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Deep learners (DLs) have turned out to be the state-of-the-art method for predictive

inference. Since we do not have widely applicable generalization error bounds for

DLs, we can prevent over-confident inferences and predictions from a single “best

performing” DL by creating an ensemble of such models and then performing model

averaging. Such model averaging has been shown to increase robustness in the realm of

deep learning techniques [74]. This increase in robustness could be partially attributed

to the fact that with model averaging, we no longer ignore the uncertainty due to

model choice. Stacking is one of the most popular model-averaging protocols. In its

standard form, stacking uses the output of base learners as non-stochastic inputs to

a meta-learner. However, that ignores the uncertainty in the predictions generated

by these base DLs. This practice is problematic because DLs are often trained

with dropout layers, which induce uncertainty in their predictions. Consequently, a

meta-learner should process that uncertainty hardwired into the base models.

In this dissertation, we derive a novel methodology that can perform model

averaging and propagate the uncertainty associated with the base models more

coherently. We utilize Matrix Ensemble Kalman Filters to design a multi-arm artificial

neural network that drives stochastic weights and performs model averaging in every

filter update and batch update step. By default, our method produces realizations

from one-step ahead predictive distribution, enabling the construction of prediction



intervals from averaged models. We demonstrate that our methodology can be utilized

for transfer learning and potentially identify a specific form of mean non-stationarity

in the underlying data-generating model. We apply our model to cancer drug response

predictions and classification of gut microbiota. All codes used in this dissertation can

be obtained from: https://github.com/Ved-Piyush/UNL Thesis Codes VP/tree/main.

https://github.com/Ved-Piyush/UNL_Thesis_Codes_VP/tree/main
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Chapter 1

Introduction

Consider a set ofM base learners trained on the same dataset Z = (X, Y ) where X =

(x1, x2, ..., xp) is the set of predictors and the target variable is Y . Let f̂1(x), f̂2(x), ...,-

f̂M(x) be the set of M predictions obtained from these models. If the population

distribution of the dataset is assumed to be known, i.e., Z ∼ P , then the population

level stacking is obtained as a weighted average of the predictions generated by M

models, with the weights being

ŵ =argmin
w

EP

Y −
M∑

m=1

wmf̂m(x)

2

(1.1)

Since, ŵ is the minimizer of the expression in the RHS of (1.1), it is easy to see

EP

Y −
M∑

m=1

ŵmf̂m(x)

2

≤ EP

[
Y − f̂m(x)

]2
∀m = 1, 2, ..,M (1.2)

indicating that if P is known, stacking never performs worse as compared to any single

model.

Since P is typically unknown, the stacking estimates are extracted either via
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cross-validation or over a validation dataset, i.e.,

ŵ(st) =argmin
w

N∑
i=1

yi − M∑
m=1

wmf̂
−i
m (xi)

2

where f̂−i
m (xi) is the prediction obtained from the mth model with the ith training

instance removed.

Customarily, the stacking operation is performed using the point prediction

yielded by each base learner as input. That is, the cross learner weights wm’s are

estimated given the predictions from the base learners. Consequently, standard

stacking produces optimal (under square error loss) cross-learner weights but does not

address the joint optimality of within-learner and cross-learner weights. This question

becomes important when we stack multiple deep learners to generate predictions. How

do we attach uncertainty to the predictions obtained from conventionally stacked deep

learners? We can use Monte Carlo dropout to attach uncertainty to the predictions

generated by each base learner. But to obtain the stacked prediction, we need to fix

the output from each base learner, and hence the uncertainty does not propagate

coherently.

Our main methodological contribution in this dissertation is to develop a statis-

tical framework that attaches uncertainty to the predictions obtained from a convex

combination of base learners in a coherent way. We view this problem as a simulta-

neous estimation of within-learner and cross-learner weights. Therefore, we aim to

optimize a suitably crafted square error loss function that yields optimal estimates of

both within-learner and cross-learner weights simultaneously. Therefore, the entire

set of weights can be viewed as jointly optimal. Observe that, while conventional

stacking takes a sequential approach to estimate the whole set of model weights -
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first, the within-learner weights are estimated followed by cross-learner weights, our

approach estimates the complete set of weights simultaneously under a global loss

criterion. We therefore view the proposed method as a generalized stacking approach.

Although, as we shall see in subsequent chapters, our approach does not strictly adhere

to the mathematical definition of stacking as specified in (1.1), it is similar in spirit to

the concept of stacking in the sense that both approaches strive to arrive at a linear

combination of base learners that improves the prediction performance as compared

to any single constituent learner.

We propose an augmented state-space model for training artificial neural networks

(ANNs) to achieve the foregoing goal. At the outset, we specify that our focal

predictive vehicle will be a convex combination of these ANNs. Therefore, instead

of training each constituent ANN separately, we train all of them simultaneously

under a global square error loss function. The key novelty of this methodology is that

with the augmented state-space formulation and simultaneous estimation strategy,

the uncertainty associated with the predictions generated by the base models can be

propagated more coherently to the model-averaged prediction. The main contributions

of our proposed methodology are the following:

1. It offers a general procedure to attach uncertainty to model-averaged predictions,

particularly when the constituent models are essentially algorithmic (neural

networks, more precisely).

2. It offers two additional metrics, coverage probability and width of prediction

intervals, to assess the statistical adequacy of the posited model - which we argue

is essential because the base learners are essentially input/output algorithms.

3. It offers a way to perform transfer learning in a situation where a complex deep

learner is trained on a large dataset in the source domain, but the dataset in the
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target domain is small and only has a subset of features as compared to the set

of features available in the source domain. Essentially, our methodology offers a

way to transfer information from the source domain when the target domain

requires training a reduced model.

4. It can detect a switch in the data-generating model under the assumption that

the true data-generating models appear in the set of models that are being

averaged and the switch in the data-generating model manifests through a

specific type of mean non-stationarity.

We will demonstrate that by reconceptualizing the conventional stacking approach,

we can achieve all the foregoing aspects under a single generic framework. Our model

is deployed on observational cross-sectional data and requires numerical response

variables and numerically encoded input features. We also show that if at least one

of the base learners appearing in the stack of the models is the true data generating

model, then the points estimates of the within-learner and cross-learner weights

produced by our framework are jointly optimal under mean square error loss.

We explicate the foregoing facets of the proposed methodology in subsequent

chapters of our dissertation. In Chapter 2, we offer a background on the techniques

and concepts heavily used to develop and illustrate the proposed generalized stacking

approach. We briefly discuss relevant literature and offer toy examples of the standard

state-space model. In Chapter 3, we lay out the methodology of our generalized stacking

procedure, discuss its theoretical aspects, and offer two illustrative applications of

our methodology. In the first illustration, we demonstrate how our method could

be utilized to transfer knowledge gleaned from a multi-arm deep learner (DeepCDR

- developed to predict cancer drug responses using drug features and multi-omics

data[44]) to perform predictions on query points arriving with a reduced set of features.
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In the second illustration, we demonstrate how our approach can be utilized to attach

uncertainty to the outputs generated by an averaging of two LSTM classifiers. We

perform simulations to demonstrate that our approach can recover true model weights

given that the true model appears in the stack of base models. We also show how

coverage probability and average width of prediction intervals could be used to identify

situations where true data generating model(s) do not appear in the stack of base

models.

In Chapter 4, we examine the scalability of our approach. We show that using a

modified training algorithm, our model can be trained on large datasets to perform

model averaging of multiple multi-arm deep learners. We also demonstrate how our

method offers a standardized approach to compare the prediction performance of two

competing deep learners.

In Chapter 5, we extend our approach to accommodate multivariate responses.

We offer simulation studies to demonstrate how our conceptualization of model

averaging can identify changes in the data-generating model. We illustrate the

predictive performance of the multivariate version of our approach, we deploy this

technique to predict two important chemical properties of drugs from the chemical

structures of the drug molecules.

The final chapter offers concluding remarks and potential future research direc-

tions.



6

Chapter 2

Literature Review

In this section, we offer a brief discussion of the concepts used in developing our

proposed generalized stacking methodology. Our main conceptual vehicle is a matrix

variate Ensemble Kalman Filter (EnKF). We, therefore, begin by describing the

standard Kalman Filter (KF) framework and offer a synthetic example to illustrate

how it works. We then discuss the EnKF formulation that approximates standard KF

and provides a computationally inexpensive way to estimate the Kalman Gain. We

then discuss the matrix state space model as a generalization of standard KF. Next,

we pivot to some deep learning concepts used in this dissertation. We offer discussion

on embeddings and Monte Carlo dropout, which are concepts that are routinely used

in deep learning models. We end this chapter with a description of the Long Short

Term Memory (LSTM) models and Graph Convolutional Network models, that are

two deep learning models we heavily use to illustrate the application of our model

averaging technique. In each section, we direct the audience to relevant literature that

offers a more in-depth description of the concepts.



7

2.1 Linear State Space Model

A linear Gaussian state-space model can be described as

yt = Htxt + vt, vt ∼ Nmt(0, Rt) (2.1)

xt =Mtxt−1 + wt, wt ∼ Nn(0, Qt) (2.2)

Here, the subscript t is for the discrete-time point, and yt ∈ Rmt is the mt dimensional

observation vector at time step t. xt ∈ Rn is the n dimensional (unknown) state vector

at time t. Ht and Mt denote the observation and the state transition matrixes. Ht

describes how the state variable xt relates to the observation and Mt denotes how

the state vector at time t− 1 is related to the state vector at time t. vt ∈ Rmt is the

measurement noise and wt ∈ Rn is the process noise.

Statistical assumptions:

1. x0, w0, w1, ..., v0, v1, ... are jointly Gaussian and independent.

2. E(wt) = E(vt) = 0, E(wtw
′
t) = Qt, E(vtv

′
t) = Rt.

3. For the moment we assume Mt, Ht, Rt, and Qt are known.

4. vt’s are independent of xt’s.

5. wt is independent of x0, x1, ..., xt and y0, y1, ..., yt.

6. The state is first order Markovian, i.e., [xt|x0, x1, ..., xt−1] = [xt|xt−1], where [xt|.]

denotes the conditional distribution of xt given the remaining arguments.

Given the above formulation, the goal is to estimate µt|s = E(xt|y0, y1, ..., ys), and

Σt|s = E[(xt − E(xt|y0, y1, ..., ys))(xt − E(xt|y0, y1, ..., ys))′], for any pair of t and s,

with s ≤ t. That is, we would like to obtain an estimate of the expected state of the
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system at time t based on y0, y1, ..., ys and estimate the covariance matrix associated

with the error in the state estimation. The Kalman Filter offers a recursive way to

solve the above-stated estimation problem. See [33] for a more detailed review.

2.2 Kalman Filter

Let y1:t := {y1, y2, ..., yt} denote the set of observation vectors until time t. Similarly,

x1:t := {x1, x2, ..., xt} denote the collection of state vectors until t and x0 is the initial

state of the system.

KF mainly focuses on (i) estimating the current state given the current observa-

tion and past observed outputs, i.e., estimate µt|t, and (ii) predicting the next state

based on the current and past observed values of y1:t, i.e., estimate µt+1|t.

We begin with the assumption that the conditional distribution for the state

variable at time step t− 1 conditional on y1:t−1 is given by

xt−1|y1:t−1 ∼ N (µt−1,Σt−1) (2.3)

The above distribution is conventionally called the filtering distribution of xt. Now,

we can use the state transitional equation (2.2) to obtain the conditional distribution

xt|y1:t−1. This conditional distribution is conventionally referred to as the forecast

distribution at time t and is given by

xt|y1:t−1 ∼ N (µ̃t, Σ̃t) (2.4)

µ̃t = µt|t−1 :=Mtµt−1 (2.5)

Σ̃t = Σt|t−1 :=MtΣt−1M
′

t +Qt (2.6)

Once the measurement data arrives at time t(yt), the Kalman Filter updates the
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filtering distribution by first computing the joint distribution of xt and yt conditional

on measurement data till time step t− 1, i.e., y1:t−1. That is KF finds µt|t and Σt|t in

terms of µt|t−1 and Σt|t−1. Observe, yt|y1:t−1 = Htxt|y1:t−1 + vt and xt|y1:t−1 is given

in (2.4). Then the joint distribution of xt|y1:t−1, yt|y1:t−1 becomes

xt
yt

∣∣∣∣y1:t−1 ∼ N


 µ̃t

Htµ̃t

 ,

 Σ̃t Σ̃tH
′
t

HtΣ̃t HtΣ̃tH
′
t +Rt


 (2.7)

Then using (2.7) the updated filtering distribution is computed as xt|y1:t ∼ N (µ̂t, Σ̂t)

where µ̂t and Σ̂t are given below

µ̂t = µt|t := µ̃t +Kt(yt −Htµ̃t) (2.8)

Σ̂t = Σt|t := (In −KtHt)Σ̃t (2.9)

Kt := Σ̃tH
′

t(HtΣ̃tH
′

t +Rt)
−1 (2.10)

Kt is the Kalman Gain Matrix.

Now, we would like to perform a time update to predict the next state based

on y1:t, i.e., obtain µt+1|t. Since xt+1 = Mt+1xt + wt, we can condition on y1:t

and express xt+1|y1:t as Mt+1xt|y1:t + wt (since wt is independent of y1:t by as-

sumption). Therefore µt+1|t = E(xt+1|y1:t) = Mt+1µt|t = Mt+1µ̂t, and Σt+1|t =

E(xt+1 − µt+1|t)(xt+1 − µt+1|t)
′ = Mt+1Σt|tM

′
t+1 +Qt. We can interpret µt+1|t in the

following fashion. Substituting the expression for µ̂t in the expression for µt+1|t yields

µt+1|t =Mt+1µ̃t +Mt+1Kt(yt −Htµ̃t)

Notice Htµ̃t = E(yt|y1:t−1), therefore (yt − Htµ̃t) is the output prediction error.
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Consequently, the predicted state of the system at t+ 1 is the prediction based on

y1:t−1 (as captured in µ̃t) added to a linear function of the prediction error in the

observation (or measurement) model.

Now, since we have observations y1:t, we explore how KF yields an optimal

estimate of E(xt|y1:t). That is we would like to find an estimator of E(xt|y1:t)

that minimizes E(∥xt − E(xt|y1:t)∥2) with respect to E(xt|y1:t). The normality of

the updated filtering distribution (2.8) - (2.10) yields µ̂t to be the minimizer of

E(∥xt − E(xt|y1:t)∥2). To interpret the Kalman Gain, we note that, instead of

directly minimizing E(∥xt − E(xt|y1:t)∥2), an equivalent problem is to obtain the

Kalman Gain matrix that minimizes the trace norm of the updated covariance ma-

trix in the filtering distribution Σ̂t, i.e., obtain the Kalman Gain as the minimizer,

argminKt
Tr(Σ̂t). To minimize this trace, we first write express Σ̂t using the Joseph

formula Σ̂t := (In − KtHt)Σ̃t(In − KtHt)
T + KtRtK

T
t [78, 36]. Then, solving the

normal equations directly, i.e dTr(Σ̂t)
dKt

= 0 yields Kt = Σ̃tH
′
t(HtΣ̃tH

′
t +Rt)

−1 which is

of the same form as in (2.10).

The key implication of the above discussion is that the mean of the updated

filtering distribution (given in (2.8)) is the minimum mean square estimator (MMSE)

for the unknown state variable xt. Optimality of µt+1|t as an estimator of predicted

state at t + 1 given y1:t−1 and that of Htµt|t−1 as an estimator of yt given y1:t−1

immediately follows from the Gaussian specifications of (2.1)-(2.2). Additionally, the

derivation of Kt by the above minimization implies that the Kalman Gain is optimal

in the minimum variance sense.

2.2.1 Example: Training Kalman Filters for Time Series Forecasting

In this section, we will use simulated data to show how we can use KF to generate

forecasts. First, we fix Mt = M = I6, Ht = H = [1, 1, 1, 1, 1, 1], Qt = 2.25I6,
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Rt = I1 and assume that the initial distribution of the state variable is given by

x0 ∼ N6(0, 25I6). Then invoking (2.1) and (2.2) we simulate the following sequence of

observations yt, t = 1, 2, ..., 200 shown in figure 2.1.

0 25 50 75 100 125 150 175 200
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Figure 2.1: Time series

In order to train the KF, we start with specifying an initial mean, µ1|0 = µ0, and

covariance, Σ1|0 = Σ0, of the state vector. Now, we apply updated filtering distribution

(2.8) and (2.9) to obtain

µ̂1|1 = µ0 + Σ0K(y1 −Hµ0)

Σ̂1|1 = (I −KH)Σ0

We then apply the time updating equation with µ̂2|1 =Mµ̂1|1 and Σ̂2|1 =MΣ̂1|1M
′+Q.

The training of KF, therefore, consists of repeating the filtering and time updates

sequentially. Thus, operationally, the KF recursive process consists of computing, at

every time step t, µ̂t|t and Σ̂t|t using µ̂t|t−1 and Σ̂t|t−1 using the observation yt. Followed

by computing the time update µ̂t+1|t and Σ̂t+1|t. Figure 2.2 shows the sequence of

one-step ahead forecasts obtained from the Kalman Filter superimposed with the

original time series.
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For KF to work, we need to know Mt, Ht, Qt, Rt and initialize the filter with

µ0 and Σ0. All subsequent estimates of the state vector are produced analytically

without requiring us to perform any sampling from [xt|y1:t] or [xt+1|y1:t].

0 25 50 75 100 125 150 175 200
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Original Time Series
Kalman Filter Forecast

Figure 2.2: Forecasts from Kalman Filter superimposed with the original time series

2.3 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is essentially a Monte Carlo approximation of

the original KF described above. Operationally, EnKF requires drawing a sample of

N particles of the state variable from the filtering distribution at time t − 1. This

ensemble of particles is denoted as x̂
(1)
t−1, x̂

(2)
t−1, ..., x̂

(N)
t−1 and is randomly drawn from

N
(
µt−1|t−1,Σt−1|t−1

)
. Once this draw is made, the time updating and filter updating,

similar to the KF steps, are applied to each particle x(i). First, we apply the time

update step (2.2) to each ensemble member to obtain its evolution from time t− 1 to

time t. That is

x̃
(i)
t =Mtx̂

(i)
t−1 + w

(i)
t , w

(i)
t ∼ N (0, Qt), i = 1, . . . , N (2.11)

It can be shown that (x̃
(1)
t , x̃

(2)
t , ..., x̃

(N)
t ) are mutually independent draws from
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N (µt|t−1,Σt|t−1). Now when the observed measurements, yt, at time step t, be-

comes available, all the particles in the ensemble are updated in the following way:

First, N random samples of the measurement errors v
(1)
t , v

(2)
t , ..., v

(N)
t are drawn from

N (0, Rt). Then using these simulated measurement errors, N perturbed observations

ỹt
(1), ỹt

(2), . . . , ỹt
(N) are obtained using ỹt

(i) = Htx̃
(i)
t + v

(i)
t . It can be shown that the

pair (x̃
(i)
t , ỹt

(i))|y1:t−1 are jointly normally distributed according to (2.7). The updated

value of the particles representing the state variables (given that we have observed yt)

are given by:

x̂
(i)
t = x̃

(i)
t +Kt(yt − ỹ

(i)
t ), i = 1, . . . , N (2.12)

It can be easily shown that x̂
(i)
t |y1:t ∼ Nn(µt|t,Σt|t). Recall from the previous

section that the Kalman Gain matrix, which is required in (2.12) to compute the

filtering distribution, contains Σt|t−1. Now, if Qt is unstructured and is relatively

high dimensional, the recursive exact computation of Σt|t−1 becomes computationally

expensive. So instead of recursively computing this large matrix at each updating

step, the EnKF uses the sample covariance matrix of the forecasted ensemble from

(2.11) to estimate Σt|t−1. In other words, EnKF replaces the recursive computation

associated with (2.6) by computing the sample covariance matrix at each time updating

step. Thus, if the sample covariance matrix of the realizations from the conditional

distribution [xt|y1:t−1] is denoted by S̃t, then EnKF approximates the Kalman Gain

matrix by K̂t := S̃tH
′
t(HtS̃tH

′
t+Rt)

−1. This approximation reduces the computational

complexity in EnKF. Consider the situation where n > N > mt, i.e., the dimension of

the observation vector (yt) is less than the number of particles in EnKF. It can be

shown that when n is large, the cost of exactly computing the Kalman Gain (Kt) is

given by O(n2mt). However, the cost computing the EnKF analog of Kalman Gain
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(K̂t) is O(nNmt) [62]. Clearly, for large n, EnKF offers significant computational

savings.

