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Deep learners (DLs) have turned out to be the state-of-the-art method for predictive
inference. Since we do not have widely applicable generalization error bounds for
DLs, we can prevent over-confident inferences and predictions from a single “best
performing” DL by creating an ensemble of such models and then performing model
averaging. Such model averaging has been shown to increase robustness in the realm of
deep learning techniques [74]. This increase in robustness could be partially attributed
to the fact that with model averaging, we no longer ignore the uncertainty due to
model choice. Stacking is one of the most popular model-averaging protocols. In its
standard form, stacking uses the output of base learners as non-stochastic inputs to
a meta-learner. However, that ignores the uncertainty in the predictions generated
by these base DLs. This practice is problematic because DLs are often trained
with dropout layers, which induce uncertainty in their predictions. Consequently, a
meta-learner should process that uncertainty hardwired into the base models.

In this dissertation, we derive a novel methodology that can perform model
averaging and propagate the uncertainty associated with the base models more
coherently. We utilize Matrix Ensemble Kalman Filters to design a multi-arm artificial
neural network that drives stochastic weights and performs model averaging in every
filter update and batch update step. By default, our method produces realizations

from one-step ahead predictive distribution, enabling the construction of prediction



intervals from averaged models. We demonstrate that our methodology can be utilized
for transfer learning and potentially identify a specific form of mean non-stationarity
in the underlying data-generating model. We apply our model to cancer drug response
predictions and classification of gut microbiota. All codes used in this dissertation can

be obtained from: https://github.com/Ved-Piyush/UNL_Thesis_Codes_VP /tree/main.


https://github.com/Ved-Piyush/UNL_Thesis_Codes_VP/tree/main

v

DEDICATION

To my parents Manju Bala Sahoo, Alekh Kumar Sahu, and my sister Ved Pragyan.



ACKNOWLEDGMENTS

I want to thank my advisor, Dr. Souparno Ghosh, wholeheartedly. His unwavering
support, patience, and expert guidance were a cornerstone throughout this research
journey. His insightful feedback and advice played a pivotal role in shaping the
direction of this dissertation.

I also want to express my gratitude to my committee members: Dr. Bertrand Clarke,
Dr. Xueheng Shi, and Dr. Mohammad Rashedul Hasan. Their feedback, time, and
valuable suggestions were immensely helpful.

A big shoutout goes to Dr. Yanbin Yin for giving me the opportunity to work
as a Graduate Research Assistant. Additionally, I'm thankful for the support and
mentorship of Dr. Yuzhen Zhou.

I can’t go without mentioning the incredible professors at Sri Venkateswara College
- Delhi University, the University of Minnesota - Twin Cities, and the University of
Nebraska - Lincoln. They’ve left an indelible mark on my academic journey.

Lastly, a special thanks to my friends and peers. The memories we’ve created are an
integral part of this Ph.D. adventure. Your companionship made this journey not just

possible but enjoyable.



vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Literature Review 6
2.1 Linear State Space Model . . . . . . . ... ... L. 7
2.2 Kalman Filter . . . . . . . . 8

2.2.1 Example: Training Kalman Filters for Time Series Forecasting 10

2.3 Ensemble Kalman Filter . . . . . . ... ... ... ... ... .... 12
2.4 Matrix State Space Model . . . . . . . . ... oL 14
2.5 Embeddings in Deep Learning . . . . . . .. ... .. ... ... 16
2.6 Monte Carlo Dropout . . . . . . . . ... .. ... ... ... ... 18
2.7 Long Short Term Memory Models . . . . . . . ... ... ... .... 19
2.8 Graph Convolutional Networks . . . . . ... ... ... ... .... 20

3 The Matrix Ensemble Kalman Filter-based multi-arm Neural Net-
work 22
3.1 Introduction . . . . . . . . . ... 22

3.2 Background . . . .. ..o 24



3.3

3.4

3.5

3.6
3.7

Vil

Methodology . . . . . . . . 26
3.3.1 Matrix Kalman Filter based Multi-arm ANN . . . . . . . . .. 27

3.3.2 Reparametrizing MEnKF-ANN for Computational Efficiency . 28

3.3.3  Explicating MEnKF-ANN . . . . .. ... ... ....... 30
3.3.4 Connecting MEnKF-ANN with DL . . . . .. ... ... ... 33
Application I: Transfer learning using MEnKF-ANN . . . . . . . . .. 34
3.4.1 Application I: Data description . . . . ... ... ... .... 35
3.4.2 Application I: Results . . . . . . ... ... ... ... ..... 36

Application II: Attaching uncertainty to stacked LSTM classifier using

MEnKF-ANN . . . . . 38
3.5.1 Application II: Motivating Problem . . . . . .. .. ... ... 39
3.5.2 Application II: Simulations . . . . . . . .. ... ... ... .. 44
3.5.3 Application II: Results on dbCAN-PUL data . . . . . . . ... 48
Conclusion . . . . . . . ... o1
Appendix . . . .. 54

Scalability of Matrix Ensemble Kalman Filter-based stacker for

combining two multi-arm deep learners 59
4.1 Introduction . . . . . . . ... 59
4.2 Background . . . ... oL 61
4.3 Methodology . . . . . . . . . 63
4.3.1 The MEnKF-ANN stacker for multi-arm DLs . . . . . .. .. 64
4.3.2 An efficient solution for MEnKF-ANN stacker . . . . . . . .. 66
4.3.3 Connecting MEnKF with DualGCN and DeepCDR . . . . . . 69
4.4 Application . . . ... 70

4.5

Conclusion . . . . . . . . 75



viil

5 Extending Matrix Ensemble Kalman Filter-based stacker for pre-

dicting multivariate responses 78
5.1 Introduction . . . . . . . ... 78
52 BaseModels . . . . . .. 81
5.3 Methods . . . . . . . 83

5.3.1 Multi-Output Matrix Ensemble Kalman Filter utilizing features
from two Multi-Arm DLs . . . . . . . .. . ... ... .. 84
5.3.2  Solution for the Multi-Output Matrix Ensemble Kalman Filter 86

5.3.3 Connecting Multi-Output Matrix Ensemble Kalman Filters with

Base Model Architectures . . . . . ... ... ... ... ... 87

5.4 Applications . . . . .. .. 90
5.4.1 Data Description . . . . .. . ... . 0L 90

54.2 Results. . . . . ... 91

5.5 Simulations . . . . ... 93
5.5.1 Fixed case scenario . . . . . . .. ..o 94

5.5.2  Dynamic weight scenario . . . . . . . ... ... ... ... 97

5.6 Conclusion . . . . . . . .. 99

6 Conclusion 102

Bibliography 106



1X

List of Figures

2.1
2.2
2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Time series . . . . . . . e e 11
Forecasts from Kalman Filter superimposed with the original time series 12
An LSTM cell showing the various operations at a time step involving the

hidden state, carry state, and features' . . . . . .. ... ... ... ... 20

Scatterplot showing the observed log I Csq values with the predicted log IC's
values over all cross-validation test folds for MEnKF-ANN trained without
gene expression features. . . . . . ... Lo 39
Trajectory of MEnKF-ANN training RMSE for different ensemble sizes (V) 40
Pectin PUL . . . . . . . . . 42
Frequency distribution for the various substrates . . . . . . . . . .. ... 42
Boxplots showing the predictions superimposed with the ground truth
value from the two LSTM architectures . . . . . . .. .. ... ... ... 43
True logits superimposed on predicted logits from MEnKF-ANN using
LSTM and Doc2Vec embeddings . . . . . . .. . .. ... ... ... .. 47
Scatterplot of MEnKF-ANN-predicted and LSTM-predicted probabilities
for the test dataset . . . . . . . . ... 51
Boxplots showing the MEnKF-ANN predictions superimposed with the

ground truth value for heavy and low dropout . . . . . . ... ... ... 52



3.9

4.1

4.2

4.3
4.4

5.1

5.2

5.3

5.4

9.5

5.6

Trajectories of the singular values for the Kalman Gain matrix with the

dominant eigenvalue of I — K;H, . . . . . . . . ... 57

Scatterplot for MEnKF-ANN predictions with the observed log ICy, values

inthetestset.. . . . . . . . . ... 73
Prediction intervals for test samples with the observed log IC5y values. . 74
Training and testing RMSE curves for the MEnKF updating iterations . 74
Normalized histogram of test set residuals with normal density curve . . 76

Scatterplot showing the average MEnKF LogP and PSA prediction with
their corresponding ground truth values for the test set . . . . . . . . .. 92
MEnKF-ANN predictions superimposed with the ground truth value and
the empirical 95% prediction intervals. . . . . . . . .. .. ... .. ... 93
Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs. . . . . . . . . .. 94
Trajectory of the average SMILE embedding weights from MEnKF-ANN
for combination C5 over the epochs. . . . . . . . .. .. ... 97
Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs for dynamic weights scenario . . . . . . . . . . ... ... 99
Trajectory of the ratio of RMSPE from molecular descriptor embeddings
only model to the RMSPE from SMILE string embeddings only model for

dynamic weights scenario. . . . . . . . . . ... ... ... 100



List of Tables

3.1

3.2

3.3
3.4

3.5
3.6

3.7

3.8

4.1

4.2

Averaged cross-validation metrics for MEnKF-ANN and fine-tuned Deep-
CDR trained with all available features. . . . . .. ... ... ... ...
Averaged cross-validation metrics for MEnKF-ANN trained with a reduced
set of features. . . . . . ..
Performance of MEnKF-ANN using LSTM embeddings and Doc2Vec . .
Dropout-induced coverage and width of prediction intervals obtained from
fitted LSTM with two dropout layers . . . . . . . ... ... ... ....
Performance of MEnKF-ANN using Word2Vec and Doc2Vec . . . . . .
Performance of MEnKF-ANN trained to predict the averaged probability
obtained using LSTM and ANN . . . . . ... ... .. ... ......
Performance of MEnKF-ANN using LST M, and LST M, embeddings for
dbCAN-PUL data . . . . . . .. . . ..
Comparison of the average width of prediction interval LSTM + MC
dropout and MEnKF-ANN approximator for each LSTM . . . . . . ..

Performance metrics of MEnKF-ANN using DeepCDR and DualGCN
embeddings . . . . ... Lo

Model weights for drugs and omics features extracted from DeepCDR and
DualGCN . . . . . .

X1

37

38
47

47
47

47

50

20

72



5.1

5.2

9.3

Mean performance metrics of MEnKF-ANN for the prediction of LogP and
PSAinthetest set. . . . . . . . . ..o
Average estimated SMILE weight by MEnKF-ANN along with the coverage
and widths from its empirical 95% confidence interval. . . . . .. .. ..
Mean performance metrics of MEnKF-ANN for predicting LogP and PSA
in the test set along with coverage and widths from its empirical 95%

prediction interval. . . . . . ... ..o o

xii

93

96



Chapter 1

Introduction

Consider a set of M base learners trained on the same dataset Z = (X,Y’) where X =
(w1, 2, ...,x,) is the set of predictors and the target variable is Y. Let fl(w), fg(a}), ym
fur(x) be the set of M predictions obtained from these models. If the population
distribution of the dataset is assumed to be known, i.e., Z ~ P, then the population
level stacking is obtained as a weighted average of the predictions generated by M

models, with the weights being

2

M
w =argmin Ep |Y — Z Wi fom (1) (1.1)
m=1

w

Since, w is the minimizer of the expression in the RHS of (1.1), it is easy to see

2

M 2
Ep |Y =Y omfu(e)| < Ep [Y - fm(m)} Vm=1,2,.,M (1.2)

indicating that if P is known, stacking never performs worse as compared to any single
model.

Since P is typically unknown, the stacking estimates are extracted either via



cross-validation or over a validation dataset, i.e.,

2

N M
W) =argmin Z Yi — Z wmfn_mi(wi)
w i=1 m=1

where fi(x;) is the prediction obtained from the m' model with the it" training
instance removed.

Customarily, the stacking operation is performed using the point prediction
yielded by each base learner as input. That is, the cross learner weights w,,’s are
estimated given the predictions from the base learners. Consequently, standard
stacking produces optimal (under square error loss) cross-learner weights but does not
address the joint optimality of within-learner and cross-learner weights. This question
becomes important when we stack multiple deep learners to generate predictions. How
do we attach uncertainty to the predictions obtained from conventionally stacked deep
learners? We can use Monte Carlo dropout to attach uncertainty to the predictions
generated by each base learner. But to obtain the stacked prediction, we need to fiz
the output from each base learner, and hence the uncertainty does not propagate
coherently.

Our main methodological contribution in this dissertation is to develop a statis-
tical framework that attaches uncertainty to the predictions obtained from a convex
combination of base learners in a coherent way. We view this problem as a simulta-
neous estimation of within-learner and cross-learner weights. Therefore, we aim to
optimize a suitably crafted square error loss function that yields optimal estimates of
both within-learner and cross-learner weights simultaneously. Therefore, the entire
set of weights can be viewed as jointly optimal. Observe that, while conventional

stacking takes a sequential approach to estimate the whole set of model weights -



first, the within-learner weights are estimated followed by cross-learner weights, our
approach estimates the complete set of weights simultaneously under a global loss
criterion. We therefore view the proposed method as a generalized stacking approach.
Although, as we shall see in subsequent chapters, our approach does not strictly adhere
to the mathematical definition of stacking as specified in (1.1), it is similar in spirit to
the concept of stacking in the sense that both approaches strive to arrive at a linear
combination of base learners that improves the prediction performance as compared
to any single constituent learner.

We propose an augmented state-space model for training artificial neural networks
(ANNs) to achieve the foregoing goal. At the outset, we specify that our focal
predictive vehicle will be a convex combination of these ANNs. Therefore, instead
of training each constituent ANN separately, we train all of them simultaneously
under a global square error loss function. The key novelty of this methodology is that
with the augmented state-space formulation and simultaneous estimation strategy,
the uncertainty associated with the predictions generated by the base models can be
propagated more coherently to the model-averaged prediction. The main contributions

of our proposed methodology are the following:

1. It offers a general procedure to attach uncertainty to model-averaged predictions,
particularly when the constituent models are essentially algorithmic (neural

networks, more precisely).

2. It offers two additional metrics, coverage probability and width of prediction
intervals, to assess the statistical adequacy of the posited model - which we argue

is essential because the base learners are essentially input/output algorithms.

3. It offers a way to perform transfer learning in a situation where a complex deep

learner is trained on a large dataset in the source domain, but the dataset in the



target domain is small and only has a subset of features as compared to the set
of features available in the source domain. Essentially, our methodology offers a
way to transfer information from the source domain when the target domain

requires training a reduced model.

4. Tt can detect a switch in the data-generating model under the assumption that
the true data-generating models appear in the set of models that are being
averaged and the switch in the data-generating model manifests through a

specific type of mean non-stationarity.

We will demonstrate that by reconceptualizing the conventional stacking approach,
we can achieve all the foregoing aspects under a single generic framework. Our model
is deployed on observational cross-sectional data and requires numerical response
variables and numerically encoded input features. We also show that if at least one
of the base learners appearing in the stack of the models is the true data generating
model, then the points estimates of the within-learner and cross-learner weights
produced by our framework are jointly optimal under mean square error loss.

We explicate the foregoing facets of the proposed methodology in subsequent
chapters of our dissertation. In Chapter 2, we offer a background on the techniques
and concepts heavily used to develop and illustrate the proposed generalized stacking
approach. We briefly discuss relevant literature and offer toy examples of the standard
state-space model. In Chapter 3, we lay out the methodology of our generalized stacking
procedure, discuss its theoretical aspects, and offer two illustrative applications of
our methodology. In the first illustration, we demonstrate how our method could
be utilized to transfer knowledge gleaned from a multi-arm deep learner (DeepCDR
- developed to predict cancer drug responses using drug features and multi-omics

data[44]) to perform predictions on query points arriving with a reduced set of features.



In the second illustration, we demonstrate how our approach can be utilized to attach
uncertainty to the outputs generated by an averaging of two LSTM classifiers. We
perform simulations to demonstrate that our approach can recover true model weights
given that the true model appears in the stack of base models. We also show how
coverage probability and average width of prediction intervals could be used to identify
situations where true data generating model(s) do not appear in the stack of base
models.

In Chapter 4, we examine the scalability of our approach. We show that using a
modified training algorithm, our model can be trained on large datasets to perform
model averaging of multiple multi-arm deep learners. We also demonstrate how our
method offers a standardized approach to compare the prediction performance of two
competing deep learners.

In Chapter 5, we extend our approach to accommodate multivariate responses.
We offer simulation studies to demonstrate how our conceptualization of model
averaging can identify changes in the data-generating model. We illustrate the
predictive performance of the multivariate version of our approach, we deploy this
technique to predict two important chemical properties of drugs from the chemical
structures of the drug molecules.

The final chapter offers concluding remarks and potential future research direc-

tions.



Chapter 2

Literature Review

In this section, we offer a brief discussion of the concepts used in developing our
proposed generalized stacking methodology. Our main conceptual vehicle is a matrix
variate Ensemble Kalman Filter (EnKF). We, therefore, begin by describing the
standard Kalman Filter (KF) framework and offer a synthetic example to illustrate
how it works. We then discuss the EnKF formulation that approximates standard KF
and provides a computationally inexpensive way to estimate the Kalman Gain. We
then discuss the matrix state space model as a generalization of standard KF. Next,
we pivot to some deep learning concepts used in this dissertation. We offer discussion
on embeddings and Monte Carlo dropout, which are concepts that are routinely used
in deep learning models. We end this chapter with a description of the Long Short
Term Memory (LSTM) models and Graph Convolutional Network models, that are
two deep learning models we heavily use to illustrate the application of our model
averaging technique. In each section, we direct the audience to relevant literature that

offers a more in-depth description of the concepts.



2.1 Linear State Space Model

A linear Gaussian state-space model can be described as

Y = Htl’t + Vg, U Nmt (0, Rt> (21)

xy = My g +we, wy ~ N, (0, Q) (2.2)

Here, the subscript t is for the discrete-time point, and 3, € R™* is the m; dimensional
observation vector at time step t. x; € R™ is the n dimensional (unknown) state vector
at time t. H; and M; denote the observation and the state transition matrixes. H,
describes how the state variable z; relates to the observation and M, denotes how
the state vector at time ¢ — 1 is related to the state vector at time ¢t. v; € R™ is the
measurement noise and w; € R™ is the process noise.

Statistical assumptions:
1. zg, wo,ws, ..., Vg, V1, ... are jointly Gaussian and independent.
2. E(wy) = E(v) =0, E(wwy) = Qy, E(viv;) = Ry.
3. For the moment we assume M;, H;, R;, and (); are known.
4. v.’s are independent of z;’s.
5. wy is independent of xg, x4, ..., x; and yo, Y1, ..., Ys.

