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Abstract. Probing physical bits in hardware has compromised cryp-
tographic systems. This work investigates how to instantiate Shamir’s
secret sharing so that the physical probes into its shares reveal statisti-
cally insignificant information about the secret.

Over prime fields, Maji, Nguyen, Paskin-Cherniavsky, Suad, and
Wang (EUROCRYPT 2021) proved that choosing random evaluation
places achieves this objective with high probability. Our work extends
their randomized construction to composite order fields – particularly
for fields with characteristic 2. Next, this work presents an algorithm
to classify evaluation places as secure or vulnerable against physical-bit
probes for some specific cases.

Our security analysis of the randomized construction is Fourier-
analytic, and the classification techniques are combinatorial. Our analy-
sis relies on (1) contemporary Bézout-theorem-type algebraic complexity
results that bound the number of simultaneous zeroes of a system of poly-
nomial equations over composite order fields and (2) characterization of
the zeroes of an appropriate generalized Vandermonde determinant.

1 Introduction

Threshold secret-sharing schemes, like Shamir’s secret-sharing [37], distribute a
secret among parties so that a quorum can reconstruct the secret. Their security
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is against an adversary who obtains the shares of a group of parties (who do not
form the quorum) and has no information on the remaining shares. Side-channel
attacks have repeatedly circumvented such “all-or-nothing” corruption models
and revealed partial information about the secret by accumulating small leak-
age from all shares. A broad mathematical model for such side-channel attacks
considers independent leakage from each share, i.e., local leakage.

Locally leakage-resilient secret sharing, introduced by Benhamouda et al. [5,
6] and (also implicit in) Goyal & Kumar [20], is a security metric that ensures
the statistical independence of the secret and the local leakage from the shares.
Inspired by real-world side-channel attacks, Ishai et al. [24] introduced the promi-
nent physical bit probing model that locally leaks physical bits from memory
storing the shares. Given the ubiquity of Shamir’s secret sharing in privacy and
cryptography technologies, it is natural to wonder:

How do we instantiate Shamir’s secret sharing
to protect its secret against physical bit probes on the shares?

Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang [27] proved that for large
prime moduli and reconstruction threshold � 2, choosing the evaluation places
for Shamir’s secret sharing at random results in a locally leakage-resilient scheme
secure against physical bit leakage with high probability. This work investigates
the secret sharing over composite order fields, specifically large characteristic-2
fields used widely in practice.

Additional Motivation. Our research contributes to NIST’s recent standardiza-
tion efforts for threshold cryptographic schemes [9]. The security of Shamir’s
secret sharing is critical to this effort due to its applications in distributed key
generation (for private and public-key primitives) and as a gadget in other
higher-level primitives like secure computation. Section 1.3 presents another
motivation for the question investigated in this work from the perspective of
side-channel attacks.

1.1 Basic Preliminaries

This section presents basic definitions to facilitate the presentation of our results.
Consider Shamir’s secret sharing among n parties with reconstruction threshold
k. Let F be a finite field of order q = pd, where p � 2 is a prime and d ∈
{1, 2, . . . }. Elements of F are stored as length-d vectors of Fp elements, each
stored in their binary representation. The security parameter λ is the number of
bits required to represent each share, i.e., λ = d ·�log2 p�. Shamir’s secret sharing
chooses a random F -polynomial P (Z) of degree < k such that P (0) = s, the
secret. The shares are si = P (Xi), for i ∈ {1, 2, . . . , n}, where X1, X2, . . . , Xn ∈
F ∗ are distinct evaluation places.

For a secret s ∈ F , represent the leakage joint distribution by �(s), where
�(·) represents the leakage function. Following [5,6], the insecurity of a secret
sharing against a leakage class L is

max
�∈L

max
s,s′∈F

SD (�(s) , �(s′)) . (1)
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Here, SD (�(s) , �(s′)) represents the statistical distance between the leakage
distributions when the secrets are s and s′.

This work considers physical bit leakages introduced by [24]. They leak
arbitrary mi physical bits from the i-th share, for i ∈ {1, 2, . . . , n} and mi ∈
{0, 1, . . . }. The total leakage M = m1 + m2 +· · · + mn parameterizes our leak-
age class; this family of local leakages is represented by PHYS(M). This leakage
class, in particular, allows the adversary to obtain the entire shares of a few
parties and partial information from the remaining shares.1

1.2 Our Results

Result 1 (Randomized Construction for Composite Order Finite
Fields)

Consider Shamir’s secret sharing with evaluation places X1, X2, . . . , Xn ∈ F ∗

chosen uniformly at random. Suppose the total leakage m1 + m2 + · · · + mn �

ρ · (k − 1) · λ, where

ρ :=

{
(1 − 1/p), for 2 � p < (k − 1),

1, otherwise.

With probability 1−poly(k)/
√

q over the choice of evaluation places, the resulting
secret sharing has poly(k)/

√
q insecurity against physical bit leakages.

A randomness beacon [34] or coin-tossing protocol (depending on the applica-
tion scenario) can generate public randomness to instantiate our randomized
construction. In cryptographic applications, the number of parties n and the
reconstruction threshold k are (at most) poly(λ) and, in several scenarios, con-
stants as well. On the other hand, the order of the field Fq is exponential in
the security parameter λ. Therefore, our result guarantees that the insecurity is
exponentially small with probability exponentially close to 1. Section 1.4 presents
the technical overview of our randomized construction.

Remark 1 (Clarification). The result above ignores a poly log(λ) term for clar-
ity of presentation. Corollary 2, Theorem 3, and Theorem 4 present the exact
technical statement.

Comparison with the Result over Prime Fields. For prime fields (i.e., q = p),
Maji, Nguyen, Paskin-Cherniavsky, Suad, Wang [27] proved that randomly
choosing evaluation places results in a secure scheme as long as the total phys-
ical bit leakage m1 + m2 + . . . + mn is less than the total entropy in the secret
shares of the secret 0, which is (roughly) (k−1) ·λ. In our result, the permissible
leakage tolerance may be slightly smaller for composite order fields, depending
on the field characteristic. When p � (k−1), our tolerance coincides with theirs.

1 Leakage-resilient secure computation considers adversaries that corrupt parties to
obtain their shares and leak additional information from honest parties’ shares.
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For small characteristic fields 2 � p < (k − 1), our tolerance is (1 − 1/p) times
smaller.

Ideally, it is desirable to derandomize such randomized constructions because
adversarially set randomness can make the scheme insecure, unbeknownst to the
honest parties. Even for a fixed leakage �, non-trivial techniques to estimate the
insecurity expression in Eq. 1 are unknown. Toward this objective, we present a
classification algorithm that identifies secure evaluation places for k = 2 against
single block-leakage per share. Recall that the x ∈ Fq is represented as a length-d
vector of Fp elements. The adversary can leak one Fp element from this vec-
tor representation of x. Single block leakage can simulate multiple physical bit
leakages from the same block of the share.

Result 2 Against single block leakage from each share, Shamir’s secret shar-
ing is either perfectly secure or completely insecure. Given evaluation places
X1, X2, . . . , Xn as input, our algorithm (Fig. 1) correctly classifies them as secure
or not.

The leakage distribution is independent of the secret in a perfectly secure secret
sharing. A completely insecure secret sharing has two secrets the leakage can
always distinguish. We also identify a block leakage attack if the evaluation places
are insecure. Evaluation places satisfy a dichotomy; they are either perfectly
secure or completely insecure – there is no “partial” insecurity. We prove that
at least 1 − dnpn−1/q fraction of the evaluation places are secure, which is close
to 1 for n close to d. The run-time of our algorithm is dnpoly(lambda), which
may be inefficient for large n. However, avoiding this factor seems challenging
because there are dn different block leakage attacks, and our algorithm outputs
the leakage attack when evaluation places are vulnerable. Section 1.5 presents
the technical overview of our classification result.

1.3 Prior Related Works

Physical Bit Probing Attacks. Motivated by attacks on cryptosystems,
Ishai et al. [24] introduced a powerful leakage model that probes physical bits
in the memory storing the shares. On the additive secret-sharing scheme over
prime fields Fp among n parties, Maji et al. [27] introduced a local attack that
leaks the parity of each share by probing their least significant bit (namely,
the parity-of-the-parities attacker). This attack can distinguish two secrets with
(2/π)n ≈ (0.63)n advantage [1,27,28] for any prime p. Thus, additive secret
sharing is vulnerable when the number of shares is small. Furthermore, the dis-
tinguishing advantage of the attack increases as the order p of the prime field
decreases. In particular, over F2, this leakage can always distinguish secrets 0
and 1, irrespective of the number of parties.

Shamir’s secret sharing inherits these vulnerabilities if its evaluation places
are carelessly chosen [13,27]. Over composite order fields, the threat of these
attacks is determined by the field’s characteristic – the smaller the characteristic,
the more devastating the attack. For example, over characteristic-2 fields, the
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parity-of-the-parities attacker can distinguish the secret 0, 1 ∈ F2d with certainty,
where d ∈ {1, 2, . . . }.

The set of these specific vulnerable evaluation places is known to have an
exponentially small density in the set of all possible evaluation places.