Observe that, to train KF, we need to initialize with values for µ0 and Σ0 only.

The updating steps recursively update the mean and variances of the conditional

normal distribution from formulae supplied in (2.5)-(2.10). The EnKF, on the other

hand, requires generating realizations from the initial distribution of the state variables

and updates the state variables in each step. The analytical expression of Kt and

hence, those of µt|t,Σt|t, µt+1|t,Σt+1|t are replaced by their sample analog obtained from

the updated realizations x̃
(i)
t and x̂

(i)
t , i = 1, 2, ...., N . We emphasize that conventional

KF and EnKF are both feed-forward operations and do not perform any backward

smoothing/sampling, i.e., they do not re-compute µt|t (Σt|t) from µt+1|t (Σt+1|t). Such

backward smoothing could be performed in a formal Bayesian framework using the

standard FFBS algorithm [72].

2.4 Matrix State Space Model

The matrix state space model introduces matrix variate state variables (as against

vector-valued state variables in conventional linear state space model). The state

evolution equation of the matrix state space model is therefore given by

Xt = Θt−1Xt−1ψt−1 +Wt, (2.13)

with the measurement equation being:

Yt = HtXtGt + Vt (2.14)
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Here Yt is a p× q dimensional observation matrix, Xt is a m× n dimensional state

matrix, Θt−1, and ψt−1 are m×m and n×n dimensional state transition matrices, Ht,

and Gt are p×m and n× q dimensional observation matrices, Wt and Vt are m× n

and p× q dimensional matrix-variate noises, respectively.

To solve this problem of matrix state estimation, [14] uses the linear property of

the vec operator and identity-related to the Kronecker product to convert the matrix

equations to their respective vector forms. Once the vector equivalent for (2.13) and

(2.14) are found, the solution can be computed using the Ensemble Kalman Filter

approach for the state vector in a linear state-space model. The vec operator is a

mapping from Rm×n to Rmn in which the columns of the Rm×n matrix are stacked

one below the other. For matrices of compatible dimensions, the following identity

involving Kronecker products is used

vec(AXB) = (BT ⊗ A)vec(X) (2.15)

Applying the linear property of the vec operator and (2.15) to (2.13), we get

vec(Xt) = (ψT
t−1 ⊗Θt−1)vec(Xt−1) + vec(Wt) (2.16)

Taking ϕt−1 = ψT
t−1 ⊗Θt−1 we get from (2.15)

xt = ϕt−1xt−1 + wt (2.17)

Here the lowercase letters denote the vec forms of their matrix analogs, for example,

xt := vec(Xt). Proceeding similarly as above for (2.14) by applying the linear property

of the vec operator and (2.15), we get
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vec(Yt) = (GT
t ⊗Ht)vec(Xt) + vec(Vt) (2.18)

Taking Ht = GT
t ⊗Ht we get from (18)

yt = Htxt + vt (2.19)

We can see that once the original matrix state space equations of (2.13) and

(2.14) have been converted to their vector analogs in (2.17) and (2.19), they are

precisely similar to the state evolution and measurement equations in a linear state

space model as seen in (2.1) and (2.2). Therefore, one can utilize standard EnKF to

estimate the state variables appearing in a matrix state space model by first converting

the matrix-variate state variable to a vectorized form.

In sections 2.1-2.4, we reviewed the concepts we will heavily use in the con-

struction of our generalized stacking methodology. In sections 2.5-2.6, we discuss the

concepts of embeddings and Monte Carlo dropouts that routinely appear during the

training of deep learners. In sections 2.7 and 2.8, we will discuss two exemplar deep

learners - LSTM and GCN. We will use these constructs during the deployment of

our stacking methodology on real-life data.

2.5 Embeddings in Deep Learning

Embeddings in deep learning are used to convert high-dimensional sparse vectors

into lower dimensions that are more amenable to machine learning and deep learning.

Consider the case of a simple problem from natural language processing of predicting

the sentiment of movie reviews. The training data comprises the texts of the reviews

from various users and the associated sentiment, which is either positive or negative.
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Since there are only two categories of reviews, the sentiment prediction problem can

be considered a binary classification problem. The features or the predictors are the

text reviews, and the targets are the associated sentiments of these reviews. Since

the movie reviews are expressed in natural language, we must first convert them to a

vector representation. The most common way to convert the text reviews to a vector

representation is one hot encoding in which, first, the number of unique words in

the text corpus (vocabulary) is calculated. Each text is expressed as a binary vector

having the same dimension as the vocabulary size. The downside of one hot encoding

is that the resulting binary vectors are highly sparse and very high dimensional, as

often the vocabulary size can easily be in the millions.

Consider a fully connected artificial neural network as the modeling architecture

of choice for the sentiment classification problem. The architecture consists of three

layers. One is the input layer, which is the one hot encoded vector. The second layer

is a hidden layer with nhidden number of neurons, and the third layer is the prediction

layer with a single neuron. The loss function is the binary categorical cross-entropy,

which is optimized using the Adam optimizer. Since all the layers in the model are

fully connected, all neurons in one layer are connected to all the neurons in the next

layer. The embeddings of the individual words in the vocabulary can be obtained

from these fully connected weights between the input and the hidden layer. Since each

index of the one hot encoded vector corresponds to a word, all the weight connections

emanating from that neuron and connecting it with the neurons of the next layer are

the learned embeddings of the word corresponding to that index.

Once the model has been trained, these learned embeddings of the words can be

extracted for use in many other machine learning applications, such as word embedding

visualization and transfer learning. The learned embeddings of the various words can

be reduced in dimensionality using any dimension reduction technique and can then be
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visualized. Ideally, the words having similar semantic meaning should cluster together

around each other. In the case of transfer learning, the learned embeddings of the

words from an already trained model can be used with a different training corpus.

Imagine a scenario when the new training corpus is small, and one hot encoding

or learning the embeddings from scratch is not an option. In such a scenario, for

each movie review, the embeddings of the constituent words can be extracted from a

pretrained model, and such vectors can be element-wise averaged to form a vector for

the entire text. For a survey on the use of embeddings in deep learning, refer to [71].

2.6 Monte Carlo Dropout

Monte Carlo Dropout is a regularization technique used to prevent overfitting in

training deep neural networks. During each training iteration, all the neurons of the

network have a probability p of being dropped. Consider that we train a network

using an optimization algorithm such as stochastic gradient descent (SGD) in which

the model parameters are learned iteratively. The optimization algorithm starts

with a random initialization of the parameters and then proceeds in an iterative

manner until some convergence criteria is met. Without Monte Carlo dropouts at

each iteration of the SGD algorithm, all the parameters are updated. However, using

Monte Carlo dropouts at each iteration, only the retained neurons are updated by the

SGD algorithm. The dropped neurons have their values carried over to be used as

starting values for the next iteration of SGD. In this way, the Monte Carlo Dropout

technique trains many lightweight versions of the full deep neural network. At the

culmination of the SGD algorithm, weights will be assigned to each neuron of the

network, which is then used for prediction.

During testing time, the learned weight values from SGD are multiplied by the
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dropout percentage p to account for the fact that during training at any iteration, only

p percent of the total neurons were active. The same idea of dropouts used during

training can also be used during testing to generate a range of predictions for each

test sample, thereby allowing the computation of prediction intervals. In the case of

prediction, the scaling step of multiplication by the dropout percentage is not required.

Therefore, dropout presents a convenient way of computation of prediction intervals

without training many different deep neural networks using either bootstrapping the

training samples or the predictors. The challenge in this case is the repeated training

of the full networks, which can often be overparameterized with many parameters,

making the training slow and the constraint of storing the learned models, which is

memory intensive. The Monte Carlo Dropout technique circumvents these issues by

training a single model architecture but with many different variations in each training

iteration. Therefore, at the end of each SGD iteration, we only need to store one set

of weights, which is less memory-intensive. A more comprehensive discussion of the

Monte Carlo dropout technique can be found in [64, 24].

2.7 Long Short Term Memory Models

Long Short Term Memory Models (LSTMs) are neural network architectures based on

Recurrent Neural Networks, which are used for data that has a temporal dimension

to it. Often, time series data is the most natural data type with a time dimension,

but natural language data such as movie reviews and gene sequences are also treated

as having a time dimension because the words or the genes appear in a particular

sequence. LSTMs then process the sequence temporally, and in addition to using the

features at each time step, they also have a hidden and a carry state that encodes

information from the previous time steps.
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Figure 2.3: An LSTM cell showing the various operations at a time step involving the
hidden state, carry state, and features1

Figure 2.3 from [79] shows the various operations involving the features, hidden,

and carry state at the time step t. At any given time step t three types of information

are available, including the features Xt, hidden state Ht−1, and the carry state Ct−1.

The subscript on the hidden and the carry state is t− 1, indicating that these values

are computed from the previous time step t− 1. Ft, It, C̃t, and Ot are functions of

Xt and Ht−1 and are parameterized in the form of learnable weight matrices. For

a complete discussion of LSTMs and how backpropagation through time is used to

update the learnable parameters, refer to [79].

2.8 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are neural network architectures that are

used for graphs. A graph is a collection of nodes and expresses how these nodes are

interconnected with each other. Formally, a graph can be described as a collection of

features for all the nodes and an adjacency matrix that defines the connection between

the graph nodes. If there are N nodes and each node has D features, then the feature

1Figure is from [79]
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matrix of the graph X is a N ×D dimension matrix, and the adjacency matrix A is

a N ×N dimension matrix. The GCN then learns a D × F dimensional matrix to

produce a processed feature matrix Z of dimensions N × F . Notice that the number

of rows in X and Z are the same as the number of nodes, N . Therefore, the GCN can

be thought of as learning a matrix W , which transforms the original graph feature

matrix, X, into the processed feature matrix, Z.

The transformed feature matrix, Z, is computed as Z = AXW . If the adjacency

matrix, A, is binary, then the matrix product AXW takes a sum of the processed

features for each node where the sum is over all of that node’s neighbors. Since the

number of neighbors can vary for each node, simply computing the processed feature

matrix, Z = AXW , makes the resulting matrix biased to the number of neighbors of

the nodes. To account for the difference in the number of nodes, Z is more commonly

calculated as Z = D− 1
2AD− 1

2XW . Here, D is a diagonal matrix of dimensions N ×N ,

where the diagonal elements of this matrix comprise the number of neighbors for each

node. Pre and post-multiplication of the adjacency matrix, A, by D− 1
2 , normalizes

the adjacency matrix making the transformed feature matrix, Z = D− 1
2AD− 1

2XW

an average of the transformed features of the neighbors. It is more common to use

Â = A+ I instead of just A as the adjacency matrix so that the average also includes

the transformed features of the node and not just the transformed features of the

neighbors. For a complete discussion of GCNs, refer to [35].
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Chapter 3

The Matrix Ensemble Kalman Filter-based multi-arm Neural

Network

3.1 Introduction

Ensemble Kalman Filters (EnKF) have been repurposed for gradient-free training of

artificial neural networks (ANNs) and deep learners (DL) [12, 11]. So far, EnKF-based

training of ANN and DL only focused on single-type predictors that only require

the construction of single-arm networks. However, multi-arm networks have become

popular with increasing interest and availability of multi-type data. In a multi-arm

network, each arm ingests a particular type of predictor, and the embeddings of these

predictors get integrated before the dense prediction layer.

We consider multi-arm networks from a model averaging perspective. In our

conceptualization, the sub-networks in each arm are constituent base learners and the

prediction layer creates a convex combination of the outputs generated by these base

learners (sub-networks). As mentioned in Chapter 1, our goal is to optimally estimate

the weights within each sub-network, and the cross-sub-network model averaging

weights simultaneously and attaching uncertainty to the predicted output. To that

end, in this chapter, we introduce our novel matrix-variate Ensemble Kalman Filter

methodology to train a multi-arm ANN (MEnKF-ANN) that performs model averaging
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while training and hence could be envisioned as a generalization of conventional stacking

procedure.

We offer two useful applications of our methodology in real-life data. In the first

application, we deploy the MEnKF-ANN to mimic a recently developed multi-arm

hybrid graph convolutional network - DeepCDR [44] and to transfer the knowledge

extracted by this DL in a small sample. DeepCDR ingests drug features and different

types of omics profiles in different arms to predict cancer drug responses. It integrates

drug response and multi-omics data from Genomics of Drug Sensitivity in Cancer

(GDSC) [76], Cancer Cell Line Encyclopedia (CCLE) [7], and The Cancer Genome

Atlas (TCGA) [10] databases. Consequently, we may encounter situations where query

samples came from one of the databases with a subset of features - for example, the

cell lines that are unique to each database. The principal application question we

want to answer is how to use DeepCDR on a small sample that comes with a reduced

set of features. The existing solution is to fine-tune the original DL on a reduced

set of features. We demonstrate that MEnKF-ANN can be trained on submodels of

different orders with minor modifications in the state matrix. Consequently, we can

store multiple MEnKF-ANN submodels and choose the appropriate submodel to make

predictions when the query samples arrive with a subset of features. Our explicit

in-situ model averaging is leveraged to generate predictions without fine-tuning the

original DL when query points arrive with a reduced set of features.

The second application consists of averaging two LSTM classifiers trained to

classify what carbohydrate substrates are digested and utilized by a microbiome

sample characterized by genomic sequences consisting of polysaccharide utilization loci

(PULs). Exploratory analyses show that the uncertainty intervals generated by Monte

Carlo (MC) dropout heavily rely on the architecture of the LSTM. So, even though

a standard stacking-based meta-learner could produce model-averaged estimates of
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success probabilities, it fails to propagate the uncertainties inherent in the probabilities

estimated by the constituent LSTMs. We apply MEnKF-ANN to resolve this issue.

Our results show that the average width of the prediction intervals obtained from

our approach is more stable than the variability observed in MC dropout-induced

prediction intervals obtained from constituent base LSTMS.

The remainder of the chapter is organized as follows: Section 3.2 reviews how

EnKF has been used in the context of training neural networks. Section 3.3 details

the construction of our MEnKF-ANN stacker. In section 3.4, we deploy MEnKF-ANN

to predict cancer drug responses on a small dataset by mimicking DeepCDR. We

also demonstrate the ability of our approach to handle missing features in the query

samples. Section 3.5 illustrates how we can use MEnKF-ANN to attach uncertainty

to a convex combination of two LSTM classifiers. We offer concluding remarks in

section 3.6.

3.2 Background

In this section, we offer a brief overview of how EnKF has been used to train NNs

and DLs.

Using Kalman Filters for Deep Neural Networks: The usage of KF

and EnKF techniques has been surprisingly sparse in deep learning literature. It is

probably attributable to the fact that conventional KF and EnKF are suitable for

estimating parameters in linear state-space models. However, several extensions have

been proposed to generalize KF in nonlinear settings. [69] introduced the unscented

KF that better approximates nonlinear systems while making it amenable to the

KF framework. [2] developed the state augmentation method that offered a generic

technique to handle nonlinearity in state-space models via the KF framework. [30]
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utilized this state augmentation technique to develop a generic method to train ANNs

using state-augmented KF. They derived the state-augmented KF’s forecast and

update equations in ANNs, thereby providing the algebraic framework to train DLs

using the Ensemble Kalman Filters approach.

Imagine a scenario when the measurement equation of the linear Gaussian state-

space model in (2.1) is not linear anymore. This situation can arise commonly in

supervised learning models such as neural networks where the measurement function

is non-linear. Consider now a slightly modified version of (2.1) as follows.

yt =M(xt) + vt, vt ∈ Nmt(0, Rt) (3.1)

Here, M is the non-linear function induced by the neural network architecture.

The augmented state variable is an artifact introduced to cast the measurement

equation in (3.1) into a linear form such as (2.1). Consider a new variable z, which is

defined as

zt =

M(xt)

xt

 (3.2)

Now consider a modified version of Ht from (2.1) defined as follows.

Ht =

(
Imt , 0mt×n

)
(3.3)

Now using the new definition of Ht and zt from (3.3) and (3.2), respectively, the linear

analog of (2.1) is given by

yt = Htzt + vt, vt ∈ Nmt(0, Rt) (3.4)
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The measurement equation is now given by (3.4), a linear measurement equation

similar to (2.1). Using this new definition of Ht and the augmented state variable zt,

we can use the Ensemble Kalman Filtering forecast and update equations from (2.11)

and (2.12). Equations (3.3) and (3.4) form the foundation of introducing Kalman

Filters in deep learning.

Only a few studies used the foregoing ideas to train NNs and extend that to DLs.

For instance, [61] used extended KF to train feed-forward NN. [11] used the updating

equations in [30] to train a single hidden layer ANN and demonstrated how using state

augmentation, one can estimate the measurement error variance. State-augmented

EnKF formulation was also used to estimate parameters in LSTMs [12]. [77] trained

a Convolutional Neural Network using EnKF with the strategies outlined above.

However, no study, to the best of our knowledge, used EnKF to perform model

averaging on multiple base ANNs and demonstrated how this model averaging could be

connected with multi-arm DLs. This dissertation addresses that gap in the literature.

3.3 Methodology

First, we offer a generic construction of the proposed MEnKF-ANN procedure and

then describe how this method could be deployed to transfer information from a

multi-arm hybrid graph convolutional network. We will use the following notations.

Y ∈ R is our target response. We have a total of m =
∑T

t=1mt training instances,

with mt being the number of training data points in the tth batch. vft ∈ Rp and

vgt ∈ Rq denote two different representations of the features (possibly of different

dimensions) for the tth batch of data. Consider two ANN architectures, denoted by

f and g. The architecture f takes vft as input features and combines that with its

own within-learner weights wf
t to generate the prediction for the target response Y .
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Similarly, the architecture g takes vgt as input features and combines that with its

own within-learner weights wg
t to generate the prediction for the target response Y .

Clearly, if mt > 1, we can envision f and g to be ANN architectures that get trained

on a dataset (Y, vft )
mt×dim(vft )+1 and (Y, vgt )

mt×dim(vgt )+1, respectively. Assume that,

in each batch, f and g have nf , ng number of learnable parameters with nf = ng

(if nf ̸= ng, we can use suitable padding when updating the weights) and our final

prediction for Y is going be a convex combination of the predictions produced by f

and g. For expositional simplicity, we will simply refer to f and g as ANNs and they

form the base learners for us. Our goal is to simultaneously update wf
t , w

g
t and the

cross-learner weight that generates the convex combination of the outputs from f and

g and guarantee that the estimates are jointly optimal under expected square error

loss.