6. The state is first order Markovian, i.e., [x¢|zo, 21, ..., Tr—1] = [2¢|zs—1], where [z;].]

denotes the conditional distribution of x; given the remaining arguments.

Given the above formulation, the goal is to estimate ju, = E(x¢|yo, y1, ..., ¥s), and

Zt|s = E[(xt - E($t|y07y1= “'7y5))(xt - E(xt|y07y17 "'ays)),]7 for any pair of ¢ and S,

with s <t. That is, we would like to obtain an estimate of the expected state of the



system at time ¢ based on g, y1, ..., ys and estimate the covariance matrix associated
with the error in the state estimation. The Kalman Filter offers a recursive way to

solve the above-stated estimation problem. See [33] for a more detailed review.

2.2 Kalman Filter

Let y1. := {1, Y2, ..., y¢} denote the set of observation vectors until time ¢. Similarly,
x1y i= {x1, X9, ..., x4} denote the collection of state vectors until ¢ and z is the initial
state of the system.

KF mainly focuses on (i) estimating the current state given the current observa-
tion and past observed outputs, i.e., estimate ju);, and (ii) predicting the next state
based on the current and past observed values of yy., i.e., estimate f1;41).

We begin with the assumption that the conditional distribution for the state

variable at time step t — 1 conditional on y;,;_1 is given by

$t—1|y1:t—1 ~ N(Mt—l, Zt—l) (2-3)

The above distribution is conventionally called the filtering distribution of x;. Now,
we can use the state transitional equation (2.2) to obtain the conditional distribution
x¢|y1:4—1. This conditional distribution is conventionally referred to as the forecast

distribution at time ¢ and is given by

$t|y1:t—1 ~ N(ﬂt, it) (2-4)
fy = Hijt—1 = M1 (2-5)
it = Et|t—1 = Mtzt_lMt/ + Qt (26)

Once the measurement data arrives at time ¢(y;), the Kalman Filter updates the



filtering distribution by first computing the joint distribution of x; and ¥, conditional
on measurement data till time step ¢ — 1, i.e., y1;—;. That is KF finds ju,; and Xy, in
terms of p;—1 and 3y Observe, y|y14—1 = Hyxi|yr4—1 + v and x4|y14-1 is given
in (2.4). Then the joint distribution of |y14—1, Y¢|y1:4—1 becomes

Tt ﬂt it itHg

Yr:t—1 ~ N ) _ ~ , (27)

Yt Hi iy H>y HSH, + Ry

Then using (2.7) the updated filtering distribution is computed as ;|y1; ~ N (fie, 5)

where fi; and f]t are given below

fie = puae := iy + K (ye — Hyfir) (2.8)
EAt = 2t|t = (In — Kth)it (29)
K, == % H,(H> H, + R)™ (2.10)

K; is the Kalman Gain Matrix.

Now, we would like to perform a time update to predict the next state based
on Yy, i.e., obtain gy Since x4 = M2, + wy, we can condition on .
and express zyi1|y1¢ as Myy12¢|y1 + wy (since w; is independent of y;,; by as-
sumption). Therefore Hiv1t = E(zia|yie) = My = Mygifly, and Xypq) =
E(wpp1 — pugre) (@1 — pugap) = My X M{, + Q. We can interpret i), in the

following fashion. Substituting the expression for ji; in the expression for p,, ) yields

Psipe = Mg fie + My Ko (ye — Hefi)

Notice Hyiy = E(Yi|yr:4-1), therefore (y, — Hypiy) is the output prediction error.
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Consequently, the predicted state of the system at ¢ + 1 is the prediction based on
y11—1 (as captured in fi;) added to a linear function of the prediction error in the
observation (or measurement) model.

Now, since we have observations y;.;, we explore how KF' yields an optimal
estimate of E(x:|y;;). That is we would like to find an estimator of E(x:|yi.)
that minimizes E(||z; — E(x|y1)||) with respect to E(z|y1:). The normality of
the updated filtering distribution (2.8) - (2.10) yields fi; to be the minimizer of
E(||z; — E(zi|y14)|]?). To interpret the Kalman Gain, we note that, instead of
directly minimizing E(||z; — E(z:|y1.)||?), an equivalent problem is to obtain the
Kalman Gain matrix that minimizes the trace norm of the updated covariance ma-
trix in the filtering distribution f}t, i.e., obtain the Kalman Gain as the minimizer,
argmin ., Tr(%;). To minimize this trace, we first write express ¥, using the Joseph

formula Y; = (I, — Kth)i]t(]n — KiH)T + K;R;K! [78, 36]. Then, solving the

normal equations directly, i.e de\rgt) =0 yields K; = ith’(Htith’ + R;)~! which is
of the same form as in (2.10).

The key implication of the above discussion is that the mean of the updated
filtering distribution (given in (2.8)) is the minimum mean square estimator (MMSE)
for the unknown state variable x;. Optimality of p,11); as an estimator of predicted
state at ¢t + 1 given y;;_; and that of Hu,,—; as an estimator of y, given yiy_
immediately follows from the Gaussian specifications of (2.1)-(2.2). Additionally, the

derivation of K; by the above minimization implies that the Kalman Gain is optimal

in the minimum variance sense.

2.2.1 Example: Training Kalman Filters for Time Series Forecasting

In this section, we will use simulated data to show how we can use KF to generate

forecasts. First, we fix My = M = I3, H, = H = [1,1,1,1,1,1], Q; = 2.25],
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R; = I, and assume that the initial distribution of the state variable is given by
xo ~ N5(0,2515). Then invoking (2.1) and (2.2) we simulate the following sequence of

observations y;,t = 1,2, ..., 200 shown in figure 2.1.

40 -

30

20

10+

Value

-101

-201

—-30-1

0 25 50 75 100 125 150 175 200
Time Step

Figure 2.1: Time series

In order to train the KF, we start with specifying an initial mean, p110 = 0, and
covariance, Y19 = X, of the state vector. Now, we apply updated filtering distribution

(2.8) and (2.9) to obtain

fiap = o + Lo K (y1 — Hpo)

Y= (I — KH)Y,

We then apply the time updating equation with fig; = Mji;;; and 22|1 = MmeM/—I—Q.

The training of KF, therefore, consists of repeating the filtering and time updates
sequentially. Thus, operationally, the KF recursive process consists of computing, at
every time step ¢, fi;; and itlt using fi;;— and f]t‘t_l using the observation g;. Followed
by computing the time update fi;11; and ﬁ)t+1|t. Figure 2.2 shows the sequence of
one-step ahead forecasts obtained from the Kalman Filter superimposed with the

original time series.
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For KF to work, we need to know M, H;, Q);, R; and initialize the filter with
1o and 5. All subsequent estimates of the state vector are produced analytically

without requiring us to perform any sampling from [x;|y1] or [z 1|y1.].

40 - = Original Time Series

{\L Kalman Filter Forecast
30
20 l
\,

vl

SV
1:: ” ‘\U(‘ \[v \/\’V' ‘, al
- \1’\\[ \\/\\'\’[ \/

Value

-201

—-30-1

0 25 50 75 100 125 150 175 200
Time Step

Figure 2.2: Forecasts from Kalman Filter superimposed with the original time series

2.3 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is essentially a Monte Carlo approximation of
the original KF described above. Operationally, EnKF requires drawing a sample of
N particles of the state variable from the filtering distribution at time ¢t — 1. This
ensemble of particles is denoted as igi)l, :e@l, s :efﬂf and is randomly drawn from
N (,utfl\t—l, Et71|t,1). Once this draw is made, the time updating and filter updating,
similar to the KF steps, are applied to each particle (. First, we apply the time

update step (2.2) to each ensemble member to obtain its evolution from time ¢ — 1 to

time ¢. That is
:iii) = Mtjfii_)1 + wéi)’ il N(©0,Q), i=1,...,N (2.11)

It can be shown that (asg ), IE,EZ), ey ng)) are mutually independent draws from
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N (puje—1, Xep—1). Now when the observed measurements, y;, at time step ¢, be-
comes available, all the particles in the ensemble are updated in the following way:
First, N random samples of the measurement errors vt(l), vt(2), e vt(N) are drawn from
N (0, R;). Then using these simulated measurement errors, N perturbed observations
L2 5 are obtained using %) = Htiry) + vt(i). It can be shown that the
pair (ii’) , 5 |y14—1 are jointly normally distributed according to (2.7). The updated
value of the particles representing the state variables (given that we have observed y;)

are given by:

B =0 4 Ky~ "), =1 N 212

It can be easily shown that £§1)|y1;t ~ Ny (e, Xyje). Recall from the previous
section that the Kalman Gain matrix, which is required in (2.12) to compute the
filtering distribution, contains ¥;;_;. Now, if (); is unstructured and is relatively
high dimensional, the recursive exact computation of ¥;,_; becomes computationally
expensive. So instead of recursively computing this large matrix at each updating
step, the EnKF uses the sample covariance matrix of the forecasted ensemble from
(2.11) to estimate X;—1. In other words, EnKF replaces the recursive computation
associated with (2.6) by computing the sample covariance matrix at each time updating
step. Thus, if the sample covariance matrix of the realizations from the conditional
distribution [x;|y;;_ 1] is denoted by Sy, then EnKF approximates the Kalman Gain
matrix by Kt = gth/ (HtgtH,; —|—Rt)_1. This approximation reduces the computational
complexity in EnKF. Consider the situation where n > N > my, i.e., the dimension of
the observation vector (y;) is less than the number of particles in EnKF. It can be
shown that when n is large, the cost of exactly computing the Kalman Gain (K}) is

given by O(n?m;). However, the cost computing the EnKF analog of Kalman Gain
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(K;) is O(nNmy) [62]. Clearly, for large n, EnKF offers significant computational
savings.

Observe that, to train KF, we need to initialize with values for py and ¥y only.
The updating steps recursively update the mean and variances of the conditional
normal distribution from formulae supplied in (2.5)-(2.10). The EnKF, on the other
hand, requires generating realizations from the initial distribution of the state variables
and updates the state variables in each step. The analytical expression of K; and
hence, those of fu¢, Xyt flet1), 2i41)e are replaced by their sample analog obtained from
the updated realizations igi) and @E"), 1=1,2,...., N. We emphasize that conventional
KF and EnKF are both feed-forward operations and do not perform any backward
smoothing/sampling, i.e., they do not re-compute gy (3¢2) from fugqqe (Se41p). Such
backward smoothing could be performed in a formal Bayesian framework using the

standard FFBS algorithm [72].

2.4 Matrix State Space Model

The matrix state space model introduces matrix variate state variables (as against
vector-valued state variables in conventional linear state space model). The state

evolution equation of the matrix state space model is therefore given by

Xi =0 X + W, (2.13)

with the measurement equation being:
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Here Y, is a p x ¢ dimensional observation matrix, X; is a m X n dimensional state
matrix, ©;_1, and 1;_1 are m x m and n X n dimensional state transition matrices, H;,
and G are p X m and n x ¢ dimensional observation matrices, W; and V; are m x n
and p X ¢ dimensional matrix-variate noises, respectively.

To solve this problem of matrix state estimation, [14] uses the linear property of
the vec operator and identity-related to the Kronecker product to convert the matrix
equations to their respective vector forms. Once the vector equivalent for (2.13) and
(2.14) are found, the solution can be computed using the Ensemble Kalman Filter
approach for the state vector in a linear state-space model. The vec operator is a
mapping from R"™*" to R™" in which the columns of the R™*™ matrix are stacked
one below the other. For matrices of compatible dimensions, the following identity

involving Kronecker products is used

vec(AXB) = (BT ® A)vec(X) (2.15)

Applying the linear property of the vec operator and (2.15) to (2.13), we get

vec(X;) = (VL | ® O;_1)vec(X;_1) + vec(W;) (2.16)

Taking ¢;_1 = ] | ® O, we get from (2.15)

Ty = ¢t—1xt—1 -+ Wy (217)

Here the lowercase letters denote the vec forms of their matrix analogs, for example,
x; = vec(Xy). Proceeding similarly as above for (2.14) by applying the linear property

of the vec operator and (2.15), we get
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vec(Y;) = (GT @ Hy)vec(X,) + vec(V;) (2.18)

Taking H; = GT ® H; we get from (18)

Y = Hyxy + v (2.19)

We can see that once the original matrix state space equations of (2.13) and
(2.14) have been converted to their vector analogs in (2.17) and (2.19), they are
precisely similar to the state evolution and measurement equations in a linear state
space model as seen in (2.1) and (2.2). Therefore, one can utilize standard EnKF to
estimate the state variables appearing in a matrix state space model by first converting
the matrix-variate state variable to a vectorized form.

In sections 2.1-2.4, we reviewed the concepts we will heavily use in the con-
struction of our generalized stacking methodology. In sections 2.5-2.6, we discuss the
concepts of embeddings and Monte Carlo dropouts that routinely appear during the
training of deep learners. In sections 2.7 and 2.8, we will discuss two exemplar deep
learners - LSTM and GCN. We will use these constructs during the deployment of

our stacking methodology on real-life data.

2.5 Embeddings in Deep Learning

Embeddings in deep learning are used to convert high-dimensional sparse vectors
into lower dimensions that are more amenable to machine learning and deep learning.
Consider the case of a simple problem from natural language processing of predicting
the sentiment of movie reviews. The training data comprises the texts of the reviews

from various users and the associated sentiment, which is either positive or negative.
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Since there are only two categories of reviews, the sentiment prediction problem can
be considered a binary classification problem. The features or the predictors are the
text reviews, and the targets are the associated sentiments of these reviews. Since
the movie reviews are expressed in natural language, we must first convert them to a
vector representation. The most common way to convert the text reviews to a vector
representation is one hot encoding in which, first, the number of unique words in
the text corpus (vocabulary) is calculated. Each text is expressed as a binary vector
having the same dimension as the vocabulary size. The downside of one hot encoding
is that the resulting binary vectors are highly sparse and very high dimensional, as
often the vocabulary size can easily be in the millions.

Consider a fully connected artificial neural network as the modeling architecture
of choice for the sentiment classification problem. The architecture consists of three
layers. One is the input layer, which is the one hot encoded vector. The second layer
is a hidden layer with n4;44.,, number of neurons, and the third layer is the prediction
layer with a single neuron. The loss function is the binary categorical cross-entropy,
which is optimized using the Adam optimizer. Since all the layers in the model are
fully connected, all neurons in one layer are connected to all the neurons in the next
layer. The embeddings of the individual words in the vocabulary can be obtained
from these fully connected weights between the input and the hidden layer. Since each
index of the one hot encoded vector corresponds to a word, all the weight connections
emanating from that neuron and connecting it with the neurons of the next layer are
the learned embeddings of the word corresponding to that index.

Once the model has been trained, these learned embeddings of the words can be
extracted for use in many other machine learning applications, such as word embedding
visualization and transfer learning. The learned embeddings of the various words can

be reduced in dimensionality using any dimension reduction technique and can then be
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visualized. Ideally, the words having similar semantic meaning should cluster together
around each other. In the case of transfer learning, the learned embeddings of the
words from an already trained model can be used with a different training corpus.
Imagine a scenario when the new training corpus is small, and one hot encoding
or learning the embeddings from scratch is not an option. In such a scenario, for
each movie review, the embeddings of the constituent words can be extracted from a
pretrained model, and such vectors can be element-wise averaged to form a vector for

the entire text. For a survey on the use of embeddings in deep learning, refer to [71].

2.6 Monte Carlo Dropout

Monte Carlo Dropout is a regularization technique used to prevent overfitting in
training deep neural networks. During each training iteration, all the neurons of the
network have a probability p of being dropped. Consider that we train a network
using an optimization algorithm such as stochastic gradient descent (SGD) in which
the model parameters are learned iteratively. The optimization algorithm starts
with a random initialization of the parameters and then proceeds in an iterative
manner until some convergence criteria is met. Without Monte Carlo dropouts at
each iteration of the SGD algorithm, all the parameters are updated. However, using
Monte Carlo dropouts at each iteration, only the retained neurons are updated by the
SGD algorithm. The dropped neurons have their values carried over to be used as
starting values for the next iteration of SGD. In this way, the Monte Carlo Dropout
technique trains many lightweight versions of the full deep neural network. At the
culmination of the SGD algorithm, weights will be assigned to each neuron of the
network, which is then used for prediction.

During testing time, the learned weight values from SGD are multiplied by the
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dropout percentage p to account for the fact that during training at any iteration, only
p percent of the total neurons were active. The same idea of dropouts used during
training can also be used during testing to generate a range of predictions for each
test sample, thereby allowing the computation of prediction intervals. In the case of
prediction, the scaling step of multiplication by the dropout percentage is not required.
Therefore, dropout presents a convenient way of computation of prediction intervals
without training many different deep neural networks using either bootstrapping the
training samples or the predictors. The challenge in this case is the repeated training
of the full networks, which can often be overparameterized with many parameters,
making the training slow and the constraint of storing the learned models, which is
memory intensive. The Monte Carlo Dropout technique circumvents these issues by
training a single model architecture but with many different variations in each training
iteration. Therefore, at the end of each SGD iteration, we only need to store one set
of weights, which is less memory-intensive. A more comprehensive discussion of the

Monte Carlo dropout technique can be found in [64, 24].

2.7 Long Short Term Memory Models

Long Short Term Memory Models (LSTMs) are neural network architectures based on
Recurrent Neural Networks, which are used for data that has a temporal dimension
to it. Often, time series data is the most natural data type with a time dimension,
but natural language data such as movie reviews and gene sequences are also treated
as having a time dimension because the words or the genes appear in a particular
sequence. LSTMs then process the sequence temporally, and in addition to using the
features at each time step, they also have a hidden and a carry state that encodes

information from the previous time steps.
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Figure 2.3: An LSTM cell showing the various operations at a time step involving the
hidden state, carry state, and features!

Figure 2.3 from [79] shows the various operations involving the features, hidden,
and carry state at the time step ¢t. At any given time step t three types of information
are available, including the features X, hidden state H;_ 1, and the carry state C;_;.
The subscript on the hidden and the carry state is ¢ — 1, indicating that these values
are computed from the previous time step t — 1. F}, I, C;, and O, are functions of
X; and H; 1 and are parameterized in the form of learnable weight matrices. For
a complete discussion of LSTMs and how backpropagation through time is used to

update the learnable parameters, refer to [79].

2.8 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are neural network architectures that are
used for graphs. A graph is a collection of nodes and expresses how these nodes are
interconnected with each other. Formally, a graph can be described as a collection of
features for all the nodes and an adjacency matrix that defines the connection between

the graph nodes. If there are N nodes and each node has D features, then the feature

'Figure is from [79]
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matrix of the graph X is a N x D dimension matrix, and the adjacency matrix A is
a N x N dimension matrix. The GCN then learns a D x F' dimensional matrix to
produce a processed feature matrix Z of dimensions N x F. Notice that the number
of rows in X and Z are the same as the number of nodes, N. Therefore, the GCN can
be thought of as learning a matrix W, which transforms the original graph feature
matrix, X, into the processed feature matrix, Z.