Given this background, it is natural to wonder: Are there additional vulnera-
ble evaluation places? What is the density of the set of all vulnerable evaluation
places against physical bit probing attacks? Can we identify the vulnerable eval-
uation places? Our work proves that the density of these vulnerable evaluation
places is exponentially small, even when allowing multiple probes per share. We
also characterize all vulnerable evaluation places for a few parameter choices.

Other Related Works. A large body of works constructs non-linear
leakage-resilient secret-sharing schemes [2,3,7,8,10,11,16,17,23,26,32,38]. Ben-
hamouda et al. [5] initiated the investigation of the security of additive and
Shamir’s secret sharing against local leakage attacks. A sequence of works con-
siders arbitrary single-bit local leakage from each share of Shamir’s secret shar-
ing. Against such schemes, when the ratio of the reconstruction threshold to
the number of parties is � 0.69, the secret sharing is secure for all evaluation
places [5,6,25,29,31]. However, such schemes cannot facilitate secure multipli-
cation, which requires the ratio to be < 0.5. The scope of our work includes
small reconstruction thresholds, for example, k � 2, and many parties. So, our
results lead to leakage-resilient secure multiplication of secrets against physical
bit probes.

Codeword Repairing – An Antithetical Objective. Guruswami and Wootters [21,
22] introduced repairing Reed-Solomon codewords. There is a vast literature
on this topic [12,14,15,18,19,35,36,39,40,42,43]; refer to [12, Section 6] for the
applicability of these results to the security of Shamir’s secret sharing. These
repairing algorithms reconstruct the entire secret using small leakage per share,
a strongly antithetical objective to leakage resilience. Leakage resilience insists
that leakage from the shares reveals no statistically significant information about
the secret, not just ruling out the possibility of reconstructing the entire secret.
Nielsen and Simkin [33] demonstrated such attacks that reconstruct the secret
with some probability. Unsurprisingly, leakage resilience has been significantly
challenging to achieve.

1.4 Technical Overview: Randomized Construction

We will prove that Shamir’s secret sharing is leakage-resilient against physical
probes for most evaluation places X = (X1, X2, . . . , Xn). We illustrate the tech-
nical ideas using m = 1, i.e., a single physical bit probe per share. The extension
of the analysis for the general case is included at the end of this section. Our
analysis will follow the blueprint of [27].
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Reduction 1. Fix two secrets s.s′ ∈ F . We prove the following two bounds. By
now, standard Fourier-analytic techniques in the literature [5,27] upper bound
the statistical distance of the leakage as follows (see Proposition 3),

SD (�(s) , �(s′)) �
∑

t∈{0,1}n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

,

where 1ti
is the indicator of the set {x ∈ F : �i(x) = ti}, CX is the generalized

Reed-Solomon code and is the set of all possible secret shares of secret 0 in
Shamir’s scheme with evaluation places X, and C⊥

X is the dual code of CX .
Next, we prove that this upper bound is small in expectation over randomly

chosen evaluation places X ∈ (F ∗)n (Lemma 8). That is,

EX

⎡

£
∑

t∈{0,1}n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)¤

⎦ � exp(−Θ(λ)).

This upper bound is sufficient for our objective. We use a union bound over
all possible leakage functions in the family to conclude that most evaluation
places result in a locally leakage-resilient Shamir’s secret sharing. Next, a Markov
inequality leads to the conclusion that nearly all evaluation places are leakage-
resilient, except an exponentially small fraction.

Reduction 2. We use Fourier analysis over composite order fields to establish the
above second bound. The left-hand side of the inequality is rewritten as

∑

t∈{0,1}n

∑

α∈F n\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

· Pr
X

[
α ∈ C⊥

X

]

Section 5 reduces this estimation to the following two subproblems.
Subproblem 1: Our aim is to upper-bound the probability that a vector α

belongs to the dual code C⊥
X . Estimating this probability is equivalent to count-

ing the simultaneous zeroes of the equation below.

»
¼¼¼½

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

¾
¿¿¿À ·

»
¼¼¼¼¼¼½

α1

α2

...

...
αn

¾
¿¿¿¿¿¿À

=

»
¼¼¼½

0
0
...
0

¾
¿¿¿À .

Our objective is to count the number of X ∈ (F ∗)n satisfying the equation above
such that X1, X2, . . . , Xn are distinct.

We rely on a contemporary Bézout-like theorem, particularly a form with
an easy-to-verify analytic test (refer to Imported Theorem 1), to claim that the
number of solutions is bounded. [27] used [41]’s result for prime fields; we use



292 H. K. Maji et al.

[4]’s very recent result for composite order fields. There are further nuances when
working over composite order fields highlighted below. Consider the following
cases:

1. If p � k, then we fix (n − k + 1) variables to reduce the above equation to a
square system of polynomials with (k − 1) variables and (k − 1) polynomials.
By Imported Theorem 1, there will be at most (k−1)! solutions. Consequently,
overall, the number of solutions X ∈ (F ∗)n is at most (k−1)!·pn−k+1 (Lemma
1).

2. If p = 2, we have to do a more subtle analysis, reducing the equation to a
square system with k/2 variables and k/2 polynomials. The subtlety arises
because we cannot use even powers in our system of equations, a concern
similar to Example 1 in Sect. 1.6. Instead, we will use equations with odd
powers, cutting the size of the system of equations to (roughly) k/2, down
from (k − 1). Like the previous case, the number of solutions is at most
(k − 1)! · pn−k/2 (Lemma 2).

3. If 3 � p < k, we prove the result for p = (k−1) or p = k−2 explicitly (Lemma
4). We can also write the solution in general with roughly 2k2/(q −1) density
of roots (Lemma 3).

Section 1.6 elaborates on this aspect of our technical analysis.
Subproblem 2: After problem 1 is solved, we bound the �1-Fourier norm of

the physical bit leakage function (Sect. 4). That is, for every ti ∈ {0, 1}, the
objective is to upper bound

∥∥∥1̂ti

∥∥∥
1

:=
∑

αi∈F

∣∣∣1̂ti
(αi)
∣∣∣

Our proof heavily relies on the composite order field F having subgroups (sub-
spaces). We show that �1-Fourier norm of a one-bit physical leakage function
over F is (less than or) equal to that over the base (prime) field Fp. Then, we
apply the bound for �1-Fourier norm of physical leakage over the prime field in
[27] when p > 2. Using a different analysis, we provide a stronger bound when
p = 2. See Sect. 4 for details.

Resolving the two problems above completes the proof of Theorem 1.

Extension to multiple-bit leakage. Suppose that the adversary leaks mi bits from
the i-th share. We employ the approach in [27] to prove the result. Consider secret
sharing, where the i-th share is repeated mi times. The leakage distribution
induced by the mi-bit physical leakage on Shamir’s scheme is identical to that
induced by the one-bit physical leakage on the new scheme with repeated shares.
Then, the technical analysis proceeds analogously to the presentation above.
Theorem 2 summarizes this result.

1.5 Technical Overview: Classification Algorithm

Consider n = 2 parties and reconstruction threshold k = 2. Consider Shamir’s
secret sharing over Fq, where q = pd and d ∈ {2, 3, . . . }. To begin, suppose the
evaluation places are (X1, X2) ∈ (Fq)

n
.
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Interpret Fq
∼= Fp[ζ]/Π(ζ), where Π(ζ) is an irreducible Fp-polynomial with

degree d. Represent elements of Fq as a length-d vector of Fp elements. An
element x ∈ Fq that is the polynomial x0 + x1ζ +· · · + xd−1ζ

d−1 is represented
as the vector (x0, x1, . . . , xd−1) ∈ F d

p . This section considers single block leakage
– leaking the i-th block of x ∈ Fq reveals xi ∈ Fp, where i ∈ {0, 1, . . . , d − 1}.
Our objective is to determine whether Shamir’s secret sharing (with the specific
evaluation places) is secure against single block leakage from each share.

Consider a secret s ∈ Fq. The polynomial to generate its shares is P (Z) =
s + P1 · Z, where P1 ∈ Fp is chosen uniformly at random. The two shares are

( s + P1X1 , s + P1X2 ) .

Consider arbitrary i, j ∈ {0, 1, . . . , d−1} and the leakage function that leaks the
first share’s i-th block and the second share’s j-th block. So, the leakage joint
distribution is: (

(s + P1X1)i , (s + P1X2)j

)
.

By a change of random variable, this distribution is identical to

(
(Q)i ,

(
Q · (X2X

−1
1 ) + s′

)
j

)
,

where s′ = s ·
(
1 − X2X

−1
1

)
, an Fq linear automorphism and Q ∈ Fq is chosen

uniformly at random.
We prove a technical result (Proposition 4) similar to the proof strategy

of [30]: There is η(i) ∈ Fq such that (x)i =
(
x · η(i)

)
0
, for all x ∈ Fq and

i ∈ {0, 1, . . . , d − 1}. Therefore, the leakage is identical to

( (
Q · η(i)

)

0
,
(
Q · (X2X

−1
1 ) · η(j) + s′′

)

0

)
,

where s �→ s′′ is a linear automorphism over Fq. Next, by renaming the random
variables, the leakage distribution is:

(
(R)0 ,

(
R · (X2X

−1
1 ) ·

(
η(j)η(i)−1

)
+ s′′

)

0

)
.

