
formance overhead, it is imperative to target the acquisition
of key data specific to the relevant business processes and
analyze essential behavioral characteristics. For example, in



the case of the instrument cluster display subsystem where
the displayed content is crucial for the driver, it is essential to
monitor the number of frames of graphics rendered by the IC
display subsystem per second. If, during the periodic analysis
phase, it is determined that a critical entity has deviated from
the prescribed actions, an audit alarm is triggered immediately.
This leads to the termination of the relevant entity’s opera-
tions, followed by the initiation of redundancy mechanisms to
rectify the error. For instance, if it is observed over a period of
time that the number of frames rendered per second by the IC
display subsystem is lower than expected, indicating a freeze
in the display program, the system will sound an alarm to
alert the driver and activate an emergency instrument cluster
program to take over the display screen.
Monitoring Hardware Data Simultaneously, AutoVP’s
monitoring module, kCollectD, also collects hardware infor-
mation from the SoC chip in real-time, such as power, clock,
reset, and temperature. Both collected kernel resources (e.g.,
APIs, files, and networks.) and hardware characteristics (e.g.,
voltage, frequency and temperature) are then stored in an
external flash memory. The Safety Monitor module, which
runs on the MCU chip, analyzes the data stored in the flash
memory and assesses whether the critical functions running
on the SoC are operating normally. For example, if the Safety
Monitor module detects an excessively high CPU voltage,
changes in clock frequency, or excessive temperature on the
SoC chip, it indicates that the software running on the SoC
may not be functioning correctly or could potentially result in
abnormal behavior. In such cases, the Safety Monitor triggers
an alarm sound, notifying the driver of the system’s abnormal
operation and the need for manual intervention.

5 Evaluation

Our experiments focus on measuring performance metrics
from seven aspects: startup time, memory usage, battery con-
sumption, CPU, GPU, network performance, and real-world
workloads. We compare AutoVP with a microhypervisor-
based in-vehicle virtualization product. Although they are de-
signed to run on different hardware bases, we deploy them on
the same automotive-grade SoC chip to preserve the same test
conditions. The commercial product used in our experiments
has terms of use that disallow publication of tool performance
and tool output. Therefore, we anonymize the product name in
this paper. Furthermore, as MPAM is a new feature introduced
in ARM v8 [43], we also want to evaluate the effect of MPAM
on dynamically isolating cache and memory bandwidth.

5.1 Experiment Setup
We conduct performance experiments on top of an automotive-
grade SoC chip (configuration: 8-core ARM Cortex-A710 at
2.15 GHz, ARM Mali G78 GPU, 8GB DDR, 128GB UFS) to

(a) Microkernel + Hypervisor(a) Microkernel + Hypervisor (b) AutoVP Container(b) AutoVP Container

Automotive-grade SoC

Instrument Cluster Display
In-Vehicle Infotainment 

Instrument Cluster Display

In-Vehicle Infotainment 

AvutoVP Containter

Figure 7: Two in-vehicle virtualization solutions are running.

Table 4: The subsystems of two in-vehicle virtualization solu-
tions. The numbers in Row 2∼4 represent the boot sequence
of each subsystem. “IC” is short for instrument cluster.

Boot Microhypervisor AutoVPSequence

(1) Application Domain Root Namespace(Instrument Cluster)

(2) System Domain VM Namespace 1
(IC Display)

(3) Android VM VM Namespace 2
(In-Vehicle Infotainment) (In-Vehicle Infotainment)