The transformed feature matrix, 7, is computed as Z = AXW. If the adjacency
matrix, A, is binary, then the matrix product AXW takes a sum of the processed
features for each node where the sum is over all of that node’s neighbors. Since the
number of neighbors can vary for each node, simply computing the processed feature
matrix, Z = AXW , makes the resulting matrix biased to the number of neighbors of
the nodes. To account for the difference in the number of nodes, Z is more commonly
calculated as Z = D3 AD 3 XW. Here, D is a diagonal matrix of dimensions N x N,
where the diagonal elements of this matrix comprise the number of neighbors for each
node. Pre and post-multiplication of the adjacency matrix, A, by D*%, normalizes
the adjacency matrix making the transformed feature matrix, Z = D :AD : XW
an average of the transformed features of the neighbors. It is more common to use
A = A+ 1 instead of just A as the adjacency matrix so that the average also includes
the transformed features of the node and not just the transformed features of the

neighbors. For a complete discussion of GCNs, refer to [35].
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Chapter 3

The Matrix Ensemble Kalman Filter-based multi-arm Neural

Network

3.1 Introduction

Ensemble Kalman Filters (EnKF) have been repurposed for gradient-free training of
artificial neural networks (ANNs) and deep learners (DL) [12, 11]. So far, EnKF-based
training of ANN and DL only focused on single-type predictors that only require
the construction of single-arm networks. However, multi-arm networks have become
popular with increasing interest and availability of multi-type data. In a multi-arm
network, each arm ingests a particular type of predictor, and the embeddings of these
predictors get integrated before the dense prediction layer.

We consider multi-arm networks from a model averaging perspective. In our
conceptualization, the sub-networks in each arm are constituent base learners and the
prediction layer creates a convex combination of the outputs generated by these base
learners (sub-networks). As mentioned in Chapter 1, our goal is to optimally estimate
the weights within each sub-network, and the cross-sub-network model averaging
weights simultaneously and attaching uncertainty to the predicted output. To that
end, in this chapter, we introduce our novel matrix-variate Ensemble Kalman Filter

methodology to train a multi-arm ANN (MEnKF-ANN) that performs model averaging
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while training and hence could be envisioned as a generalization of conventional stacking
procedure.

We offer two useful applications of our methodology in real-life data. In the first
application, we deploy the MEnKF-ANN to mimic a recently developed multi-arm
hybrid graph convolutional network - DeepCDR, [44] and to transfer the knowledge
extracted by this DL in a small sample. DeepCDR ingests drug features and different
types of omics profiles in different arms to predict cancer drug responses. It integrates
drug response and multi-omics data from Genomics of Drug Sensitivity in Cancer
(GDSC) [76], Cancer Cell Line Encyclopedia (CCLE) [7], and The Cancer Genome
Atlas (TCGA) [10] databases. Consequently, we may encounter situations where query
samples came from one of the databases with a subset of features - for example, the
cell lines that are unique to each database. The principal application question we
want to answer is how to use DeepCDR on a small sample that comes with a reduced
set of features. The existing solution is to fine-tune the original DL on a reduced
set of features. We demonstrate that MEnKF-ANN can be trained on submodels of
different orders with minor modifications in the state matrix. Consequently, we can
store multiple MEnKF-ANN submodels and choose the appropriate submodel to make
predictions when the query samples arrive with a subset of features. Our explicit
in-situ model averaging is leveraged to generate predictions without fine-tuning the
original DL when query points arrive with a reduced set of features.

The second application consists of averaging two LSTM classifiers trained to
classify what carbohydrate substrates are digested and utilized by a microbiome
sample characterized by genomic sequences consisting of polysaccharide utilization loci
(PULSs). Exploratory analyses show that the uncertainty intervals generated by Monte
Carlo (MC) dropout heavily rely on the architecture of the LSTM. So, even though

a standard stacking-based meta-learner could produce model-averaged estimates of
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success probabilities, it fails to propagate the uncertainties inherent in the probabilities
estimated by the constituent LSTMs. We apply MEnKF-ANN to resolve this issue.
Our results show that the average width of the prediction intervals obtained from
our approach is more stable than the variability observed in MC dropout-induced
prediction intervals obtained from constituent base LSTMS.

The remainder of the chapter is organized as follows: Section 3.2 reviews how
EnKF has been used in the context of training neural networks. Section 3.3 details
the construction of our MEnKF-ANN stacker. In section 3.4, we deploy MEnKF-ANN
to predict cancer drug responses on a small dataset by mimicking DeepCDR. We
also demonstrate the ability of our approach to handle missing features in the query
samples. Section 3.5 illustrates how we can use MEnKF-ANN to attach uncertainty
to a convex combination of two LSTM classifiers. We offer concluding remarks in

section 3.6.

3.2 Background

In this section, we offer a brief overview of how EnKF has been used to train NNs
and DLs.

Using Kalman Filters for Deep Neural Networks: The usage of KF
and EnKF techniques has been surprisingly sparse in deep learning literature. It is
probably attributable to the fact that conventional KF and EnKF are suitable for
estimating parameters in linear state-space models. However, several extensions have
been proposed to generalize KF in nonlinear settings. [69] introduced the unscented
KF that better approximates nonlinear systems while making it amenable to the
KF framework. [2] developed the state augmentation method that offered a generic

technique to handle nonlinearity in state-space models via the KF framework. [30]
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utilized this state augmentation technique to develop a generic method to train ANNs
using state-augmented KF. They derived the state-augmented KF’s forecast and
update equations in ANNs, thereby providing the algebraic framework to train DLs
using the Ensemble Kalman Filters approach.

Imagine a scenario when the measurement equation of the linear Gaussian state-
space model in (2.1) is not linear anymore. This situation can arise commonly in
supervised learning models such as neural networks where the measurement function

is non-linear. Consider now a slightly modified version of (2.1) as follows.

Y = M(.It) + Vg, Vi € Nmt(O, Rt) (31)

Here, M is the non-linear function induced by the neural network architecture.
The augmented state variable is an artifact introduced to cast the measurement

equation in (3.1) into a linear form such as (2.1). Consider a new variable z, which is

defined as

e [ (32)

Ty

Now consider a modified version of H; from (2.1) defined as follows.

Ht - (Imta Om,an) (33)

Now using the new definition of H; and z; from (3.3) and (3.2), respectively, the linear

analog of (2.1) is given by

Y = HtZt + Vg, V¢ € Nmt (O, Rt) (34)
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The measurement equation is now given by (3.4), a linear measurement equation
similar to (2.1). Using this new definition of H; and the augmented state variable z;,
we can use the Ensemble Kalman Filtering forecast and update equations from (2.11)
and (2.12). Equations (3.3) and (3.4) form the foundation of introducing Kalman
Filters in deep learning.

Only a few studies used the foregoing ideas to train NNs and extend that to DLs.
For instance, [61] used extended KF to train feed-forward NN. [11] used the updating
equations in [30] to train a single hidden layer ANN and demonstrated how using state
augmentation, one can estimate the measurement error variance. State-augmented
EnKF formulation was also used to estimate parameters in LSTMs [12]. [77] trained
a Convolutional Neural Network using EnKF with the strategies outlined above.

However, no study, to the best of our knowledge, used EnKF to perform model
averaging on multiple base ANNs and demonstrated how this model averaging could be

connected with multi-arm DLs. This dissertation addresses that gap in the literature.

3.3 Methodology

First, we offer a generic construction of the proposed MEnKF-ANN procedure and
then describe how this method could be deployed to transfer information from a
multi-arm hybrid graph convolutional network. We will use the following notations.
Y € R is our target response. We have a total of m = Zthl m, training instances,
with m; being the number of training data points in the t'* batch. vtf € RP and
v € R denote two different representations of the features (possibly of different
dimensions) for the ¢ batch of data. Consider two ANN architectures, denoted by
f and g. The architecture f takes Uf as input features and combines that with its

own within-learner weights w{ to generate the prediction for the target response Y.
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Similarly, the architecture g takes v{ as input features and combines that with its

own within-learner weights w{ to generate the prediction for the target response Y.
Clearly, if m; > 1, we can envision f and g to be ANN architectures that get trained
on a dataset (Y, vf)mxdim@)+1 and (Y, pf)ymexdimv)+1 pegpectively. Assume that,
in each batch, f and g have ny, n, number of learnable parameters with ny = n,
(if ny # ny, we can use suitable padding when updating the weights) and our final
prediction for Y is going be a convex combination of the predictions produced by f
and g. For expositional simplicity, we will simply refer to f and g as ANNs and they
form the base learners for us. Our goal is to simultaneously update wf , w{ and the
cross-learner weight that generates the convex combination of the outputs from f and

g and guarantee that the estimates are jointly optimal under expected square error

loss.

3.3.1 Matrix Kalman Filter based Multi-arm ANN

Consider the state matrix, X;, associated with the t"* batch of data given by

fol wl), gf wi)
Xt(mt+ng+1)><2 _ wl, (3.5)
O, Qy
where a; is a real-valued scalar parameter. Define HZ”tX(mﬁngH) = Lmys Oy x (ng+1)]

and GZ' = [1 — o(ay), o(a;)]” where o(.) : R — [0, 1], with the sigmoid function
being a popular choice of o(.). Additionally, define ©,_; = Iy, 4y, 41 and 9,1 = L.
We are now in a position to define the Matrix Kalman Filter.

The measurement equation is given by:

}/; = HtXth + €t (36)
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with the state evolution equation being

Xi =00 X a1+ (3.7)

Writing in vec format, (3.7) becomes

z; = vee(Xy) = (Y, ® O _1)vec(X; 1) + vec(n;) (3.8)

Now letting ¢;_; = ¥l | ® ©;_; and 7}, = vec(n;) we get from (3.8)

Ty = Qr1T4—1 + Tt (3.9)

(3.6) can similarly be compactified as

Y =Hiz, + € (3.10)

where H; = GI ® H;. Observe that(3.10) and (3.9) have the same form as the standard
representation of linear state space model described in (2.1) and (2.2). Therefore, we
can get the matrix state space model’s solution by converting it to the vector state
space model and then using EnKF to approximate the updating equations. We direct

the audience to [14] for more details on Matrix Kalman Filters.

3.3.2 Reparametrizing MEnKF-ANN for Computational Efficiency

The above construction of X;, H;, and G; performs automatic model averaging while
training. First, consider the matrix multiplication of H;X; from (3.6). This would be
a m; x 2 dimensional matrix in which the first column is the prediction for the ¢**

batch, from the neural network f and the second column is the prediction from the
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neural network g. Post multiplication by G; would take the weighted average of each
row in H;X; where the weights are defined inside the G; matrix. Now consider the

matrix multiplication of H,X;G; from (3.6)

— 1—o(a)
HX,Ge = | fol,wl), g(? w?)
) ’ } o(a)
— _(1 —o(an)) f (o], wl) + o(at)g(vf,wf)} (3.11)

(3.11) demonstrates how our construction explicitly performs model averaging
across the batches with 1 — o(a;) and o(a;) being the convex weights allocated to the
ANNs f and g, respectively.

Although the foregoing construction connects Matrix KF formulation with multi-
arm ANN and performs explicit model averaging, it suffers from a computational
bottleneck. Using (3.9) and (3.10) the estimated Kalman Gain Matrix would be
K, = S;HT (M. SyHT + o71n,)”". However, in the above parameterization we have
Gy =[1—-o0(ay), o(a;)]* and H; = GI ® H;. This would require computation of the
estimated Kalman Gain matrix for each member in EnKF since, at any given iteration
of our MEnKF-ANN, we have an a; for each ensemble member. Thus, computation
complexity associated with Kalman Gain computation increases linearly with the
ensemble size in the above parametrization of the MEnKF-ANN.

To alleviate this computational bottleneck, consider the following parametriza-

tion:

X, ! (3.12)

I
&
&
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and Gy = [1, 1]7. We still have explicit model averaging in the measurement equation,

ie.,

HXiGr= | (1 = a(an)) f (o] w]) + o ar)g(vf, wf) (3.13)

but H; does not depend on a;, therefore the matrix products for the Kalman Gain
computation can now be computed once for each batch.
Turning to the variance parameter in the measurement equation (3.10). Assume

€t ~ N, (0,v71,,,). To estimate v, we augment the state vector as follows:

(1= alae))f(v],wl), o(ar)g(vf,wf)
f g
wy, W
Xt(mt+ng+2)x2 _ t t (3.14)
O, Qg
0, b

where 12 = log(1 + ™) and H, in (3.6) now becomes [I,,,0m, x(n,+2)]. We used a
softplus transformation for 1/,3 instead of the usual log transformation for computational

stability.

3.3.3 Explicating MEnKF-ANN

Recall, our goal, as laid out in Chapter 1, was to optimally estimate cross-learner
and within-learner weights simultaneously and attach uncertainty to the predictions
obtained from the averaged model. In the foregoing construction of the proposed
MEnKF-ANN, we have the base learners f(.), g(.), learner-specific weights w,{c ,wd, and

the model averaging weight (or cross-learner weight) a;, all incorporated in the state
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matrix X; as shown in (3.5). The measurement model (3.6) is the model-averaged
output coming out from the base learners f(.) and g(.). We have framed the problem
in an augmented state-space fashion and invoked EnKF to estimate the state variables.

First notice that the notion of time in conventional EnKF setup is replaced by
batch. This could be justified by the fact that in practice ANNs are often trained
over batches with batch size smaller than the size of the training data predominantly
because of memory requirements in training ANNs. Additionally, weights in the ANNs
are updated after each batch is processed- analogous to the EnKF setup where the
state variables are updated when new observations (observation vector, more precisely)
come along. Thus the specification of f(.) and g(.) as ANNs correlate well with the
conceptual framework of EnKF with augmented state space.

The EnKF machinery allows each element in the state matrix to be updated at
the same time in each updating step of EnKF. Thus the within-learner weights and
cross-learner weights are updated in-situ. Next, as we outlined in Chapter 2, the KF
framework yields optimal estimates of the state variables under squared error loss. That
is the fi; is indeed the minimum mean square error estimator for E(X;|y;,). Although
EnKF is an approximation of KF, we can show that under Gaussian specification,
EnKF estimates converge in probability to their KF analog as the ensemble size
increases (see section 3.7 for proof). Putting the pieces together, we surmise that
the estimates of state variables produced by our MEnKF-ANN are asymptotically
(with respect to ensemble size) optimal under mean square error loss. Recall that,
conventional stacking estimates the cross-learner weights under square error loss as
well. But, in the proposed MEnKF-ANN, we are estimating all the weights jointly by
minimizing a global expected square error loss. Hence, we envision this approach to
be a generalization of stacking wherein the within-learner and cross-learner weights

are jointly optimal.
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Turning to the uncertainty quantification issue, we first contrast the nature of
the within-learner weights obtained from MEnKF-ANN with those obtained from
conventional ANNs (or for that matter any DLs) trained via backpropagation. Con-
ventional ANN training treats the set of within-learner weights as unknown internal
parameters that are estimated via minimization of a suitably chosen loss function.
Therefore, fundamentally the training process is geared to learn about the internal
model parameters so as to reduce our epistemic uncertainty about them. As such [53]
states unequivocally, “uncertainty about parameters in statistical models is almost in-
variably epistemic”. However, since conventional ANN treats parameters as constants,
no probability statement can be attached to them directly. In our conceptualization,
the weights are included in the state matrix implying that we are starting off with
the assumption that the internal model parameters (w’s) and cross-model parame-
ters (o(a)) are jointly normally distributed random variables. Consequently, we can
directly attach probability statements to these parameters. To understand how we
are attaching the probabilities, we recall (from Chapter 2) that each EnKF update
step essentially consists of drawing independent realizations of state variables from
the updated joint distribution of all the state variables. The point estimates of the
model parameters are obtained from this updated distribution. The entire distribution
profile of all model parameters attempts to capture the epistemic uncertainty about
the parameters themselves, under the assumption that the model(s) is well-specified.
Since the set of models (both f(.) and g(.) and probability models for measurement
and state variables) are fixed a-priori uncertainty due to model misspecification cannot
be captured.

Turning to uncertainty in predicting the target response, once again we observe
that the point estimate of predictions in conventional ANNs (or DLs) is a deterministic

function of the internal model parameters and non-stochastic feature set. Consequently,
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the target of prediction is, again, an unknown constant to which probability statements
can not be attached. The MEnKF-ANN construction, on the other hand, updates
the entire conditional distribution of y|y1..—1 (see (2.7)), thereby generating the
full distributional profile of the prediction target. This updated distribution, again,
attempts to capture the epistemic uncertainty in the prediction under the assumption
that the predictive models and probability models are not misspecified. Thus, the
prediction uncertainty is quantified in the following sense:

Suppose the conditional distribution of the target response variable is Gaussian with
unknown mean and variance. Suppose the mean is a convex combination of two ANNs
(ingesting two types of non-stochastic features) with known architecture but unknown
stochastic weights. Further, suppose the joint distribution of all unknown weights
is Gaussian as well. Under this set of assumptions, MEnKF-ANN can coherently
generate the predictive distribution of the response variable given the training dataset
and the feature vector for the query point by propagating the uncertainty associated

with all the model weights.

3.3.4 Connecting MEnKF-ANN with DL

To connect our conceptualization of MEnKF-ANN with a deep learner, we will use an
illustrative example. A recently developed deep learner (DeepCDR) uses a multi-arm
graph convolutional network (GCN) technique to predict in-vitro cancer drug responses
on cell lines. DeepCDR uses drug features and multi-omics data as different sub-
networks to predict the target response variable logarithm of half-maximal inhibitory
concentration (log IC5), which is an indicator of drug response for cancer cell lines
[44]. We consider the drug information and the omics information as two classes of
predictors.

The MEnKF-ANN uses the observed log IC5, as the target response. The
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DeepCDR embeddings of omics data and drug data are treated as numerical features
v{ and v}, respectively, and supplied to the ANNs f and g, respectively. The convex
weight o(a) combines the prediction of Y generated by f and g using v[ as v] as
features, respectively. The estimate of o(a) assesses the relative predictive capacity of
drug information compared to omics information. We emphasize that, in our current
conceptualization, multiple DLs are not directly absorbed by MEnKF-ANN as base
learners. Rather, we use these DLs simply to extract numerical values of features
associated with complex predictors. In our context, DeepCDR is used to extract
embeddings of drugs and omics features only.