To conclude, the leakage joint distribution is

( R0 , (R · β(i, j) + s′′)0 ) ,

where β(i, j) := X2X
−1
1 · η(j)(η(i))−1.

Fix the leakage r0 := R0 ∈ Fp. Define V = {x ∈ Fq : x0 = 0}. We know that
R is a uniformly random sample from the set V + r0 ⊆ Fq. We will present a
technical result (Lemma 9) proving the following: For any β ∈ Fq \ Fp, for x
sampled uniformly at random from V + q0, the distribution (x · β)0 is uniformly
at random over Fp.

2

2 Looking ahead, we will prove a significantly stronger generalization of Lemma 9 for
arbitrary number of parties.
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Using this result, we conclude that the distribution (R · β(i, j) + s′′′)0 is uni-
formly at random over Fp, conditioned on the leakage from the first share being

q0. Therefore, the leakage is uniformly distributed over (Fp)
2
, irrespective of the

secret s, as long as

β(i, j) := X2X
−1
1 · η(i)(η(j))−1 ∈ Fq \ Fp.

So, Shamir’s secret sharing with evaluation places (X1, X2) is perfectly secure
against block leakage if the above condition holds for all i, j ∈ {0, 1, . . . , d − 1}.

Furthermore, this characterization is tight. When β(i, j) ∈ Fp, then two
appropriate secrets can always be distinguished. Without loss of generality, con-
sider i = j = 0 and X2 = c · X1, for some c ∈ Fp. For secret s = 0, the identity
c · (s1)0 + (s2)0 = 0 will be satisfied, where s1, s2 are the two shares. For secret
s = 1, this identity will never be satisfied.

Based on this analysis, the following algorithm tests the security of evaluation
places (X1, X2):

1. Initialize the bad set B = ∅.
2. For each i, j ∈ {0, 1, . . . , d − 1}: Update B ←− B

⋃
Fp · (η(i))−1η(j).

3. If α2α
−1
1 
∈ B: return “Secure;” else, return “Insecure.”

This proves that at least 1 − d2p/q fraction of evaluation places are secure.

Extension to Larger Number n of Parties. Consider Shamir’s secret shar-
ing for n parties and reconstruction threshold k = 2. The evaluation places
are X1, X2, . . . , Xn ∈ F ∗ and the shares are s1, s2, . . . , sn. Consider leaking
blocks i1, i2, . . . , in from shares s1, s2, . . . , sn, respectively, where i1, i2, . . . , in ∈
{0, 1, . . . , d − 1}. The joint leakage distribution is:

(
(s1)i1 , (s2)i2 , . . . , (sn)in

)
,

where si = s + P1 · Xi, for i ∈ {1, 2, . . . , n} and uniformly at random P1 ∈ Fq.
Similar to the analysis for (n, k) = (2, 2) above, the previous distribution is

identical to the leakage distribution:

( (
QX1η

(i1)
)

0
,
(
QX2η

(i2)
)

0
+ t2 , . . . ,

(
QXnη(in)

)

0
+ tn

)
,

where s �→ tj are appropriate linear automorphisms over Fq, for all j ∈
{2, 3, . . . , n} and uniformly at random Q ∈ Fq. Similar to the approach before,
our objective is to show that the evaluation places X1, X2, . . . , Xn are secure if
(and only if) the following elements

X1η
(i1), X2η

(i2), . . . , Xnη(in) ∈ Fq

are all Fp-linearly independent.
If some of these elements are linearly dependent over Fp, then the leakages

also satisfy the same linear dependence when the secret s = 0. For s = 1, this
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particular linear dependence will not hold. We prove a technical result (Lemma
10) showing that if these elements above are linearly independent, then the
distribution

( (
QX1η

(i1)
)

0
,
(
QX2η

(i2)
)

0
, . . . ,

(
QXnη(in)

)

0

)

is identical to the uniform distribution over (Fp)
n

for uniformly random Q ∈ Fq.
From this fact, it is clear that the leakage distribution is also uniformly ran-
dom over (Fp)

n. So, the secret sharing is perfectly secure against this particular
leakage.

Building on this, we have the following algorithm to test the security of
evaluation places X1, X2, . . . , Xn:

1. For each i1, i2, . . . , in ∈ {0, 1, . . . , d − 1}: If the set{
X1η

(i1), X2η
(i2), . . . , Xnη(in)

}
⊆ Fq is not Fp-linearly indepen-

dent, return “Insecure.”
2. Return “Secure.”

This algorithm demonstrates that (roughly) at least 1 − dnpn−1/q fraction
of the evaluation places are secure. This fraction is 1 − o(1) for d = λ − o(λ).
The running time of our algorithm is dnpoly(lambda), which may be inefficient
for large n.

1.6 Discussion: Jacobian Test & the Number of Isolated Zeroes

Overview. Generally speaking, there are two types of “bad” cases for our ran-
domized construction: (1) zeroes of a Jacobian and (2) (isolated) zeroes of a
system of polynomial equations. The zeroes of the Jacobian are due to “redun-
dancies” in the system of equations; for example, two evaluation places being
identical. For prime fields, this was the only form of badness it captured. For
composite order fields, there are additional such bad cases; worked-out exam-
ples below will illustrate them. However, the density of the set of these zeroes
is poly(k)/q, an exponentially small number. Outside the Jacobian’s zeroes, the
(isolated) zeroes of the system of polynomial equations (specifically correspond-
ing to a generalized Vandermonde matrix being rank deficient) are the “Bézout-
like” zeroes. Their number is upper-bounded by k! (the product of degree), and
their density is k!/qk � k/q, exponentially small as well.

The Details. This section closely follows the notation and presentation in [4],
which we felt was more approachable. Let fj ∈ F [X1, X2, . . . , Xk] be a poly-
nomial of degree dj ∈ {1, 2, . . . }, where j ∈ {1, 2, . . . , k} and F is an arbitrary
finite field. The objective is to count the simultaneous zeroes of fj = 0 for all
j ∈ {1, 2, . . . , k}. We represent the system as f = 0 for brevity. We define the
corresponding Jacobian as the determinant below:

J(f) := det

(
∂fj

∂Xi

)

i,j∈{1,2,...,k}

∈ F [X1, X2, . . . , Xk].
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For a ∈ F k, f(a) represents the evaluation of the system of polynomials at a,
and J(f ;a) represents the evaluation of the Jacobian J(f) at a.

Definition 1 (Isolated Zero). An a ∈ F k is an isolated zero of the system
f = 0, if f(a) = 0 but J(f ;a) 
= 0.

Counting all the zeroes of f = 0 is challenging. However, [4] presents a bound
for the number of isolated zeroes of a system of polynomial equations.

Imported Result 1 (Corollary 1.3 in [4]) Let N (f) represent the number of
isolated zeroes of the system of equations f = 0, then N (f) � d1 · d2· · · dk.

Wooley [41] proved this result for prime fields F , and Maji et al. [27] used
Wooley’s result to prove the leakage resilience of Shamir’s secret sharing over
prime fields. Zhao [44] extended Wooley’s result to arbitrary finite fields, and
Bafna et al. [4] present an elementary proof for this result (and fill some missing
gaps in the proof of [44]).

Our high-level strategy for using this imported result is the following. We will
pick random a ∈ F k and hope that only a few of them will satisfy J(f ;a) = 0
or f(a) = 0. For the remaining a (whose density will be close to 1), our analysis
will show that they correspond to “secure Shamir’s scheme.”

Worked-Out Examples. Example 1. Let F be a finite field of characteristic
2. Consider the system of equations f1 = X1 + X2 = 0 and f2 = X2

1 + X2
2 = 0,

where k = 2. Note that the Jacobian of this system of equations is

J(f) = det

(
1 2 · X1

1 2 · X2

)
= 0,

for all (X1, X2) ∈ F k, because F has characteristic 2 and 2·X = 0 for any X ∈ F .
Since the Jacobian is (identical to) the 0 polynomial, there are no isolated zeroes.

Example 2. Let F be a finite field of characteristic 2. Consider the system of
equations f1 = X1 + X2 = 0 and f2 = X3

1 + X3
2 = 0, where k = 2. Note that the

Jacobian of this system of equations is

J(f) = det

(
1 3 · X2

1

1 3 · X2
2

)
= 3 · (X2

1 − X2
2 ).

Note that (for a characteristic 2 field F ) the Jacobian J(f ;a) 
= 0 if (and only if)
a1, a2 are distinct. So, among all a ∈ F k, the number of isolated solution (i.e.,
where J(f ;a) 
= 0) is at most d1 · d2 = 1 · 3 = 3.

Example 3. Let F be a finite field of characteristic 3. Consider the system
of equations f1 = X1 + X2 + X3 = 0, f2 = X2

1 + X2
2 + X2

3 = 0, and f3 =
X4

1 + X4
2 + X4

3 = 0, where k = 3. The Jacobian is

J(f) = det





1 2 · X1 4 · X
3

1

1 2 · X2 4 · X
3

2

1 2 · X3 4 · X
3

3



 = 8 · (X1 − X2)(X2 − X3)(X3 − X1) · (X1 + X2 + X3) .

Note that J(f ;a) = 0 if (and only if)
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1. a1, a2, a3 are not distinct, or
2. a1 + a2 + a3 = 0.