3.3.1 Matrix Kalman Filter based Multi-arm ANN

Consider the state matrix, Xt, associated with the tth batch of data given by

X
(mt+ng+1)×2
t =


f(vft , w

f
t ), g(vgt , w

g
t )

wf
t , wg

t

0, at

 (3.5)

where at is a real-valued scalar parameter. Define H
mt×(mt+ng+1)
t = [Imt , 0mt×(ng+1)]

and G2×1
t = [1 − σ(at), σ(at)]

T where σ(.) : R → [0, 1], with the sigmoid function

being a popular choice of σ(.). Additionally, define Θt−1 = Imt+ng+1 and ψt−1 = I2.

We are now in a position to define the Matrix Kalman Filter.

The measurement equation is given by:

Yt = HtXtGt + ϵt (3.6)
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with the state evolution equation being

Xt = Θt−1Xt−1ψt−1 + ηt (3.7)

Writing in vec format, (3.7) becomes

xt = vec(Xt) = (ψT
t−1 ⊗Θt−1)vec(Xt−1) + vec(ηt) (3.8)

Now letting ϕt−1 = ψT
t−1 ⊗Θt−1 and η̃t = vec(ηt) we get from (3.8)

xt = ϕt−1xt−1 + η̃t (3.9)

(3.6) can similarly be compactified as

yt = Htxt + ϵt (3.10)

where Ht = GT
t ⊗Ht. Observe that(3.10) and (3.9) have the same form as the standard

representation of linear state space model described in (2.1) and (2.2). Therefore, we

can get the matrix state space model’s solution by converting it to the vector state

space model and then using EnKF to approximate the updating equations. We direct

the audience to [14] for more details on Matrix Kalman Filters.

3.3.2 Reparametrizing MEnKF-ANN for Computational Efficiency

The above construction of Xt, Ht, and Gt performs automatic model averaging while

training. First, consider the matrix multiplication of HtXt from (3.6). This would be

a mt × 2 dimensional matrix in which the first column is the prediction for the tth

batch, from the neural network f and the second column is the prediction from the
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neural network g. Post multiplication by Gt would take the weighted average of each

row in HtXt where the weights are defined inside the Gt matrix. Now consider the

matrix multiplication of HtXtGt from (3.6)

HtXtGt =

[
f(vft , w

f
t ), g(vgt , w

g
t )

]1− σ(at)

σ(at)


=

[
(1− σ(at))f(v

f
t , w

f
t ) + σ(at)g(v

g
t , w

g
t )

]
(3.11)

(3.11) demonstrates how our construction explicitly performs model averaging

across the batches with 1− σ(at) and σ(at) being the convex weights allocated to the

ANNs f and g, respectively.

Although the foregoing construction connects Matrix KF formulation with multi-

arm ANN and performs explicit model averaging, it suffers from a computational

bottleneck. Using (3.9) and (3.10) the estimated Kalman Gain Matrix would be

Kt = S̃tHT
t (HtS̃tHT

t + σ2
yImt)

−1. However, in the above parameterization we have

Gt = [1− σ(at), σ(at)]
T and Ht = GT

t ⊗Ht. This would require computation of the

estimated Kalman Gain matrix for each member in EnKF since, at any given iteration

of our MEnKF-ANN, we have an at for each ensemble member. Thus, computation

complexity associated with Kalman Gain computation increases linearly with the

ensemble size in the above parametrization of the MEnKF-ANN.

To alleviate this computational bottleneck, consider the following parametriza-

tion:

Xt =


(1− σ(at))f(v

f
t , w

f
t ), σ(at)g(v

g
t , w

g
t )

wf
t , wg

t

0, at

 (3.12)
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and Gt = [1, 1]T . We still have explicit model averaging in the measurement equation,

i.e.,

HtXtGt =

[
(1− σ(at))f(v

f
t , w

f
t ) + σ(at)g(v

g
t , w

g
t )

]
(3.13)

but Ht does not depend on at, therefore the matrix products for the Kalman Gain

computation can now be computed once for each batch.

Turning to the variance parameter in the measurement equation (3.10). Assume

ϵt ∼ Nmt(0, ν
2
yImt). To estimate ν2y , we augment the state vector as follows:

X
(mt+ng+2)×2
t =



(1− σ(at))f(v
f
t , w

f
t ), σ(at)g(v

g
t , w

g
t )

wf
t , wg

t

0, at

0, bt


(3.14)

where ν2y = log(1 + ebt) and Ht in (3.6) now becomes [Imt , 0mt×(ng+2)]. We used a

softplus transformation for ν2y instead of the usual log transformation for computational

stability.

3.3.3 Explicating MEnKF-ANN

Recall, our goal, as laid out in Chapter 1, was to optimally estimate cross-learner

and within-learner weights simultaneously and attach uncertainty to the predictions

obtained from the averaged model. In the foregoing construction of the proposed

MEnKF-ANN, we have the base learners f(.), g(.), learner-specific weights wf
t , w

g
t , and

the model averaging weight (or cross-learner weight) at, all incorporated in the state
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matrix Xt as shown in (3.5). The measurement model (3.6) is the model-averaged

output coming out from the base learners f(.) and g(.). We have framed the problem

in an augmented state-space fashion and invoked EnKF to estimate the state variables.

First notice that the notion of time in conventional EnKF setup is replaced by

batch. This could be justified by the fact that in practice ANNs are often trained

over batches with batch size smaller than the size of the training data predominantly

because of memory requirements in training ANNs. Additionally, weights in the ANNs

are updated after each batch is processed- analogous to the EnKF setup where the

state variables are updated when new observations (observation vector, more precisely)

come along. Thus the specification of f(.) and g(.) as ANNs correlate well with the

conceptual framework of EnKF with augmented state space.

The EnKF machinery allows each element in the state matrix to be updated at

the same time in each updating step of EnKF. Thus the within-learner weights and

cross-learner weights are updated in-situ. Next, as we outlined in Chapter 2, the KF

framework yields optimal estimates of the state variables under squared error loss. That

is the µ̂t is indeed the minimum mean square error estimator for E(Xt|y1:t). Although

EnKF is an approximation of KF, we can show that under Gaussian specification,

EnKF estimates converge in probability to their KF analog as the ensemble size

increases (see section 3.7 for proof). Putting the pieces together, we surmise that

the estimates of state variables produced by our MEnKF-ANN are asymptotically

(with respect to ensemble size) optimal under mean square error loss. Recall that,

conventional stacking estimates the cross-learner weights under square error loss as

well. But, in the proposed MEnKF-ANN, we are estimating all the weights jointly by

minimizing a global expected square error loss. Hence, we envision this approach to

be a generalization of stacking wherein the within-learner and cross-learner weights

are jointly optimal.
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Turning to the uncertainty quantification issue, we first contrast the nature of

the within-learner weights obtained from MEnKF-ANN with those obtained from

conventional ANNs (or for that matter any DLs) trained via backpropagation. Con-

ventional ANN training treats the set of within-learner weights as unknown internal

parameters that are estimated via minimization of a suitably chosen loss function.

Therefore, fundamentally the training process is geared to learn about the internal

model parameters so as to reduce our epistemic uncertainty about them. As such [53]

states unequivocally, “uncertainty about parameters in statistical models is almost in-

variably epistemic”. However, since conventional ANN treats parameters as constants,

no probability statement can be attached to them directly. In our conceptualization,

the weights are included in the state matrix implying that we are starting off with

the assumption that the internal model parameters (w’s) and cross-model parame-

ters (σ(a)) are jointly normally distributed random variables. Consequently, we can

directly attach probability statements to these parameters. To understand how we

are attaching the probabilities, we recall (from Chapter 2) that each EnKF update

step essentially consists of drawing independent realizations of state variables from

the updated joint distribution of all the state variables. The point estimates of the

model parameters are obtained from this updated distribution. The entire distribution

profile of all model parameters attempts to capture the epistemic uncertainty about

the parameters themselves, under the assumption that the model(s) is well-specified.

Since the set of models (both f(.) and g(.) and probability models for measurement

and state variables) are fixed a-priori uncertainty due to model misspecification cannot

be captured.

Turning to uncertainty in predicting the target response, once again we observe

that the point estimate of predictions in conventional ANNs (or DLs) is a deterministic

function of the internal model parameters and non-stochastic feature set. Consequently,
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the target of prediction is, again, an unknown constant to which probability statements

can not be attached. The MEnKF-ANN construction, on the other hand, updates

the entire conditional distribution of yt|y1:t−1 (see (2.7)), thereby generating the

full distributional profile of the prediction target. This updated distribution, again,

attempts to capture the epistemic uncertainty in the prediction under the assumption

that the predictive models and probability models are not misspecified. Thus, the

prediction uncertainty is quantified in the following sense:

Suppose the conditional distribution of the target response variable is Gaussian with

unknown mean and variance. Suppose the mean is a convex combination of two ANNs

(ingesting two types of non-stochastic features) with known architecture but unknown

stochastic weights. Further, suppose the joint distribution of all unknown weights

is Gaussian as well. Under this set of assumptions, MEnKF-ANN can coherently

generate the predictive distribution of the response variable given the training dataset

and the feature vector for the query point by propagating the uncertainty associated

with all the model weights.

3.3.4 Connecting MEnKF-ANN with DL

To connect our conceptualization of MEnKF-ANN with a deep learner, we will use an

illustrative example. A recently developed deep learner (DeepCDR) uses a multi-arm

graph convolutional network (GCN) technique to predict in-vitro cancer drug responses

on cell lines. DeepCDR uses drug features and multi-omics data as different sub-

networks to predict the target response variable logarithm of half-maximal inhibitory

concentration (log IC50), which is an indicator of drug response for cancer cell lines

[44]. We consider the drug information and the omics information as two classes of

predictors.

The MEnKF-ANN uses the observed log IC50 as the target response. The
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DeepCDR embeddings of omics data and drug data are treated as numerical features

vft and vgt , respectively, and supplied to the ANNs f and g, respectively. The convex

weight σ(a) combines the prediction of Y generated by f and g using vft as vgt as

features, respectively. The estimate of σ(a) assesses the relative predictive capacity of

drug information compared to omics information. We emphasize that, in our current

conceptualization, multiple DLs are not directly absorbed by MEnKF-ANN as base

learners. Rather, we use these DLs simply to extract numerical values of features

associated with complex predictors. In our context, DeepCDR is used to extract

embeddings of drugs and omics features only.

To initialize the ensemble, we draw the members in the state vector (3.14) from

N2ng+2(0, ν
2
xI2ng+2). We update each element of the augmented state vector w

f,(i)
t ,

w
g,(i)
t , a

(i)
t , b

(i)
t using the tth batch of data. N and mt are treated as tuning parameters.

These tuning parameters are chosen by tracking the empirical convergence of training

error and the trajectory of dominant eigenvalue of (I−KtHt). We offer formal proof of

this assertion in Proposition 1 (see section 3.7). Operationally, we train MEnKF-ANN

for multiple N and batch sizes and track the training error. In each training run,

the exit criterion is set such that MEnKF-ANN sees the entire training set and the

dominant eigenvalue of (I −KtHt) does not exceed 1 for the last five updates. Due

to the properties of Kalman Filters (see Proposition 1), we expect the training error

trajectories obtained from different choices of N and mt to converge.

3.4 Application I: Transfer learning using MEnKF-ANN

This section offers a high-level overview of the focal deep learner of DeepCDR and

describes the dataset used to train this DL. We describe two scenarios to demonstrate

how MEnKF-ANN could transfer information gleaned from training DeepCDR on a
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large dataset to a small batch of additional data that DeepCDR did not see. We then

investigate how the MEnKF-ANN could also transfer information when the additional

data comes with a subset of predictors that were originally used to train DeepCDR.

3.4.1 Application I: Data description

DeepCDR is a hybrid convolutional neural network for cancer drug response prediction

that consists of a graph convolutional network for integrating drug-specific features

based on the chemical representations of drugs and multiple subnetworks for integrating

multi-omics profiles [44]. This model encodes the multi-omic features using three

subnetworks corresponding to each omics type. Each subnetwork takes as input

individual omics features and then learns its embedding. These omics embeddings are

then concatenated with the embeddings of the drugs, and then used as inputs to the

final prediction layer.

In the data curation step, this method utilized the Cancer Cell Line Encyclopedia

(CCLE) database to extract genomic mutation, gene expression, and DNA methylation

profiles for cancer cell lines. It then extracted drug response data, in the form of

log IC50, for these cell lines from the GDSC database. Finally, drugs were represented

by a matrix consisting of a 75-dimensional feature vector representing each atom

of the drug. PubChem library was used to obtain the structural files of the drugs.

The final curated dataset consisted of 86530 instances across 238 drugs and 561 cell

line combinations. [44] provided the datasets originally used to train DeepCDR at

https://github.com/kimmo1019/DeepCDR/tree/master-/data. We first trained the

DeepCDR model using 69214 samples and used 17316 samples as validation samples

to determine the stopping time. We used the original network architecture in [44]

with the author-recommended hyper-parameter combinations.

https://github.com/kimmo1019/DeepCDR/tree/master/data
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3.4.2 Application I: Results

We use the following design to demonstrate how to transfer information via MEnKF-

ANN to a small sample. First, we chose 20 drugs that appear infrequently in the

training dataset we used to train DeepCDR. These drugs were AKT inhibitor VIII,

AZD6482, Afatinib, Avagacestat, BMS-536924, Bicalutamide, Bleomycin, CHIR-

99021, GSK269962A, IOX2, JQ1, Olaparib, PFI-1, PLX-4720, Pictilisib, Refametinib,

SB505124, SN-38, Selumetinib, and UNC0638. These 20 drugs accounted for approx-

imately 10% of the total training samples for the DeepCDR training, i.e., 90% of

cancer cell lines corresponding to these drugs have not been seen by DeepCDR. For

5000 of such samples that have not been used to train DeepCDR, we extracted the

IC50 and the raw drug and omic features. These instances form the focal dataset (Z)

for training and testing MEnKF-ANN.

We performed 5-fold cross-validation with MEnKF-ANN, so in each fold, MEnKF-

ANN was trained on 4000 instances, and 1000 data points were used for testing. We

supplied all the drug and omics features available in Z to the original DeepCDR and

extracted their embeddings. In the training set, we supplied the drug embeddings

to one arm of the MEnKF-ANN, the second arm ingested all the omics embeddings,

and then we trained MEnKF-ANN with log IC50 as the target variable. We then

supplied the embeddings associated with the test set and predicted log IC50 for the

test set. Figure 3.2 shows the training RMSE for different ensemble sizes (N) across

the update iterations. Observe that the training RMSEs show signs of convergence

as the training progresses, as predicted by the convergence theorem. The training

RMSE obtained with N = 200 is nearly indistinguishable from that obtained with

N = 400. This offers empirical support to our choice of N = 196. Figure 3.1 shows

the cross-validation scatter plot of observed and predicted log IC50.
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To benchmark the prediction performance of MEnKF-ANN, we notice that our

method essentially approximates the dense layers of DeepCDR. Hence we can freeze

the convolution layers of the DL and fine-tune the dense layers using Z. Since the

DL is trained with dropouts, we activate the dropout layers during the prediction

phase and obtain a set of predicted values for each test instance. We compute the

empirical 95% dropout-induced prediction interval for each test sample and report

the average coverage probabilities and width of the 95% dropout prediction intervals.

Table 3.1 reports the average cross-validated RMSPE, average Pearson correlation

between predicted and observed values, average coverage probabilities, and width of

the uncertainty intervals. We also report the average weightage associated with the

drug arm of MEnKF-ANN.

Table 3.1: Averaged cross-validation metrics for MEnKF-ANN and fine-tuned Deep-
CDR trained with all available features.

Model ν2x N RMSPE Coverage Average width ρ Drug weight

MEnKF-ANN 1 196 1.38 98% 7.18 0.70 0.77
Fine tuned DeepCDR NA NA 1.44 46% 1.71 0.67 NA

Observe that, in terms of conventional performance metrics (RMSPE and ρ),

MEnKF-ANN and fine-tuned DeepCDR produce comparable results. However, our

approach is vastly superior to the fine-tuned DeepCDR when we look at the prediction

uncertainty. As such, coverage associated with dropout-induced uncertainty intervals

raises questions about the adequacy of fine-tuned deep-learning models.

Next, we consider the situation where one of the omics features is completely

missing in Z. The DeepCDR network encodes the multi-omic features using a sub-

network corresponding to each omics. When an omics feature, gene expression (say),

is missing, the DeepCDR model cannot obtain its corresponding embedding, and

either needs to be retrained or the positions in the concatenated vector allocated to

the gene expression embeddings need to be padded before it can predict log(IC50).
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However, since the three subnetworks in DeepCDR operate on the omics features

individually, the learned embeddings for the omics features that are not missing can

still be extracted from the DL. These available embeddings of the non-missing omics

features can be used to retrain MEnKF-ANN with a state matrix that does not contain

the weights corresponding to missing features. This reduced state matrix can be

viewed as a marginalized version of the full state matrix used to train MEnKF-ANN

with all features. Since matrix normal is closed under marginalization [26], the entire

theoretical construct of MEnKF-ANN holds, and all the updating equations have the

same form with appropriate adjustment in the dimensions of the matrices.

Hence, in this scenario, we pretend that the foregoing 5000 samples in Z come

with missing gene expression. We supply the available omics features (gene mutation

and DNA methylation) and drug features to appropriate subnetworks of the pre-trained

DeepCDR to extract the respective embeddings. MEnKF-ANN is then trained on the

reduced set of features. Once again, we report the 5-fold cross-validation results in

Table 3.2.

Table 3.2: Averaged cross-validation metrics for MEnKF-ANN trained with a reduced
set of features.

Model ν2x N RMSPE Coverage Average width ρ Drug weight

MEnKF-ANN 1 132 1.39 91% 4.90 0.69 0.80

3.5 Application II: Attaching uncertainty to stacked LSTM

classifier using MEnKF-ANN

In this section, we apply MEnKF-ANN to attach uncertainty to the predicted prob-

abilities produced by a convex combination of two different architectures of LSTM.

The training objective is to classify what carbohydrate substrates are digested and
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Figure 3.1: Scatterplot showing the observed log IC50 values with the predicted
log IC50 values over all cross-validation test folds for MEnKF-ANN trained without
gene expression features.

utilized by a microbiome sample characterized by genomic sequences consisting of

polysaccharide utilization loci (PULs) [9] and their encoded genes.

3.5.1 Application II: Motivating Problem

The human gut, especially the colon, is a carbohydrate-rich environment [31]. However,

most of the non-starch polysaccharides (for example, xylan, pectin, resistant glycans)

reach the colon undegraded [58] because human digestive system does not produce

the enzymes required to degrade these polysaccharides [22]. Instead, humans have

developed a complex symbiotic relationship with gut microbiota, with the latter

providing a large set of enzymes for degrading the aforementioned non-digestible

dietary components [68]. Consequently, an essential task in studying the human gut

microbiome is to predict what carbohydrate substrates a microbiome sample can
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Figure 3.2: Trajectory of MEnKF-ANN training RMSE for different ensemble sizes
(N)

digest from the genetic characterization of the said microbiome [37].

To generate a focused genetic characterization of the microbes that relates to

their carbohydrate utilization property, one often investigates the genes encoding the

Carbohydrate Active Enzymes (CAZymes) and other proteins that target glycosidic

linkages and act to degrade, synthesize, or modify carbohydrates [45, 80]. This

set of genes tends to form physically linked gene clusters in the genome known as

polysaccharide utilization loci (PULs) [9]. Consequently, the gene sequences associated

with PULs of microbes could be used as a predictor to ascertain the carbohydrate

substrate the microbe can efficiently degrade. However, these gene sequences are

string-valued quantities [29, 65] and hence their naive quantitative representations (for

instance, one-hot-encoding or count vectorization) often do not produce classifiers with

acceptable accuracy [4]. Instead, we can use LSTM to process the entire sequence of

string-valued features and then implement a classifier with a categorical loss function.