To initialize the ensemble, we draw the members in the state vector (3.14) from

Nop,12(0, 0215, 45). We update each element of the augmented state vector w! (@)

wy ’(i), agi), bgi) using the " batch of data. N and m, are treated as tuning parameters.
These tuning parameters are chosen by tracking the empirical convergence of training
error and the trajectory of dominant eigenvalue of (I — K;H,). We offer formal proof of
this assertion in Proposition 1 (see section 3.7). Operationally, we train MEnKF-ANN
for multiple N and batch sizes and track the training error. In each training run,
the exit criterion is set such that MEnKF-ANN sees the entire training set and the
dominant eigenvalue of (I — K;H;) does not exceed 1 for the last five updates. Due

to the properties of Kalman Filters (see Proposition 1), we expect the training error

trajectories obtained from different choices of N and m; to converge.

3.4 Application I: Transfer learning using MEnKF-ANN

This section offers a high-level overview of the focal deep learner of DeepCDR and
describes the dataset used to train this DL. We describe two scenarios to demonstrate

how MEnKF-ANN could transfer information gleaned from training DeepCDR on a
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large dataset to a small batch of additional data that DeepCDR did not see. We then
investigate how the MEnKF-ANN could also transfer information when the additional

data comes with a subset of predictors that were originally used to train DeepCDR.

3.4.1 Application I: Data description

DeepCDR is a hybrid convolutional neural network for cancer drug response prediction
that consists of a graph convolutional network for integrating drug-specific features
based on the chemical representations of drugs and multiple subnetworks for integrating
multi-omics profiles [44]. This model encodes the multi-omic features using three
subnetworks corresponding to each omics type. Each subnetwork takes as input
individual omics features and then learns its embedding. These omics embeddings are
then concatenated with the embeddings of the drugs, and then used as inputs to the
final prediction layer.

In the data curation step, this method utilized the Cancer Cell Line Encyclopedia
(CCLE) database to extract genomic mutation, gene expression, and DNA methylation
profiles for cancer cell lines. It then extracted drug response data, in the form of
log IC5g, for these cell lines from the GDSC database. Finally, drugs were represented
by a matrix consisting of a 75-dimensional feature vector representing each atom
of the drug. PubChem library was used to obtain the structural files of the drugs.
The final curated dataset consisted of 86530 instances across 238 drugs and 561 cell
line combinations. [44] provided the datasets originally used to train DeepCDR at
https://github.com/kimmo1019/DeepCDR/tree/master-/data. We first trained the
DeepCDR model using 69214 samples and used 17316 samples as validation samples
to determine the stopping time. We used the original network architecture in [44]

with the author-recommended hyper-parameter combinations.


https://github.com/kimmo1019/DeepCDR/tree/master/data
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3.4.2 Application I: Results

We use the following design to demonstrate how to transfer information via MEnKF-
ANN to a small sample. First, we chose 20 drugs that appear infrequently in the
training dataset we used to train DeepCDR. These drugs were AKT inhibitor VIII,
AZD6482, Afatinib, Avagacestat, BMS-536924, Bicalutamide, Bleomycin, CHIR-
99021, GSK269962A, 10X2, JQ1, Olaparib, PFI-1, PLX-4720, Pictilisib, Refametinib,
SB505124, SN-38, Selumetinib, and UNC0638. These 20 drugs accounted for approx-
imately 10% of the total training samples for the DeepCDR training, i.e., 90% of
cancer cell lines corresponding to these drugs have not been seen by DeepCDR. For
5000 of such samples that have not been used to train DeepCDR, we extracted the
IC50 and the raw drug and omic features. These instances form the focal dataset (Z)
for training and testing MEnKF-ANN.

We performed 5-fold cross-validation with MEnKF-ANN, so in each fold, MEnKF-
ANN was trained on 4000 instances, and 1000 data points were used for testing. We
supplied all the drug and omics features available in Z to the original DeepCDR and
extracted their embeddings. In the training set, we supplied the drug embeddings
to one arm of the MEnKF-ANN] the second arm ingested all the omics embeddings,
and then we trained MEnKF-ANN with log IC5y as the target variable. We then
supplied the embeddings associated with the test set and predicted log IC5y for the
test set. Figure 3.2 shows the training RMSE for different ensemble sizes (V) across
the update iterations. Observe that the training RMSEs show signs of convergence
as the training progresses, as predicted by the convergence theorem. The training
RMSE obtained with N = 200 is nearly indistinguishable from that obtained with
N = 400. This offers empirical support to our choice of N = 196. Figure 3.1 shows

the cross-validation scatter plot of observed and predicted log IC5.
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To benchmark the prediction performance of MEnKF-ANN, we notice that our
method essentially approximates the dense layers of DeepCDR. Hence we can freeze
the convolution layers of the DL and fine-tune the dense layers using Z. Since the
DL is trained with dropouts, we activate the dropout layers during the prediction
phase and obtain a set of predicted values for each test instance. We compute the
empirical 95% dropout-induced prediction interval for each test sample and report
the average coverage probabilities and width of the 95% dropout prediction intervals.
Table 3.1 reports the average cross-validated RMSPE, average Pearson correlation
between predicted and observed values, average coverage probabilities, and width of
the uncertainty intervals. We also report the average weightage associated with the
drug arm of MEnKF-ANN.

Table 3.1: Averaged cross-validation metrics for MEnKF-ANN and fine-tuned Deep-
CDR trained with all available features.

Model v? N RMSPE Coverage Average width p  Drug weight
MEnKF-ANN 1 196 1.38 98% 7.18 0.70 0.77
Fine tuned DeepCDR, NA NA 1.44 46% 1.71 0.67 NA

Observe that, in terms of conventional performance metrics (RMSPE and p),
MEnKF-ANN and fine-tuned DeepCDR produce comparable results. However, our
approach is vastly superior to the fine-tuned DeepCDR when we look at the prediction
uncertainty. As such, coverage associated with dropout-induced uncertainty intervals
raises questions about the adequacy of fine-tuned deep-learning models.

Next, we consider the situation where one of the omics features is completely
missing in Z. The DeepCDR network encodes the multi-omic features using a sub-
network corresponding to each omics. When an omics feature, gene expression (say),
is missing, the DeepCDR model cannot obtain its corresponding embedding, and
either needs to be retrained or the positions in the concatenated vector allocated to

the gene expression embeddings need to be padded before it can predict log(1Cl).
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However, since the three subnetworks in DeepCDR operate on the omics features
individually, the learned embeddings for the omics features that are not missing can
still be extracted from the DL. These available embeddings of the non-missing omics
features can be used to retrain MEnKF-ANN with a state matrix that does not contain
the weights corresponding to missing features. This reduced state matrix can be
viewed as a marginalized version of the full state matrix used to train MEnKF-ANN
with all features. Since matrix normal is closed under marginalization [26], the entire
theoretical construct of MEnKF-ANN holds, and all the updating equations have the
same form with appropriate adjustment in the dimensions of the matrices.

Hence, in this scenario, we pretend that the foregoing 5000 samples in Z come
with missing gene expression. We supply the available omics features (gene mutation
and DNA methylation) and drug features to appropriate subnetworks of the pre-trained
DeepCDR to extract the respective embeddings. MEnKF-ANN is then trained on the
reduced set of features. Once again, we report the 5-fold cross-validation results in
Table 3.2.

Table 3.2: Averaged cross-validation metrics for MEnKF-ANN trained with a reduced
set of features.

Model v2 N RMSPE Coverage Average width p  Drug weight
MEnKF-ANN 1 132 1.39 91% 4.90 0.69 0.80

3.5 Application II: Attaching uncertainty to stacked LSTM

classifier using MEnKF-ANN

In this section, we apply MEnKF-ANN to attach uncertainty to the predicted prob-
abilities produced by a convex combination of two different architectures of LSTM.

The training objective is to classify what carbohydrate substrates are digested and
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-8 -6 -4 -2 0 2 4 6
Observed Log IC50

Figure 3.1: Scatterplot showing the observed log IC5y values with the predicted
log IC'5q values over all cross-validation test folds for MEnKF-ANN trained without
gene expression features.

utilized by a microbiome sample characterized by genomic sequences consisting of

polysaccharide utilization loci (PULs) [9] and their encoded genes.

3.5.1 Application II: Motivating Problem

The human gut, especially the colon, is a carbohydrate-rich environment [31]. However,
most of the non-starch polysaccharides (for example, xylan, pectin, resistant glycans)
reach the colon undegraded [58] because human digestive system does not produce
the enzymes required to degrade these polysaccharides [22]. Instead, humans have
developed a complex symbiotic relationship with gut microbiota, with the latter
providing a large set of enzymes for degrading the aforementioned non-digestible
dietary components [68]. Consequently, an essential task in studying the human gut

microbiome is to predict what carbohydrate substrates a microbiome sample can
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Figure 3.2: Trajectory of MEnKF-ANN training RMSE for different ensemble sizes
(N)
digest from the genetic characterization of the said microbiome [37].

To generate a focused genetic characterization of the microbes that relates to
their carbohydrate utilization property, one often investigates the genes encoding the
Carbohydrate Active Enzymes (CAZymes) and other proteins that target glycosidic
linkages and act to degrade, synthesize, or modify carbohydrates [45, 80]. This
set of genes tends to form physically linked gene clusters in the genome known as
polysaccharide utilization loci (PULSs) [9]. Consequently, the gene sequences associated
with PULs of microbes could be used as a predictor to ascertain the carbohydrate
substrate the microbe can efficiently degrade. However, these gene sequences are
string-valued quantities [29, 65] and hence their naive quantitative representations (for
instance, one-hot-encoding or count vectorization) often do not produce classifiers with
acceptable accuracy [4]. Instead, we can use LSTM to process the entire sequence of
string-valued features and then implement a classifier with a categorical loss function.

Since the experimental characterization of new PULs for carbohydrate utilization is
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an expensive process [3], we need large enough labeled samples. Consequently, as we
demonstrate below, the output of the LSTMs is sensitive to its architecture.

We extract the dataset from the dbCAN-PUL database [3] that contains exper-
imentally verified PULs and the corresponding GenBank sequences of these PULs
along with known target carbohydrate substrates. Figure 3.3 shows an example of
a gene sequence associated with a PUL for the substrate Pectin. We have a total of
approximately 411 data points. Figure 3.4 shows the dataset’s frequency distribution
of various target substrates. We do not have sufficient samples to train a complex
DL to classify all the available substrates. Hence we propose to classify the two
most frequently occurring target substrates - Xylan and Pectin. Seventy-four samples
belong to these two classes of substrates in a reasonably balanced way.

We train two LSTM binary classifiers on 66 samples and retain eight hold-out
samples for test purposes. One LSTM was trained with two dropout layers - one
inside the LSTM and one just before the final prediction layer. The second LSTM
was trained with dropout in the LSTM layer only. We activated the dropout layers
during the prediction phase, which generated multiple copies of the prediction for
each test sample. Figure 3.5 shows each test sample’s predicted probabilities and
the boxplot constructed using the foregoing set of predictions. The left panel (top
and bottom) shows these metrics for eight held-out test samples for the first LSTM,
while the right panel shows the same for the second LSTM. Observe that the point
prediction remains reasonably stable under both LSTM configurations, but the width
of these intervals are sensitive to the number and placement of the dropout layers. If
we wish to perform simple averaging to predict the probabilities of the test sample,
how should we attach uncertainty to the equally weighted model-averaged predictions?
We deploy MEnKF-ANN to answer this question.

Suppose p is the probability of observing a sample of a particular category.
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Figure 3.4: Frequency distribution for the various substrates

The trained LSTMs produce p; and p, for each training instance, along with the
embedding of the associated gene sequences. To attach uncertainty to the average
of the above probabilities, MEnKF-ANN uses logit(0.5 % p; 4+ 0.5 % py) as the target
response. The embedding of the gene sequences obtained from one LSTM is fed into
one arm of MEnKF-ANN while the other arm ingests the embeddings generated by
another LSTM. The convex weights o(a) enter into the state matrix so that we can
assess whether our MEnKF-ANN can accurately recover the cross-learner weights. We
emphasize that MEnKF-ANN is not directly combining two LSTMs. The base learners
in MEnKF-ANN are still two ANNs (f, g) where f absorbs the embeddings produced
by one of the LSTMs and g absorbs the embeddings produced by the other LSTM. The
measurement model specifies that the convex combination (with unknown weights) of

the outputs from f and ¢ is the mean of the target response variable which is the logit
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Figure 3.5: Boxplots showing the predictions superimposed with the ground truth
value from the two LSTM architectures

transformed average of the two LSTM outputs. The uncertainty interval produced by
MEnKF-ANN, quite obviously, targets to capture logit(0.5 x p; + 0.5 % py) where p; is
the predicted probabilities coming from the two LSTMs under consideration.

But how good are these intervals in capturing true probabilities? This is a
relevant question because unlike the previous application (Section 3.4) the MEnKF-
ANN here does not see the binary response. Instead, it targets relevant statistics
generated by the LSTMs that get trained on the original labeled data. To answer this

question, we perform extensive simulations.
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3.5.2 Application II: Simulations

We conducted extensive simulations to assess how well our MEnKF-ANN can approxi-
mate an LSTM binary classifier. This simulation exercise aims to demonstrate that
our MEnKF-ANN is not only “adequate” in approximating the probabilities produced
by LSTM but can also capture the “true” probabilities that generate binary labels. We
compute the coverage and width of the prediction intervals of the target probabilities
in the test set to assess the “adequacy” of the approximator. Then, we compare this
coverage and width with those computed directly via an LSTM trained with MC
dropout. Admittedly, the prediction intervals obtained from the latter are different
from those computed from MEnKF-ANN. However, if the ground truth probabilities
are known, an adequate approximator should be able to achieve near-nominal coverage
when the approximand is not misspecified.

Our simulation strategy mimics the focal dataset and uses the gene sequences
associated with the original PULs to generate labels. As mentioned above, we extracted
p from the LSTM trained on the original dbCAN-PUL data. We call this LSTM
the true LSTM. We consider p the true probabilities for synthetic data generation.
We then use noisy copies of p to generate a synthetic label in the following way:
generate logit(ﬁy)) = logit(p;) + ef(j), i=1,2,...,m,j = 1,2,...,J, where J is the
number of the simulated dataset and m is the number of data points in each simulated
set, the perturbation ef(j ) are iid N (0,0.01%). We generate synthetic labels Y by

) > 0.5). Then the simulated dataset consists

thresholding ;55” at 0.5, i.e }72-(]') = I1(p;
of DV = {F,YW, j=1,2 ..,J}, where F is the set of original gene sequences from
dbCAN-PUL.

Simulation 1: Now in each DY) we train a second LSTM (with two dropout

layers) and extract ]’3@(3 ),z' =1,2,...,m along with the embedding of the gene sequences.
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We call these LSTMs, trained on DY), the fitted LSTMs. Note that the embeddings
from fitted LSTMs could potentially be different from those obtained from the true
LSTM. We denote the embedding from fitted LSTMs by v/ j =1,2,...J. Our
MEnKF-ANN is constructed to approximate the fitted LSTMs. To that end, the

=(4) (4).f

approximator uses logit(p;”’) as the target response. v, are supplied as features to

one arm of the ANN, the other arm ingests vfj "9 _ the Doc2Vec [41] embedding of F'.
Once the MEnKF-ANN is trained, we use a hold-out set in each simulated dataset to
generate predictive probabilities from the forecast distribution for each member in
the KF ensemble and compute the empirical 95% predictive interval at logit~! scale.
To measure the adequacy of MEnKF-ANN, we compute the proportion of times the
foregoing predictive interval contains p in held-out test data. We expect this coverage
to be close to the nominal 95%, and the average width of these intervals should not
be greater than 0.5. Additionally, observe that the data-generating model uses LSTM
embedding of F'; hence, using Doc2Vec embedding as input is a misspecification.
Consequently, we expect the average model weight associated with v/ to be larger than
v9. Table 3.3 shows the performance of MEnKF-ANN in terms of coverage, the average
width of prediction intervals, and average LSTM weight under two specifications of
ensemble size (N) and initial ensemble variance (v2). To compare these results, we
offer the coverage and average width of the prediction intervals when both the dropout
layers are activated in the fitted LSTM during the prediction phase in Table 3.4.
Observe how MEnKF-ANN recovered the true probabilities even better than the
correctly specified LSTM with dropout. The average interval widths obtained from
MEnKF-ANN are also lower than those from the fitted LSTM. These demonstrate
the adequacy of MEnKF-ANN in approximating the target DL. Additionally, we
observe that the average LSTM model weight is ~ 1 indicating the ability of our

approximator to identify the correctly specified data-generating model. Figure 3.6
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shows the histogram of the predictive samples obtained from the ensemble members
for eight test samples in a randomly chosen replicate. The red vertical line denotes the
true logits, and the green vertical lines show the fences of the 95% prediction interval.

Simulation 2: Now, to demonstrate a situation where MEnKF-ANN is “inade-
quate,” we supply the approximator with a completely different feature set representa-
tion. Instead of using the LSTM embedding v/, we use Word2Vec [51] embedding of
each gene in the predictor string and take the arithmetic average of these Word2Vec
embeddings to represent the entire sequence. We denote this feature set by 9/ and
then train the MEnKF-ANN using ¢/ and v9 as the features and logit(p')) as the
target response. MEnKF-ANN is highly misspecified. Table 3.5 reports the coverage
and average width of the prediction interval obtained from this model. Observing the
huge width of the intervals essentially invalidates the point prediction. Such a large
width indicates that MEnKF-ANN may not approximate the target DL. Therefore,
we caution against using the coverage and width metrics to assess the “adequacy” of
the fitted LSTM itself.