This example highlights that the Jacobian can also be 0 in many new and unex-
pected ways over composite order fields. Such determinants are referred to as
generalized Vandermonde determinants, and identifying their zeroes is an open
research problem in mathematics. When the Jacobian is not zero, there are at
most d1 · d2 · d3 = 8 values of a ∈ F k such that f(a) = 0.

Example 4. A more typical example will be the following. Suppose F is a
finite field of characteristic p > k. For j ∈ {1, 2, . . . , k}, consider the equation

fj =
∑k

i=1 Xj
i = 0. In this case, the Jacobian is the standard Vandermonde

matrix

J(f) = det
(
jXj−1

i

)

i,j∈{1,2,...,k}
= k! ·

∏

1�i<j�k

(Xi − Xj) .

The Jacobian is 0 if (and only if) X1, X2, . . . , Xk are not all distinct. When,
X1, X2, . . . , Xk are all distinct, then f(a) = 0 has at most d1 · d2· · · dk = k!
isolated zeroes.

2 Preliminaries

We always use F to denote a finite field of order pd for some prime p and
positive integer d. The set F [X1, X2, . . . , Xn] denotes the set of all multivariate
polynomials on X1, X2, . . . , Xn whose coefficients are in F . We use bold letters
X, �,α, . . . to denote vectors whose length will be apparent in the context. For
example, X usually denotes the vector (X1, X2, . . . , Xn) of length n.

For any set S, we use US to denote the uniform distribution over the set S.
The 1S represents its indicator function.

Statistical Distance. For any two distributions P and Q over a countable
sample space, the statistical distance between the two distributions, represented
by SD(P,Q), is defined as 1

2

∑
x |Pr[P = x] − Pr[Q = x]|.

We shall use f(λ) ∼ g(λ) if f(λ) = (1 + o(1)) g(λ). Additionally, we write
f(λ) � g(λ) if f(λ) � (1 + o(1)) g(λ).

2.1 Secret Sharing Schemes

Definition 2 ((n, k,X)F -Shamir Secret Sharing). Let F be a finite field and
n, k be positive integers such that k � n. Let X = (X1, X2, . . . , Xn) ∈ (F ∗)n be n
distinct evaluation places. The corresponding (n, k,X)F -Shamir secret sharing,
denoted as ShamirSS(n, k,X)F , is defined as follows.

1. Sharing phase: For any secret s ∈ F , ShareX (s) randomly picks a F -
polynomial P (z) of degree strictly less than k such that P (0) = s. The shares
are si = P (Xi) for i ∈ {1, 2, . . . , n}.

2. Reconstruction phase: Given any si1 , si2 , . . . , sit
shares for some t � k, the

reconstruction algorithm RecX interpolates to obtain the unique polynomial
f ∈ F [X]/Xk satisfying f(Xij

) = sij
for every 1 � j � t, and outputs f(0)

to be the reconstructed secret.
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2.2 Physical-Bit Leakages and Leakage-Resilient Secret Sharing

Every element x = x0 + x1ζ + · · · + xd−1ζ
d−1 ∈ F is equivalently represented

as x = (x0, x1, . . . , xd−1). Effectively, each element of F is stored as a length-d
vector of Fp elements, each stored as �log2 p�-bit in their binary representation.
The security parameter λ = d �log2 p� is the number of bits for each element in
F . For example, in the finite field F52 with 25 elements, λ = 6, the element 3 is
stored as (011, 000), and the element 1 + 4ζ is stored as (001, 100).

Definition 3. An m-bit physical leakage function � = (�1, �2, . . . , �n) on
(n, k,X)F -Shamir secret sharing leaks m physical bits from every share locally,
where each �i : F → {0, 1}m for 1 � i � n. For a secret s ∈ F , the joint leakage
distribution, denoted as �(s), is defined as the following experiment.

1. Sample (s1, s2, . . . , sn) ← ShareX (s),
2. Output (�1(s1), �2(s2), . . . , �n(sn)).

Definition 4 ((m, ε)F -LLRSS). Let m = (m1,m2, . . . , mn). An (n, k,X)F -
Shamir secret sharing scheme is an (m, ε)-local-leakage-resilient secret sharing
scheme against m physical-bit leakage (represented as (m, ε)F -LLRSS), if it
provides the following guarantee. For any two secrets s, s′ ∈ F and any m-
bit physical leakage function � = (�1, �2, . . . , �n), where �i : F → {0, 1}mi for
1 � i � n, it holds that

SD (�(s) , �(s′)) � ε.

2.3 Generalized Reed-Solomon Codes and Vandermonde Matrices

Definition 5 ((n, k,X,α)F -GRS). A generalized Reed-Solomon code over a
finite field F with message length k and block length n consists of an encoding
function Enc : F k → Fn and decoding function Dec : Fn → F k. It is specified by
the evaluation places X = (X1, . . . , Xn) ∈ (F ∗)n such that Xi’s are all distinct,
and a scaling vector α = (α1, . . . , αn) ∈ (F ∗)n. Given X and α, the encoding
function is defined as

Enc(m1, . . . , mk) := (α1 · f(X1), . . . , αn · f(Xn)) ,

where f(X) := m1 + m2X + · · · + mkXk−1.
In particular, the generator matrix of the linear (n, k,X,α)F -GRS code is

»
¼¼¼½

α1 · 1 α2 · 1 · · · αn · 1
α1 · X1 α2 · X2 · · · αn · Xn

...
...

. . .
...

α1 · Xk−1
1 α2 · Xk−1

2 · · · αn · Xk−1
n

¾
¿¿¿À .

We denote CX as the set of all possible secret shares of secret 0 for (n, k,X)F -
Shamir secret sharing. The following fact will be useful.

Fact 1 The set CX is a (n, k − 1,X,X)F -GRS code.
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Definition 6 (Generalized Vandermonde Matrix). A generalized Vander-
monde matrix over a finite field F is an n × n matrix of the form

Vn(μ) =

»
¼¼¼½

xµ1

1 xµ2

1 · · · xµn

1

xµ1

2 xµ2

2 · · · xµn

2
...

...
. . .

...
xµ1

n xµ2

n · · · xµn
n

¾
¿¿¿À =

(
x

µj

i

)
i,j∈{1,2,...,n}

.

where xi ∈ F and μi ∈ {0, 1, 2, . . . }. In particular, Vn(0, 1, . . . , n − 1) is the
classical Vandermonde matrix.

Observe that if μi’s are not all distinct, then detVn(μ) = 0. The following result
is a well-known fact about the determinant of the Vandermonde matrix.

Fact 2 It hold that det Vn(0, 1, . . . , n − 1) =
∏

1�i<j�n(xi − xj).

Note that detVn(μ) is divisible by detVn(0, 1, . . . , n − 1) for any μ.

Fact 3 It holds that det Vn(μ) = det(Vn(0, 1, . . . , n−1))·Φ(x1, x2, . . . , xn), where
Φ(x1, x2, . . . , xn) is a symmetric multivariate polynomial in x1, x2, . . . , xn.

Note that detVn(μ) can be computed efficiently in poly(n)-time.3

2.4 Field Trace

Definition 7. The trace of an extension field F = Fpd over a base field Fp is a

mapping, denoted as TrF/Fp
, from F to Fp such that TrF/Fp

(y) :=
∑d−1

i=0 ypi

.

Proposition 1. The trace TrF/Fp
: F → Fp is a linear map. That is, for every

a, b ∈ Fp and x, y ∈ F ,

TrF/Fp
(ax + by) = aTrF/Fp

(x) + bTrF/Fp
(y).

2.5 Fourier Analysis

We shall use Fourier analysis over the additive group of a finite field F = Fpd

for some d ∈ {1, 2, . . . }. Let q = pd. Define ω := exp(2πı/p). Define the Fourier

function f̂ : F → C as follows. For any α ∈ F ,

f̂(α) =
1

q

∑

x∈F

f(x) · ωTrF/Fp (α·x).

The value f̂(α) is called the Fourier coefficient of f at α. The �1-Fourier norm

of f is defined as
∥∥∥f̂
∥∥∥

1
:=
∑

α∈F

∣∣∣f̂(α)
∣∣∣.

Fact 4 (Fourier Inversion Formula) f(x) =
∑

α∈F f̂(α) · ω−TrF/Fp (α·x).

Fact 5 (Parseval’s Identity) 1
q

∑
x∈F |f(x)|2 =

∑
α∈F

∣∣∣f̂(α)
∣∣∣
2

.

3 First perform Gaussian elimination, and then the determinant is the product of the
diagonal elements.
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2.6 Counting Isolated Roots

Definition 8 (Derivative, Determinant, and Jacobian).

1. Let f = atX
t
i + at−1X

t−1
i + · · · + a1Xi + a0. Then, the derivative of f with

respect to Xi is the polynomial in F [X1, X2, . . . , Xn] defined below.

∂f

∂Xi
:= (t · at)X

t−1
i + ((t − 1) · at−1)X

t−2
i + · · · + (2 · a2)Xi + a1.