Since the experimental characterization of new PULs for carbohydrate utilization is
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an expensive process [3], we need large enough labeled samples. Consequently, as we

demonstrate below, the output of the LSTMs is sensitive to its architecture.

We extract the dataset from the dbCAN-PUL database [3] that contains exper-

imentally verified PULs and the corresponding GenBank sequences of these PULs

along with known target carbohydrate substrates. Figure 3.3 shows an example of

a gene sequence associated with a PUL for the substrate Pectin. We have a total of

approximately 411 data points. Figure 3.4 shows the dataset’s frequency distribution

of various target substrates. We do not have sufficient samples to train a complex

DL to classify all the available substrates. Hence we propose to classify the two

most frequently occurring target substrates - Xylan and Pectin. Seventy-four samples

belong to these two classes of substrates in a reasonably balanced way.

We train two LSTM binary classifiers on 66 samples and retain eight hold-out

samples for test purposes. One LSTM was trained with two dropout layers - one

inside the LSTM and one just before the final prediction layer. The second LSTM

was trained with dropout in the LSTM layer only. We activated the dropout layers

during the prediction phase, which generated multiple copies of the prediction for

each test sample. Figure 3.5 shows each test sample’s predicted probabilities and

the boxplot constructed using the foregoing set of predictions. The left panel (top

and bottom) shows these metrics for eight held-out test samples for the first LSTM,

while the right panel shows the same for the second LSTM. Observe that the point

prediction remains reasonably stable under both LSTM configurations, but the width

of these intervals are sensitive to the number and placement of the dropout layers. If

we wish to perform simple averaging to predict the probabilities of the test sample,

how should we attach uncertainty to the equally weighted model-averaged predictions?

We deploy MEnKF-ANN to answer this question.

Suppose p is the probability of observing a sample of a particular category.
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Figure 3.3: Pectin PUL

Figure 3.4: Frequency distribution for the various substrates

The trained LSTMs produce p̂1 and p̂2 for each training instance, along with the

embedding of the associated gene sequences. To attach uncertainty to the average

of the above probabilities, MEnKF-ANN uses logit(0.5 ∗ p̂1 + 0.5 ∗ p̂2) as the target

response. The embedding of the gene sequences obtained from one LSTM is fed into

one arm of MEnKF-ANN while the other arm ingests the embeddings generated by

another LSTM. The convex weights σ(a) enter into the state matrix so that we can

assess whether our MEnKF-ANN can accurately recover the cross-learner weights. We

emphasize that MEnKF-ANN is not directly combining two LSTMs. The base learners

in MEnKF-ANN are still two ANNs (f, g) where f absorbs the embeddings produced

by one of the LSTMs and g absorbs the embeddings produced by the other LSTM. The

measurement model specifies that the convex combination (with unknown weights) of

the outputs from f and g is the mean of the target response variable which is the logit
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Figure 3.5: Boxplots showing the predictions superimposed with the ground truth
value from the two LSTM architectures

transformed average of the two LSTM outputs. The uncertainty interval produced by

MEnKF-ANN, quite obviously, targets to capture logit(0.5 ∗ p̃1 + 0.5 ∗ p̃2) where p̃i is

the predicted probabilities coming from the two LSTMs under consideration.

But how good are these intervals in capturing true probabilities? This is a

relevant question because unlike the previous application (Section 3.4) the MEnKF-

ANN here does not see the binary response. Instead, it targets relevant statistics

generated by the LSTMs that get trained on the original labeled data. To answer this

question, we perform extensive simulations.
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3.5.2 Application II: Simulations

We conducted extensive simulations to assess how well our MEnKF-ANN can approxi-

mate an LSTM binary classifier. This simulation exercise aims to demonstrate that

our MEnKF-ANN is not only “adequate” in approximating the probabilities produced

by LSTM but can also capture the “true” probabilities that generate binary labels. We

compute the coverage and width of the prediction intervals of the target probabilities

in the test set to assess the “adequacy” of the approximator. Then, we compare this

coverage and width with those computed directly via an LSTM trained with MC

dropout. Admittedly, the prediction intervals obtained from the latter are different

from those computed from MEnKF-ANN. However, if the ground truth probabilities

are known, an adequate approximator should be able to achieve near-nominal coverage

when the approximand is not misspecified.

Our simulation strategy mimics the focal dataset and uses the gene sequences

associated with the original PULs to generate labels. As mentioned above, we extracted

p̂ from the LSTM trained on the original dbCAN-PUL data. We call this LSTM

the true LSTM. We consider p̂ the true probabilities for synthetic data generation.

We then use noisy copies of p̂ to generate a synthetic label in the following way:

generate logit(p̃
(j)
i ) = logit(p̂i) + ϵ

∗(j)
i , i = 1, 2, ...,m, j = 1, 2, ..., J , where J is the

number of the simulated dataset and m is the number of data points in each simulated

set, the perturbation ϵ
∗(j)
i are iid N (0, 0.012). We generate synthetic labels Ỹ by

thresholding p̃
(j)
i at 0.5, i.e Ỹ

(j)
i = I(p̃

(j)
i > 0.5). Then the simulated dataset consists

of D(j) = {F , Ỹ (j), j = 1, 2, ..., J}, where F is the set of original gene sequences from

dbCAN-PUL.

Simulation 1: Now in each D(j), we train a second LSTM (with two dropout

layers) and extract ˜̃p
(j)
i , i = 1, 2, ...,m along with the embedding of the gene sequences.
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We call these LSTMs, trained on D(j), the fitted LSTMs. Note that the embeddings

from fitted LSTMs could potentially be different from those obtained from the true

LSTM. We denote the embedding from fitted LSTMs by v
(j),f
i , j = 1, 2, ...J . Our

MEnKF-ANN is constructed to approximate the fitted LSTMs. To that end, the

approximator uses logit(˜̃p
(j)
i ) as the target response. v

(j),f
i are supplied as features to

one arm of the ANN, the other arm ingests v
(j),g
i - the Doc2Vec [41] embedding of F .

Once the MEnKF-ANN is trained, we use a hold-out set in each simulated dataset to

generate predictive probabilities from the forecast distribution for each member in

the KF ensemble and compute the empirical 95% predictive interval at logit−1 scale.

To measure the adequacy of MEnKF-ANN, we compute the proportion of times the

foregoing predictive interval contains p̂ in held-out test data. We expect this coverage

to be close to the nominal 95%, and the average width of these intervals should not

be greater than 0.5. Additionally, observe that the data-generating model uses LSTM

embedding of F ; hence, using Doc2Vec embedding as input is a misspecification.

Consequently, we expect the average model weight associated with vf to be larger than

vg. Table 3.3 shows the performance of MEnKF-ANN in terms of coverage, the average

width of prediction intervals, and average LSTM weight under two specifications of

ensemble size (N) and initial ensemble variance (ν2x). To compare these results, we

offer the coverage and average width of the prediction intervals when both the dropout

layers are activated in the fitted LSTM during the prediction phase in Table 3.4.

Observe how MEnKF-ANN recovered the true probabilities even better than the

correctly specified LSTM with dropout. The average interval widths obtained from

MEnKF-ANN are also lower than those from the fitted LSTM. These demonstrate

the adequacy of MEnKF-ANN in approximating the target DL. Additionally, we

observe that the average LSTM model weight is ≈ 1 indicating the ability of our

approximator to identify the correctly specified data-generating model. Figure 3.6
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shows the histogram of the predictive samples obtained from the ensemble members

for eight test samples in a randomly chosen replicate. The red vertical line denotes the

true logits, and the green vertical lines show the fences of the 95% prediction interval.

Simulation 2: Now, to demonstrate a situation where MEnKF-ANN is “inade-

quate,” we supply the approximator with a completely different feature set representa-

tion. Instead of using the LSTM embedding vf , we use Word2Vec [51] embedding of

each gene in the predictor string and take the arithmetic average of these Word2Vec

embeddings to represent the entire sequence. We denote this feature set by ṽf and

then train the MEnKF-ANN using ṽf and vg as the features and logit(˜̃p(j)) as the

target response. MEnKF-ANN is highly misspecified. Table 3.5 reports the coverage

and average width of the prediction interval obtained from this model. Observing the

huge width of the intervals essentially invalidates the point prediction. Such a large

width indicates that MEnKF-ANN may not approximate the target DL. Therefore,

we caution against using the coverage and width metrics to assess the “adequacy” of

the fitted LSTM itself.

Simulation 3: We demonstrate how MEnKF-ANN can naturally handle model-

averaged predictions. We train an ANN (with backpropagation) that takes Doc2Vec

representation of gene sequences as predictors to estimate the probabilities p̂ANN .

The true probabilities (ˆ̄p) are obtained by equally weighted average of p̂ANN and the

probabilities estimated by the LSTM (p̂LSTM , say). To attach uncertainty to ˆ̄p, we

train the MEnKF-ANN by supplying LSTM embeddings and Doc2Vec embeddings to

the two arms of MEnKF-ANN but use logit(ˆ̄p) as the target response here. Table 3.6

shows the performance of MEnKF-ANN in this situation for two combinations of N

and ν2x. The coverage is measured with respect to ˆ̄p on the test sets. Although the

average width and MAE are larger than those reported in Table 3.7, we observe that

the LSTM weights ≈ 0.5, which is what we would expect because MEnKF-ANN is
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Table 3.3: Performance of MEnKF-ANN using LSTM embeddings and Doc2Vec

N ν2x Coverage Width LSTM weight
216 16 90.25% 0.33 0.9997
216 32 89.25% 0.32 0.9999

Table 3.4: Dropout-induced coverage and width of prediction intervals obtained from
fitted LSTM with two dropout layers

Rate Reps Coverage Width
0.5 50 81.25% 0.53
0.5 200 84.50% 0.56

Table 3.5: Performance of MEnKF-ANN using Word2Vec and Doc2Vec

N ν2x Coverage Width Word2Vec weight
216 16 96.25% 0.83 0.9155
216 32 94.25% 0.84 0.9787

Table 3.6: Performance of MEnKF-ANN trained to predict the averaged probability
obtained using LSTM and ANN

N ν2x Coverage Width LSTM weight MAE
433 0.2 90.75% 0.2661 0.5239 0.0609
433 0.3 91.00% 0.3274 0.5370 0.0667

Figure 3.6: True logits superimposed on predicted logits from MEnKF-ANN using
LSTM and Doc2Vec embeddings

seeing equally weighted outputs from LSTM and ANN.
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3.5.3 Application II: Results on dbCAN-PUL data

We initialize the ensemble in the EnKF part of our model by drawing the members in

the state vector (3.14) from N2ng+2(0, ν
2
xI), where ν

2
x is a tuning parameter that plays

a crucial role in controlling the spread of the ensemble members and the dimension of

I matches with the dimension of normal distribution. Following [12, 11], we assume

the state transition is deterministic, i.e., xt = ϕt−1xt−1 and hence we do not have the

variance parameter corresponding to η̃ in the augmented state vector. When we reach

the tth batch of data, for the ith member in the ensemble (i = 1, 2, ..., N), we update

each element in the augmented state vector w
f,(i)
t , w

g,(i)
t , a

(i)
t , b

(i)
t using the updating

equation (2.12) suitably modified to handle deterministic state transition.

Our focal dataset consists of n = 74 samples belonging to Xylan and Pectin.

However, training an LSTM on a small sample size would require aggressive regu-

larization, even with this reduced label space. Therefore, we draw on an extensive

collection of unlabelled data containing gene sequences associated with CAZyme gene

clusters (CGC) computationally predicted from genomic data [29, 81]. Although this

unlabelled data contains approximately 250K CGC gene sequences, unlike experimen-

tally characterized PULs, these sequences do not have known carbohydrate substrate

information. They hence cannot be directly used for classification purposes. We,

therefore, use this unlabelled dataset to learn the Word2Vec embeddings of each gene

appearing in the unlabelled dataset. These embeddings are then used to initialize the

embedding layer of the target LSTM classifier.

Turning to the labeled dataset, instead of performing full cross-validation, we

resort to subsampling procedure [56]. We take a subsample of sixty-six instances

for training and hold eight instances for testing purposes. The subsample size (b)

is chosen such that b(n)/n ≈ 8
√
n/n → 0, as n → ∞. Although the subsampling
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theory requires generating

n
b

 replicates, the computational cost for generating

≈ 1011 replicates, in our case, is prohibitive. Instead, we generate 50 independently

subsampled replicates comprising training and testing sets of sizes 66 and 8, respectively.

In each replication, two LSTMs (LSTM1: two dropout layers - one in the LSTM layer

and one before the final prediction layer with 50% dropout rate, and LSTM2: one

dropout layer in the LSTM layer with 50% dropout rate) are trained on the foregoing

66 training instances. Under this scheme, the probability that the ith instance in our

dataset appears at least once in the test set is ≈ 99.6%.

The LSTM-estimated probabilities of observing a Pectin substrate are extracted

from LSTM1 and LSTM2 from each replicate. The average of these probabilities is

logit transformed and used as the target response for our MEnKF-ANN approximator.

We feed the embeddings of the gene sequences, obtained from LSTM1 and LSTM2, into

the two arms of the MEnKF-ANN as two sets of features. We then generate predictions

on the held-out test data points in each replicate. Finally, we compare the average

LSTM prediction of probabilities with those generated by MEnKF-ANN predictions.

The average MAE and the proportion of times a 95% prediction interval contains the

LSTM-generated predictions in the held-out data set, under two different MEnKF-

ANN hyperparameter choices are shown in Table 3.7 indicating that our approximator

can be adequately used to generate the predictions. We do not report the LSTM

weights estimated by MEnKF-ANN because, as we observed in the simulation (Table

3.3), the approximator overwhelmingly prefers the LSTM embeddings. Figure 3.7

shows the scatter plot of MEnKF-ANN-predicted and LSTM-predicted probabilities

for the held-out data across 50 replicates. Figure 3.8 shows the boxplots associated

with MEnKF-ANN predictions for the same set of test samples for which LSTM-

generated prediction boxplots were shown in Figure 3.5. MEnKF-ANN can adequately
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Table 3.7: Performance of MEnKF-ANN using LSTM1 and LSTM2 embeddings for
dbCAN-PUL data

N ν2x Coverage Width MAE CPU Time
108 2 83.00% 0.1029 0.0180 7.57 mins
108 6 85.00% 0.1183 0.0198 10.01 mins

Table 3.8: Comparison of the average width of prediction interval LSTM + MC
dropout and MEnKF-ANN approximator for each LSTM

Target model Average Width Approximator Average Width
LSTM1 0.492 MEnKF-ANN11 0.102

MEnKF-ANN12 0.085
LSTM2 0.371 MEnKF-ANN21 0.119

MEnKF-ANN22 0.108

approximate the target combination of LSTM.

Turning to the stability of prediction intervals, Table 3.8 shows the average

width of the 95% prediction intervals obtained under individual base LSTMs. We

activated the dropout layer(s) during prediction for each base learner and generated

200 predictions for each query instance. As discussed in the previous chapter, marginal

versions of MEnKF-ANN are trained to approximate each based learner. MEnKF-

ANN11 approximates LSTM1 with 216 ensemble members and ν2x = 16, MEnKF-ANN12

also approximates LSTM1, but now with 216 ensemble members and ν2x = 32. Similarly,

MEnKF-ANN21 and MEnKF-ANN22 approximates LSTM2 with 216 ensemble members

and ν2x = 16 and ν2x = 32, respectively. Observe that the variation in the average

width between LSTM1 and LSTM2 is considerably higher than the variation between

MEnKF-ANN11 and MEnKF-ANN21 or between MEnKF-ANN12 and MEnKF-ANN22.

This indicates that the approximator produces more stable prediction intervals than

obtaining prediction by activating the dropout layer during prediction.
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Figure 3.7: Scatterplot of MEnKF-ANN-predicted and LSTM-predicted probabilities
for the test dataset

3.6 Conclusion

Our goal here was to develop the methodology of an EnKF-based multi-arm ANN that

can simultaneously optimally estimate the cross-learner and within-learner weights and

attach uncertainty to the model-averaged predictions. We designed the MEnKF-ANN

to achieve that purpose. The augmented state space formulation allowed us to handle

the non-linearity associated with neural networks. The matrix variate state variables

allowed us to incorporate multiple learners and include all cross-learner and within-

learner weights within the state matrix. The measurement model handled the model

averaging aspect. As discussed in Chapter 2, the estimates of state variable produced

by the KF technique are minimum mean square estimates. Since EnKF estimates

asymptotically converge to their KF counterparts (see section 3.7), the estimates

of the cross-learner and within-learner weights produced by our MEnKF-ANN are

asymptotically jointly optimal under squared error loss. We re-iterate that such joint



52

Figure 3.8: Boxplots showing the MEnKF-ANN predictions superimposed with the
ground truth value for heavy and low dropout

optimality result is not available for the conventional stacking approach. Additionally,

our EnKF construction automatically generates particles for predicted values of the

response variable thereby allowing us to attach a statement of uncertainty associated

with the model-averaged predictions. This constitutes the major methodological

contribution of this chapter.

Turning to the application of MEnKF-ANN, we offered two illustrative examples.

In the first example, we demonstrated that our technique could transfer information

(to small datasets with potential covariate mismatch) from multi-arm deep learners

trained on large datasets for regression tasks. We also demonstrated that the empirical

coverage probability produced by our technique indicates it is an adequate predictive

model. Quite surprisingly, when the fine-tuned deep learner was used to assimilate
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the small dataset, the 95% empirical prediction intervals generated by activating the

dropout layer contained the target values approximately 50% of the time. This raises

questions about the reliability of the predictions generated by DL. As such, we posit

that, since DLs are typically trained with dropouts, it is important to supply coverage

and width of prediction interval along with the customary performance metrics of

RSMPE and ρ.

Furthermore, we showed that the relative computational simplicity of our method

allowed it to be retrained easily when new samples come in with a reduced set of

features. This essentially indicates that MEnKF-ANN can be used as a vehicle to

perform exhaustive ablation studies when the number of features is manageable. We

emphasize that MEnKF-ANN is not a tool to perform feature imputation. If some of

the input features are entirely missing in a dataset MEnKF-ANN simply switches off

the arm that handles the set of missing features. If we encounter situations where

values of the features are missing according to the classical MAR, NMAR setup, the

current conceptualization of MEnKF-ANN cannot be directly applied.

State-augmented Kalman Filter and its variants provide a gradient-free method

that can be extended to approximate popular neural network-based deep learners for

regression and classification tasks. In the second application, our goal was to attach

uncertainty to average probabilities generated by two different configurations of the

LSTM binary classifier. We demonstrated how our method’s in-built model averag-

ing capability can be leveraged to attach uncertainty to these averaged predictions

generated by two architectures. Our results suggest that this technique adequately

captures the target probabilities to achieve coverage probabilities close to the nominal

level. Since the domain of the target variable is bounded, we also see that the average

width of the prediction interval is not too large to make these intervals meaningless.

Our simulations suggest that the prediction intervals generated by our method are
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less sensitive to the location and number of dropout layers in LSTM and hence pro-

vide more stable prediction intervals as compared to those obtained by activating

the dropout layers within the LSTM itself. Admittedly, our procedure requires an

additional round of training, but its fast computation time (see Table 3.7), along with

its ability to emulate the approximand, adequately compensate for that. We used the

information extracted from the dbCAN-PUL database and trained the base LSTMs

to classify two carbohydrate substrates using the gene sequences characterized by

the PULs of the gut microbiome and then used MEnKF-ANN to attach uncertainty

to the predicted probabilities generated by a linear combination of two LSTMs. We

anticipate this technique will be helpful to domain experts in assessing the reliability

of predictions generated by an ensemble of learners.