Simulation 3: We demonstrate how MEnKF-ANN can naturally handle model-
averaged predictions. We train an ANN (with backpropagation) that takes Doc2Vec
representation of gene sequences as predictors to estimate the probabilities payn.
The true probabilities (p) are obtained by equally weighted average of p4yy and the
probabilities estimated by the LSTM (prsrar, say). To attach uncertainty to p, we
train the MEnKF-ANN by supplying LSTM embeddings and Doc2Vec embeddings to
the two arms of MEnKF-ANN but use logit(p) as the target response here. Table 3.6
shows the performance of MEnKF-ANN in this situation for two combinations of NV
and 2. The coverage is measured with respect to p on the test sets. Although the
average width and MAE are larger than those reported in Table 3.7, we observe that
the LSTM weights ~ 0.5, which is what we would expect because MEnKF-ANN is
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Table 3.3: Performance of MEnKF-ANN using LSTM embeddings and Doc2Vec

N v? Coverage Width LSTM weight
216 16 90.25% 0.33 0.9997
216 32 89.25% 0.32 0.9999

Table 3.4: Dropout-induced coverage and width of prediction intervals obtained from
fitted LSTM with two dropout layers

Rate Reps Coverage Width
0.5 50 81.25% 0.53
0.5 200 84.50% 0.56

Table 3.5: Performance of MEnKF-ANN using Word2Vec and Doc2Vec

N v Coverage Width Word2Vec weight
216 16 96.25% 0.83 0.9155
216 32 94.25% 0.84 0.9787

Table 3.6: Performance of MEnKF-ANN trained to predict the averaged probability
obtained using LSTM and ANN

N V2 Coverage Width LSTM weight MAE
433 0.2 90.75% 0.2661 0.5239 0.0609
433 0.3 91.00% 0.3274 0.5370 0.0667
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Figure 3.6: True logits superimposed on predicted logits from MEnKF-ANN using
LSTM and Doc2Vec embeddings

seeing equally weighted outputs from LSTM and ANN.
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3.5.3 Application II: Results on dbCAN-PUL data

We initialize the ensemble in the EnKF part of our model by drawing the members in
the state vector (3.14) from Na,,42(0,v21), where v is a tuning parameter that plays
a crucial role in controlling the spread of the ensemble members and the dimension of
I matches with the dimension of normal distribution. Following [12, 11], we assume
the state transition is deterministic, i.e., z; = ¢;_12;_1 and hence we do not have the
variance parameter corresponding to 7) in the augmented state vector. When we reach
the ' batch of data, for the i'® member in the ensemble (i = 1,2, ..., N), we update
each element in the augmented state vector wt’(i), wtg’(i), agi), bgi) using the updating
equation (2.12) suitably modified to handle deterministic state transition.

Our focal dataset consists of n = 74 samples belonging to Xylan and Pectin.
However, training an LSTM on a small sample size would require aggressive regu-
larization, even with this reduced label space. Therefore, we draw on an extensive
collection of unlabelled data containing gene sequences associated with CAZyme gene
clusters (CGC) computationally predicted from genomic data [29, 81]. Although this
unlabelled data contains approximately 250K CGC gene sequences, unlike experimen-
tally characterized PULs, these sequences do not have known carbohydrate substrate
information. They hence cannot be directly used for classification purposes. We,
therefore, use this unlabelled dataset to learn the Word2Vec embeddings of each gene
appearing in the unlabelled dataset. These embeddings are then used to initialize the
embedding layer of the target LSTM classifier.

Turning to the labeled dataset, instead of performing full cross-validation, we
resort to subsampling procedure [56]. We take a subsample of sixty-six instances

for training and hold eight instances for testing purposes. The subsample size (b)

is chosen such that b(n)/n ~ 8y/n/n — 0, as n — oco. Although the subsampling
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n
theory requires generating replicates, the computational cost for generating

b

~ 10! replicates, in our case, is prohibitive. Instead, we generate 50 independently
subsampled replicates comprising training and testing sets of sizes 66 and 8, respectively.
In each replication, two LSTMs (LSTM;: two dropout layers - one in the LSTM layer
and one before the final prediction layer with 50% dropout rate, and LSTMj: one
dropout layer in the LSTM layer with 50% dropout rate) are trained on the foregoing
66 training instances. Under this scheme, the probability that the i** instance in our
dataset appears at least once in the test set is &~ 99.6%.

The LSTM-estimated probabilities of observing a Pectin substrate are extracted
from LSTM; and LSTM; from each replicate. The average of these probabilities is
logit transformed and used as the target response for our MEnKF-ANN approximator.
We feed the embeddings of the gene sequences, obtained from LSTM; and LSTM,, into
the two arms of the MEnKF-ANN as two sets of features. We then generate predictions
on the held-out test data points in each replicate. Finally, we compare the average
LSTM prediction of probabilities with those generated by MEnKF-ANN predictions.
The average MAE and the proportion of times a 95% prediction interval contains the
LSTM-generated predictions in the held-out data set, under two different MEnKF-
ANN hyperparameter choices are shown in Table 3.7 indicating that our approximator
can be adequately used to generate the predictions. We do not report the LSTM
weights estimated by MEnKF-ANN because, as we observed in the simulation (Table
3.3), the approximator overwhelmingly prefers the LSTM embeddings. Figure 3.7
shows the scatter plot of MEnKF-ANN-predicted and LSTM-predicted probabilities
for the held-out data across 50 replicates. Figure 3.8 shows the boxplots associated
with MEnKF-ANN predictions for the same set of test samples for which LSTM-

generated prediction boxplots were shown in Figure 3.5. MEnKF-ANN can adequately
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Table 3.7: Performance of MEnKF-ANN using LSTM; and LST M, embeddings for
dbCAN-PUL data

N V2 Coverage Width MAE CPU Time
108 2 83.00% 0.1029 0.0180 7.57 mins
108 6 85.00% 0.1183 0.0198 10.01 mins

Table 3.8: Comparison of the average width of prediction interval LSTM + MC
dropout and MEnKF-ANN approximator for each LSTM

Target model Average Width Approximator Average Width

LSTM; 0.492 MEnKF-ANNy; 0.102
MEnKF-ANNy, 0.085

LSTM, 0.371 MEnKF-ANNy,; 0.119
MEnKF-ANN,, 0.108

approximate the target combination of LSTM.

Turning to the stability of prediction intervals, Table 3.8 shows the average
width of the 95% prediction intervals obtained under individual base LSTMs. We
activated the dropout layer(s) during prediction for each base learner and generated
200 predictions for each query instance. As discussed in the previous chapter, marginal
versions of MEnKF-ANN are trained to approximate each based learner. MEnKF-
ANN}; approximates LSTM; with 216 ensemble members and v = 16, MEnKF-ANN,
also approximates LSTM;, but now with 216 ensemble members and v? = 32. Similarly,
MEnKF-ANN,; and MEnKF-ANNy, approximates LSTM, with 216 ensemble members
and v? = 16 and v? = 32, respectively. Observe that the variation in the average
width between LSTM; and LSTM, is considerably higher than the variation between
MEnKF-ANN;; and MEnKF-ANN,; or between MEnKF-ANN;5 and MEnKF-ANNos.
This indicates that the approximator produces more stable prediction intervals than

obtaining prediction by activating the dropout layer during prediction.
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Figure 3.7: Scatterplot of MEnKF-ANN-predicted and LSTM-predicted probabilities
for the test dataset

3.6 Conclusion

Our goal here was to develop the methodology of an EnKF-based multi-arm ANN that
can simultaneously optimally estimate the cross-learner and within-learner weights and
attach uncertainty to the model-averaged predictions. We designed the MEnKF-ANN
to achieve that purpose. The augmented state space formulation allowed us to handle
the non-linearity associated with neural networks. The matrix variate state variables
allowed us to incorporate multiple learners and include all cross-learner and within-
learner weights within the state matrix. The measurement model handled the model
averaging aspect. As discussed in Chapter 2, the estimates of state variable produced
by the KF technique are minimum mean square estimates. Since EnKF estimates
asymptotically converge to their KF counterparts (see section 3.7), the estimates
of the cross-learner and within-learner weights produced by our MEnKF-ANN are

asymptotically jointly optimal under squared error loss. We re-iterate that such joint
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Figure 3.8: Boxplots showing the MEnKF-ANN predictions superimposed with the
ground truth value for heavy and low dropout

optimality result is not available for the conventional stacking approach. Additionally,
our EnKF construction automatically generates particles for predicted values of the
response variable thereby allowing us to attach a statement of uncertainty associated
with the model-averaged predictions. This constitutes the major methodological
contribution of this chapter.

Turning to the application of MEnKF-ANN, we offered two illustrative examples.
In the first example, we demonstrated that our technique could transfer information
(to small datasets with potential covariate mismatch) from multi-arm deep learners
trained on large datasets for regression tasks. We also demonstrated that the empirical
coverage probability produced by our technique indicates it is an adequate predictive

model. Quite surprisingly, when the fine-tuned deep learner was used to assimilate
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the small dataset, the 95% empirical prediction intervals generated by activating the
dropout layer contained the target values approximately 50% of the time. This raises
questions about the reliability of the predictions generated by DL. As such, we posit
that, since DLs are typically trained with dropouts, it is important to supply coverage
and width of prediction interval along with the customary performance metrics of
RSMPE and p.

Furthermore, we showed that the relative computational simplicity of our method
allowed it to be retrained easily when new samples come in with a reduced set of
features. This essentially indicates that MEnKF-ANN can be used as a vehicle to
perform exhaustive ablation studies when the number of features is manageable. We
emphasize that MEnKF-ANN is not a tool to perform feature imputation. If some of
the input features are entirely missing in a dataset MEnKF-ANN simply switches off
the arm that handles the set of missing features. If we encounter situations where
values of the features are missing according to the classical MAR, NMAR setup, the
current conceptualization of MEnKF-ANN cannot be directly applied.

State-augmented Kalman Filter and its variants provide a gradient-free method
that can be extended to approximate popular neural network-based deep learners for
regression and classification tasks. In the second application, our goal was to attach
uncertainty to average probabilities generated by two different configurations of the
LSTM binary classifier. We demonstrated how our method’s in-built model averag-
ing capability can be leveraged to attach uncertainty to these averaged predictions
generated by two architectures. Our results suggest that this technique adequately
captures the target probabilities to achieve coverage probabilities close to the nominal
level. Since the domain of the target variable is bounded, we also see that the average
width of the prediction interval is not too large to make these intervals meaningless.

Our simulations suggest that the prediction intervals generated by our method are
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less sensitive to the location and number of dropout layers in LSTM and hence pro-
vide more stable prediction intervals as compared to those obtained by activating
the dropout layers within the LSTM itself. Admittedly, our procedure requires an
additional round of training, but its fast computation time (see Table 3.7), along with
its ability to emulate the approximand, adequately compensate for that. We used the
information extracted from the dbCAN-PUL database and trained the base LSTMs
to classify two carbohydrate substrates using the gene sequences characterized by
the PULSs of the gut microbiome and then used MEnKF-ANN to attach uncertainty
to the predicted probabilities generated by a linear combination of two LSTMs. We
anticipate this technique will be helpful to domain experts in assessing the reliability

of predictions generated by an ensemble of learners.

3.7 Appendix

The size of the ensemble (N) and the batch size (which determines the number of
updates T') are treated as tuning parameters. The following proposition offers a
mathematically justifiable way to select these tuning parameters.

Proposition 1: If N and T are chosen such that the eigenvalues of (I —KrHr) <
1, then the expected Kalman error attains steady state solution asymptotically.

To prove this proposition we first show that EnKF updates converge in probability
to Kalman Filter updates. First, for notational convenience, we redefine some of
the terms appearing in equations (2.5) - (2.10) that were derived from the state
space model given by (2.1) and (2.2). Let the filtering distribution be represented by

Tyl ~ N (fug, ZA]W) where fi,; and f)ﬂt are given by
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ﬂt|t = ﬂtlt—l + Kt(yt - Htﬂﬂt—l)a (3.15)
EA31t|t = 2Alt|t—1 - Kthiﬂt—l, (3.16)
Ky = it|t_1Hz(Htit‘t_1Hf + R)7! (3.17)

The forecast distribution is given by @1y ~ N (flus1)e, f]t+1|t) where fi;41; and

Yi+1p¢ are given by

ﬂt+1|t = Mt/lt|t, (3-18)
XA:tJrl‘t = MtitltMtT + Qt (319)
In EnKF, N particles x; t,,ﬂvf| g ,xi\lft, are drawn from either the forecast or the

filtering distribution. So instead of estimating /i, the state estimates are given by
|
= !
Tyr = 5 D o (3.20)
=1

with ¢ =t or t— 1 and the sample covariance matrix
_ R

l — l — T
Dy = N_1 Z(xt\t’ - xt|t'>(xt|t’ - xt\t/) (3.21)

=1

Let the distribution associated with the initial state be defined as x1|yo ~ N (1, 21).

We initialize 2! |yo ~ N (1, 31). Kalman Gain is estimated from the particles as

E = §t|t71Hg(Htit\tle? + Rt)_l (322)

Particles are updated by the equation

xin = xvlt|t71 + E(@/i - Htxiufl) (3.23)

iid
yi ~ Ny, Ry) (3.24)
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Forecasted particles are given by

:Eff-l—l\t = Mt$i|t + 7 (3.25)

n = N(0,Q) (3.26)

Lemma 1. Using the foregoing notations, as N — oo, the following holds
_ P .
Q. Tjp =7 P
j— P A
b. Zt|t — Et|t
_ P .
C. Tiq1|t =7 M1t
— P A
d. By = L
Proof. See [42, 48] for compact proof of this Lemma 1.

Proof of Proposition 1: In our construction of MEnKF-ANN, when m; is kept fixed,
the state transition matrix ¢, = ¢ remains constant in all updates (from (3.9)) and so
does H; after reparametrization (3.12). Now, from the time update step (immediately
below (2.10)) we have ¥, = ¢3;1¢" + @ (where @ is the covariance matrix for 7).

Now, using (2.9) to replace ¥, we have
Y = 0By—19 + Q — ¢Ny H' (HE e H' + R)_lfHZt\t—l(?/

KF theory uses this algebraic Ricatti equation to obtain the steady-state solution
of ¥y Let 3 be the solution of the above equation, it can be interpreted as the
steady state error covariance for estimating x;,; conditional on y;4. To obtain S one
can directly solve ¥ = ¢X¢' + Q — ¢SH/(HEH' + R)*HI¢' for ¥. We instead track
the dominant eigenvalue of (I — KyH) because if the dominant eigenvalue of the above

matrix is approximately 1, and the dominant singular value of KM, converges to
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Figure 3.9: Trajectories of the singular values for the Kalman Gain matrix with the
dominant eigenvalue of I — K, H,

0, then using (2.9), we will have ¥;; ~ ;1 which essentially yields the stationary
solution of the Ricatti equation. So, our reason for jointly tracking the trajectories of
dominant eigenvalue of (I — K;H;) and dominant singular value of K,H, is to visually
assess whether the EnKF has achieved an approximate steady-state. Figure 3.9 shows
the foregoing trajectories empirically. O]

Choosing N and m;: Once steady-state is achieved, we look into the expression

of piy1)e (given below (2.10)) with 3 replacing Y4¢—1. Then, in steady-state we have

Pir1e = Ogje—1 + OSH (HEH + R) ™ (y, — Hpet—1)

Pt = Opee—1 + L(Ye — Gee—1)

where L = ¢SH (HEH + R)~! and Uet—1 is predicted value of the observation given

y1:4—1. Define the state estimation error e, 1 = zy — py,—1 and the observation
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prediction error to be eiﬁll = ¥y — Yejt—1- Then we have the following error dynamics:

Cit1lt = Tl — M)t

= QT+ N — Plgp—1 + Leﬁf’tll

= P(zy — pryj—1) + Leiiyt),l + 1

= Gy + Lell) |+ (3.27)

Now, observe ¢ = I in our construction then from (3.27) we have €1t — Celt—1 =

) (v)

Le(ﬁff1 + 1;. Now suppose E<6t|t71> = (', where C' is a m; x 1 vector whose each

t
coordinate informs us about the expected one-step ahead prediction error at the
observation scale. Suppose the elements of C' are constants. Then, for each coordinate
in the expected state estimation error vector, we have E(e¢1)s — e¢—1) = LC. Now,

under steady-state L is a constant over ¢, and therefore the expected difference in

state estimation error between two successive updates is a linear combination of

(v)

ijr—1) stabilizes in each

expected prediction error in the observation scale. Thus, if F(e
coordinate, so does E(ei 1)y — €¢—1)

We exploit this observation to elicit the tuning parameters. We would like to
estimate £ (ei‘@f_l) in steady state. So, we train multiple MEnKF-ANN with different
values of N and m;. We plot the trajectory of the one-step ahead training RMSE
over the update iterations as a proxy for observation prediction error. Once we
see the RMSE trajectories are converging we can reasonably expect E (€§|yt)—1) to be
approximately the same for each trajectory. Then our choosing criterion is given by

the following: Out of all the trajectories entering the convergence region, choose the

(N,m,) combination that has the smallest N satisfying N > m;.
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Chapter 4

Scalability of Matrix Ensemble Kalman Filter-based stacker

for combining two multi-arm deep learners

4.1 Introduction

Accurate cancer drug response (CDR) prediction has become a central problem in
computational cancer-pharmacogenomics. Such computational models can potentially
identify molecular signatures that determine CDR, at least in-silico setup, thereby
offering guidance to anti-cancer drug discovery. Although several computational
models exist for predicting CDR, deep learning models (DLs) have achieved state-of-
the-art status because of their ability to capture the intrinsic chemical structure of
drugs and integrate multi-omics data. Since there exist several DLs for predicting
CDR (see [6, 13, 5] for a review of deep learning models developed for predicting CDR),
an ensemble of deep learning models is immediately available that can potentially
increase the overall robustness of the predictive method. However, how to quantify
the uncertainty in the model ensemble?

Uncertainty quantification in individual DLs has been studied. Bayesian neural
networks (BNN) and Bayesian deep learners have emerged as the default techniques for
assessing uncertainty in DL predictions. These methods learn the posterior distribution

of training weights, thereby producing an uncertainty estimate of the model output
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[70, 71, 32]. Instead of sampling from the exact posterior distribution, variational
inference and Laplacian approximation methods approximate the posterior distribution
over BNN weights [39, 52, 66, 60, 63]. The famous Monte Carlo dropout technique
also approximates the posterior distribution by running the trained network multiple
times with a fraction of nodes randomly switched off every run, thereby producing a
distribution of predictions. As an alternative to Bayesian procedures, [40] developed a
frequentist method to quantify uncertainty in the DL estimates.

Ensemble techniques have also been used to quantify uncertainty in deep learners.
Typically, such a technique requires the DLs to be trained under various choices
of hyperparameters, thereby producing a distribution of predictions for the targets.
However, these distributions are not as easily interpretable or probabilistically coherent
as a posterior predictive distribution emerging from a Bayesian setup. To address
this issue [43] introduced the nonparametric Bayes ensembling technique that can
decompose various sources of uncertainty and generate point prediction and uncertainty
interval in a theoretically rigorous fashion. Deep ensembling methods that provide
accurate prediction intervals with acceptable coverage probability and reasonable
width [57, 28] are also available. As such, [73, 21, 54] showed that a Bayesian
conceptualization of deep ensemble yielded impressive accuracy and robustness. We
direct the audience to [1, 50] for a more detailed review of uncertainty quantification
in deep learners.