2. For a k × k matrix M with elements in F [X1, X2, . . . , Xn], the determinant
of M , denoted as det(M), is defined as follows.

det(M) :=
∑

σ : {1,2,...,k}→{1,2,...,k}
σ is a permutation

sign(σ) ·
k∏

i=1

Mi,σ(i),

where sign(σ) represents the {+1,−1} sign of the permutation σ. Note that
det(M) ∈ F [X1, X2, . . . , Xn].

3. For a system of polynomials f = (f1, . . . , fk) ∈ (F [X1, X2, . . . , Xn])k, the
Jacobian of f is defined as

J(f) := det

»
¼¼¼¼½

∂f1

∂X1

∂f2

∂X1

· · · ∂fk

∂X1

∂f1

∂X2

∂f2

∂X2

· · · ∂fk

∂X2

...
...

. . .
...

∂f1

∂Xn

∂f2

∂Xn
· · · ∂fk

∂Xn

¾
¿¿¿¿À

.

For a ∈ F k, we use J(f ;a) to denote the evaluation of J(f) at a.

Definition 9 (Isolated Roots). For a system of polynomials f =
(f1, f2, . . . , fk) ∈ (F [X1, X2, . . . , Xk])k, we say that a ∈ F k is an isolated root
of f if fi(a) = 0 for every i ∈ {1, 2, . . . , k} and det(J(f ;a)) 
= 0. Let N (f)
denote the number of isolated roots of f .

Imported Theorem 1 (Bézout-like Theorem [4]) Let f = (f1, f2, . . . , fk)
be a system of polynomials in F [X1, X2, . . . , Xk] with deg(fi) � di for every
i ∈ {1, 2, . . . , k}. Then N (f) � d1 · d2· · · dk.

3 Bounding the Number of Solutions of an Equation

This section presents one of our main technical results. An important step
in proving the leakage-resilient Shamir’s secret sharing is to upper bound the
number of solutions of the equation GX · αT = 0 (refer to Problem 1 in
Sect. 1.4), where X = (X1, X2, . . . , Xn) ∈ (F ∗)n is randomly chosen such that
they are all distinct, α ∈ Fn, and GX is a (k − 1) × n matrix such that
GX = (Xi

j)i∈{1,...,k−1},j∈{1,...,n}. Let S(GX ,α)F denote the number of solu-
tions of the above equation over the finite field F . The following subsections
provide the bounds for different parameter settings.
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3.1 Over Finite Fields with Large Characteristics

Lemma 1. Let F be a finite field with characteristic p � k. It holds that

S(GX ,α)F � (q − 1)(q − 2)· · · (q − (n − k + 1)) · (k − 1)!.

The proof of Lemma 1 follows closely to the proof of the prime field case in [27].
The key difference is that our proof employs the contemporary Bézout-like the-
orem [4,44], while [27] used the result by Wooley [41].

Proof. Observe that GX · αT = 0 implies that α ∈ C⊥
X , where CX is the

code containing all possible secret share of secret 0 of (n, k,X)F -Shamir secret
sharing. Note that C⊥

X is an (n, n − k + 1, k)-GRS. Thus, the codeword α has
at least k non-zero entries. Without loss of generality, assume αi 
= 0 for every
1 � i � k. We rewrite the equation GX · αT = 0 as a system of polynomial
equations with n variables and (k − 1) equations as follows.

fi(X1, X2, . . . , Xn) := α1X
i
1 + α2X

i
2 + . . . + αnXi

n = 0 for i ∈ {1, 2, . . . , n}

Observe that the above system is not a square system of polynomials. To make it
a square system and apply Imported Theorem 1, we fix Xi to be distinct non-zero
values in F for i = k, k+1, . . . , n. Notice that there are (q−1)(q−2)· · · (q− (n−
k + 1)) ways of doing the fixing. Define ci :=

∑n
j=k αjX

i
j for i = 1, 2, . . . , k − 1.

The above system is now rewritten as, for i ∈ {1, 2, . . . , k − 1},

gi(X1, X2, . . . , Xk−1) := α1X
i
1 + α2X

i
2 + . . . + αk−1X

i
k−1 + ci = 0

Since αi 
= 0, it is a square polynomials system with deg(fi) = i for every
1 � i � k − 1. Next, we shall show that

J(g1, g2, . . . , gk−1)(X1, X2, . . . , Xk−1) 
= 0 if Xi 
= Xj for every i 
= j.

One can compute the Jacobian of the above system as follows.

J (g1, g2, . . . , gk−1) (X1, X2, . . . , Xk−1)

= det

»
¼¼¼½

α1 2α1X1 · · · (k − 1)α1X
k−2
1

α2 2α2X2 · · · (k − 1)α2X
k−2
2

...
...

. . .
...

αk−1 2αk−1Xk−1 · · · (k − 1)αk−1X
k−2
k−1

¾
¿¿¿À

=

(
k−1∏

i=1

αi

)
· (k − 1)! ·

∏

1�i<j�k−1

(Xi − Xj) (Fact 2)

We show that all three terms in the last equation are non-zero. The first term∏k−1
i=1 αi is non-zero since αi 
= 0 for every 1 � i � k − 1. Since p � k, it is

clear that the second term (k − 1)! 
= 0 mod p. The third term is non-zero since
Xi’s are distinct. Thus, the determinant is non-zero. By Imported Theorem 1,
N (f1, f2, . . . , fk−1) � (k − 1)!. Hence, the total number of solutions S(GX ,α)F

is at most (q − 1)(q − 2)· · · (q − (n − k + 1)) · (k − 1)!. ��
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3.2 Over Finite Fields with Characteristic Two

Lemma 2. Let F be a finite field with characteristic two. It holds that

S(GX ,α)F � (q − 1)(q − 2)· · · (q − (n − �k/2�)) · (k − 1)!.

Proof. If k = 2, then a similar proof as of Lemma 1 works since (k − 1)! = 1 is
not divisible by 2. Therefore, the total number of solutions for GX · αT = 0 is
at most (q − 1)(q − 2) . . . (q − (n − 1)).

From now on, we consider k � 3. We first note that a similar proof for
Lemma 1 does not work since (k − 1)! is divisible by 2, so the determinant is
zero. Our idea is to remove all the equations with even powers. Without loss of
generality, assume k is odd (the proof for even k is similar). Let t = (k − 1)/2.
Observe that S(GX ,α)F is upper bounded by the number of solutions for the
system removing the equations f2i(X1, X2, . . . , Xn) = 0 for 1 � i � t. So,
there will be only t equations left. We construct a square polynomial system as
follows. Fix Xt+1, . . . , Xn as arbitrary distinct non-zero elements in F . Define
ci =

∑n
j=t+1 αjX

2i−1
j for 1 � i � t. Consider the following square polynomial

system with t variables and also t equations. For i ∈ {1, 2, . . . , t},

hi(X1, X2, . . . , Xt) := α1X
2i−1
1 + α2X

2i−1
2 + . . . + αtX

2i−1
t + ci = 0

Using a similar idea as in the case p � k, we have

J (h1, h2, . . . , ht) (X1, X2, . . . , Xt)

=

(
t∏

i=1

αi

)
·
(

t∏

i=1

(2i − 1)

)
·
∏

1�i<j�t

(X2
i − X2

j ) (Fact 2)

=

(
t∏

i=1

αi

)
·
(

t∏

i=1

(2i − 1)

)
·
∏

1�i<j�t

(Xi − Xj)
2 (X = −X for X ∈ F2d)

Note that the first two terms are non-zero. The last term
∏

1�i<j�k−1(Xi−Xj)
2

is also non-zero since Xi’s are all distinct. These imply that the Jacobian is not
zero. Applying Imported Theorem 1 yields that the number of solutions for the
square polynomial system is at most 1 · 3· · · (2t − 1). Therefore, the number of
solutions for GX · αT = 0 is at most

(q−1)(q−2)· · · (q−(n−t)) ·1 ·3· · · (2t−1) � (q−1)(q−2)· · · (q−(n−t)) ·(k−1)!,

which is (q − 1)(q − 2)· · · (q − (n − (k − 1)/2)) · (k − 1)!. ��

3.3 Over Finite Fields with Small Characteristic

Finally, we consider the finite field F with characteristic 3 � p < k. Inspired by
the proof of Lemma 2, it is natural to remove all the equations whose powers
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(degrees) are divisible by p to avoid the determinant being equal to zero. That
is, consider the following square system of equations.

hi(X1, X2, . . . , Xt) = α1X
i
1 + α2X

i
2 +· · · + αtX

i
t + ci = 0 for i ∈ I,

where I = {i : 1 � i � k − 1, i is not divisible by p}, ci ∈ F , and t = (k −
1) − �(k − 1)/p�. Note that both the number of variables and the number of
equations are t. Let hI = (hi : i ∈ I). The Jacobian is

J(hI) =

(
t∏

i=1

αi

)
·

»

½
∏

j∈I

j

¾

À · det(Vt(μ))

Here μ = (i − 1: i ∈ I), and Vt(μ) =
(
X

µj

i

)
i,j∈{1,2,...,t}

is the generalized

Vandermonde matrix (refer to Sect. 2.3). Now, we are done if J(hI) 
= 0, which
is equivalent to det(Vt(μ)) 
= 0. However, it is not always non-zero. The following
result claims that the determinant is non-zero with high probability.