run the microhypervisor-based in-vehicle virtualization sys-
tem (commercially licensed) and AutoVP. Please note that
here we also run AutoVP on an automotive-grade SoC in-
stead of a consumer-grade SoC. The primary reason is that
Microhypervisor solutions can only run on top of automotive-
grade SoCs; otherwise, we cannot perform the comparative
evaluation. Due to safety considerations, we are unable to
conduct road testing on an actual vehicle; instead, we use
the simulated data provided by the automotive manufacture
as vehicle-related data. Figure 7 shows the effect of running
both in-vehicle virtualization solutions with simulated vehicle-
related data. The specific subsystems and their boot sequence
for both solutions are listed in Table 4. Next, we present de-
tailed software & hardware configurations for each solution.
Please note that with regards to the static allocation of specific
hardware resources for each subsystem, we adhere to the ref-
erence configuration information provided by the automotive
manufacturer.
Microhypervisor Configurations The instrument cluster
(IC) subsystem, deployed within the microkernel’s applica-
tion domain, consists of a set of graphical display programs.
Hardware resources, including CPU physical core 1 and 2,
500MB of memory, Display 1, and 50% of GPU partition
resources are allocated to the IC subsystem. This group of
programs also includes driver modules that can directly uti-
lize the corresponding hardware devices. The microkernel’s
system domain comprises system components, hardware mod-
ules, and some device drivers, such as network device driver.
The system domain is allocated with CPU physical core 3
and 4, 2GB of memory, storage, and network devices. The in-
vehicle infotainment (IVI) subsystem is deployed in the form
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Figure 8: Standard benchmark evaluation results. “SYS” represents the system domain for the microhypervisor product and the
root namespace for AutoVP, respectively. “IC” is short for instrument cluster, and “IVI” means in-vehicle infotainment.

of an Android virtual machine, which runs the Android ver-
sion of 12.0. We allocate all remaining hardware resources to
the virtual machine, such as CPU physical cores 5∼8, 5.5GB
of memory, 50% of GPU partition resources, and Display 2.
AutoVP Configurations The Linux kernel version used by
AutoVP is 5.10.221. The root namespace require low com-
puting resources to run management panel software, and thus
AutoVP employs cgroup technology to allocate CPU phys-
ical core 1 and 300MB of memory to the root namespace.
The instrument cluster display subsystem runs the Qt graph-
ical display framework (version 5.12.); CPU physical core
2 and 3, 500MB of memory, Display 1, and 50% of GPU
partition resources are allocated to this subsystem. The con-
tainer running Android 12.0 hosts the in-vehicle infotainment
subsystem, which occupies all remaining hardware resources
of the chip, including CPU physical cores 4∼8, 7.2GB of
memory, 50% of GPU partition resources, and Display 2.

5.2 Methodology
According to the boot sequence of each subsystem (see Ta-
ble 4), the method for collecting startup time data involved
sequentially starting the application domain, system domain,
and Android virtual machine for the microhypervisor solution
and recording the startup time. This process was repeated
20 times, and the average startup time was calculated in sec-

onds. Measuring AutoVP’s startup time followed a similar
procedure, but with a boot sequence of the root namespace, IC
display, and Android container. We collect real-time memory
usage data for each subsystem after it has been running stably
for a period of two hours. Similarly, battery consumption data
are recorded within the same two-hour time window.

To collect CPU performance data, we installed the Linpack
benchmark in the application domain, system domain, and
Android virtual machine for the microhypervisor solution,
respectively. We ran the Linpack benchmark for 1 hour and
recorded normalized resource utilization data—we repeated
this process 10 times and calculated the average value. The
CPU measurement of AutoVP followed a similar procedure,
but with performance data collected in the root namespace,
IC display, and Android container. A higher Linpack score
indicates more efficient CPU utilization, resulting in lower
performance overhead. It should be noted that the Linpack
benchmark evaluates the single-core CPU performance.

The method for collecting GPU performance data was sim-
ilar to that for CPU performance testing, but we used the
3DMark benchmark. A higher 3DMark score indicates supe-
rior GPU utilization, leading to reduced performance over-
head. In a similar vein, the method for collecting network
performance data leverages the wget application. A high wget
score is indicative of an efficient utilization of network band-
width, thus resulting in lower bandwidth consumption.



5.3 Performance Measurements
Startup Time Figure 8(a) shows the results of startup time.
The microhypervisor solution, due to its microkernel structure,
can minimize the startup time of the instrument cluster (IC)
subsystem. The IC operates as a microkernel application run-
ning on top of the microkernel OS, enabling a swift initiation
of the IC display. In contrast, AutoVP employs a monolithic
kernel approach, with many drivers deployed in the kernel
mode. During the system startup phase, it is necessary to ini-
tialize all driver modules as a priority, even if certain driver
modules will not be immediately used. This results in a longer
initialization time for the Linux kernel itself in AutoVP. Addi-
tionally, AutoVP requires the container management program
to be started before the IC display can be initiated. Experi-
mental data indicates that the startup time for the IC display in
AutoVP is slower compared to the microhypervisor solution.