Observe that all the foregoing techniques are either geared to attach uncertainty
to a focal DL or produce a stylized ensemble of models with an explicit goal of
attaching uncertainty to predictions. Our scenario is slightly different because we
have a catalog of base DLs trained to predict CDR, and we would like to develop
a suitable technique to combine the predictions generated by the catalog of base

learners and attach uncertainty to these predictions. Consequently, traditional model
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averaging techniques, for instance, Bayesian Model Averaging [23, 47] or stacking
[75], are more relevant for our purpose. However, neither of these techniques can be
directly used to attach uncertainties because the available base DLs rarely characterize
the probabilistic aspect of the weights and errors. Hence standard Bayesian Model
Averaging may not be immediately implemented, and standard model stacking does
not propagate the uncertainties in the output of the base learners [75, 34].

This chapter extends our generalized stacking approach, first proposed in [55], to
suit the problem. In particular, we stack two recently developed DLs, DualGCN [46]
and DeepCDR [44] - that predict CDR using chemical structures of cancer drugs and
multi-omics data associated with the cell lines on which the drug screen is administered.
We demonstrate how we can attach uncertainty, in a probabilistically coherent way,
to predictions generated by stacking DeepCDR and DualGCN. We also show how
this stacker can quickly adapt to attach uncertainty to a single base learner. Finally,
we show how sequential training of our stacker can be used to handle large datasets,
thereby demonstrating our approach’s scalability.

The remainder of the chapter is organized as follows: Section 4.2 offers a brief
description of the focal base learners, DeepCDR and DualGCN, along with a description
of the data on which these models are trained. Section 4.3 details the construction of
our generalized stacker. We reveal the result of stacking DeepCDR and DualGCN for
predicting CDR and attaching uncertainty to these predictions in section 4.4. Finally,

we offer concluding remarks in section 4.5.

4.2 Background

In the CDR prediction domain, Dual GCN and DeepCDR are two multi-arm deep

learning models that use the chemical structure of drugs and multi-omics profiles of cell
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lines as inputs to predict the drug response, captured via logarithm of half-maximal
inhibitory concentration (log ICj).

Both models process the drug features by using a Graph Convolutional Network
(GCN) to leverage the graph-like representation typically used to describe the chemical
structure of molecules. Each atom within a drug molecule is represented by a 75-
dimensional feature vector [59] and an adjacency matrix that represents the connections
among the atoms. Turning to the omics profile - DeepCDR extracts three types of
omics features - genomic (genomic mutation), transcriptomic (gene expression), and
epigenomic (DNA methylation) - for each cancer cell line from the CCLE database [7].
Transcriptomic and epigenomic features are processed using fully connected networks,
and the genomic features are processed using a 1-D convolutional network because the
chromosomes in the genomic features are believed to encode sequential information.
DualGCN, on the other hand, uses gene expression and Copy Number Variation
(CNV) to represent the omics profile of the cancer cell lines. This model extracts gene
expression and CNV information associated with 697 genes from the CCLE database
and obtains the adjacency matrix representing the association among these 697 genes
from the STRING database [67]. In summary, the model architecture for two base
deep learners are different - DeepCDR processes the multi-omics features using a 1-D
Convolutional Neural Network (CNN) and the drug features using a GCN, DualGCN
processes both multi-omics and drug features using two different GCNs.

The target response values (log IC5g) corresponding to the drug-cell line com-
binations are extracted from the GDSC database [76]. A total of 86530 response
values, associated with 208 unique drugs and 525 unique cancer cell lines, along with
the chemical structures of the said drugs and the multi-omics profile of associated
cell lines, form the dataset we analyze in this chapter. The base DLs use 80% of

the instances for training purposes and the remaining 20% as validation samples to
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determine early stopping. From the trained DeepCDR and DualGCN models, we
extract the embeddings for the drugs and the multi-omics branch for both the training
and the validation samples. In their original form, Dual GCN learned 128 and 256
dimensional embeddings for the drugs and the multi-omics features, respectively. In
contrast, the DeepCDR learned 100-dimensional embeddings for each omics feature
and drug type. In this chapter, we modified the architecture of DeepCDR to make
the output embedding dimensions match those produced by DualGCN. Both base
learners are trained with dropout layers, but these layers are not activated during the

prediction stage, so neither method directly produces any prediction intervals.

4.3 Methodology

Our generalized stacker uses a Matrix Ensemble Kalman Filter to train a multi-arm
artificial neural network (MEnKF-ANN). In this protocol, a multi-arm ANN ingests
different types of predictors, and the augmented state vector associated with the
Ensemble Kalman Filter performs the stacking and updates the weights associated
with the neural network, model weights, and variance parameters. The original
construction of MEnKF-ANN for the two-arm neural network can be found in [55]
along with the training algorithm. However, we need to extend the construction posited
in [55] because we require the current stacker to ingest the drug embeddings and omics
embeddings from DeepCDR and DualGCN in four arms so that we can determine
the relative importance of each of these embeddings. Observe that identifying the
importance can offer insight into which types of embeddings should be used to
represent the omics profile (collection of genomic, transcriptomic, and epigenomic or
gene expression and CNV).

We, therefore, begin with a generic construction of our MEnKF-ANN stacker
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that can simultaneously train four different neural network architectures and perform
in-situ stacking. Then, we show how this construction can leverage the learned
embeddings from the base learners. We define our target responses as ¥ € R.
We have a total of m = Zthl m, training instances, with m; being the number of
training data points in the ¢ batch. Consider two bi-arm DLs generically denoted as
foatti = fmulti(Ul(l), UQ(I)) and gpuiti = gmum(Ulm, UQ(Q)) that map the input features
{Ul(l), UQ(D} and {Ul(z), UQ(Q)} to the response space, respectively. Let v{ e RPt and
vtf > € R? denote two different learned embeddings extracted from two arms of the
DL fui for the t* batch of data. Similarly, let v{* € RP? and v{? € R% denote the
learned embeddings extracted from two arms of the DL g, for the t** batch of data.
We will assume that the embeddings extracted from the base DLs are of the same
dimension, i.e., p1 = ¢1 = p2 = ¢. Let f], f5, g, g5 denote the architectures for the
four ANNs that take v/1, v/2, v9', v92 as inputs, respectively, and connect them to the
response Y. All four ANN architectures (f;, f5, 97, g3) have a single hidden layer of
fixed size and a final prediction layer with one neuron. Thus, each ANN has the same
number of learnable parameters, denoted by 7n,,.4;. Let w,{ 1*, wic 5, wy T, and wtgé denote
the updated weights corresponding to the ANNs f;, f5, g7, and g3, respectively, using
the " batch of data. Let a{ r aﬁ, aj 3 afg and b; be real-valued scalar parameters and
let s, = [S{T,S{Q*, i stgg] = [a(aﬁ),a(a{;),a(atgf),a(af;)] where o(.) : R — [0,1]¢ is

the usual softmax function.

4.3.1 The MEnKF-ANN stacker for multi-arm DLs

First, consider the state matrix of the matrix Kalman Filter, X;, associated with the

tt" batch of data:
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sl wlly s sl wl) slgrof wlh) s g3 (0, wi)
Xt(mt+nmulti+2)><4 _ wgl ’LU{Q ’wtgl wth
af off ol o’
by 0 0 0

(4.1)
Define H;" ™t — (100 i), GEY =11, 1, 1, 1)7, 0,4 =
Iiin,,i+2, and ¥y_1 = Iy. We can now define the measurement equation of a Matrix
State Space Model as:

}/;5 = HtXth + €¢, (42)

with the state evolution equation being
Xt =01 Xp 11 + e (4.3)

where ¢; and 7, are mutually independent zero-mean Gaussian error terms. In particu-
lar, we assume € ~ N, (0,721, ) where 72 = log(1 + €”). We will discuss 7, in the

context of efficient computation in section 4.3.2. Writing in vec format, (4.3) becomes
1z, = vee(Xy) = (P | ® O,y )vec(Xi_1) + vec(n,) (4.4)
and letting ¢; 1 = ¢ | ® O, and 7; = vec(n;) we get from (4.4)
Ty = Gr-1T4—1 + 1 (4.5)
(4.2) can similarly be compactified as

Yi=Hixs + ¢ (4.6)
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where H; = GT ® H;. Tt is easy to verify that such a construction does explicit model

averaging by expanding the H; X;G; in (4.2).

HX,Gy = flfl(vt y W )+S{2f2(vt Jwt )+St gl(vt 7wt )+St 92(”1& 7wf2)7

(4.7)

where the convex model weights Stf —l—stg +57 i —l—sfg = 1 yield a weighted average of the
predictions from the four ANNs. Recall that the inputs features for f{, g;, (k = 1,2)
are extracted embeddings vtf ' v{2, o', v from the two base learners f,.;;; and
Gmuti- Therefore, by choosing X, as in (4.1), we train an ensemble model and perform
stacking in-situ, using the embeddings extracted from the trained multi-arm DLs.
We retain the scalar parameter b; in (4.1), used to estimate the variance of the

error term in the measurement equation (4.6), as a learnable parameter, and the

remaining variance parameters are treated as tuning parameters.

4.3.2 An efficient solution for MEnKF-ANN stacker

The formulation of the state matrix X; as in (4.1) brings up an interesting problem
regarding the solution of the linear state space model. The standard solution of the
model outlined in (4.5) and (4.6) requires the computation of the Kalman Gain term K.
In Ensemble Kalman Filter the Kalman Gain is estimated by f(t = gﬂ-[tT (%tgthT +
O’;Imt)_l where S't is the sample covariance matrix of the forecasted ensemble. In our
case, H; is my X 4(my + N + 2) dimensional and S't has the same dimension as the
covariance matrix of z; in (4.4), i.e., dim(gt) = 4(my + Nopars + 2) X 4(my + Noprs +
2). Consequently, both S’t’H? and ”Htgﬂ-[f are of relatively large dimensions and
computation of Kalman Gain requires inverting and multiplying such large matrices

in every update step, making the algorithm computationally expensive and increases
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the memory requirement considerably.

However, closer inspection reveals that, unlike the standard Kalman Filter, not
all elements of X; need to be estimated in our case. Only w,’s, a;’s, and b; need to be
estimated. The top m; x 4 elements of X; are deterministic functions of wy, a;, and v;.
Thus, instead of updating the entire X; in a naive fashion, we can focus only on the
unknown quantities. Therefore, following [38], we obtain the Ensemble Kalman Filter
solution to a least squares minimization problem given by ®(u,Y) = ||G(u) — Y||3,
where u is the vector of unknown parameters that need to be estimated and G is any

model architecture, Y is the target, and I' = Cov(Y'). Following [77] we envision the

N

set of particles U™ = {u} };_, as IV estimates for the unknown parameter u at the nth

iteration. These estimates are recursively updated using the formula

W = w4 CUM(DWU™) + 1)y — Glul) (4.8)
where C(U) = % 3701 (4 = @) @ (G(u;) = G)", D(U) = § 2701(G(w;) = G) @ (G (uy) —
G u=+ Ejvzl uj, G =+ Z;VZI G(u;). Evidently, (4.8) only updates the unknown
elements in the state matrix, thereby reducing the computational cost associated with
solving the model described in section 4.3.1. Notice that in (4.8) y is the observed
target vector. In contrast, the Ensemble Kalman Filter solution proposed in [33] uses

perturbed target where they perturb y with a random noise vector z drawn from

N(0,T). Therefore, the modified updating equation becomes

W =+ CU(DU™) + )y + 2 — G(u}) (4.9)

J J

* * * *
More precisely, we define u; = [wtfl, wic“’, wl, w, al', al?, o', o, b] and

reparameterize x; in (4.4) by writing it in terms of u;. Now, replacing G(u) with H,z;

we can use (4.9) to solve the minimization problem ®(x;,Y;) = ||Hsx; — Yi]|% to solve
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the state space model defined in (4.5) and (4.6).

To obtain the EnKF solution to the minimization problem, we first draw N

o5 E i

N : L=
Wlth u]’t o [th, wt7j7 t7j7 tvj’

samples of U = {u3, } 71, w;?f;, wfé, a af};, afi-, by ;]
from Ny (0,S4), where d = dim(u;;) = 4nyu + 5. The covariance matrix Sy is
parameterized using three different variance terms o3y, 0Augweights AN 0Fargervar
corresponding to the variances for the weights associated with f{, f5, g7, g5, model
averaging weights, and variance associated with the covariance matrix of the response,

respectively.

0-124NNS I4nmulti 0 0
Sd - 0 0-124ngeight514 0 (410)
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These N particles of U are then updated using the adapted version of (4.9) given by

upy =Gy + CU)DU") + 0y In) ™ (e + 255 — Hew) + Nuige (4.11)

j?t

with ‘712/,5 = log(1 + oW et b)), 2y~ N(O,aﬁtlmt), CU) = % Z;V:l(uﬂ — 1) ®
(Hywe; — H)', DU) = 30 (Hawey — H) © (Heme; — H)T, 0 = % 300w,
H = %Zjvzl Hywyy and 0y ~ N(0,0%,4..1a) are Gaussian perturbations intro-
duced to capture the stochasticity of the state equation (4.5). Once again, we treat
all the foregoing variance parameters (05w Oogweights: Orargetvar @ fudge) 85 tuning
parameters without explicitly estimating them.

We reiterate that Sy supplies the values of the variance parameters associated
with the initial distributions of within-learner weights (w), cross-learner weights (a)

and target variance (b). Thus, Sy controls the spread of the initial realization of the

elements in the state matrix. As we mentioned in Chapter 2, the EnKF operation is
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purely feed-forward, and hence, we do not consider a formal posterior of Sy. Instead,
the elements in Sy are treated as tuning parameters and are chosen via tracking the
validation error for multiple runs of the MEnKF-ANN under various choices of the

foregoing tuning parameters.

4.3.3 Connecting MEnKF with DualGCN and DeepCDR

Instead of directly using the raw embeddings extracted from the DeepCDR and
DualGCN, we perform a dimension reduction by running a PCA on these embed-
dings separately. We extract 64 PCs for each of DeepCDR-drugs, DeepCDR-omics,
DualGCN-drugs, and DualGCN-omics. These four sets of PCs are passed as input
features to the four ANNs f, f5, g7, and g5 that form the core of MEnKF-ANN stacker
- as described in Section 4.3.1. All these ANNs have feed-forward neural network
architectures with one hidden layer having eight neurons and a final prediction layer
with one neuron. The batch size m; is chosen a-priori depending on the training data
size. Given the configuration of f;, f5, gi, g5 and the size of the feature set, we have
Nmuti = 529 parameters that need to be estimated for each ANN. We, therefore, need
to estimate d = 4n,,1; + 5 = 2121 parameters in each batch. At ¢t = 0, we generate
N particles U® = {u}L; from N191(0, Sa191) to initialize the EnKF solution. We
then compute X;, H;, G;, and H; as described in Sections 4.3.1, 4.3.2 for t = 0. The
updated set of parameters U',t = 1,2, ... are obtained using the updating equation
(4.11).

Observe that MEnKF-ANN explicitly estimates four weights corresponding to
embeddings associated with DeepCDR~drugs, DeepCDR~omics, Dual GCN-drugs, and
DualGCN-omics, respectively. These weights assess the relative importance of each
type of feature coming from the constituent deep learners. Now, for example, to

estimate the weight for the DeepCDR model, we can sum s/i and s/2. Similarly, to
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estimate the weights for the drug features, we can sum s/i and s91. Additionally, the
EnKF construction produces a range of predictions for each query point, enabling us

to compute the prediction intervals empirically.

4.4 Application

We train the MEnKF-ANN stacker on the same 69214 data points used to train
the base learners. We retain the remaining 17316 instances for test purposes. The
stacker is trained sequentially on approximately equal-sized T" = 28 batches, each
with approximately m; = 2500 samples. After each update of the MEnKF-ANN, we
obtain the root mean squared training error computed on the entire training set. We
stop training the stacker if both conditions are satisfied: (a) training RMSE only
improves over ten successive batch updates, and (b) the MEnKF-ANN has run for at
least one epoch. To assess sample size’s impact on the stacker’s predictive capability,
we evaluate the root mean square prediction error (RMSPE) on the foregoing 17316
test samples after training over each batch of data. We expect that the predictive
capability of MEnKF-ANN will improve as more data batches are added to the training
set. We use the following hyper-parameter configuration for training MEnKF-ANN:
N =106, 07,450 = 0.01, 0% xns = L, Ohpgweights = 1r and 0F g, 00 = 1. To assess the
sensitivity of the stacker on the initialization of ensemble particles (U°), we train and
evaluate the MEnKF-ANN 50 times under different realizations of U°.

The final prediction is obtained by averaging over the 50 runs of MEnKF-ANN.
RMSPE and the Pearson correlation coefficient (p) between the observed test values
and predicted values are computed using this initialization-averaged prediction. Since
the forecast distribution of each particle in the ensemble Kalman Filter is available

in closed form, the width of the prediction interval and the coverage probability
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associated with 95% prediction intervals are calculated using the quantile averaging
technique [17, 18, 16] for each test point. We report RMSPE, p, coverage probability,
and average width of the quantile-averaged prediction interval in Table 4.1. However,
to demonstrate the benefit of stacking, we need to compare these metrics to those
obtained from individual base learners. However, the vanilla base learners can only
offer RMSPE and p. Hence, to make all candidate models comparable, we deploy the
MEnKF-ANN to approximate each base learner by simply requiring the state matrix
in (4.3) to contain two columns arising from either f;, f5 or g7, g3. The MEnKF-ANN
approximated individual base learners’ prediction performance is also included in
Table 4.1. To benchmark the performance of MEnKF-ANN, we train a multi-arm
deep learner (joint learner) that combines the original construction of the subnetworks
in DeepCDR and DualGCN.

First, the results show that the joint learner’s performance (in terms of RMSPE
and p) is almost the same as those reported in the original articles that introduced
DualGCN and DeepCDR. Therefore, our joint learner reliably replicates previously
published results and can be used for benchmarking. The MEnKF-ANN stacked
learner has higher RMSPE and smaller p. However, the coverage probabilities asso-
ciated with the joint leaner, obtained from the dropout-induced prediction interval,
indicate its inability to achieve anything close to the nominal level. Our method
consistently achieves a nominal level of coverage, indicating its adequacy in processing
the uncertainty arising from the models.

We also observe that the stacked model outperforms the individual base learners
with respect to RMSPE and p, thereby underscoring the utility of model averaging in
improving the prediction accuracy in the CDR domain. The coverage probability of
the stacked model practically achieves the nominal level, thus offering confidence in

the predictions generated by the MEnKF-ANN. We observe that DeepCDR, coupled
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with MEnKF-ANN offers greater coverage but at the cost of a larger width, but the
DualGCN-MEnKF-ANN combination offers lower coverage with a tighter width of the
prediction interval. However, the stacked model provides a balance between the base
learners. We also note that by attaching an inferential mechanism to DeepCDR and
DualGCN, we enhance the statistical support of the predictions generated by these
DLs.