Lemma 3. It holds that det(Vt(μ)) 
= 0 with probability at least 1 − 2k2

q−1 , where
the probability is taken over randomly chosen X.

Proof (of Lemma 3). It follows from Fact 3 that

det(Vt(μ)) = Φ(X1, X2, . . . , Xt) ·
∏

1�i<j�t

(Xi − Xj),

where Φ(X1, X2, . . . , Xt) is a (symmetric) multivariate polynomial. Observe that
deg(P ) � k2 since det(Vt(μ)) is a multivariate polynomial with degree at most∑

i∈I i � k2. Consider X = (X1, X2, . . . , Xt) in which each Xi is independently
and randomly chosen from F ∗. The Schwartz-Zipple lemma for multivariate
polynomials implies that

Pr
X

[Φ(X1, X2, . . . , Xn) = 0] � k2/(q − 1).

Applying union bound twice yields

Pr
X

[det(Vt(μ)) = 0] � Pr
X

[Φ(X) = 0] + Pr
X

[∃1 � i < j � t : Xi = Xj ]

� k2/(q − 1) +
∑

1�i<j�t

Pr
X

[Xi = Xj ]

� k2/(q − 1) + k2 · 1/(q − 1)

= 2k2/(q − 1).

Next, we show that for some particular values of p, we can derive a good
upper bound on the number of solutions S(GX ,α)F .

Lemma 4. Let F be a finite field with characteristic p = k − 1 or p = k − 2. It
holds that

S(GX ,α)F � (q − 1)(q − 2)· · · (q − (n − p + 1)) · (p − 1)!.
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Proof. For p = k − 1, the index set I = {1, 2, . . . , k − 2}. This implies that
μ = {0, 1, . . . , k − 3}. Thus, Vt(μ) is a Vandermonde matrix whose determinant
is always non-zero as long as all Xi are distinct. So we have S(GX ,α)F �

(q − 1)(q − 2)· · · (q − (n − p + 1)) · (p − 1)!.
For p = k − 2, we choose I = {1, 2, . . . , k − 3}. With a similar argument, we

have S(GX ,α)F � (q − 1)(q − 2)· · · (q − (n − p + 1)) · (p − 1)!. ��

4 Bounding �1-Fourier Norms of Physical-Bit Leakages

This section shows that the �1-Fourier norm of physical-bit leakage is small.

Lemma 5. Let f : F → {0, 1} be a one-bit physical leakage function. Then, for
any leakage value t ∈ {0, 1}, the �1-Fourier norm of f is bounded as follows.

1.
∥∥∥1̂f−1(t)

∥∥∥
1

= 1 if the finite field F has characteristic two.

2.
∥∥∥1̂f−1(t)

∥∥∥
1

� (log2 p)3/π2 otherwise.

We first study the �1-Fourier norm of physical leakage function over finite
fields with characteristic two. We need the following technical result.

Proposition 2. Let G be a subgroup of F = Fpd and α ∈ F . We abuse notation
and define the distribution TrF/Fp

(α · G) as the following experiment.

1. Sample x uniformly at random over G,
2. Output TrF/Fp

(αx)

Then, it holds that

TrF/Fp
(αG) =

{
U{0} if α = 0 or αG ⊆ ker(TrF/Fp

)

UFp
otherwise.

Proof. The first case is straightforward from the definition. So, we will focus on
showing the second case. Let φα : G → Fp be a function defined as φα(x) =
TrF/Fp

(αx). For any a, b ∈ Fp and x, y ∈ F , by the linear property of the trace
function (Proposition 1),

φα(ax + by) = TrF/Fp
(α(ax + by)) = aTrF/Fp

(αx) + bTrF/Fp
(αy).

Thus, the mapping φα is linear over Fp.
Next, we will show that, if α 
= 0 and αG is not a subset of ker(TrF/Fp

), then
φα is surjective. First, by the assumption, there must exist a x∗ ∈ G such that
φα(x∗) = TrF/Fp

(αx∗) 
= 0. Let b = φα(x∗). Since G is a subgroup of F , ax∗ ∈ G
for every a ∈ Fp. Therefore, for every c ∈ Fp, we have

φα(cb−1x∗) = cb−1φα(x∗) = cb−1b = c.

It implies that φα is surjective. Together with the linear property, for every
c, c′ ∈ Fp, ∣∣φ−1

α (c)
∣∣ =
∣∣φ−1

α (c′)
∣∣ .

Hence, the distribution TrF/Fp
(αG) is uniform over Fp when α 
= 0 and αG is

not a subset of ker(TrF/Fp
), which completes the proof. ��
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Lemma 6. Let F be a finite field with characteristic two. Let f : F → {0, 1} be
an one-bit physical leakage function that outputs the bit xi on input x = x0 +
x1ζ+. . .+xd−1ζ

d−1 ∈ F for some i ∈ {0, 1, . . . , d−1}. Let C = {x ∈ F : xi = 0}.
Then, for any t ∈ {0, 1} and α ∈ F ,

∣∣∣1̂f−1(t)(α)
∣∣∣ =
{

1/2 if αC = ker(TrF/Fp
)

0 otherwise,

where ker(TrF/Fp
) := {x ∈ F : TrF/Fp

(x) = 0}. Consequently,
∥∥∥1̂f−1(t)

∥∥∥
1

= 1.

Proof. Observe that f−1(t) = v + C for some v ∈ {0, ζi}. For any α ∈ F ,

∣∣∣1̂f−1(t)(α)
∣∣∣ =
∣∣∣∣∣
1

q

∑

x∈v+C

ωTrF/Fp (α·x)

∣∣∣∣∣ (Since f−1(t) = v + C)

=

∣∣∣∣∣∣
1

q
ωTrF/Fp (α·v) ·

∑

y∈C

ωTrF/Fp (α·y)

∣∣∣∣∣∣

By Proposition 2, the sum
∑

y∈C ωTrF/Fp (α·y) is equal to |C| = 2d−1 if αC =
ker(TrF/Fp

), and is equal to 0 otherwise. This yields

∣∣∣1̂f−1(t)(α)
∣∣∣ =
{

1/2 if αC = ker(TrF/Fp
)

0 otherwise.

Note that there are exactly two α ∈ F such that αC = ker(TrF/Fp
). Conse-

quently, we have
∥∥∥1̂f−1(t)

∥∥∥
1

= 1, which completes the proof. ��

Next, we state the bound for a finite field with a characteristic greater than 2.

Lemma 7. Let F be a finite field. Let f : F → {0, 1}n be a 1-bit physical leakage
function. Then, for every t ∈ {0, 1}, it holds that

∥∥∥1̂f−1(t)

∥∥∥
1

�
(log2 p)3

π2
.

Proof (of Lemma 7). Suppose f leaks one bit on the i-th block. Let C = {x ∈
F : xi = 0}. Unlike in the characteristic 2 case, now we have f−1(t) = V + C,
where V ⊆ D = {0, ζi, . . . , (p − 1)ζi}. We have

∣∣∣1̂f−1(t)(α)
∣∣∣ =

∣∣∣∣∣∣
1

q

∑

v∈V

ωTrF/Fp (α·v) ·
∑

y∈C

ωTrF/Fp (α·y)

∣∣∣∣∣∣

By Proposition 2, if αC 
= ker(TrF/Fp
), then

∣∣∣1̂f−1(t)(α)
∣∣∣ = 0. Otherwise,

∣∣∣1̂f−1(t)(α)
∣∣∣ =

1

p

∣∣∣∣∣
∑

v∈V

ωTrF/Fp (α·v)

∣∣∣∣∣ =
1

p

∣∣∣∣∣
∑

c∈Vi

ωTrF/Fp (αcζi)

∣∣∣∣∣ =
1

p

∣∣∣∣∣
∑

c∈Vi

ωc·TrF/Fp (αζi)

∣∣∣∣∣ ,
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where Vi = {xi : x ∈ V }. This implies that
∣∣∣1̂f−1(t)(α)

∣∣∣ = 1̂Vi
(TrF/Fp

(αζi)).

Observe that {TrF/Fp
(αζi) : αD 
= ker(TrF/Fp

)} = Fp. This implies that∥∥∥1̂f−1(t)

∥∥∥
1

=
∥∥∥1̂Vi

∥∥∥
1
. To prove our result, we shall use a result from [27] saying

that V can be partitioned into at most log2 p generalized arithmetic progressions
(GAPs) of rank two, and the �1-Fourier norm of these GAPs bounded. It follows

from the result in [27](see corollary 1) that
∥∥∥1̂f−1(t)

∥∥∥
1

� (log2 p)3/π2. ��

It is easy to see that Lemma 5 follows from Lemma 6 and 7.

5 Leakage Resilience: Characteristic Two Finite Fields

This section considers Shamir’s secret sharing schemes over finite fields with
characteristic 2. We will prove the following theorem.

Theorem 1. Let F be a finite field with characteristic two. For any ε > 0, the
following bound holds.

Pr
X

[ShamirSS(n, k,X)F is not an (1, ε)-LLRS] �
1

ε
· 2n · λn · (k − 1)!

(q − n)�k/2	

We recall that X = (X1, X2, . . . , Xn) ∈ (F ∗)n is the uniform distribution over
the set of distinct evaluation places. We interpret the Theorem 1 as follows.