3.7 Appendix

The size of the ensemble (N) and the batch size (which determines the number of

updates T ) are treated as tuning parameters. The following proposition offers a

mathematically justifiable way to select these tuning parameters.

Proposition 1: IfN and T are chosen such that the eigenvalues of (I−KTHT ) <

1, then the expected Kalman error attains steady state solution asymptotically.

To prove this proposition we first show that EnKF updates converge in probability

to Kalman Filter updates. First, for notational convenience, we redefine some of

the terms appearing in equations (2.5) - (2.10) that were derived from the state

space model given by (2.1) and (2.2). Let the filtering distribution be represented by

xt|y1:t ∼ N (µ̂t|t, Σ̂t|t) where µ̂t|t and Σ̂t|t are given by
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µ̂t|t := µ̂t|t−1 +Kt(yt −Htµ̂t|t−1), (3.15)

Σ̂t|t := Σ̂t|t−1 −KtHtΣ̂t|t−1, (3.16)

Kt := Σ̂t|t−1H
T
t (HtΣ̂t|t−1H

T
t +Rt)

−1 (3.17)

The forecast distribution is given by xt+1|y1:t ∼ N (µ̂t+1|t, Σ̂t+1|t) where µ̂t+1|t and

Σ̂t+1|t are given by
µ̂t+1|t :=Mtµ̂t|t, (3.18)

Σ̂t+1|t :=MtΣ̂t|tM
T
t +Qt (3.19)

In EnKF, N particles x1
t|t′ , x

2
t|t′ , . . . , x

N
t|t′ are drawn from either the forecast or the

filtering distribution. So instead of estimating µt|t′ , the state estimates are given by

xt|t′ =
1

N

N∑
l=1

xl
t|t′ (3.20)

with t
′
= t or t− 1 and the sample covariance matrix

Σt|t′ =
1

N − 1

N∑
l=1

(xl
t|t′ − xt|t′ )(x

l
t|t′ − xt|t′ )

T (3.21)

Let the distribution associated with the initial state be defined as x1|y0 ∼ N (µ1,Σ1).

We initialize xl1|y0 ∼ N (µ1,Σ1). Kalman Gain is estimated from the particles as

Kt := Σt|t−1H
T
t (HtΣt|t−1H

T
t +Rt)

−1 (3.22)

Particles are updated by the equation

xlt|t = xlt|t−1 +Kt(y
l
t −Htx

l
t|t−1) (3.23)

ylt
iid∼ N (yt, Rt) (3.24)
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Forecasted particles are given by

xlt+1|t =Mtx
l
t|t + ηlt (3.25)

ηlt
iid∼ N (0, Qt) (3.26)

Lemma 1. Using the foregoing notations, as N → ∞, the following holds

a. xt|t
P→ µ̂t|t

b. Σt|t
P→ Σ̂t|t

c. xt+1|t
P→ µ̂t+1|t

d. Σt+1|t
P→ Σ̂t+1|t

Proof. See [42, 48] for compact proof of this Lemma 1.

Proof of Proposition 1: In our construction of MEnKF-ANN, when mt is kept fixed,

the state transition matrix ϕt = ϕ remains constant in all updates (from (3.9)) and so

does Ht after reparametrization (3.12). Now, from the time update step (immediately

below (2.10)) we have Σt+1|t = ϕΣt|tϕ
′ +Q (where Q is the covariance matrix for η̃t).

Now, using (2.9) to replace Σt|t, we have

Σt+1|t = ϕΣt|t−1ϕ
′ +Q− ϕΣt|t−1H′(HΣt|t−1H′ +R)−1HΣt|t−1ϕ

′

KF theory uses this algebraic Ricatti equation to obtain the steady-state solution

of Σt+1|t. Let Σ̂ be the solution of the above equation, it can be interpreted as the

steady state error covariance for estimating xt+1 conditional on y1:t. To obtain Σ̂ one

can directly solve Σ = ϕΣϕ′ +Q− ϕΣH′(HΣH′ +R)−1HΣϕ′ for Σ. We instead track

the dominant eigenvalue of (I − K̃tH) because if the dominant eigenvalue of the above

matrix is approximately 1, and the dominant singular value of K̃tHt converges to
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Figure 3.9: Trajectories of the singular values for the Kalman Gain matrix with the
dominant eigenvalue of I −KtHt

0, then using (2.9), we will have Σt|t ≈ Σt|t−1 which essentially yields the stationary

solution of the Ricatti equation. So, our reason for jointly tracking the trajectories of

dominant eigenvalue of (I − K̃tHt) and dominant singular value of K̃tHt is to visually

assess whether the EnKF has achieved an approximate steady-state. Figure 3.9 shows

the foregoing trajectories empirically.

Choosing N and mt: Once steady-state is achieved, we look into the expression

of µt+1|t (given below (2.10)) with Σ̂ replacing Σt|t−1. Then, in steady-state we have

µt+1|t = ϕµt|t−1 + ϕΣ̂H′(HΣ̂H′ +R)−1(yt −Hµt|t−1)

µt+1|t = ϕµt|t−1 + L(yt − ŷt|t−1)

where L = ϕΣ̂H′(HΣ̂H′ +R)−1 and ŷt|t−1 is predicted value of the observation given

y1:t−1. Define the state estimation error et|t−1 = xt − µt|t−1 and the observation
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prediction error to be e
(y)
t|t−1 = yt − ŷt|t−1. Then we have the following error dynamics:

et+1|t = xt+1 − µt+1|t

= ϕxt + η̃t − ϕµt|t−1 + Le
(y)
t|t−1

= ϕ(xt − µt|t−1) + Le
(y)
t|t−1 + η̃t

= ϕet|t−1 + Le
(y)
t|t−1 + η̃t (3.27)

Now, observe ϕ = I in our construction then from (3.27) we have et+1|t − et|t−1 =

Le
(y)
t|t−1 + η̃t. Now suppose E(e

(y)
t|t−1) = C, where C is a mt × 1 vector whose each

coordinate informs us about the expected one-step ahead prediction error at the

observation scale. Suppose the elements of C are constants. Then, for each coordinate

in the expected state estimation error vector, we have E(et+1|t − et|t−1) = LC. Now,

under steady-state L is a constant over t, and therefore the expected difference in

state estimation error between two successive updates is a linear combination of

expected prediction error in the observation scale. Thus, if E(e
(y)
t|t−1) stabilizes in each

coordinate, so does E(et+1|t − et|t−1)

We exploit this observation to elicit the tuning parameters. We would like to

estimate E(e
(y)
t|t−1) in steady state. So, we train multiple MEnKF-ANN with different

values of N and mt. We plot the trajectory of the one-step ahead training RMSE

over the update iterations as a proxy for observation prediction error. Once we

see the RMSE trajectories are converging we can reasonably expect E(e
(y)
t|t−1) to be

approximately the same for each trajectory. Then our choosing criterion is given by

the following: Out of all the trajectories entering the convergence region, choose the

(N,mt) combination that has the smallest N satisfying N > mt.
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Chapter 4

Scalability of Matrix Ensemble Kalman Filter-based stacker

for combining two multi-arm deep learners

4.1 Introduction

Accurate cancer drug response (CDR) prediction has become a central problem in

computational cancer-pharmacogenomics. Such computational models can potentially

identify molecular signatures that determine CDR, at least in-silico setup, thereby

offering guidance to anti-cancer drug discovery. Although several computational

models exist for predicting CDR, deep learning models (DLs) have achieved state-of-

the-art status because of their ability to capture the intrinsic chemical structure of

drugs and integrate multi-omics data. Since there exist several DLs for predicting

CDR (see [6, 13, 5] for a review of deep learning models developed for predicting CDR),

an ensemble of deep learning models is immediately available that can potentially

increase the overall robustness of the predictive method. However, how to quantify

the uncertainty in the model ensemble?

Uncertainty quantification in individual DLs has been studied. Bayesian neural

networks (BNN) and Bayesian deep learners have emerged as the default techniques for

assessing uncertainty in DL predictions. These methods learn the posterior distribution

of training weights, thereby producing an uncertainty estimate of the model output
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[70, 71, 32]. Instead of sampling from the exact posterior distribution, variational

inference and Laplacian approximation methods approximate the posterior distribution

over BNN weights [39, 52, 66, 60, 63]. The famous Monte Carlo dropout technique

also approximates the posterior distribution by running the trained network multiple

times with a fraction of nodes randomly switched off every run, thereby producing a

distribution of predictions. As an alternative to Bayesian procedures, [40] developed a

frequentist method to quantify uncertainty in the DL estimates.

Ensemble techniques have also been used to quantify uncertainty in deep learners.

Typically, such a technique requires the DLs to be trained under various choices

of hyperparameters, thereby producing a distribution of predictions for the targets.

However, these distributions are not as easily interpretable or probabilistically coherent

as a posterior predictive distribution emerging from a Bayesian setup. To address

this issue [43] introduced the nonparametric Bayes ensembling technique that can

decompose various sources of uncertainty and generate point prediction and uncertainty

interval in a theoretically rigorous fashion. Deep ensembling methods that provide

accurate prediction intervals with acceptable coverage probability and reasonable

width [57, 28] are also available. As such, [73, 21, 54] showed that a Bayesian

conceptualization of deep ensemble yielded impressive accuracy and robustness. We

direct the audience to [1, 50] for a more detailed review of uncertainty quantification

in deep learners.

Observe that all the foregoing techniques are either geared to attach uncertainty

to a focal DL or produce a stylized ensemble of models with an explicit goal of

attaching uncertainty to predictions. Our scenario is slightly different because we

have a catalog of base DLs trained to predict CDR, and we would like to develop

a suitable technique to combine the predictions generated by the catalog of base

learners and attach uncertainty to these predictions. Consequently, traditional model
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averaging techniques, for instance, Bayesian Model Averaging [23, 47] or stacking

[75], are more relevant for our purpose. However, neither of these techniques can be

directly used to attach uncertainties because the available base DLs rarely characterize

the probabilistic aspect of the weights and errors. Hence standard Bayesian Model

Averaging may not be immediately implemented, and standard model stacking does

not propagate the uncertainties in the output of the base learners [75, 34].

This chapter extends our generalized stacking approach, first proposed in [55], to

suit the problem. In particular, we stack two recently developed DLs, DualGCN [46]

and DeepCDR [44] - that predict CDR using chemical structures of cancer drugs and

multi-omics data associated with the cell lines on which the drug screen is administered.

We demonstrate how we can attach uncertainty, in a probabilistically coherent way,

to predictions generated by stacking DeepCDR and DualGCN. We also show how

this stacker can quickly adapt to attach uncertainty to a single base learner. Finally,

we show how sequential training of our stacker can be used to handle large datasets,

thereby demonstrating our approach’s scalability.

The remainder of the chapter is organized as follows: Section 4.2 offers a brief

description of the focal base learners, DeepCDR and DualGCN, along with a description

of the data on which these models are trained. Section 4.3 details the construction of

our generalized stacker. We reveal the result of stacking DeepCDR and DualGCN for

predicting CDR and attaching uncertainty to these predictions in section 4.4. Finally,

we offer concluding remarks in section 4.5.

4.2 Background

In the CDR prediction domain, DualGCN and DeepCDR are two multi-arm deep

learning models that use the chemical structure of drugs and multi-omics profiles of cell
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lines as inputs to predict the drug response, captured via logarithm of half-maximal

inhibitory concentration (log IC50).

Both models process the drug features by using a Graph Convolutional Network

(GCN) to leverage the graph-like representation typically used to describe the chemical

structure of molecules. Each atom within a drug molecule is represented by a 75-

dimensional feature vector [59] and an adjacency matrix that represents the connections

among the atoms. Turning to the omics profile - DeepCDR extracts three types of

omics features - genomic (genomic mutation), transcriptomic (gene expression), and

epigenomic (DNA methylation) - for each cancer cell line from the CCLE database [7].

Transcriptomic and epigenomic features are processed using fully connected networks,

and the genomic features are processed using a 1-D convolutional network because the

chromosomes in the genomic features are believed to encode sequential information.

DualGCN, on the other hand, uses gene expression and Copy Number Variation

(CNV) to represent the omics profile of the cancer cell lines. This model extracts gene

expression and CNV information associated with 697 genes from the CCLE database

and obtains the adjacency matrix representing the association among these 697 genes

from the STRING database [67]. In summary, the model architecture for two base

deep learners are different - DeepCDR processes the multi-omics features using a 1-D

Convolutional Neural Network (CNN) and the drug features using a GCN, DualGCN

processes both multi-omics and drug features using two different GCNs.

The target response values (log IC50) corresponding to the drug-cell line com-

binations are extracted from the GDSC database [76]. A total of 86530 response

values, associated with 208 unique drugs and 525 unique cancer cell lines, along with

the chemical structures of the said drugs and the multi-omics profile of associated

cell lines, form the dataset we analyze in this chapter. The base DLs use 80% of

the instances for training purposes and the remaining 20% as validation samples to
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determine early stopping. From the trained DeepCDR and DualGCN models, we

extract the embeddings for the drugs and the multi-omics branch for both the training

and the validation samples. In their original form, DualGCN learned 128 and 256

dimensional embeddings for the drugs and the multi-omics features, respectively. In

contrast, the DeepCDR learned 100-dimensional embeddings for each omics feature

and drug type. In this chapter, we modified the architecture of DeepCDR to make

the output embedding dimensions match those produced by DualGCN. Both base

learners are trained with dropout layers, but these layers are not activated during the

prediction stage, so neither method directly produces any prediction intervals.

4.3 Methodology

Our generalized stacker uses a Matrix Ensemble Kalman Filter to train a multi-arm

artificial neural network (MEnKF-ANN). In this protocol, a multi-arm ANN ingests

different types of predictors, and the augmented state vector associated with the

Ensemble Kalman Filter performs the stacking and updates the weights associated

with the neural network, model weights, and variance parameters. The original

construction of MEnKF-ANN for the two-arm neural network can be found in [55]

along with the training algorithm. However, we need to extend the construction posited

in [55] because we require the current stacker to ingest the drug embeddings and omics

embeddings from DeepCDR and DualGCN in four arms so that we can determine

the relative importance of each of these embeddings. Observe that identifying the

importance can offer insight into which types of embeddings should be used to

represent the omics profile (collection of genomic, transcriptomic, and epigenomic or

gene expression and CNV).

We, therefore, begin with a generic construction of our MEnKF-ANN stacker
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that can simultaneously train four different neural network architectures and perform

in-situ stacking. Then, we show how this construction can leverage the learned

embeddings from the base learners. We define our target responses as Y ∈ R.

We have a total of m =
∑T

t=1mt training instances, with mt being the number of

training data points in the tth batch. Consider two bi-arm DLs generically denoted as

fmulti = fmulti(U
(1)
1 ,U

(1)
2 ) and gmulti = gmulti(U

(2)
1 ,U

(2)
2 ) that map the input features

{U (1)
1 ,U

(1)
2 } and {U (2)

1 ,U
(2)
2 } to the response space, respectively. Let vf1t ∈ Rp1 and

vf2t ∈ Rq1 denote two different learned embeddings extracted from two arms of the

DL fmulti for the t
th batch of data. Similarly, let vg1t ∈ Rp2 and vg2t ∈ Rq2 denote the

learned embeddings extracted from two arms of the DL gmulti for the t
th batch of data.

We will assume that the embeddings extracted from the base DLs are of the same

dimension, i.e., p1 = q1 = p2 = q2. Let f
∗
1 , f

∗
2 , g

∗
1, g

∗
2 denote the architectures for the

four ANNs that take vf1 , vf2 , vg1 , vg2 as inputs, respectively, and connect them to the

response Y . All four ANN architectures (f ∗
1 , f

∗
2 , g

∗
1, g

∗
2) have a single hidden layer of

fixed size and a final prediction layer with one neuron. Thus, each ANN has the same

number of learnable parameters, denoted by nmulti. Let w
f∗
1

t , w
f∗
2

t , w
g∗1
t , and w

g∗2
t denote

the updated weights corresponding to the ANNs f ∗
1 , f

∗
2 , g

∗
1, and g

∗
2, respectively, using

the tth batch of data. Let a
f∗
1

t , a
f∗
2

t , a
g∗1
t , a

g∗2
t and bt be real-valued scalar parameters and

let st = [s
f∗
1

t , s
f∗
2

t , s
g∗1
t , s

g∗2
t ] = [σ(a

f∗
1

t ), σ(a
f∗
2

t ), σ(a
g∗1
t ), σ(a

g∗2
t )] where σ(.) : Rd → [0, 1]d is

the usual softmax function.

4.3.1 The MEnKF-ANN stacker for multi-arm DLs

First, consider the state matrix of the matrix Kalman Filter, Xt, associated with the

tth batch of data:
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X
(mt+nmulti+2)×4
t =



s
f∗
1

t f∗
1 (v

f1
t , w

f∗
1

t ) s
f∗
2

t f∗
2 (v

f2
t , w

f∗
2

t ) s
g∗1
t g∗1(v

g1
t , w

g∗1
t ) s

g∗2
t g∗2(v

g2
t , w

g∗2
t )

w
f∗
1

t w
f∗
2

t w
g∗1
t w

g∗2
t

a
f∗
1

t a
f∗
2

t a
g∗1
t a

g∗2
t

bt 0 0 0


(4.1)

Define H
mt×(mt+nmulti+2)
t = [Imt , 0mt×(nmulti+2)], G

4×1
t = [1, 1, 1, 1]T , Θt−1 =

Imt+nmulti+2, and ψt−1 = I4. We can now define the measurement equation of a Matrix

State Space Model as:

Yt = HtXtGt + ϵt, (4.2)

with the state evolution equation being

Xt = Θt−1Xt−1ψt−1 + ηt. (4.3)

where ϵt and ηt are mutually independent zero-mean Gaussian error terms. In particu-

lar, we assume ϵt ∼ Nmt(0, γ
2
yImt) where γ

2
y = log(1 + ebt). We will discuss ηt in the

context of efficient computation in section 4.3.2. Writing in vec format, (4.3) becomes

xt = vec(Xt) = (ψT
t−1 ⊗Θt−1)vec(Xt−1) + vec(ηt) (4.4)

and letting ϕt−1 = ψT
t−1 ⊗Θt−1 and η̃t = vec(ηt) we get from (4.4)

xt = ϕt−1xt−1 + η̃t (4.5)

(4.2) can similarly be compactified as

Yt = Htxt + ϵt (4.6)
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where Ht = GT
t ⊗Ht. It is easy to verify that such a construction does explicit model

averaging by expanding the HtXtGt in (4.2).

HtXtGt =

[
sf1t f1(v

f1
t , w

f1
t ) + sf2t f2(v

f2
t , w

f2
t ) + sg1t g1(v

g1
t , w

g1
t ) + sg2t g2(v

g2
t , w

g2
t ),

]
(4.7)

where the convex model weights s
f∗
1

t +s
f∗
2

t +s
g∗1
t +s

g∗2
t = 1 yield a weighted average of the

predictions from the four ANNs. Recall that the inputs features for f ∗
k , g

∗
k, (k = 1, 2)

are extracted embeddings vf1t , vf2t , vg1t , vg2t from the two base learners fmulti and

gmulti. Therefore, by choosing Xt as in (4.1), we train an ensemble model and perform

stacking in-situ, using the embeddings extracted from the trained multi-arm DLs.