Table 4.1: Performance metrics of MEnKF-ANN using DeepCDR, and DualGCN
embeddings

Models RMSPE Coverage Width p
Joint Learner 1.10 61.14% 1.85  0.92
DeepCDR-MEnKF-ANN 1.62 97.82% 8.36  0.82
DualGCN-MEnKF-ANN 1.60 93.48% 6.39 0.82

MEnKF-ANN stacked DualGCN & DeepCDR 1.37 95.71% 5.99 0.88

To further contextualize the precision of the predictions and to visually assess
the predictive performance of MEnKF-ANN, we display, in Figure 4.1, the scatter plot
between the MEnKF-ANN predictions and the observed values of log IC5g in the test
set. The plot suggests no obvious bias in the predictions generated by MEnKF-ANN.
Furthermore, even though the coverage probability exceeds the nominal level, given
the range of the observed test data, we can conclude that the average width of the
prediction intervals is not too large to render the prediction intervals meaningless.
Together, we can surmise that the prediction intervals generated by MEnKF-ANN are
reliable.

To get a detailed picture of the reliability of the prediction intervals, in Figure
4.2, we show the line plot of the quantile-averaged upper 97.5% and lower 2.5%
prediction limits along with the observed values of the test points (in solid circles).
We observe that the prediction interval covers the query points adequately. However,

the coverage deteriorates in the extreme upper and lower tail regions of the data.
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Figure 4.1: Scatterplot for MEnKF-ANN predictions with the observed log IC'5y values
in the test set.

This underscores the hazard of making predictions on the boundary or performing
extrapolation with models that are not explicitly designed to capture the quantiles of
the response variables.

To demonstrate the effect of ensemble size, we plot the trajectories of mean
training RMSE and RMSPE across the batch updates, along with the point-wise
standard deviation in Figure 4.3. The MEnKF-ANN method can learn quickly from
the data and reach the best RMSE within the first few updates. The variation in the
mean square errors also becomes negligible when MEnKF-ANN reaches the second
epoch. The training RMSE and RMSPE curves indicate no obvious overfitting or
underfitting issues - agreeing with the scatter plot displayed in Figure 4.1. To assess
the validity of Gaussian assumption in the measurement equation (4.6), we plot the
histogram of the initialization-averaged residuals extracted from the training set in

Figure 4.4 and overlay the pdf of the fitted Gaussian distribution on these residuals.
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Figure 4.2: Prediction intervals for test samples with the observed log ICjy, values.

It appears that the Gaussian assumption is tenable in our case.
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Figure 4.3: Training and testing RMSE curves for the MEnKF updating iterations

Finally, we report the estimated model weights (s/1, s/2*, 91, s92), averaged over
the MEnKF-ANN runs, in Table 4.2. The stacker gives considerably more weightage
to DualGCN, indicating that the architecture of DualGCN is more optimized for
predicting CDR than DeepCDR’s configuration. Drug embeddings extracted from

DualGCN have the highest weight by a large margin. The omics embeddings extracted
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from DualGCN and DeepCDR have essentially the same weightage - indicating both
models are equally adept at processing the omics data. Closer inspection reveals that
DualGCN drug embeddings dominate the omics embedding, but the reverse seems to
be the case in DeepCDR, where omics embeddings dominate the drug embedding. To
assess whether this curious reversal in weight pattern holds up for the base learners
individually, we report the relative weightage of each type of embedding for each base
learner approximated separately by MEnKF-ANN. We observe that the pattern of
weights revealed in the stacked version agrees with those obtained from individual
base learners. This is a key advantage of our stacking approach - it offers insight into
the relative merits of different aspects of the base DLs without training every base

learner separately.

Table 4.2: Model weights for drugs and omics features extracted from DeepCDR and
DualGCN

Models DeepCDR Drugs DeepCDR Omics DualGCN Drugs DualGCN Omics
DeepCDR 0.41 0.59 NA NA
DualGCN NA NA .66 .34

DualGCN, DeepCDR 0.07 .15 .62 .16

4.5 Conclusion

Our goal here was to develop an extended version of the generalized stacking approach
that can be used to generate predictions by stacking two DLs and attaching uncertainty
to the predictions obtained from the stacked model. The proposed approach used a
matrix Ensemble Kalman Filter-based neural network to perform model averaging
and automatically generate prediction intervals. We utilized four neural networks,
each ingesting drugs or omics features extracted from the base DLs. This helped us
understand the relative predictive capability of different model/feature combinations.

We also demonstrated that the coverage of the prediction interval, although exceeding
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Figure 4.4: Normalized histogram of test set residuals with normal density curve

the nominal level, was reasonable, and the width of the prediction intervals was not
too wide to render them meaningless.

The results obtained from stacking DeepCDR, and DualGCN suggested that
the predictive performance of the stacked model was better and more robust than
the individual MEnKF-ANN approximated individual base learners. Although the
prediction performance of the DLs (originally reported in [46, 44]) was numerically
superior to our stacked model (potentially due to the more complex architecture), we
posit that our approach is more robust in the sense that it can synthesize multiple
models operating on different data types. For example, consider a test sample with
genomic, transcriptomic, epigenomic, and CNV information. If we chose to use either
DeepCDR or DualGCN, we would not be able to process at least one type of omics
feature. The stacked model would offer the capability to handle all these features by
synthesizing both these DLs. Furthermore, since we train the stacker sequentially,

we can use this approach for online training when small batches of data are added
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sequentially. This would alleviate the need to retrain the deep learners every time new
data points are added - thereby saving computational resources when dealing with
dynamic databases.

On the limitation side, the current architecture of our stacking neural network
is simple. However, extending to more complex architecture is conceptually straight-
forward (see [77]). Additionally, the assumption of Gaussian errors in our state-space
formulation may be too restrictive for skewed or heavy-tailed data. Regardless, our
explicit error characterization allows us to perform residual analysis and thus allows
us to assess specific aspects of model adequacy. The diagonal construction of the
covariance matrix Sy is also simplistic. For a better representation, we can specify a
more dense block diagonal matrix that induces covariance among the weights coming
from the arms f7, f5 and g7, g5.

The versatile nature of our stacking approach opens up some immediate future
research directions. We can repurpose this approach for transfer learning. For example,
if we wish to utilize the constituent deep learners on a small dataset, perhaps the
most popular approach is to train the deep learners on the focal dataset with a warm
start. With the stacker, we can pass the feature set associated with the focal dataset
through the deep learners and extract the embeddings, which are then used to train
the stacker. Another potential utility of our approach is that it allows us to infer
changes in the data-generating model. For instance, suppose the first half of the data
is generated by a particular model (DeepCDR, say), and the last half is generated by
another model (DualGCN;, say). Suppose both the data-generating models are a part
of the ensemble. In that case, the trajectory of the convex model weights across the
batches can tell us whether there is a switch in the data-generating process. Observe
that traditional static model averaging protocols cannot be used to ascertain such

switches in the data-generating regime.
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Chapter 5

Extending Matrix Ensemble Kalman Filter-based stacker for

predicting multivariate responses

5.1 Introduction

So far, the Matrix Ensemble Kalman Filter method has been developed for regression
models with only one dependent variable (single output). This chapter extends the
multi-arm MEnKF method for developing regression models with multiple dependent
variables (multi-output). This method can also learn the covariance matrix for the
multi-output dependent variables. We start by developing the theoretical framework
and extend the MEnKF method developed for multivariate response. We then show
how this method can be extended to accommodate and identify changes in the
data-generating process.

We deploy the proposed multivariate MEnKF-ANN to predict the chemical
properties of drug molecules from their Simplified Molecular Input Line Entry System
(SMILESs) representations. We use the ChEMBL [25] database containing chemical
properties for millions of potential drug compounds and their SMILEs representations.
Researchers use this database frequently to discover new compounds that can act
as effective drugs in treating various health conditions and illnesses. In particular,

we focus on predicting the n-octanol-water partition coefficient (P) and the Polar
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Surface Area (PSA). These two chemical properties of the compounds are often used
to determine the therapeutic efficacy of drug compounds.

The P coefficient measures the relative solubility in fat (lipophilicity) and water
(hydrophilicity). P is less than one if the drug compound is more soluble in water and
greater than one if it is more soluble in fat. Consequently, any drug compounds with a
higher value for P can accumulate in the fatty tissues of organisms (bio-accumulating)
and can be detrimental. The Stockholm Convention, an international environmental
treaty, deems any drug compounds with a value of P greater than five as having
a serious risk of bio-accumulating and discourages their use. Lipinski’s “Rule of 5”
provides instructions to find favorable drug compounds that can be taken orally. One
of the rules is to favor drug compounds with a value of P less than 5, similar to what
the Stockholm Convention recommends. PSA is the area of the drug compounds’ polar
atoms (Oxygen, Nitrogen, and attached Hydrogen atoms). It measures the ability
of the drug to permeate the cell membranes and penetrate the blood-brain barrier.
Drug compounds having a PSA greater than 140 angstroms squared are considered
to be poor at penetrating cell membranes. Compounds having a PSA of less than
90 angstroms squared can penetrate the blood-brain barrier and act on the central
nervous system.

Calculating P and PSA for drug compounds experimentally is highly resource-
intensive. Predictive models (for example, QSAR) are often used to predict P and PSA
from experimentally collected data [20]. Our method for predicting the PSA and LogP
(Logarithm of the n-octanol-water partition coefficient) is motivated by the QSAR
method, which uses the molecular descriptors of the drug compounds as features for
developing the prediction models. In addition to the molecular properties, we also use
the SMILE representation of the chemical structure of the drug compounds. Therefore,

the SMILE representation and the molecular descriptors function as the two sets of
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features available for all drug compounds. The target variables we would be predicting
are the LogP and the PSA for the drug compounds, making it a multivariate regression
problem.

First, we design a multi-arm DL that simultaneously takes the SMILEs rep-
resentations of the drug compounds and the molecular descriptors from the RDKit
library that generates numerical features from the SMILEs. Since SMILEs are string
representations of the chemical structure of the drug compounds, our multi-arm DL
processes the SMILEs using an LSTM layer. The quantified features produced by
RdKit are processed using fully connected dense layers. The embeddings obtained
from the SMILEs subnetwork and RDKit subnetwork are concatenated and passed to
the prediction layer, which comprises two neurons corresponding to the dependent
variables of PSA and LogP.

We use the multi-arm DL as a feature extractor to extract the embeddings of
SMILEs and RdKit features and train the multivariate MEnKF-ANN using these
features. Our goal here is to assess the predictive capability of multivariate MEnKF-
ANN when applied to the ChemBL database. We then offer two simulation studies
to assess how accurately our stacking approach estimated the model weights. In the
first simulation, we generate data by assigning fixed model weights to the SMILEs
and the RDKit arm and then assess MEnKF’s ability to recover those model weights.
In the second simulation, we assume two sets of model weights, i.e., the training
data comes from two data-generating processes that differ only with respect to the
weights assigned to the SMILEs network vis-a-vis the RdKit network. We train the
multivariate MEnKF-ANN on the resulting dataset and track the trajectory of the
model-averaging weights to assess whether our method can detect this change in the
data-generating process and dynamically adapt the model-averaging weights.

The remainder of this chapter is organized as follows: Section 5.2 describes the
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structure of the various base models we use as feature extractors for input to the
MEnKF method. Section 5.3 describes the construction of multivariate MEnKF-ANN.
In section 5.4, we apply the multivariate stacker to predict the PSA and LogP values
on a ChemBL dataset. Section 5.5 presents the simulation results that assess the
performance of MEnKF in recovering the true model weights and its ability to identify

switches in the model weights. We offer the concluding remarks in Section 5.6.

5.2 Base Models

First, we describe the base learners that take each feature type as input, generate
the features’ embeddings, and predict the target variables. The lower dimensional
representations for SMILEs and the molecular descriptors, learned by the base models,
are supplied to the MEnKF method. We explore two base model architectures, one
with multi-arm architecture and one with single-arm architecture. The multi-arm DL
ingests SMILEs and RDKit features in two subnetworks within a single consolidated
architecture. Single-arm models predict the PSA and LogP using the SMILEs and
the RDKit features separately.

In the multi-arm DL, we process the SMILE strings using an embedding and
an LSTM layer and the molecular descriptors using a combination of fully connected
dense layers. The input SMILE strings are first converted to their one-hot encoded
representation. The dimensions of the one-hot encoded vectors are the same as the
number of unique tokens in the SMILE strings population (also known as the vocabu-
lary). The embedding layer learns a d; dimension vector representation (embeddings)
for each unique token in the vocabulary. These learned embeddings are then used to
create the input feature representation of the SMILE strings. A collection of these

learned embeddings then represents each SMILE. More specifically, if a SMILE has [
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tokens, it is represented by a [ X d; dimension array of features. This [ x d; dimension
array of features is then passed to an LSTM layer, which learns a ds dimension vector
representation for the SMILE. d; and ds are hyperparameters that can be chosen
during the model-building stage. The LSTM embedding of the SMILEs is further pro-
cessed by a block of two fully connected dense layers, creating a latent representation
of the LSTM embedding. This latent representation is then concatenated with the
embeddings produced by the fully connected layers for the RDKit representation and
then passed to a prediction layer with two neurons for the two dependent variables
of PSA and LogP. The resulting multi-arm architecture is trained by minimizing the
mean squared error loss between the ground truth PSA and LogP values and the
model predictions. After the model is trained, SMILEs and molecular descriptor
embeddings can be extracted by simply passing the new training samples through the
trained model.

In the second base model, we train two single-arm deep learners. One of the base
model architectures uses the SMILEs strings to predict the logP and PSA, while the
other uses the RDKit molecular descriptors to predict the same. The architecture of
these two individual single-arm learners is similar to their corresponding subnetworks
in the multi-arm DL. The final predictions are obtained via stacking the predictions
generated by the pair of single-arm base learners.

The reasoning behind having two different base model architectures is motivated
by the fact that we can use multivariate MEnKF-ANN to emulate the multi-arm
DL to generate predictions. However, such multi-arm base learners do not explicitly
assign individual weights to different types of representation. Therefore, we cannot
assess our stacker’s ability to recover the true model weights. Hence, in the simulation
study, we use known weights to stack the estimates generated by two single-arm base

learners and then deploy MEnKF-ANN to track the model weights.
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5.3 Methods

We extend the method developed in Section 4.3 to make it suitable for multi-output
regression. We define our target response as Y € R?. We have a total of m = Zthl my
training instances, with m; being the number of training data points in the t"* batch.
Let v/' € RP and o> € R® denote two different learned embeddings extracted
from the multi-arm DL f,,,; for the t* batch of data. Similarly, let v{* € RP? and
v € R%2 denote the learned embeddings extracted from the multi-arm DL gy,
for the ¢! batch of data. Let fi, fa, g1, go denote the model architectures for DLs

corresponding to the inputs vf ' vf 2 ot v respectively. All four model architectures

have a single hidden layer and a final prediction layer with one neuron. Let w{ Y w{ 2
wi', and w{* denote the updated weights corresponding to the model architectures
of fi, fa, g1, and go, respectively, using the t™ batch of data. Let af', af?, aJ', af?
and b; be real-valued scalar parameters. We will assume that it is possible to extract
embeddings from the multi-arm DLs, which are of the same dimension, implying
that p;1 = ¢ = p2 = qo. We also assume that the model architectures of fi, fs, g1,

and ¢ have the same number of learnable parameters, n,,,. Define softmaz as

o(.) : RF — [0,1]¥ function which takes as input a vector z of K dimensions and

applies the following formula to each element of z: o(z); = EKeziezj fori=1,2,..., K.
j=1
Define a vector a; as a; = [al*,al?, a9, a%]. Let s, = [s", s, 9", %] be a vector

obtained after applying the softmaz operation on the vector a;. Let s/t = g/t 4 ¢f2
and sfmuiti = g 4 92 glmuiti qnd g9t can be thought of as the weights given by

the MEnKF-ANN method to the two multi-arm DL architectures of f,.ixi and g
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5.3.1 Multi-Output Matrix Ensemble Kalman Filter utilizing features

from two Multi-Arm DLs

: : +3) x4
Consider the state matrix, )(t(7n’f+""‘1‘li’Jr )x

by
Sfmutti fi  f Sfmulti fo  fo Imulti g1 .91 Imulti 92 , .92
Stmumfl(vt » Wi ) Stmmf2(vt y Wi ) Stmu“gl(vt » Wy ) Stmu“92(vt y Wy )
fi f2 g1
Wy Wy Wy
Xy = al’ al? al*
1,1 1,2 2,1
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1,1
dy 0 0
Define
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2,2
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, associated with the t"* batch of data given

(5.1)

(5.2)

Additionally, define ©,_1 = I, 4n,,,,,+3 and ¥, = I;. Using the foregoing param-

eterizations of H;, X;, and G;, we can define a Matrix State Space model similar

to the one defined in Section 2.4 where the measurement equation and the state

transition equation have the same form as (2.14) and (2.13). The measurement and

state transition equations for the corresponding vector state space model also have
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the same form as (2.19) and (2.17). It is easy to verify that such a construction does
explicit model averaging by expanding the H,X;G; matrix multiplication in (2.14),

which will result in a m; x 2 dimensional matrix.

sl f(ufe ) + s ) s (ol wf) £ s g (o, uf?)

(5.4)

Since sfmuiti 4 gImuit — 1 (5.4) is a weighted average of the predictions from the two
pairs of models of fi, g1 and f5, and go. Recall that the inputs to the four model
architectures were the four sets of extracted embeddings v*, v, v/*, and v?* from
the two multi-arm DLs of fy,ui and gmu. Therefore, by choosing X; as in (5.1),
we can train an ensemble model using the embeddings extracted from the trained
multi-arm DLs. All the weights of the constituent four models in this ensemble and
the averaging weights a; are learned simultaneously.

The scalar parameters ¢;', ¢, &' ¢7?, dpt, d>? in (5.1) are used to estimate the
covariance matrix of the error term ¢ in (2.19). Since Y € R?, ¢; will have dimensions

2m; x 1 and its covariance matrix will be a 2m; x 2m; dimensional matrix. Consider

matrices L; and D; > 0 parameterized as

[ 11 1.2
Cy Cy
L, = (5.5)
21 22
G Cy
a0
D, = (5.6)
0 d?
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The above-chosen configurations of L;, D; would ensure that R, is a symmetric
positive semi-definite matrix of dimensions 2 x 2. To get the covariance matrix S; of

the 2m; x 1 dimensional ¢, in (2.19) we can compute S; = Ry ® I, .