However, the microhypervisor needs to first run the sys-
tem domain and then initiate complex software virtualiza-
tion frameworks, such as the virtual machine manager, before
launching the virtualized Linux kernel and subsequently the
Android VM that hosts in-vehicle infotainment functions. Au-
toVP, by contrast, requires initializing the Linux kernel only
once and then running the container management program to
start the Android container. As a result, AutoVP starts the IVI
subsystem faster than the microhypervisor solution.
Memory Usage Figure 8(b) shows the comparison of mem-
ory usage. Both of these two solutions are allocated 500MB
of memory for the IC subsystem. However, in the microhyper-
visor, the IC subsystem also includes display driver and GPU
driver, whereas in AutoVP, the required display and GPU
drivers for the IC run within the Linux kernel. Therefore, the
memory usage of the IC subsystem in the microhypervisor
is slightly higher. Furthermore, the microhypervisor requires
the prior execution of complex software virtualization frame-
work, such as the virtual machine manager, before running the
virtualized Linux kernel and subsequently the Android VM.
In contrast, AutoVP can directly run the Android container
on the Linux kernel. Experimental data demonstrates that the
memory usage of the container in AutoVP is lower than the
that of Android VM in the microhypervisor solution.
Battery Consumption Figure 8(c) shows the measurement
of battery consumption. The IC subsystem in the microhy-
pervisor requires running display driver and GPU driver, as
well as directly managing hardware resources for IC display
peripherals and GPU components. In contrast, the required
display and GPU drivers in AutoVP run within the Linux
kernel. This can explain why the IC subsystem in the mi-
crohypervisor consumes more power. The microhypervisor
solution necessitates the prior execution of complex software
virtualization framework. Additionally, some hardware de-
vices are directly allocated to and managed by the virtualized
Android system. Conversely, AutoVP can directly run the
Android container on the kernel, with the kernel managing

all peripheral hardware. Therefore, experimental data demon-
strates that the power consumption of the Android container in
AutoVP is lower than that of the virtualized Android system
in the microhypervisor solution.
CPU Performance Figure 8(d) shows the scores of Linpack
benchmark, which is the most popular benchmark for ranking
of high performance systems. Since both the microhypervisor
and AutoVP allocate two CPU physical cores and 500MB of
memory to the IC subsystem, the CPU performance data for
the IC subsystem are comparable between the two solutions.
However, the virtualization framework and virtualized Linux
kernel running in the microhypervisor solution consume a
significant amount of CPU and memory resources. As a result,
experimental results indicate that the CPU performance data
for AutoVP’s container is superior to that of the virtualized
Android system in the microhypervisor.
GPU Performance Figure 8(e) shows the scores of 3DMark
benchmark that tests the system’s GPU performance. Both
the microhypervisor and AutoVP employ GPU partitioning
technology, a hardware resource slicing technique that effec-
tively addresses the isolation of GPU resources between the
IC subsystem and the Android VM. Neither the system do-
main of the microhypervisor nor AutoVP’s root namespace
utilizes GPU resources. Therefore, the GPU performance data
obtained from tests conducted on the IC subsystems and the
Android VMs are comparable between these two solutions.
Network Performance The network performance data mea-
sured by wget is depicted in Figure 8(f). While the microhy-
pervisor’s WiFi module is deployed in the system domain,
enabling it to benefit from superior network performance,
AutoVP’s root namespace does not utilize the network in its
normal functioning. Furthermore, neither of the IC subsys-
tems in these two solutions use the network. However, the
Android VM in the microhypervisor necessitates software vir-
tualization techniques to time-share the WiFi functionality in
the system domain. On the other hand, the Android container
in AutoVP requires only Linux kernel features to access exter-
nal networks through the WiFi module. Experimental results
show that the network performance of AutoVP’s container is
significantly better than that of the virtual Android system in
the microhypervisor solution.
Real-world Workloads We run common in-vehicle applica-
tions such as the dashboard, navigation, music, movie, climate
control, vehicle settings, infotainment, Bluetooth connectivity,
voice navigation, and reverse camera in both solutions. We use
Android gfxinfo tool to measure the frame rate (frames drawn
per second) of each application. The frame rate metric reflects
the performance of the application interface and can assess
whether user interactions with the application are smooth.
The evaluation results are depicted in Figure 9, wherein a
higher frame rate correlates with a better quality of the video
or animation. If an application is relatively smooth with a
high frame rate, it indicates good performance in the current
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Figure 9: Comparative performance evaluation results with common in-vehicle applications. The higher the frame rate, the better
the quality of the video or animation will be.