We retain the scalar parameter bt in (4.1), used to estimate the variance of the

error term in the measurement equation (4.6), as a learnable parameter, and the

remaining variance parameters are treated as tuning parameters.

4.3.2 An efficient solution for MEnKF-ANN stacker

The formulation of the state matrix Xt as in (4.1) brings up an interesting problem

regarding the solution of the linear state space model. The standard solution of the

model outlined in (4.5) and (4.6) requires the computation of the Kalman Gain termKt.

In Ensemble Kalman Filter the Kalman Gain is estimated by K̂t = S̃tHT
t (HtS̃tHT

t +

σ2
yImt)

−1 where S̃t is the sample covariance matrix of the forecasted ensemble. In our

case, Ht is mt × 4(mt + nmulti + 2) dimensional and S̃t has the same dimension as the

covariance matrix of xt in (4.4), i.e., dim(S̃t) = 4(mt + nmulti + 2)× 4(mt + nmulti +

2). Consequently, both S̃tHT
t and HtS̃tHT

t are of relatively large dimensions and

computation of Kalman Gain requires inverting and multiplying such large matrices

in every update step, making the algorithm computationally expensive and increases
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the memory requirement considerably.

However, closer inspection reveals that, unlike the standard Kalman Filter, not

all elements of Xt need to be estimated in our case. Only wt’s, at’s, and bt need to be

estimated. The top mt × 4 elements of Xt are deterministic functions of wt, at, and vt.

Thus, instead of updating the entire Xt in a naive fashion, we can focus only on the

unknown quantities. Therefore, following [38], we obtain the Ensemble Kalman Filter

solution to a least squares minimization problem given by Φ(u, Y ) = ∥G(u) − Y ∥2Γ,

where u is the vector of unknown parameters that need to be estimated and G is any

model architecture, Y is the target, and Γ = Cov(Y ). Following [77] we envision the

set of particles Un = {unj }Nj=1 as N estimates for the unknown parameter u at the nth

iteration. These estimates are recursively updated using the formula

un+1
j = unj + C(Un)(D(Un) + Γ)−1(y − G(unj )) (4.8)

where C(U) = 1
N

∑N
j=1(uj− ū)⊗ (G(uj)−Ḡ)T , D(U) = 1

N

∑N
j=1(G(uj)−Ḡ)⊗ (G(uj)−

Ḡ)T , ū = 1
N

∑N
j=1 uj, Ḡ = 1

N

∑N
j=1 G(uj). Evidently, (4.8) only updates the unknown

elements in the state matrix, thereby reducing the computational cost associated with

solving the model described in section 4.3.1. Notice that in (4.8) y is the observed

target vector. In contrast, the Ensemble Kalman Filter solution proposed in [33] uses

perturbed target where they perturb y with a random noise vector z drawn from

N (0,Γ). Therefore, the modified updating equation becomes

un+1
j = unj + C(Un)(D(Un) + Γ)−1(y + z − G(unj )) (4.9)

More precisely, we define ut = [w
f∗
1

t , w
f∗
2

t , w
g∗1
t , w

g∗2
t , a

f1
t , a

f2
t , a

g1
t , a

g2
t , bt] and

reparameterize xt in (4.4) by writing it in terms of ut. Now, replacing G(u) with Htxt

we can use (4.9) to solve the minimization problem Φ(xt, Yt) = ∥Htxt − Yt∥2Γ to solve
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the state space model defined in (4.5) and (4.6).

To obtain the EnKF solution to the minimization problem, we first draw N

samples of U0
t = {u0j,t}Nj=1, with uj,t = [w

f∗
1

t,j , w
f∗
2

t,j , w
g∗1
t,j, w

g∗2
t,j, a

f∗
1

t,j, a
f∗
2

t,j, a
g∗1
t,j, a

g∗2
t,j, bt,j]

from Nd(0, Sd), where d = dim(uj,t) = 4nmulti + 5. The covariance matrix Sd is

parameterized using three different variance terms σ2
ANNs, σ

2
AvgWeights, and σ

2
TargetV ar

corresponding to the variances for the weights associated with f ∗
1 , f

∗
2 , g

∗
1, g

∗
2, model

averaging weights, and variance associated with the covariance matrix of the response,

respectively.

Sd =


σ2
ANNsI4nmulti

0 0

0 σ2
AvgWeightsI4 0

0 0 σ2
TargetV arI1

 (4.10)

These N particles of U0 are then updated using the adapted version of (4.9) given by

un+1
j,t = unj,t + C(Un)(D(Un) + σ2

ytImt)
−1(yt + znj,t −Htx

n
t,j) + ηu;j,t (4.11)

with σ2
yt = log(1 + e

1
N

∑N
j=1 b

n
t,j), znj,t ∼ N (0, σ2

ytImt), C(U) = 1
N

∑N
j=1(uj,t − ū) ⊗

(Htxt,j − H̄)T , D(U) = 1
N

∑N
j=1(Htxt,j − H̄) ⊗ (Htxt,j − H̄)T , ū = 1

N

∑N
j=1 uj,t,

H̄ = 1
N

∑N
j=1 Htxt,j and ηu;j,t ∼ N(0, σ2

fudgeId) are Gaussian perturbations intro-

duced to capture the stochasticity of the state equation (4.5). Once again, we treat

all the foregoing variance parameters (σ2
ANNs, σ

2
AvgWeights, σ

2
TargetV ar, σ

2
fudge) as tuning

parameters without explicitly estimating them.

We reiterate that Sd supplies the values of the variance parameters associated

with the initial distributions of within-learner weights (w), cross-learner weights (a)

and target variance (b). Thus, Sd controls the spread of the initial realization of the

elements in the state matrix. As we mentioned in Chapter 2, the EnKF operation is
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purely feed-forward, and hence, we do not consider a formal posterior of Sd. Instead,

the elements in Sd are treated as tuning parameters and are chosen via tracking the

validation error for multiple runs of the MEnKF-ANN under various choices of the

foregoing tuning parameters.

4.3.3 Connecting MEnKF with DualGCN and DeepCDR

Instead of directly using the raw embeddings extracted from the DeepCDR and

DualGCN, we perform a dimension reduction by running a PCA on these embed-

dings separately. We extract 64 PCs for each of DeepCDR-drugs, DeepCDR-omics,

DualGCN-drugs, and DualGCN-omics. These four sets of PCs are passed as input

features to the four ANNs f ∗
1 , f

∗
2 , g

∗
1, and g

∗
2 that form the core of MEnKF-ANN stacker

- as described in Section 4.3.1. All these ANNs have feed-forward neural network

architectures with one hidden layer having eight neurons and a final prediction layer

with one neuron. The batch size mt is chosen a-priori depending on the training data

size. Given the configuration of f ∗
1 , f

∗
2 , g

∗
1, g

∗
2 and the size of the feature set, we have

nmulti = 529 parameters that need to be estimated for each ANN. We, therefore, need

to estimate d = 4nmulti + 5 = 2121 parameters in each batch. At t = 0, we generate

N particles U0 = {u0j}Nj=1 from N2121(0, S2121) to initialize the EnKF solution. We

then compute Xt, Ht, Gt, and Ht as described in Sections 4.3.1, 4.3.2 for t = 0. The

updated set of parameters U t, t = 1, 2, ... are obtained using the updating equation

(4.11).

Observe that MEnKF-ANN explicitly estimates four weights corresponding to

embeddings associated with DeepCDR-drugs, DeepCDR-omics, DualGCN-drugs, and

DualGCN-omics, respectively. These weights assess the relative importance of each

type of feature coming from the constituent deep learners. Now, for example, to

estimate the weight for the DeepCDR model, we can sum sf
∗
1 and sf

∗
2 . Similarly, to
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estimate the weights for the drug features, we can sum sf
∗
1 and sg

∗
1 . Additionally, the

EnKF construction produces a range of predictions for each query point, enabling us

to compute the prediction intervals empirically.

4.4 Application

We train the MEnKF-ANN stacker on the same 69214 data points used to train

the base learners. We retain the remaining 17316 instances for test purposes. The

stacker is trained sequentially on approximately equal-sized T = 28 batches, each

with approximately mt = 2500 samples. After each update of the MEnKF-ANN, we

obtain the root mean squared training error computed on the entire training set. We

stop training the stacker if both conditions are satisfied: (a) training RMSE only

improves over ten successive batch updates, and (b) the MEnKF-ANN has run for at

least one epoch. To assess sample size’s impact on the stacker’s predictive capability,

we evaluate the root mean square prediction error (RMSPE) on the foregoing 17316

test samples after training over each batch of data. We expect that the predictive

capability of MEnKF-ANN will improve as more data batches are added to the training

set. We use the following hyper-parameter configuration for training MEnKF-ANN:

N = 106, σ2
fudge = 0.01, σ2

ANNs = 1, σ2
AvgWeights = 1, and σ2

TargetV ar = 1. To assess the

sensitivity of the stacker on the initialization of ensemble particles (U0), we train and

evaluate the MEnKF-ANN 50 times under different realizations of U0.

The final prediction is obtained by averaging over the 50 runs of MEnKF-ANN.

RMSPE and the Pearson correlation coefficient (ρ) between the observed test values

and predicted values are computed using this initialization-averaged prediction. Since

the forecast distribution of each particle in the ensemble Kalman Filter is available

in closed form, the width of the prediction interval and the coverage probability
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associated with 95% prediction intervals are calculated using the quantile averaging

technique [17, 18, 16] for each test point. We report RMSPE, ρ, coverage probability,

and average width of the quantile-averaged prediction interval in Table 4.1. However,

to demonstrate the benefit of stacking, we need to compare these metrics to those

obtained from individual base learners. However, the vanilla base learners can only

offer RMSPE and ρ. Hence, to make all candidate models comparable, we deploy the

MEnKF-ANN to approximate each base learner by simply requiring the state matrix

in (4.3) to contain two columns arising from either f ∗
1 , f

∗
2 or g∗1, g

∗
2. The MEnKF-ANN

approximated individual base learners’ prediction performance is also included in

Table 4.1. To benchmark the performance of MEnKF-ANN, we train a multi-arm

deep learner (joint learner) that combines the original construction of the subnetworks

in DeepCDR and DualGCN.

First, the results show that the joint learner’s performance (in terms of RMSPE

and ρ) is almost the same as those reported in the original articles that introduced

DualGCN and DeepCDR. Therefore, our joint learner reliably replicates previously

published results and can be used for benchmarking. The MEnKF-ANN stacked

learner has higher RMSPE and smaller ρ. However, the coverage probabilities asso-

ciated with the joint leaner, obtained from the dropout-induced prediction interval,

indicate its inability to achieve anything close to the nominal level. Our method

consistently achieves a nominal level of coverage, indicating its adequacy in processing

the uncertainty arising from the models.

We also observe that the stacked model outperforms the individual base learners

with respect to RMSPE and ρ, thereby underscoring the utility of model averaging in

improving the prediction accuracy in the CDR domain. The coverage probability of

the stacked model practically achieves the nominal level, thus offering confidence in

the predictions generated by the MEnKF-ANN. We observe that DeepCDR coupled
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with MEnKF-ANN offers greater coverage but at the cost of a larger width, but the

DualGCN-MEnKF-ANN combination offers lower coverage with a tighter width of the

prediction interval. However, the stacked model provides a balance between the base

learners. We also note that by attaching an inferential mechanism to DeepCDR and

DualGCN, we enhance the statistical support of the predictions generated by these

DLs.

Table 4.1: Performance metrics of MEnKF-ANN using DeepCDR and DualGCN
embeddings

Models RMSPE Coverage Width ρ

Joint Learner 1.10 61.14% 1.85 0.92
DeepCDR-MEnKF-ANN 1.62 97.82% 8.36 0.82
DualGCN-MEnKF-ANN 1.60 93.48% 6.39 0.82

MEnKF-ANN stacked DualGCN & DeepCDR 1.37 95.71% 5.99 0.88

To further contextualize the precision of the predictions and to visually assess

the predictive performance of MEnKF-ANN, we display, in Figure 4.1, the scatter plot

between the MEnKF-ANN predictions and the observed values of log IC50 in the test

set. The plot suggests no obvious bias in the predictions generated by MEnKF-ANN.

Furthermore, even though the coverage probability exceeds the nominal level, given

the range of the observed test data, we can conclude that the average width of the

prediction intervals is not too large to render the prediction intervals meaningless.

Together, we can surmise that the prediction intervals generated by MEnKF-ANN are

reliable.

To get a detailed picture of the reliability of the prediction intervals, in Figure

4.2, we show the line plot of the quantile-averaged upper 97.5% and lower 2.5%

prediction limits along with the observed values of the test points (in solid circles).

We observe that the prediction interval covers the query points adequately. However,

the coverage deteriorates in the extreme upper and lower tail regions of the data.
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Figure 4.1: Scatterplot for MEnKF-ANN predictions with the observed log IC50 values
in the test set.

This underscores the hazard of making predictions on the boundary or performing

extrapolation with models that are not explicitly designed to capture the quantiles of

the response variables.

To demonstrate the effect of ensemble size, we plot the trajectories of mean

training RMSE and RMSPE across the batch updates, along with the point-wise

standard deviation in Figure 4.3. The MEnKF-ANN method can learn quickly from

the data and reach the best RMSE within the first few updates. The variation in the

mean square errors also becomes negligible when MEnKF-ANN reaches the second

epoch. The training RMSE and RMSPE curves indicate no obvious overfitting or

underfitting issues - agreeing with the scatter plot displayed in Figure 4.1. To assess

the validity of Gaussian assumption in the measurement equation (4.6), we plot the

histogram of the initialization-averaged residuals extracted from the training set in

Figure 4.4 and overlay the pdf of the fitted Gaussian distribution on these residuals.
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Figure 4.2: Prediction intervals for test samples with the observed log IC50 values.

It appears that the Gaussian assumption is tenable in our case.
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Figure 4.3: Training and testing RMSE curves for the MEnKF updating iterations

Finally, we report the estimated model weights (sf
∗
1 , sf2∗, sg

∗
1 , sg

∗
2 ), averaged over

the MEnKF-ANN runs, in Table 4.2. The stacker gives considerably more weightage

to DualGCN, indicating that the architecture of DualGCN is more optimized for

predicting CDR than DeepCDR’s configuration. Drug embeddings extracted from

DualGCN have the highest weight by a large margin. The omics embeddings extracted
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from DualGCN and DeepCDR have essentially the same weightage - indicating both

models are equally adept at processing the omics data. Closer inspection reveals that

DualGCN drug embeddings dominate the omics embedding, but the reverse seems to

be the case in DeepCDR, where omics embeddings dominate the drug embedding. To

assess whether this curious reversal in weight pattern holds up for the base learners

individually, we report the relative weightage of each type of embedding for each base

learner approximated separately by MEnKF-ANN. We observe that the pattern of

weights revealed in the stacked version agrees with those obtained from individual

base learners. This is a key advantage of our stacking approach - it offers insight into

the relative merits of different aspects of the base DLs without training every base

learner separately.

Table 4.2: Model weights for drugs and omics features extracted from DeepCDR and
DualGCN

Models DeepCDR Drugs DeepCDR Omics DualGCN Drugs DualGCN Omics

DeepCDR 0.41 0.59 NA NA
DualGCN NA NA .66 .34

DualGCN, DeepCDR 0.07 .15 .62 .16

4.5 Conclusion

Our goal here was to develop an extended version of the generalized stacking approach

that can be used to generate predictions by stacking two DLs and attaching uncertainty

to the predictions obtained from the stacked model. The proposed approach used a

matrix Ensemble Kalman Filter-based neural network to perform model averaging

and automatically generate prediction intervals. We utilized four neural networks,

each ingesting drugs or omics features extracted from the base DLs. This helped us

understand the relative predictive capability of different model/feature combinations.

We also demonstrated that the coverage of the prediction interval, although exceeding
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Figure 4.4: Normalized histogram of test set residuals with normal density curve

the nominal level, was reasonable, and the width of the prediction intervals was not

too wide to render them meaningless.

The results obtained from stacking DeepCDR and DualGCN suggested that

the predictive performance of the stacked model was better and more robust than

the individual MEnKF-ANN approximated individual base learners. Although the

prediction performance of the DLs (originally reported in [46, 44]) was numerically

superior to our stacked model (potentially due to the more complex architecture), we

posit that our approach is more robust in the sense that it can synthesize multiple

models operating on different data types. For example, consider a test sample with

genomic, transcriptomic, epigenomic, and CNV information. If we chose to use either

DeepCDR or DualGCN, we would not be able to process at least one type of omics

feature. The stacked model would offer the capability to handle all these features by

synthesizing both these DLs. Furthermore, since we train the stacker sequentially,

we can use this approach for online training when small batches of data are added
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sequentially. This would alleviate the need to retrain the deep learners every time new

data points are added - thereby saving computational resources when dealing with

dynamic databases.

On the limitation side, the current architecture of our stacking neural network

is simple. However, extending to more complex architecture is conceptually straight-

forward (see [77]). Additionally, the assumption of Gaussian errors in our state-space

formulation may be too restrictive for skewed or heavy-tailed data. Regardless, our

explicit error characterization allows us to perform residual analysis and thus allows

us to assess specific aspects of model adequacy. The diagonal construction of the

covariance matrix Sd is also simplistic. For a better representation, we can specify a

more dense block diagonal matrix that induces covariance among the weights coming

from the arms f ∗
1 , f

∗
2 and g∗1, g

∗
2.

The versatile nature of our stacking approach opens up some immediate future

research directions. We can repurpose this approach for transfer learning. For example,

if we wish to utilize the constituent deep learners on a small dataset, perhaps the

most popular approach is to train the deep learners on the focal dataset with a warm

start. With the stacker, we can pass the feature set associated with the focal dataset

through the deep learners and extract the embeddings, which are then used to train

the stacker. Another potential utility of our approach is that it allows us to infer

changes in the data-generating model. For instance, suppose the first half of the data

is generated by a particular model (DeepCDR, say), and the last half is generated by

another model (DualGCN, say). Suppose both the data-generating models are a part

of the ensemble. In that case, the trajectory of the convex model weights across the

batches can tell us whether there is a switch in the data-generating process. Observe

that traditional static model averaging protocols cannot be used to ascertain such

switches in the data-generating regime.
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Chapter 5

Extending Matrix Ensemble Kalman Filter-based stacker for

predicting multivariate responses

5.1 Introduction

So far, the Matrix Ensemble Kalman Filter method has been developed for regression

models with only one dependent variable (single output). This chapter extends the

multi-arm MEnKF method for developing regression models with multiple dependent

variables (multi-output). This method can also learn the covariance matrix for the

multi-output dependent variables. We start by developing the theoretical framework

and extend the MEnKF method developed for multivariate response. We then show

how this method can be extended to accommodate and identify changes in the

data-generating process.

We deploy the proposed multivariate MEnKF-ANN to predict the chemical

properties of drug molecules from their Simplified Molecular Input Line Entry System

(SMILEs) representations. We use the ChEMBL [25] database containing chemical

properties for millions of potential drug compounds and their SMILEs representations.

Researchers use this database frequently to discover new compounds that can act

as effective drugs in treating various health conditions and illnesses. In particular,

we focus on predicting the n-octanol-water partition coefficient (P) and the Polar
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Surface Area (PSA). These two chemical properties of the compounds are often used

to determine the therapeutic efficacy of drug compounds.