Corollary 1. Let F be a finite field with order 2d. For any number of parties n ∈
{2, 3, . . . , }, reconstruction threshold k � n, and insecurity parameter ε = 2−t, if
the security parameter λ = d · �log2 p� satisfies λ � 2t/k +2n(1+ log2 λ)/k, then
ShamirSS(n, k,X)F is an (1, ε)-LLRSS with probability at least 1− exp(−Θ(λ)).

Our result extends to multiple-bit leakage, which is summarized as follows.

Theorem 2. Let F be a finite field with characteristic two. For any m ∈
{1, 2, . . . } and ε > 0, the following bound holds.

Pr
X

[ShamirSS(n, k,X)F is not an (m, ε)-LLRS] �
1

ε
·
(

λ

m

)n

· 2mn · (k − 1)!

(q − n)�k/2	

Remark 2. The above result extends to the setting where mi bits are leaked
from the i-th share for 1 � i � n. The probability that ShamirSS(n, k,X)F is
not (m, ε)-LLRSS is upper-bounded by

1

ε
·
(

λ

m1

)(
λ

m2

)
· · ·
(

λ

mn

)
· 2mn · (k − 1)!

(q − n)�k/2	
�

1

ε
·
(

λ

M/n

)n

· 2M (k − 1)!

(q − n)�k/2	
.

This bound is maximized when all mi = M/n, where M is the total number of
physical bits probed.
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Corollary 2. Let F be a finite field with order 2d. For any number of parties
n ∈ {2, 3, . . . , }, reconstruction threshold k � n, the number of leaked bits m,
and insecurity parameter ε = 2−t, if the security parameter λ = d satisfies
λ � 2tM/(nk)+2M(1+log2 λ)/k, then ShamirSS(n, k,X)F is an (m, ε)-LLRSS
with probability at least 1 − exp(−Θ(λ)).

In the following subsections, we provide a proof of Theorem 1. The proof of
Theorem 2 is analogous. The main idea is to reduce the m-bit physical leakage
on n secret shares to the 1-bit physical leakage on mn secret shares. We make m
copies of each secret share. Then, leaking m bits on the secret share is identical
to leaking one bit from the i-th copy for i ∈ {1, 2, . . . ,m}.

5.1 Claims Needed for Theorem 1

Proposition 3. Let � = (�1, �2, . . . , �n) be an arbitrary m-bit physical leakage
function, where �i : F → {0, 1}m for 1 � i � n. The following bound holds for
every pair of secret s, s′ ∈ F .

SD (�(s) , �(s′)) �
∑

t∈({0,1}m)n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

The following result states that the average of the upper bound over randomly
chosen evaluation places X is sufficiently small.

Lemma 8. Let F be a finite field with characteristic 2. It holds that

E
X

⎡

£
∑

t∈{0,1}n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)¤

⎦ �
2n · (k − 1)!

(q − n)�k/2	

5.2 Proof of Theorem 1

Our proof closely follows the idea in [27]. We have

Pr
X

[ShamirSS(n, k,X, F ) is not a (m, ε) − LLRS]

= Pr
X

[∃s, s′, � s.t. SD (�(s) , �(s′)) � ε]

� Pr
X

⎡

£∃s, s′, � s.t.
∑

t∈({0,1}m)n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

� ε

¤

⎦

(Proposition 3)

= Pr
X

⎡

£∃ � s.t.
∑

t∈({0,1}m)n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

� ε

¤

⎦ (Ind. of s, s′)
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=
∑

�

Pr
X

⎡

£
∑

t∈({0,1}m)n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)

� ε

¤

⎦ (Union bound)

�
∑

�

1

ε
· EX

⎡

£
∑

t∈({0,1}m)n

∑

α∈C⊥

X
\{0}

(
n∏

i=1

∣∣∣1̂ti
(αi)
∣∣∣
)¤

⎦ (Markov’s inequality)

�
∑

�

1

ε
· 2n · (k − 1)!

(q − n)�k/2	
(Lemma 8)

=
1

ε
· 2n · λn · (k − 1)!

(q − n)�k/2	

Therefore, we have completed the proof of Theorem 1.

6 Leakage Resilience: Large Characteristic Fields

This section presents the results over finite fields with characteristics greater
than two. The following theorems summarize our results.

Theorem 3. Let the reconstruction threshold k ∈ {2, 3, . . . }. Let F be a finite
field with characteristic p � k and M be the total leaked bits. For ε > 0, the
following bound holds.

Pr
X

[ShamirSS(n, k,X)F is not an (M/n, ε)-LLRS]

�
1

ε
·
(

λ

M/n

)n

· 2M · (log2 p)M · (k − 1)!

πM · (q − n)k−1
.

Theorem 4. Let the reconstruction threshold k ∈ {2, 3, . . . }. Let F be a finite
field with characteristic p = k − 1 or p = k − 2 and M be the total leaked bits.
For any ε > 0, the following bound holds.

Pr
X

[ShamirSS(n, k,X)F is not an (M/n, ε)-LLRS]

�
1

ε
·
(

λ

M/n

)n

· 2M · (log2 p)M · (p − 1)!

πM · (q − n)p−1
.

The proofs of Theorem 3 and Theorem 4 are analogous to the proof presented
in Sect. 5. The main differences are that these proofs (1) use Lemma 7 to bound
�1-Fourier norm, and (2) use Lemma 1 and Lemma 4 to upper bound the number
of solutions of the equation, respectively.

7 Our Classification Algorithm

This section presents an explicit algorithm to identify secure evaluation places
for Shamir secret sharing against the single block leakage from every share.
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Consider the finite field F = Fpd where d ∈ {2, 3, . . . }. We will interpret F as
Fp[ζ]/Π(ζ), where Π(ζ) is an irreducible degree-d Fp-polynomial. Every element
x ∈ F can be written as a length-d vector of Fp elements. We represent x ∈ F as

x = (x0, x1, . . . , xd−1) ∈ (Fp)
d

when x = x0+x1ζ+· · ·+xd−1ζ
d−1. We define the

single block leakage function �block
i : F → Fp as the �log2(p)�-bit physical leakage

function that leaks the i-th coefficient xi ∈ Fp for x ∈ F, i.e. �block
i (x) = xi.

Theorem 5. Let F be a finite field with characteristic p � 2. Consider
the (n, 2, (X1, . . . , Xn))-Shamir secret-sharing scheme over F . Consider the
block physical bit leakage function �block = (�block

i1
, �block

i2
, . . . , �block

in
) where

i1, i2, . . . , in ∈ {0, 1, 2, . . . , d − 1} and �block
ij

: F → Fp for all j ∈ {0, 1, . . . , n}.

Define the shifting factor η(ij) ∈ Fq such that (x)ij
=
(
x · η(ij)

)
0
, for all x ∈ Fq.

For any secret s ∈ F, if X1η
(i1), X2η

(i2), . . . , Xnη(in) ∈ Fq are all Fp-linearly
independent, then

SD
(
�block(0) , �block(s)

)
= 0.

Theorem 5 implies that all evaluation places (X1, . . . , Xn) ∈ Fn
q satisfying

X1η
(i1), X2η

(i2), . . . , Xnη(in) ∈ Fq

being all Fp-linearly independent, are perfectly secure against single block
leakage attack. Figure 1 shows a test to identify secure evaluation places
(X1, . . . , Xn) ∈ Fn

q for (n, 2, (X1, . . . , Xn))-Shamir secret sharing over finite field
Fq with characteristic p � 2 against the single block leakage from every share.
Note that the algorithm outputs secure for at least 1 − dnpn−1/q fraction of
evaluation places.

Input. Distinct evaluation places X1, X2, . . . , Xn ∈ F , and p is a prime

Output. Decide whether the evaluation places (X1, . . . , Xn) are secure to all single-
block leakage attacks.

Algorithm.

1. For i ∈ {0, 1, . . . , d − 1}:
(a) Compute the shift factor η(i,0) as defined in Proposition 4

2. For i1, i2, . . . , in ∈ {0, 1, . . . , d − 1} :

(a) If
{

X1η
(i1), X2η

(i2), . . . , Xnη(in)
}

⊆ Fq is not Fp-linearly independent, return

“Insecure.”
3. Return “Secure.”