system environment, including CPU, GPU, and file I/O. Ex-
perimental results indicate that the frame rates per second for
common in-vehicle applications are higher when running in
AutoVP compared to the Hypervisor solution.
Summary The microhypervisor solution, owing to its micro-
kernel structure, enables a quick launch of its IC subsystem.
In contrast, AutoVP runs the IC display on the Linux mono-
lithic kernel, which fails to ensure a rapid startup of the IC
display. The distinct advantage of AutoVP lies in its ability to
ensure efficient utilization of system resources by the Android
container. In this configuration, the Android container does
not need to run complex virtualization frameworks, and thus
can make better use of CPU, network, memory, and battery,
resulting in a smoother user experience when running com-
mon in-vehicle applications. Due to the same GPU resource
allocation, the microhypervisor’s VM achieves GPU resource
utilization efficiency that is on par with AutoVP’s container.

5.4 MPAM Measurements
Due to the noticeable isolation effect of MPAM on mixed-
criticality systems [40, 43], we conduced a separate experi-
ment for MPAM resource isolation scenarios in AutoVP. The
experiment involved disabling/enabling the MPAM mecha-
nism for IC display and IVI subsystems. For the initial 14
minutes, IC display and IVI shared CPU cache and mem-
ory bandwidth resources. At the 15th minute, MPAM was
activated. We follow the specific cache and memory band-
width allocation strategies for various business subsystems,
as outlined in Table 3.

As show in Appendix Figure A1(a), it is evident that with-
out enabling MPAM, there is intense competition between
IC and IVI services for cache resources, leading to signifi-
cant mutual interference. However, upon enabling MPAM,
the usage of cache resources by IC and IVI services stabilized.
Notably, IVI’s usage of cache resources was significantly sup-
pressed, with IC’s cache usage percentage increasing to about
70%. This drastic improvement notably enhanced cache hit
rates and consequently improved IC’s performance. However,
Appendix Figure A1(b) reveals that the impact of MPAM

mechanism on memory bandwidth control was minimal. One
contributing factor is that MPAM is a new mechanism in-
troduced by ARM v8, and the current testbed does not offer
comprehensive support for the new MPAM mechanism.

6 Discussion & Conclusion

The development of smart automobile cockpits for civilian
vehicles needs to balance multiple factors such as safety, reli-
ability, and production costs. The advantages of AutoVP are
evident: cost-effectiveness and an almost entirely open-source
system. Thanks to the lightweight virtualization features of
containers, it allows non-safety-critical tasks to efficiently uti-
lize hardware resources. AutoVP is poised to have enduring
significance, persisting beyond the resolution of the automo-
tive chip crisis [23–25]. At present, our approach involves
a static resource allocation strategy, as outlined in Table 3.
Future endeavors will delve into enabling dynamic resource
allocation. Furthermore, we will also explore how to pro-
vide real-time capabilities for safety-critical tasks on a Linux
system without the need for an external MCU chip.
Conclusion In this paper, we present a new intelligent cockpit
virtualization architecture. We segregate safety-critical func-
tions from other non-critical functions into two low-cost chips,
respectively. We also run an Android container on the main
SoC chip to host non-safety-critical tasks. Our Android con-
tainer solution features a rich software ecosystem, excellent
performance, and inherent cost-effectiveness. By incorporat-
ing automotive-grade MCUs to handle safety-critical tasks,
the entire system complies with automotive standards. Our
comparative evaluation results with a commercial in-vehicle
microhypervisor product are exciting.
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Figure A1: The measurement of MPAM effects on dynamically isolating cache and memory bandwidth.
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