The P coefficient measures the relative solubility in fat (lipophilicity) and water

(hydrophilicity). P is less than one if the drug compound is more soluble in water and

greater than one if it is more soluble in fat. Consequently, any drug compounds with a

higher value for P can accumulate in the fatty tissues of organisms (bio-accumulating)

and can be detrimental. The Stockholm Convention, an international environmental

treaty, deems any drug compounds with a value of P greater than five as having

a serious risk of bio-accumulating and discourages their use. Lipinski’s “Rule of 5”

provides instructions to find favorable drug compounds that can be taken orally. One

of the rules is to favor drug compounds with a value of P less than 5, similar to what

the Stockholm Convention recommends. PSA is the area of the drug compounds’ polar

atoms (Oxygen, Nitrogen, and attached Hydrogen atoms). It measures the ability

of the drug to permeate the cell membranes and penetrate the blood-brain barrier.

Drug compounds having a PSA greater than 140 angstroms squared are considered

to be poor at penetrating cell membranes. Compounds having a PSA of less than

90 angstroms squared can penetrate the blood-brain barrier and act on the central

nervous system.

Calculating P and PSA for drug compounds experimentally is highly resource-

intensive. Predictive models (for example, QSAR) are often used to predict P and PSA

from experimentally collected data [20]. Our method for predicting the PSA and LogP

(Logarithm of the n-octanol-water partition coefficient) is motivated by the QSAR

method, which uses the molecular descriptors of the drug compounds as features for

developing the prediction models. In addition to the molecular properties, we also use

the SMILE representation of the chemical structure of the drug compounds. Therefore,

the SMILE representation and the molecular descriptors function as the two sets of
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features available for all drug compounds. The target variables we would be predicting

are the LogP and the PSA for the drug compounds, making it a multivariate regression

problem.

First, we design a multi-arm DL that simultaneously takes the SMILEs rep-

resentations of the drug compounds and the molecular descriptors from the RDKit

library that generates numerical features from the SMILEs. Since SMILEs are string

representations of the chemical structure of the drug compounds, our multi-arm DL

processes the SMILEs using an LSTM layer. The quantified features produced by

RdKit are processed using fully connected dense layers. The embeddings obtained

from the SMILEs subnetwork and RDKit subnetwork are concatenated and passed to

the prediction layer, which comprises two neurons corresponding to the dependent

variables of PSA and LogP.

We use the multi-arm DL as a feature extractor to extract the embeddings of

SMILEs and RdKit features and train the multivariate MEnKF-ANN using these

features. Our goal here is to assess the predictive capability of multivariate MEnKF-

ANN when applied to the ChemBL database. We then offer two simulation studies

to assess how accurately our stacking approach estimated the model weights. In the

first simulation, we generate data by assigning fixed model weights to the SMILEs

and the RDKit arm and then assess MEnKF’s ability to recover those model weights.

In the second simulation, we assume two sets of model weights, i.e., the training

data comes from two data-generating processes that differ only with respect to the

weights assigned to the SMILEs network vis-a-vis the RdKit network. We train the

multivariate MEnKF-ANN on the resulting dataset and track the trajectory of the

model-averaging weights to assess whether our method can detect this change in the

data-generating process and dynamically adapt the model-averaging weights.

The remainder of this chapter is organized as follows: Section 5.2 describes the
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structure of the various base models we use as feature extractors for input to the

MEnKF method. Section 5.3 describes the construction of multivariate MEnKF-ANN.

In section 5.4, we apply the multivariate stacker to predict the PSA and LogP values

on a ChemBL dataset. Section 5.5 presents the simulation results that assess the

performance of MEnKF in recovering the true model weights and its ability to identify

switches in the model weights. We offer the concluding remarks in Section 5.6.

5.2 Base Models

First, we describe the base learners that take each feature type as input, generate

the features’ embeddings, and predict the target variables. The lower dimensional

representations for SMILEs and the molecular descriptors, learned by the base models,

are supplied to the MEnKF method. We explore two base model architectures, one

with multi-arm architecture and one with single-arm architecture. The multi-arm DL

ingests SMILEs and RDKit features in two subnetworks within a single consolidated

architecture. Single-arm models predict the PSA and LogP using the SMILEs and

the RDKit features separately.

In the multi-arm DL, we process the SMILE strings using an embedding and

an LSTM layer and the molecular descriptors using a combination of fully connected

dense layers. The input SMILE strings are first converted to their one-hot encoded

representation. The dimensions of the one-hot encoded vectors are the same as the

number of unique tokens in the SMILE strings population (also known as the vocabu-

lary). The embedding layer learns a d1 dimension vector representation (embeddings)

for each unique token in the vocabulary. These learned embeddings are then used to

create the input feature representation of the SMILE strings. A collection of these

learned embeddings then represents each SMILE. More specifically, if a SMILE has l
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tokens, it is represented by a l× d1 dimension array of features. This l× d1 dimension

array of features is then passed to an LSTM layer, which learns a d2 dimension vector

representation for the SMILE. d1 and d2 are hyperparameters that can be chosen

during the model-building stage. The LSTM embedding of the SMILEs is further pro-

cessed by a block of two fully connected dense layers, creating a latent representation

of the LSTM embedding. This latent representation is then concatenated with the

embeddings produced by the fully connected layers for the RDKit representation and

then passed to a prediction layer with two neurons for the two dependent variables

of PSA and LogP. The resulting multi-arm architecture is trained by minimizing the

mean squared error loss between the ground truth PSA and LogP values and the

model predictions. After the model is trained, SMILEs and molecular descriptor

embeddings can be extracted by simply passing the new training samples through the

trained model.

In the second base model, we train two single-arm deep learners. One of the base

model architectures uses the SMILEs strings to predict the logP and PSA, while the

other uses the RDKit molecular descriptors to predict the same. The architecture of

these two individual single-arm learners is similar to their corresponding subnetworks

in the multi-arm DL. The final predictions are obtained via stacking the predictions

generated by the pair of single-arm base learners.

The reasoning behind having two different base model architectures is motivated

by the fact that we can use multivariate MEnKF-ANN to emulate the multi-arm

DL to generate predictions. However, such multi-arm base learners do not explicitly

assign individual weights to different types of representation. Therefore, we cannot

assess our stacker’s ability to recover the true model weights. Hence, in the simulation

study, we use known weights to stack the estimates generated by two single-arm base

learners and then deploy MEnKF-ANN to track the model weights.
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5.3 Methods

We extend the method developed in Section 4.3 to make it suitable for multi-output

regression. We define our target response as Y ∈ R2. We have a total of m =
∑T

t=1mt

training instances, with mt being the number of training data points in the tth batch.

Let vf1t ∈ Rp1 and vf2t ∈ Rq1 denote two different learned embeddings extracted

from the multi-arm DL fmulti for the t
th batch of data. Similarly, let vg1t ∈ Rp2 and

vg2t ∈ Rq2 denote the learned embeddings extracted from the multi-arm DL gmulti

for the tth batch of data. Let f1, f2, g1, g2 denote the model architectures for DLs

corresponding to the inputs vf1t , vf2t , vg1t , vg2t , respectively. All four model architectures

have a single hidden layer and a final prediction layer with one neuron. Let wf1
t , wf2

t ,

wg1
t , and wg2

t denote the updated weights corresponding to the model architectures

of f1, f2, g1, and g2, respectively, using the tth batch of data. Let af1t , af2t , ag1t , ag2t

and bt be real-valued scalar parameters. We will assume that it is possible to extract

embeddings from the multi-arm DLs, which are of the same dimension, implying

that p1 = q1 = p2 = q2. We also assume that the model architectures of f1, f2, g1,

and g2 have the same number of learnable parameters, nmulti. Define softmax as

σ(.) : RK → [0, 1]K function which takes as input a vector z of K dimensions and

applies the following formula to each element of z: σ(z)i =
ezi∑K

j=1 e
zj

for i = 1, 2, . . . , K.

Define a vector at as at = [af1t , a
f2
t , a

g1
t , a

g2
t ]. Let st = [sf1t , s

f2
t , s

g1
t , s

g2
t ] be a vector

obtained after applying the softmax operation on the vector at. Let s
fmulti
t = sf1t + sf2t

and sgmulti
t = sg1t + sg2t . sfmulti

t and sgmulti
t can be thought of as the weights given by

the MEnKF-ANN method to the two multi-arm DL architectures of fmulti and gmulti.
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5.3.1 Multi-Output Matrix Ensemble Kalman Filter utilizing features

from two Multi-Arm DLs

Consider the state matrix, X
(mt+nmulti+3)×4
t , associated with the tth batch of data given

by

Xt =



sfmulti
t f1(v

f1
t , w

f1
t ) sfmulti

t f2(v
f2
t , w

f2
t ) sgmulti

t g1(v
g1
t , w

g1
t ) sgmulti

t g2(v
g2
t , w

g2
t )

wf1
t wf2

t wg1
t wg2

t

af1t af2t ag1t ag2t

c1,1t c1,2t c2,1t c2,2t

d1,1t 0 0 d2,2t


(5.1)

Define

H
mt×(mt+nmulti+3)
t = [Imt , 0mt×(nmulti+3)] (5.2)

and

G4×2
t =



1 0

0 1

1 0

0 1


(5.3)

Additionally, define Θt−1 = Imt+nmulti+3 and ψt−1 = I4. Using the foregoing param-

eterizations of Ht, Xt, and Gt, we can define a Matrix State Space model similar

to the one defined in Section 2.4 where the measurement equation and the state

transition equation have the same form as (2.14) and (2.13). The measurement and

state transition equations for the corresponding vector state space model also have
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the same form as (2.19) and (2.17). It is easy to verify that such a construction does

explicit model averaging by expanding the HtXtGt matrix multiplication in (2.14),

which will result in a mt × 2 dimensional matrix.

[
sfmulti
t f1(v

f1
t , w

f1
t ) + sgmulti

t g1(v
g1
t , w

g1
t ) sfmulti

t f2(v
f2
t , w

f2
t ) + sgmulti

t g2(v
g2
t , w

g2
t )

]
(5.4)

Since sfmulti
t + sgmulti

t = 1, (5.4) is a weighted average of the predictions from the two

pairs of models of f1, g1 and f2, and g2. Recall that the inputs to the four model

architectures were the four sets of extracted embeddings vf1t , vg1t , vf2t , and vg2t from

the two multi-arm DLs of fmulti and gmulti. Therefore, by choosing Xt as in (5.1),

we can train an ensemble model using the embeddings extracted from the trained

multi-arm DLs. All the weights of the constituent four models in this ensemble and

the averaging weights at are learned simultaneously.

The scalar parameters c1,1t , c1,2t , c2,1t , c2,2t , d1,1t , d2,2t in (5.1) are used to estimate the

covariance matrix of the error term ϵt in (2.19). Since Y ∈ R2, ϵt will have dimensions

2mt × 1 and its covariance matrix will be a 2mt × 2mt dimensional matrix. Consider

matrices Lt and Dt ≻ 0 parameterized as

Lt =

c1,1t c1,2t

c2,1t c2,2t

 (5.5)

Dt =

d1,1t 0

0 d2,2t

 (5.6)

Rt = LtL
T
t +Dt (5.7)
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The above-chosen configurations of Lt, Dt would ensure that Rt is a symmetric

positive semi-definite matrix of dimensions 2× 2. To get the covariance matrix St of

the 2mt × 1 dimensional ϵt in (2.19) we can compute St = Rt ⊗ Imt .

5.3.2 Solution for the Multi-Output Matrix Ensemble Kalman Filter

Proceeding similarly to Section 4.3.2, we first define the vector of unknown quantities

that need to be estimated

u = [wf1
t , w

f2
t , w

g1
t , w

g2
t , a

f1
t , a

f2
t , a

g1
t , a

g2
t , c

1,1
t , c1,2t , c2,1t , c2,2t , d1,1t , d2,2t ]

The first step is to generate N samples from Nd(0, Sd), where d = 4nmulti + 10

is the dimensionality of the vector u. Sd is a covariance matrix that needs to be

specified. Denote these N samples as U0
t = {u0j,t}Nj=1, where uj,t is a vector of the

form uj,t = [wf1
t,j, w

f2
t,j, w

g1
t,j, w

g2
t,j, a

f1
t,j, a

f2
t,j, a

g1
t,j, a

g2
t,j, c

1,1
t,j , c

1,2
t,j , c

2,1
t,j , c

2,2
t,j , d

1,1
t,j , d

2,2
t,j ].

The first 4nmulti elements of uj,t are parameters for the four constituent ANN models,

the next four elements are the model averaging weights, the next four elements are

used to define the Lt, and the last two elements are used to define the Dt matrix. Sd

can, therefore, be parameterized using four different variances σ2
ANNs, σ

2
AvgWeights, σ

2
L

and σ2
D corresponding to the variances for the parameters of the ANN model weights,

model averaging weights, and parameters that define the Lt and Rt matrices required

to compute the covariance matrix of the batch of targets St.

Sd =



σ2
ANNsI4nmulti

0 0 0

0 σ2
AvgWeightsI4 0 0

0 0 σ2
LI4 0

0 0 0 σ2
DI2


(5.8)
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Such a parameterization for Sd allows us to separately initialize the elements of the N

samples corresponding to the constituent ANN weights, model averaging weights, and

the parameters corresponding to the covariance matrix of the targets, respectively.

These N samples are then updated using a modified version of the equation (4.11).

The modified update equation using (4.11) can then be defined as

un+1
j,t = unj,t + C(Un)(D(Un) + Rt)

−1(yt + znj,t −Htx
n
t,j) + zfudgej,t (5.9)

where Ht = GT
t ⊗ Ht, C(U) =

1
N

∑N
j=1(uj,t − ū) ⊗ (Htxt,j − H̄)T , ū = 1

N

∑N
j=1 uj,t,

H̄ = 1
N

∑N
j=1 Htxt,j, x

n
t,j = vec (Xn

t,j),D(U) = 1
N

∑N
j=1(Htxt,j − H̄) ⊗ (Htxt,j − H̄)T .

Xn
t,j is simply the Xt in (5.1) constructed using unj,t, z

n
j,t ∼ N (0, Rt), where Rt is

defined as in the equation (5.7), using

Lt =


∑N

j=1 c
1,1
t,j

N

∑N
j=1 c

1,2
t,j

N∑N
j=1 c

2,1
t,j

N

∑N
j=1 c

2,2
t,j

N

 (5.10)

Dt =


∑N

j=1 d
1,1
t,j

N
0

0
∑N

j=1 d
2,2
t,j

N

 (5.11)

and zfudgej,t ∼ N (0, σ2
fudgeId) where σ

2
fudge is a user-defined variance parameter.

5.3.3 Connecting Multi-Output Matrix Ensemble Kalman Filters with

Base Model Architectures

Recall that our goal is to predict the PSA and LogP for drug compounds using their

SMILE representations and molecular descriptors. In Section 5.2, we presented two

base model DL architectures that we would use to predict PSA and LogP.

We will first show how to parameterize (5.1) to process the embeddings extracted
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from the multi-arm DL. Consider equation (5.4) which gives the matrix product

HtXtGt. To configure the Xt matrix in the MEnKF-ANN setup, we need to figure out

how the terms in equation (5.4) relate to the multi-arm base model architecture. First,

we extract the SMILE string embeddings and the molecular descriptor embeddings

emanating from the last fully connected dense layers in the multi-arm DL. Let

sfmulti and sgmulti be the weights assigned to SMILE string embeddings and molecular

descriptor embeddings, respectively. Let vf1 and vf2 be the SMILE string embeddings

and vg1 and vg2 be the molecular descriptor embeddings. f1, f2, g1, and g2 are all fully

connected feed-forward neural networks with one hidden layer and one prediction layer

with a single neuron. The matrix product in (5.4) has dimensions mt × 2 for a batch

of size mt. Comparing this with (2.14), we observe that (5.4) has the same dimensions

as the batch targets, Yt. Assume that the first column of Yt contains the observed

LogP values and the second column contains observed PSA values. Consider the first

column in the matrix product of (5.4) which is sfmulti
t f1(v

f1
t , w

f1
t ) + sgmulti

t g1(v
g1
t , w

g1
t ).

sfmulti and sgmulti are the weights assigned to SMILE string embeddings and molecular

descriptor embeddings and vf1t , vg1t are the SMILE string embeddings and the molecular

descriptor embeddings, respectively. Since sfmulti + sgmulti = 1, sfmulti
t f1(v

f1
t , w

f1
t ) +

sgmulti
t g1(v

g1
t , w

g1
t ) can be interpreted as the learned weighted average prediction for

LogP using two simultaneously trained ANNs which use SMILE string embeddings

and the molecular descriptor embeddings, respectively. Similarly, we can interpret

sfmulti
t f2(v

f2
t , w

f2
t ) + sgmulti

t g2(v
g2
t , w

g2
t ) as the learned weighted average prediction for

PSA using two simultaneously trained ANNs which use SMILE string embeddings and

the molecular descriptor embeddings, respectively. Therefore, we can interpret (5.4) as

a learned weighted average prediction for the LogP and PSA using the learned SMILE

and molecular descriptor embeddings from the multi-arm base model architecture.

We have two single-arm DL architectures for the second base model that predict
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LogP and PSA using SMILE strings and molecular descriptor features separately. The

parameterization of (5.4) for the second base model architecture is similar to its multi-

arm DL base model architecture parameterization. We would still have sfmulti and

sgmulti as the weights assigned to SMILE string embeddings and molecular descriptor

embeddings, respectively, but now the model averaging done in HtXtGt approximates

the stacking of the two single-armed base learner. vf1 and vf2 be the SMILE string

embeddings extracted from the single-arm DL that uses SMILE strings and vg1 and

vg2 be the molecular descriptor embeddings extracted from the single-arm DL that

uses molecular descriptors. f1, f2, g1, and g2 are all fully connected feed-forward

neural networks with one hidden layer having 16 neurons and one prediction layer

with a single neuron. The SMILE string embeddings and the molecular descriptor

embeddings from both the multi-arm DL architecture and the two single-arm DL

architecture are vectors of size 32.

To start the MEnKF method, we first calculate the number of parameters that

need to be estimated, which is d = 4nmulti + 10. Based on the model architectures of

f1, f2, g1, and g2 they all have the same number of learnable parameters nmulti = 545,

therefore d = 2190. The number of samples for the EnKF solution in (5.9) is N = 274.

The first step in the EnKF solution is to draw 274 samples from N2190(0, S2190). S2190

is a covariance matrix of the form (5.8) and is defined using σ2
ANNs, σ

2
AvgWeights, σ

2
L

, and σ2
D. For t = 0, denote these 274 samples as U0

t = {u0j,t}274j=1, where uj,t is as

described in Section 5.3.2. Compute Xt, Ht, and Gt, and Ht as described in Sections

5.3.1 and 5.3.2. These 274 samples are then updated using the equation (5.9) for

t = 1, 2, . . ..
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5.4 Applications

We first describe the data used to train the base DLs and the multivariate MEnKF-

ANN and offer results that demonstrate the predictive accuracy of our method along

with the coverage and width of the prediction intervals that it generates.

5.4.1 Data Description

We use the ChEMBL database to extract drug molecules’ chemical structure and

properties. First, we extract 2.26 million SMILE strings and their observed LogP

and PSA values from this database. These 2.26 million SMILE strings were split into

75% (1.70 million) training and 25% validation samples (0.56 million). This forms

the dataset (Db) with which we train our base DLs - multi-arm and two single-arm

DLs. Next, we also extracted 959 SMILE strings, corresponding to small molecules,

which were not included in the foregoing 2.26 million SMILE strings used to train and

validate the base DL architectures. These 959 SMILE strings and their logP and PSA

values form the dataset (DM) that we used to train and evaluate the MEnKF-ANN

method. The base DLs do not see small molecules. We would like to predict the LogP

and PSA associated with small molecules. Therefore, our MEnKF-ANN acts as a

transfer learner.