Fig. 1. Identify secure evaluation places for Shamir’s secret-sharing scheme against all
single-block leakage attacks.
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7.1 Proof of Theorem 5

Consider leakage distri-
bution

(
(s + P · X1)i1

, (s + P · X2)i1
, . . . , (s + P · Xn)in

)
where i1, i2, . . . , in ∈

{0, 1, . . . , d − 1} and P ∈ Fq is chosen uniformly at random. Then, the above
distribution is identical to

(
(Q · X1)i1

, (Q · X2 + t2)i1
, . . . , (Q · Xn + tn)in

)

where (s·X−1
1 +P ) �→ Q is an automorphism over Fq and ti = s·(1−Xi ·X−1

1 ) By
Proposition 4, the shifting factor η(i1), η(i2), . . . , η(in) ∈ Fq allow us to equivalent
study the leakage distribution on the 0-th block

((
QX1η

(i1)
)

0
,
(
QX2η

(i2) + t′2

)

0
, . . . ,

(
QXnη(in) + t′n

)

0

)

where Q is uniformly at random from Fq and t′j = tj · η(ij) for j ∈ {1, 2, . . . , n}.
Finally, the previous distribution is identical to

( (
QX1η

(i1)
)

0
,
(
QX2η

(i2)
)

0
+ t′′2 , . . . ,

(
QXnη(in)

)

0
+ t′′n

)
,

where Q is uniformly at random from Fq and s �→ t′′j are appropriate linear
automorphisms over Fq, for all j ∈ {2, 3, . . . , n}. By Lemma 10, the distribution

( (
QX1η

(i1)
)

0
,
(
QX2η

(i2)
)

0
, . . . ,

(
QXnη(in)

)

0

)

is equivalent as a uniform distribution over (Fp)
n

for uniformly random Q ∈ Fq.
Thus, if X1η

(i1), X2η
(i2), . . . , Xnη(in) ∈ Fq are all Fp-linearly independent,

SD
(
�block(0) , �block(s)

)
= 0.

7.2 Technical Results

The below result says that a block leakage is emulated by another block leakage.

Proposition 4. For i ∈ {0, 1, . . . , d − 1}, define Ci := {x ∈ F : xi = 0}. For
i, j ∈ {0, 1, . . . , d − 1}, there exists η(i,j) ∈ F ∗ such that Ci · η(i,j) = Cj .

Proof. Let D be the set of all subgroups of order pd−1 of the additive group
(F,+). Observe that x · Ci ∈ D for every x ∈ F ∗. Consider the following map
φCi

: F ∗ → D such that φCi
(x) := x · Ci. One can easily verify that φCi

is one-
to-(p − 1) mapping. That is, φCi

(x) = φCi
(ax) for every a ∈ F ∗

p , and φCi
(x) 
=

φCi
(y) if x 
= ay for some a ∈ F ∗

p . Observe now that |D| = (pd − 1)/(p − 1) and

|F ∗| = pd − 1. Therefore,
∣∣φ−1

Ci
(C)
∣∣ = p − 1 for every C ∈ D. This implies that

there exists some η(i,j) ∈ F ∗ such that Cj = η(i,j) · Ci since Cj ∈ D. ��
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Lemma 9. For i ∈ {0, 1, . . . , d − 1}, define Ci := {x ∈ F : xi = 0}. Then, the
following statements hold.

1. If α = 0, Ci · α = {0}.
2. If α ∈ F ∗

p ⊆ F , then Ci · α = Ci and (Ci · α)i = {0}.
3. If α ∈ F \ Fp, then (UCi

· α)i = UFp
.

Proof. The first two cases are straightforward from the definition. Suppose α ∈
F \ Fp. Let D be the set of all subgroups of order pd−1 of F . Consider the
mapping ψα : Ci → Fp defined as ψα(x) = (α · x)i. One can verify that this
mapping is linear over Fp. Therefore, to complete the proof, it suffices to show
that there is an x ∈ F such that ψα(x) 
= 0. By the property of the mapping
φCi

in the proof of Proposition 2, it is clear that α · Ci 
= Ci. This implies that,
there exists x′ ∈ F such that ψα(x′) = (α ·x′)i 
= 0 since Ci is the only subgroup
of order pd−1 satisfying xi = 0 for element x in that subgroup. Thus, for every
a, b ∈ Fp,

∣∣ψ−1
α (a)

∣∣ =
∣∣ψ−1

α (b)
∣∣, which completes the proof. ��

Corollary 3. For i ∈ {0, 1, . . . , d − 1}, define Ci := {x ∈ F : xi = 0}. If α ∈
F \ Fp, then for all c ∈ F , (UCi

· α + c)i = UFp
.

Lemma 10. Fix arbitrary elements Y (1), Y (2), . . . , Y (n) ∈ Fq such that the set
of vectors {Y (1), Y (2), . . . , Y (n)} ⊆ (Fp)

d is Fp-linearly independent, where n ∈
{1, 2, . . . }. Then, the joint distribution

( (
QY (1)

)
0

,
(
QY (2)

)
0

, . . . ,
(
QY (n)

)
0

)

is uniformly random over (Fp)
n
, for uniformly random Q ∈ Fq.

Note that, for the set to be independent, it must be the case that d � n because
the ambient space Fq is an Fp-vector space of dimension d. The proof of this
result will crucially rely on the fact that the elements belong to a field.

Proof. At the outset, our objective is to formalize the linear map Q �−→ (QY )0
behaves for Q,Y ∈ Fq, where q = pd. Note that it is identical to the map

(Q0, . . . , Qd−1) �−→

»
¼¼¼½(Q0, . . . , Qd−1) ·

»
¼¼¼½

(Y · 1)0 · · · (Y · 1)d−1

(Y · ζ)0 · · · (Y · ζ)d−1

...
. . .

...
(Y · ζd−1)0 · · · (Y · ζd−1)d−1

¾
¿¿¿À

¾
¿¿¿À

0

In the matrix above, we clarify that (Y · ζi)j represents the coefficient of ζj in
the polynomial representation of the product of Y ∈ Fq and ζi ∈ Fq. So, the
Q �−→ (Q · Y )0 map is equivalent to the Fq �−→ Fp linear map:

Q ≡ (Q0, Q1, . . . , Qd−1) �−→ Q0 · (Y · 1)0 +Q1 · (Y · ζ)0 +· · ·+Qd−1 ·
(
Y · ζd−1

)
0

Now, we begin proving the lemma. We are given Y (1), Y (2), . . . , Y (n) ∈ Fq.

Each Y (i) ∈ Fq is equivalently interpreted as (Y
(i)
0 , Y

(i)
1 , . . . , Y

(i)
d−1) ∈ (Fp)

d
,

where i ∈ {1, 2, . . . , n}. We are given that the following set of (Fp)
d vectors are

linearly independent:
{ (

Y
(i)
0 , Y

(i)
1 , . . . , Y

(i)
d−1

)
: i ∈ {1, 2, . . . , n}

}
.
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We aim to prove that, for uniformly random Q ∈ Fq, the joint distri-
bution

( (
QY (1)

)
0

,
(
QY (2)

)
0

, . . . ,
(
QY (n)

)
0

)
is uniform over (Fp)

n
. Note

that this joint distribution is identical to the following distribution, where
Q0, Q1, . . . , Qd−1 ∈ (Fp)

d are chosen uniformly and independently at random
(due to Eq. 7.2).

(
Q0, Q1, . . . , Qd−1

)
·

»
¼¼¼½

(Y (1) · 1)0 (Y (2) · 1)0 . . . (Y (n) · 1)0
(Y (1) · ζ)0 (Y (2) · ζ)0 . . . (Y (n) · ζ)0

...
...

. . .
...

(Y (1) · ζd−1)0 (Y (2) · ζd−1)0 . . . (Y (n) · ζd−1)0

¾
¿¿¿À

So, it is equivalent to showing the below set of vectors is linearly independent:
{ ((

Y (i) · 1
)

0
,
(
Y (i) · ζ

)

0
, . . . ,

(
Y (i) · ζd−1

)

0

)
: i ∈ {1, 2, . . . , n}

}
.

It suffices to prove that the following (Fp)
d �−→ (Fp)

d
is a full-rank map:

(Y0, Y1, . . . , Yd−1) �−→
(
(Y · 1)0 , (Y · ζ)0 , . . . ,

(
Y · ζd−1

)
0

)
. (2)

Let Π(ζ) = ζd − Πd−1ζ
d−1 −· · · − Π0 be the irreducible polynomial, where

Π0,Π1, . . . , Πd−1 ∈ Fp. Here is an essential observation. For i ∈ {1, 2, . . . , d− 1}
the following identity holds:

(
ζi · ζd−i

)
0

= Π0 
= 0. Using this essential observa-
tion, Eq. 2 establishes the following maps of the basis vectors.

(1, 0, 0, . . . , 0) �−→ (1, 0, 0, . . . , 0, 0)

(0, 1, 0, . . . , 0) �−→ (0, 0, 0, . . . , 0,Π0)

(0, 0, 1, . . . , 0) �−→ (0, 0, 0, . . . ,Π0, ∗)

...

(0, 0, 0, . . . , 1) �−→ (0,Π0, ∗, . . . , ∗, ∗)

In the maps above, ∗ elements represent arbitrary elements of Fp. Let A ∈
(Fp)

d×d
be the matrix such that for all Y0, Y1, . . . , Yd−1 ∈ Fp and Y = Y0 +

Y1ζ +· · · Yd−1ζ
d−1 ∈ Fq, the following identity is satisfied.

(Y0, Y1, . . . , Yd−1) · A =
(
(Y · 1)0 , (Y · ζ)0 , . . . ,

(
Y · ζd−1

)
0

)
.

From the basis maps above, we conclude that the matrix A ∈ (Fp)
d×d

has the
following structure.

A =

»
¼¼¼¼¼½

1 0 0 · · · 0 0
0 0 0 · · · 0 Π0

0 0 0 · · · Π0 ∗
...

...
...

. . .
...

...
0 Π0 ∗ · · · ∗ ∗

¾
¿¿¿¿¿À

This structure shows that the matrix A has full rank, whence the lemma. ��
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