We use the RDKit library to numerically quantify the molecular features corre-

sponding to the SMILE strings. This library computes 207 molecular features for each

SMILE string. We use variance thresholding to remove features that show minimal

variability and cannot explain variation in the response variables. Retaining molecular

features with a variance of at least 1 leaves us with 104 (out of the 207) RDKit

extracted molecular descriptors.

Training multivariate MEnKF-ANN: The 959 SMILE strings not used in the



91

training of the base models are first split into 75% training (719) and 25% testing

(240) samples. The trained multi-arm base DL is used to forward propagate the

SMILE strings and the molecular descriptors present in DM to extract their respective

embeddings. These embeddings are then used as input features to train MEnKF-ANN.

We fix the dimension of the extracted embeddings (for both SMILE strings and the

molecular descriptors) to be 32. These SMILE and molecular descriptor embeddings

are then used as input features to train the MEnKF-ANN method. We used a batch

size mt = 719, σ2
ANNs = 0.1, σ2

AvgWeights = 0.1, σ2
L = 0.1 , and σ2

D = 0.1. We stop

training the MEnKF-ANN if the training RMSE does not improve for 20 successive

epochs at the same level of coverage.

5.4.2 Results

Figure 5.1 shows the scatterplot of the observed vs. predicted LogP and PSA from the

trained MEnKF-ANN model for the test samples. The MEnKF-ANN model achieves

a high level of accuracy in predicting the LogP and PSA values. The high prediction

accuracy is also evident from the Pearson correlation scores in Table 5.1 between

the observed vs. predicted LogP and PSA, which is 0.99 for both. The coverage of

the prediction intervals from MEnKF-ANN for both LogP and PSA testing samples

are 93.33% and 97.92%, respectively. The average widths of the prediction intervals

are 0.13 and 3.15, respectively. Figure 5.2 shows the histogram of the MEnKF-ANN

predictions (LogP on the left and PSA on the right) superimposed with the observed

value (in green) and the empirical 95% prediction intervals (in red) for four randomly

chosen test samples. It can be seen that the widths of the prediction intervals are

quite tight for both LogP and PSA predictions. Figure 5.3 shows the average weight

for SMILEs embeddings estimated by MEnKF-ANN across the training epochs. The

empirical convergence of model weight is evident from this figure. Additionally, the
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blue background tracks the standard error of the model weights. It appears that the

standard error converges as well.

Since we have bivariate responses, we can also estimate the response covariance

matrix. The original sample covariance matrix in DM is

 7.17 −59.79

−59.79 3088.22

. Since the
N particles in the multivariate MEnKF-ANN generate N fitted values in the training

samples, we can obtain N copies of empirical covariance matrices associated with

the target response variable. The average of these N empirical covariance matrices

can be used to estimate the covariance between LogP and PSA. This covariance

estimate turns out to be

 7.16 −59.65

−59.65 3085.51

 indicating MEnKF-ANN’s ability to

recover original sample covariance.
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Figure 5.1: Scatterplot showing the average MEnKF LogP and PSA prediction with
their corresponding ground truth values for the test set
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Figure 5.2: MEnKF-ANN predictions superimposed with the ground truth value and
the empirical 95% prediction intervals

Table 5.1: Mean performance metrics of MEnKF-ANN for the prediction of LogP and
PSA in the test set.

Target RMSE Coverage Width ρ
LogP 0.07 93.33% 0.13 0.99
PSA 0.74 97.92% 3.15 0.99

5.5 Simulations

In this section, we demonstrate the ability of MEnKF-ANN to identify a shift in the

weights assigned to the base learners. In particular, we are interested in the scenario

where a part of the dataset is generated by a particular weighted combination of the

outputs from the SMILE embeddings and the outputs from the molecular descriptor
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Figure 5.3: Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs.

embeddings. However, the magnitude of the model weights changes in the subsequent

batches.

Since the MEnKF-ANN estimates model averaging weights for each training

batch, we hypothesize that by tracking the model weight across batches, we can

identify if the true model weights change dynamically. We designed two synthetic

scenarios to investigate this hypothesis. In the first scenario, the model weight is

kept constant. In the second scenario, we make one switch in the model weight. In

all simulations, we report the point estimate, the average width, and the coverage

probability of the empirical 95% prediction intervals.

5.5.1 Fixed case scenario

Data generation scheme: Recall from Section 5.2 that the last layer in the multi-arm DL

before the prediction layer was a concatenation layer which concatenates embeddings
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for the SMILE strings (vSMILES
t ) and molecular descriptors (vMolDescriptors

t ), each a 32-

dimensional vector. Consider a single training sample such that the batch size mt = 1

and therefore vSMILES
t , vMolDescriptors

t both are having dimensions 1×32. The predicted

LogP and PSA for this training sample can be obtained using (vSMILES
t ×wSMILES

t )+

(vMolDescriptors
t × wMolDescriptors

t ) + (bt)
T , where b is the bias vector that produces the

mean of the bivariate responses. Therefore, the predicted LogP and PSA can be

seen as having some contribution from the SMILEs embeddings and the molecular

descriptor embeddings. We modify the prediction equation by introducing two new

parameters, weightSMILEs
t and (1 − weightSMILEs

t ), which are weights given to the

contribution stemming from SMILE embeddings and molecular descriptor embeddings,

respectively. Therefore, the mean values of the synthetic responses are obtained using

the formula weightSMILEs
t (vSMILES

t ×wSMILES
t )+(1−weightSMILEs

t )(vMolDescriptors
t ×

wMolDescriptors
t ) + (bt)

T . The final target response data are obtained by perturbing the

above means by noises generated from N2(0, Rt).

We assess the performance under three combinations of weightSMILEs and noise

covariances. We refer to these combinations as C1, C2 and C3, with C1 = (0.7, R1), C2 =

(0.7, R2), and C3 = (0.8, R3), where

R1 =

 0.3 0.06

0.06 0.3

 R2 =

 0.3 −0.27

−0.27 0.3

 R3 =

 0.2 −0.18

−0.18 0.2


We generate 50 synthetic datasets for each C1, C2, and C3, comprising 959

instances under each covariance specification. We use the SMILEs and molecular

descriptors associated with small molecules that were not supplied to the multi-arm

DL. In each simulated replicate, we use 719 samples for training MEnKF-ANN and

the remaining 240 samples for testing.

Results: Fixed case scenario

In this simulation exercise, we aim to recover weightSMILEs under three different
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combinations C1, C2, and C3. Table 5.2 gives the coverage and width of the confidence

intervals for weightSMILEs parameter from MEnKF-ANN. ŵeight
SMILEs

is the average

estimated model weight for SMILE embeddings from MEnKF-ANN. It can be seen

that the ŵeight
SMILEs

from MEnKF-ANN is close to the true weightSMILEs. The

coverage of the confidence intervals exceeds the nominal level, and the widths are also

reasonable for all three combinations.

Table 5.3 gives the coverage and width of the prediction intervals for LogP and

PSA yielded by MEnKF-ANN on the test data. It can be seen that the RMSEs,

coverages, and widths are all reasonable. Therefore, the evidence in Table 5.2 and

Table 5.3 indicate that the MEnKF-ANN method has good predictive performance

and can accurately recover the true model weights.

Figure 5.4 shows the trajectory of ŵeight
SMILEs

for combination C2. Observe

how the weight converges to a steady state within the first 20 epochs. We expect to

see such stability in weight trajectory when the data generation process remains the

same.

Table 5.2: Average estimated SMILE weight by MEnKF-ANN along with the coverage
and widths from its empirical 95% confidence interval.

Combination weightSMILEs Rt ŵeight
SMILEs

Coverage Width
C1 0.7 R1 0.76 96% 0.20
C2 0.7 R2 0.75 96% 0.20
C3 0.8 R3 0.83 96% 0.15

Table 5.3: Mean performance metrics of MEnKF-ANN for predicting LogP and PSA
in the test set along with coverage and widths from its empirical 95% prediction
interval.

Combination LogP RMSE PSA RMSE LogP Cov PSA Cov LogP Width PSA Width

C1 0.27 5.79 91.31% 93.60% 0.82 17.82
C2 0.29 5.95 91.47% 93.68% 0.83 17.98
C3 0.22 4.68 91.95% 94.13% 0.62 13.66
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Figure 5.4: Trajectory of the average SMILE embedding weights from MEnKF-ANN
for combination C2 over the epochs.

5.5.2 Dynamic weight scenario

Data generation scheme: In this scenario, we extract the 32-dimensional embeddings as-

sociated with the SMILE strings (vSMILES
t ) and molecular descriptors (vMolDescriptors

t )

from the two single-arm DLs whose architectures were described in Section 5.2.

Just like in Section 5.5.1, true target data in the simulations is obtained by adding

mt random noise vectors drawn from N (0, Rt) to the final prediction equation

given by weightSMILEs
t (vSMILES

t × wSMILES
t ) + weightMolDescriptors

t (vMolDescriptors
t ×

wMolDescriptors
t ) + (bt)

T . Rt, weight
SMILEs
t , and weightMolDescriptors

t are user specified.

We use one Rt configuration in this simulation.

R4 =

 0.3 −0.06

−0.06 0.3


We create a weight switch scenario in the following way: To generate the first

batch, we use 959 SMILE strings and associated RdKit descriptors and simulate mean
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values of LogP and PSA using weightSMILEs
t = 0.7. We generate another 959 instances

for the second batch using the same feature set as before, but now weightSMILEs
t is

set to be 0.4. We then perturb the 1918 data points with bivariate normal noises with

mean zero and covariance R4. Observe that the only systematic difference between

the first 959 instances and the following 959 instances is the change in the model

averaging weights assigned to the output generated by the DL trained on the SMILEs

feature.

Results: dynamic weights

Instead of letting MEnKF-ANN scan the entire training data in each epoch, we

partition 1918 instances into a few equally sized blocks. Each block is treated as an

independent training set and trained over multiple epochs. When we transition to a

new block, we restart the training but use the learned parameters from the previous

block to initialize the state matrix for the new block. We do not specify any specific

exit criteria but observe the trajectories of the model weights over the epochs until they

reveal stability, as observed in the fixed weight case. We used the following MEnKF-

ANN hyperparameter values for this simulation N = 219, σ2
ANNs = 1, σ2

AvgWeights = 3,

σ2
L = 1, and σ2

D = 1.

Figure 5.5 shows the average estimated model weight trajectory for SMILE

embeddings when the entire dataset is partitioned into two blocks. The blue curve

shows the trajectory for the first block, and the orange curve shows the trajectory

for the second block. Note the transition in the trajectory when MEnKF-ANN starts

retraining with the second block. This indicates that blocking the training data

and multiple restarts can enable MEnKF-ANN to identify a potential switch in the

data-generating regime, at least in terms of weights allocated to the constituent base

models.

Left panel of Figure 5.6 shows the ratio of the training error associated with
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Figure 5.5: Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs for dynamic weights scenario

LogP from the SMILEs-only arm of MEnKF-ANN to the molecular descriptors-only

arm of MEnKF-ANN, and the right panel shows the same but now for PSA. Recall

that the true model weight corresponding to molecular descriptor features was higher

in the second block. Consequently, the ratio of the training errors becomes smaller

over the epochs, signifying that the predictions from the molecular descriptor-only

arms of the MEnKF-ANN are getting more accurate than the predictions from the

SMILEs-only arm. This further supports the trajectory observed in Figure 5.6.

5.6 Conclusion

In this chapter, we have extended our MEnKF-ANN method to accommodate multi-

variate responses. We demonstrated that the multivariate extension is conceptually

straightforward mainly due to the utilization of matrix normal theory in constructing

our stacker. We have shown how this stacker performs transfer learning, transmitting
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Figure 5.6: Trajectory of the ratio of RMSPE from molecular descriptor embeddings
only model to the RMSPE from SMILE string embeddings only model for dynamic
weights scenario

knowledge from base deep learners trained on a different dataset. We have also

shown how multiple restarts in the MEnKF-ANN algorithm enable us to identify a

switch in the model averaging weights. We note that this aspect of our stacker is

important because, as shown in Chapter 3, the property of EnKF forces the trajectory

of the forecast estimates to converge in the long run regardless of the initialization.

With a switch in the model weight, we would expect the forecasts to have different

distributions under different regimes; hence, vanilla EnKF cannot handle such a

situation.

On the limitation side, this approach relies on sequential training of each data

partition and hence cannot be parallelized. Additionally, in order to identify regime

switch, it requires stability in the regime in most partitions. In other words, if the

dataset rows are randomly permuted, MEnKF-ANN will fail to identify which data

point comes from which regime. We emphasize that MEnKF-ANN, in its current

version, is not a model that can detect change points. It is simply an exploratory tool

that exploits the asymptotic properties of EnKF and KF to assess the stability of
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the steady-state solution of the state variable. The guiding hypothesis is that if the

data-generating process remains stationary, then the steady-state solution of the state

variable in EnKF will not depend upon the initialization. Therefore, if MEnKF-ANN

is trained sequentially with multiple restarts, the state variables will converge to the

same steady-state distribution. If we observe that the steady state distribution of the

state variables depends on the initialization, then it simply indicates non-stationarity

in the data-generating process. Our simulation study simply offers a proof-of-concept

that if the non-stationarity lies in the specification of mean in the measurement model,

then tracking the trajectories of the cross-learner weights under multiple restarts can

potentially reveal the dependence of the steady solution of that state variable on the

initialization.

Future research will be devoted to alleviating the foregoing limitations. For

computational benefit, we propose to train each data partition using multiple overdis-

persed initializations parallelly. We can then track the model weight trajectory for

each initialization. We will thus end up with a collection of trajectories for each

partition. A functional ANOVA on these trajectories could be used to determine

whether the population mean of these trajectories remains the same across the data

partition.

Turning to regime switch integration, we propose using the regime-switching

state-space model [15] instead of vanilla EnKF. Such integration will offer further

generalization to the stacking approach.
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Chapter 6

Conclusion

In this dissertation, we have proposed a generalized approach for model averaging

multiple ANNs. Although there is a rich repository of literature discoursing EnKF

theory and model averaging procedures, this dissertation, to the best of our knowledge,

is the first one to demonstrate that the EnKF framework could be naturally extended

to perform model averaging of multiple ANNs. We used feed-forward ANN architecture

for the base learners and trained individual ANNs and their convex combinations

simultaneously using Ensemble Kalman Filter updating equations. The utility of

our EnKF-trained ANN is that it captures the epistemic uncertainty in the model

parameters in a more coherent way and under certain conditions generates the minimum

mean square error estimates of all the model parameters that enter into the state

matrix. Additionally, EnKF explicitly characterizes the joint distributional profile

of the state variable and therefore the predictive distribution is explicitly written in

the form of the conditional distribution of the query points given the training dataset

and the input features associated with the query points. Hence, the conditional

expectation of this predictive density is the minimum mean square error estimator of

the point prediction and the conditional quantiles form genuine predictive intervals. We

empirically demonstrate that the coverage probability associated with these predictive

intervals achieves a nominal level. Additionally, when the response space is compact,
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we demonstrate that the average width of the prediction interval is small enough to

make these intervals useful. On the passing, we note that the uncertainty intervals

generated by the customary Monte Carlo dropout procedure falls far short of the

nominal level.

The connection between our approach and deep learners is revealed when we

allocate different columns of the state matrix to the feature embeddings coming from

different base deep learners (or from different arms of a multi-arm deep learner).

MEnKF-ANN now essentially approximates the dense prediction layers in the con-

stituent deep learners by feed-forward ANNs and estimates the within-learner and

cross-learner weights simultaneously. Unlike the conventional stacking approach,

MEnKF-ANN does not use the predicted values generated by the DLs as covariates

for the meta-learner, thereby ignoring the uncertainty associated with the output

generated by each of these DLs. We posit that the assumption of non-stochasticity

in the input of meta-learners is not tenable, particularly when we have deep learners

as base models because almost all deep learners are trained with dropout layers

which structurally induce stochasticity in the predictions. Our method utilizes the

embeddings extracted from the deep learners and does not make any assumption

regarding the stochasticity of the output generated by the base models.

We showed that MEnKF-ANN construction is useful in performing transfer

learning, particularly when the target domain requires a reduced model to be trained

as compared to more complex models that were trained in the source domain. Observe

that conventional stacking would first require retraining of the source domain models

in the target domain and then estimate the stacking weights on hold-out validation

data in the target domain. MEnKF-ANN does not require retraining of source domain

models. It simply extracts the required embeddings for the features in the target

domain and trains base ANNs and their convex combination simultaneously on the
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target domain data. We also develop a multivariate extension of MEnKF-ANN and

demonstrate that this extension simply requires expansion in the dimension of the state

matrix. All distribution specifications and updating equations retain the same form

with appropriate changes in the matrix dimensions. Finally, we show that instead of

letting MEnKF-ANN scan the entire training set in a single go, if we perform multiple

restarts across different partitions of the training data, the convergence properties of

EnKF could be exploited to identify if there is an abrupt change in the mean function

of the observation model. We offered a proof-of-concept simulation exercise to assess

whether MEnKF-ANN could detect if the model-averaging weights change from one

training set to another.

There are several limitations of the proposed approach. First, MEnKF-ANN

produces optimal (in minimum mean square error sense) estimates of the within-learner

and cross-learner weights under the assumptions specified in Chapter 2. If any of those

assumptions are violated, optimality of the estimates is not guaranteed, MEnKF-ANN

simply boils down to an algorithm that can perform in-situ model averaging. Second,

in its current formulation, MEnKF-ANN cannot perform model averaging on deep

learners directly. That is, the current computation protocol cannot have f(.) and g(.)

to be deep learners themselves. More restrictively, it cannot handle non-numeric input

features. That is, we need to supply numeric values for vft and vgt . Therefore, to handle

object-type input features (say, images), MEnKF-ANN would require an autoencoder-

type technique to convert the object inputs to vector-valued features. Third, as the

name of our approach suggests, we only consider feed-forward ANNs as the base

learners. In its current state, MEnKF-ANN can handle different ANN architectures,

but it cannot handle two very different base learners - for instance, an ANN and a

regression tree. Observe that conventional stacking does not suffer from this problem

because the stacking formulation (as shown in (1.1)) is agnostic to the architecture of
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the base models that generate the predictions. Fourth, the uncertainty statement that

MEnKF-ANN attached to the predicted values of the target variables only captures

the uncertainty arising due to our lack of knowledge about the model parameters.

It assumes that the true data-generating model appears in the set of models that

are being averaged. Consequently, uncertainty due to our lack of knowledge about

the model itself is not properly quantified in the distribution profile of the model

parameters and predictive distributions. Finally, some of the illustrative examples

should be interpreted with caution- particularly when it comes to transfer learning

and detection of model switch. Our intention in deploying MEnKF-ANN in those

situations was to demonstrate that this framework is flexible enough to perform several

functions. But, there exist multiple techniques that are explicitly developed to handle

those tasks [19, 49]. Consequently, we cannot claim that MEnKF-ANN generates

optimal predictions under these situations. It only offers a potential candidate model.

In terms of future research directions, introducing particle filters in this context

is an obvious way to relax the Gaussianity assumption hard-wired in MEnKF-ANN.

Additionally, formally introducing switching Kalman Filters to draw inferences on the

switching regime model will add more rigor to our current approach. Theoretically,

we can generalize this approach to multilayer ANN instead of the current single-layer

feed-forward ANN. With this generalization, we can prove that we can consistently

approximate any deep learner because [27, 8] proved that sufficiently complex multilayer

feed-forward networks can accurately approximate arbitrary mappings from input

space to the response space.
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