5.3.2 Solution for the Multi-Output Matrix Ensemble Kalman Filter

Proceeding similarly to Section 4.3.2; we first define the vector of unknown quantities

that need to be estimated

u = [wtf17 w‘th7 wtgl7 wf27 atfl7 atf27 af17 a‘tq27 Ctl’:l? C%,27 Ct2717 05727 d%’:l’ d?’2]

The first step is to generate N samples from Ny(0,Sy), where d = 4n, + 10
is the dimensionality of the vector u. S; is a covariance matrix that needs to be
specified. Denote these N samples as U} = {u?ﬁt}év:l, where u;; is a vector of the
J1 f2 f1 f2

R g1 g2 g1 g2 1,1 1,2 2.1 2,2 1,1
form u],t = [th, wtu-, ww, wt?j, at7j, at,j? at’j, at,j? Ct,j? Ct,j? Ct,j7 Ct,j’ dt,j?

;7.
The first 4n,,,; elements of u;, are parameters for the four constituent ANN models,
the next four elements are the model averaging weights, the next four elements are
used to define the L;, and the last two elements are used to define the D; matrix. Sy
can, therefore, be parameterized using four different variances 0%y g, Ohugweights: 01
and 0% corresponding to the variances for the parameters of the ANN model weights,

model averaging weights, and parameters that define the L; and R; matrices required

to compute the covariance matrix of the batch of targets S;.

S
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O—ANNS I4n'multi

0
0
0

0
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(5.8)



87

Such a parameterization for S; allows us to separately initialize the elements of the N
samples corresponding to the constituent ANN weights, model averaging weights, and
the parameters corresponding to the covariance matrix of the targets, respectively.
These N samples are then updated using a modified version of the equation (4.11).
The modified update equation using (4.11) can then be defined as
W= ul + CUMDU™) + R) ™ g+ 25y = Haafy) + 27 (5.9)
where H, = G @ H;, C(U) = £ 32 (uj, — 1) @ (Hawey — H)T, 0 = £ 30w,
7‘2 = % Z;VZI Htflftj, .T?’j = vec (XZ’L]),D(U) = % Z;-VZI(HtCCtJ‘ - 7‘2) ® (Htxt,j - ﬂ)T
~ N(O, t

X7 is simply the X; in (5.1) constructed using uf,, 27 ), where R; is

7,6 ~g.t

defined as in the equation (5.7), using

[N 11 N 12
2 =16  2j=1%);
N N
L= (5.10)
N 21 N 2.2 .
D=1 =1
N N
[N 11
Zj:l dt,j 0
D= " (5.11)
t = TN 22 .
0 j=1 %
N
d : :
and z]f 19~ N(0,0%,4001a) where 0%, is a user-defined variance parameter.

5.3.3 Connecting Multi-Output Matrix Ensemble Kalman Filters with

Base Model Architectures

Recall that our goal is to predict the PSA and LogP for drug compounds using their
SMILE representations and molecular descriptors. In Section 5.2, we presented two
base model DL architectures that we would use to predict PSA and LogP.

We will first show how to parameterize (5.1) to process the embeddings extracted
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from the multi-arm DL. Consider equation (5.4) which gives the matrix product
H,X,G,. To configure the X; matrix in the MEnKF-ANN setup, we need to figure out
how the terms in equation (5.4) relate to the multi-arm base model architecture. First,
we extract the SMILE string embeddings and the molecular descriptor embeddings
emanating from the last fully connected dense layers in the multi-arm DL. Let
sfmuii and s9muiti he the weights assigned to SMILE string embeddings and molecular
descriptor embeddings, respectively. Let v/t and v/2 be the SMILE string embeddings
and v?' and v?? be the molecular descriptor embeddings. fi, f2, g1, and go are all fully
connected feed-forward neural networks with one hidden layer and one prediction layer
with a single neuron. The matrix product in (5.4) has dimensions m; x 2 for a batch
of size m;. Comparing this with (2.14), we observe that (5.4) has the same dimensions
as the batch targets, Y;. Assume that the first column of Y; contains the observed
LogP values and the second column contains observed PSA values. Consider the first
column in the matrix product of (5.4) which is s/ fy(v]*, w!") + s9m gy (v7* W),
sfmuti and s9muiti are the weights assigned to SMILE string embeddings and molecular
descriptor embeddings and v{ ' vf" are the SMILE string embeddings and the molecular

descriptor embeddings, respectively. Since sfmutti 4 gomutei — 1 ghmuiti £ (pft 401y 4

Imulti

sfmati gy (vf' wi') can be interpreted as the learned weighted average prediction for
LogP using two simultaneously trained ANNs which use SMILE string embeddings
and the molecular descriptor embeddings, respectively. Similarly, we can interpret
sTmutti £ (0l wf?) 4 Imuti gy (092 W) as the learned weighted average prediction for
PSA using two simultaneously trained ANNs which use SMILE string embeddings and
the molecular descriptor embeddings, respectively. Therefore, we can interpret (5.4) as
a learned weighted average prediction for the LogP and PSA using the learned SMILE

and molecular descriptor embeddings from the multi-arm base model architecture.

We have two single-arm DL architectures for the second base model that predict
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LogP and PSA using SMILE strings and molecular descriptor features separately. The
parameterization of (5.4) for the second base model architecture is similar to its multi-
arm DL base model architecture parameterization. We would still have sfmw and
s9multi a3 the weights assigned to SMILE string embeddings and molecular descriptor
embeddings, respectively, but now the model averaging done in H; X;G; approximates
the stacking of the two single-armed base learner. v/t and v/2 be the SMILE string
embeddings extracted from the single-arm DL that uses SMILE strings and v9' and
v92 be the molecular descriptor embeddings extracted from the single-arm DL that
uses molecular descriptors. fi, f2, g1, and g9 are all fully connected feed-forward
neural networks with one hidden layer having 16 neurons and one prediction layer
with a single neuron. The SMILE string embeddings and the molecular descriptor
embeddings from both the multi-arm DL architecture and the two single-arm DL
architecture are vectors of size 32.

To start the MEnKF method, we first calculate the number of parameters that
need to be estimated, which is d = 4n,,,,u; + 10. Based on the model architectures of
f1, f2, g1, and g5 they all have the same number of learnable parameters n,,,,;+; = 545,
therefore d = 2190. The number of samples for the EnKF solution in (5.9) is N = 274.
The first step in the EnKF solution is to draw 274 samples from N5199(0, S2190)- So2190

is a covariance matrix of the form (5.8) and is defined using o3 yy,, ugweights: 01

0 1274

, and 07,. For t = 0, denote these 274 samples as U = {u),}37,

where u;, is as
described in Section 5.3.2. Compute X;, H;, and G}, and H; as described in Sections
5.3.1 and 5.3.2. These 274 samples are then updated using the equation (5.9) for

t=1,2,....
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5.4 Applications

We first describe the data used to train the base DLs and the multivariate MEnKF-
ANN and offer results that demonstrate the predictive accuracy of our method along

with the coverage and width of the prediction intervals that it generates.

5.4.1 Data Description

We use the ChEMBL database to extract drug molecules’ chemical structure and
properties. First, we extract 2.26 million SMILE strings and their observed LogP
and PSA values from this database. These 2.26 million SMILE strings were split into
75% (1.70 million) training and 25% validation samples (0.56 million). This forms
the dataset (D,) with which we train our base DLs - multi-arm and two single-arm
DLs. Next, we also extracted 959 SMILE strings, corresponding to small molecules,
which were not included in the foregoing 2.26 million SMILE strings used to train and
validate the base DL architectures. These 959 SMILE strings and their logP and PSA
values form the dataset (D)) that we used to train and evaluate the MEnKF-ANN
method. The base DLs do not see small molecules. We would like to predict the LogP
and PSA associated with small molecules. Therefore, our MEnKF-ANN acts as a
transfer learner.

We use the RDKit library to numerically quantify the molecular features corre-
sponding to the SMILE strings. This library computes 207 molecular features for each
SMILE string. We use variance thresholding to remove features that show minimal
variability and cannot explain variation in the response variables. Retaining molecular
features with a variance of at least 1 leaves us with 104 (out of the 207) RDKit
extracted molecular descriptors.

Training multivariate MEnKF-ANN: The 959 SMILE strings not used in the
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training of the base models are first split into 75% training (719) and 25% testing
(240) samples. The trained multi-arm base DL is used to forward propagate the
SMILE strings and the molecular descriptors present in D), to extract their respective
embeddings. These embeddings are then used as input features to train MEnKF-ANN.
We fix the dimension of the extracted embeddings (for both SMILE strings and the
molecular descriptors) to be 32. These SMILE and molecular descriptor embeddings
are then used as input features to train the MEnKF-ANN method. We used a batch
size my = 719, 04 yns = 0.1, o-z%lngeights = 0.1, 07 = 0.1, and ¢}, = 0.1. We stop
training the MEnKF-ANN if the training RMSE does not improve for 20 successive

epochs at the same level of coverage.

5.4.2 Results

Figure 5.1 shows the scatterplot of the observed vs. predicted LogP and PSA from the
trained MEnKF-ANN model for the test samples. The MEnKF-ANN model achieves
a high level of accuracy in predicting the LogP and PSA values. The high prediction
accuracy is also evident from the Pearson correlation scores in Table 5.1 between
the observed vs. predicted LogP and PSA, which is 0.99 for both. The coverage of
the prediction intervals from MEnKF-ANN for both LogP and PSA testing samples
are 93.33% and 97.92%, respectively. The average widths of the prediction intervals
are 0.13 and 3.15, respectively. Figure 5.2 shows the histogram of the MEnKF-ANN
predictions (LogP on the left and PSA on the right) superimposed with the observed
value (in green) and the empirical 95% prediction intervals (in red) for four randomly
chosen test samples. It can be seen that the widths of the prediction intervals are
quite tight for both LogP and PSA predictions. Figure 5.3 shows the average weight
for SMILEs embeddings estimated by MEnKF-ANN across the training epochs. The

empirical convergence of model weight is evident from this figure. Additionally, the
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blue background tracks the standard error of the model weights. It appears that the
standard error converges as well.

Since we have bivariate responses, we can also estimate the response covariance

o o 717  —59.79 .
matrix. The original sample covariance matrix in D)y is . Since the

—59.79 3088.22
N particles in the multivariate MEnKF-ANN generate N fitted values in the training

samples, we can obtain N copies of empirical covariance matrices associated with
the target response variable. The average of these N empirical covariance matrices

can be used to estimate the covariance between LogP and PSA. This covariance

716  —59.65
estimate turns out to be indicating MEnKF-ANN’s ability to

—59.65 3085.51

recover original sample covariance.
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Figure 5.1: Scatterplot showing the average MEnKF LogP and PSA prediction with
their corresponding ground truth values for the test set
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Figure 5.2: MEnKF-ANN predictions superimposed with the ground truth value and
the empirical 95% prediction intervals

Table 5.1: Mean performance metrics of MEnKF-ANN for the prediction of LogP and
PSA in the test set.

Target RMSE Coverage Width p
LogP  0.07 93.33% 0.13  0.99
PSA 0.74 97.92% 3.15  0.99

5.5 Simulations

In this section, we demonstrate the ability of MEnKF-ANN to identify a shift in the
weights assigned to the base learners. In particular, we are interested in the scenario
where a part of the dataset is generated by a particular weighted combination of the

outputs from the SMILE embeddings and the outputs from the molecular descriptor
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Figure 5.3: Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs.

embeddings. However, the magnitude of the model weights changes in the subsequent
batches.

Since the MEnKF-ANN estimates model averaging weights for each training
batch, we hypothesize that by tracking the model weight across batches, we can
identify if the true model weights change dynamically. We designed two synthetic
scenarios to investigate this hypothesis. In the first scenario, the model weight is
kept constant. In the second scenario, we make one switch in the model weight. In
all simulations, we report the point estimate, the average width, and the coverage

probability of the empirical 95% prediction intervals.

5.5.1 Fixed case scenario

Data generation scheme: Recall from Section 5.2 that the last layer in the multi-arm DL

before the prediction layer was a concatenation layer which concatenates embeddings
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for the SMILE strings (vS™/275) and molecular descriptors (v, *P¢* ™) "each a 32-
dimensional vector. Consider a single training sample such that the batch size m; = 1
and therefore vSMILES g MelPeseriptors 1) are having dimensions 1 x 32. The predicted
LogP and PSA for this training sample can be obtained using (v MIEES x P MILESY 4
(p]otDeseriptors g MotDescriptorsy 1 (p )T where b is the bias vector that produces the
mean of the bivariate responses. Therefore, the predicted LogP and PSA can be
seen as having some contribution from the SMILEs embeddings and the molecular
descriptor embeddings. We modify the prediction equation by introducing two new
parameters, weight?MILES and (1 — weight?MIEES)  which are weights given to the

contribution stemming from SMILE embeddings and molecular descriptor embeddings,

respectively. Therefore, the mean values of the synthetic responses are obtained using

MolDescriptors
thILEs (UEMILES % 'UJEMILES) +( thILES)<Ut P %

the formula weigh 1 —weigh

witorPeseriviersy 4 (p\T The final target response data are obtained by perturbing the
above means by noises generated from N5 (0, R;).

We assess the performance under three combinations of weight“™!FFs and noise
covariances. We refer to these combinations as Cy, Cy and Cs, with C; = (0.7, Ry),Cy =
(0.7, Ry), and C3 = (0.8, R3), where

0.3 0.06 0.3 —0.27 0.2 —0.18

1= Ry = R3 =
0.06 0.3 —027 0.3 —0.18 0.2

We generate 50 synthetic datasets for each C7,C5, and C3, comprising 959
instances under each covariance specification. We use the SMILEs and molecular
descriptors associated with small molecules that were not supplied to the multi-arm
DL. In each simulated replicate, we use 719 samples for training MEnKF-ANN and
the remaining 240 samples for testing.

Results: Fized case scenario

tSMILEs

In this simulation exercise, we aim to recover weigh under three different
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combinations C1, Cy, and C3. Table 5.2 gives the coverage and width of the confidence
intervals for weight>™IEs parameter from MEnKF-ANN. weight is the average
estimated model weight for SMILE embeddings from MEnKF-ANN. It can be seen
—— SMILEs ) .
that the weight from MEnKF-ANN is close to the true weight®MLEs  The
coverage of the confidence intervals exceeds the nominal level, and the widths are also
reasonable for all three combinations.
Table 5.3 gives the coverage and width of the prediction intervals for LogP and
PSA yielded by MEnKF-ANN on the test data. It can be seen that the RMSEs,
coverages, and widths are all reasonable. Therefore, the evidence in Table 5.2 and
Table 5.3 indicate that the MEnKF-ANN method has good predictive performance
and can accurately recover the true model weights.
. . ——— SMILEs . .
Figure 5.4 shows the trajectory of weight for combination C5. Observe
how the weight converges to a steady state within the first 20 epochs. We expect to
see such stability in weight trajectory when the data generation process remains the

same.

Table 5.2: Average estimated SMILE weight by MEnKF-ANN along with the coverage
and widths from its empirical 95% confidence interval.

——— SMILEs

Combination weight®™ILEs R, weight Coverage Width
Ch 0.7 Ry 0.76 96% 0.20
Cs 0.7 Ry 0.75 96% 0.20
Cs 0.8 Rs 0.83 96% 0.15

Table 5.3: Mean performance metrics of MEnKF-ANN for predicting LogP and PSA
in the test set along with coverage and widths from its empirical 95% prediction
interval.

Combination LogP RMSE PSA RMSE LogP Cov PSA Cov LogP Width PSA Width
C1 0.27 5.79 91.31% 93.60% 0.82 17.82
Cs 0.29 5.95 91.47% 93.68% 0.83 17.98
Cs 0.22 4.68 91.95% 94.13% 0.62 13.66
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Figure 5.4: Trajectory of the average SMILE embedding weights from MEnKF-ANN
for combination C5 over the epochs.

5.5.2 Dynamic weight scenario

Data generation scheme: In this scenario, we extract the 32-dimensional embeddings as-

sociated with the SMILE strings (vSM/LES) and molecular descriptors (v;!Peserpiors)

from the two single-arm DLs whose architectures were described in Section 5.2.
Just like in Section 5.5.1, true target data in the simulations is obtained by adding

m; random noise vectors drawn from N(0, R;) to the final prediction equation

: : . MolDescriptors ;, MolDescript
given by weight?MILES (SMILES o qySMILESY 4 qpejght,” o 5T RIS (¢, 75T PIors 5

Mol Descript : . o MolDescript :
w, TPy (b)) Ry, weight?MILES and weight,” * 7" are user specified.

We use one R; configuration in this simulation.

0.3 —0.06

Ry =

-0.06 0.3

We create a weight switch scenario in the following way: To generate the first

batch, we use 959 SMILE strings and associated RAKit descriptors and simulate mean
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values of LogP and PSA using weight?MIEEs = ().7. We generate another 959 instances

for the second batch using the same feature set as before, but now weight?M1EEs §

S
set to be 0.4. We then perturb the 1918 data points with bivariate normal noises with
mean zero and covariance Ry. Observe that the only systematic difference between
the first 959 instances and the following 959 instances is the change in the model
averaging weights assigned to the output generated by the DL trained on the SMILESs
feature.

Results: dynamic weights

Instead of letting MEnKF-ANN scan the entire training data in each epoch, we
partition 1918 instances into a few equally sized blocks. Each block is treated as an
independent training set and trained over multiple epochs. When we transition to a
new block, we restart the training but use the learned parameters from the previous
block to initialize the state matrix for the new block. We do not specify any specific
exit criteria but observe the trajectories of the model weights over the epochs until they
reveal stability, as observed in the fixed weight case. We used the following MEnKF-
ANN hyperparameter values for this simulation N = 219, 0%y, = 1, 0%, weights = 3
0? =1, and 0% = 1.

Figure 5.5 shows the average estimated model weight trajectory for SMILE
embeddings when the entire dataset is partitioned into two blocks. The blue curve
shows the trajectory for the first block, and the orange curve shows the trajectory
for the second block. Note the transition in the trajectory when MEnKF-ANN starts
retraining with the second block. This indicates that blocking the training data
and multiple restarts can enable MEnKF-ANN to identify a potential switch in the
data-generating regime, at least in terms of weights allocated to the constituent base
models.

Left panel of Figure 5.6 shows the ratio of the training error associated with
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Figure 5.5: Trajectory of the average SMILE embedding weights from MEnKF-ANN
over the epochs for dynamic weights scenario

LogP from the SMILEs-only arm of MEnKF-ANN to the molecular descriptors-only
arm of MEnKF-ANN, and the right panel shows the same but now for PSA. Recall
that the true model weight corresponding to molecular descriptor features was higher
in the second block. Consequently, the ratio of the training errors becomes smaller
over the epochs, signifying that the predictions from the molecular descriptor-only
arms of the MEnKF-ANN are getting more accurate than the predictions from the

SMILEs-only arm. This further supports the trajectory observed in Figure 5.6.

5.6 Conclusion

In this chapter, we have extended our MEnKF-ANN method to accommodate multi-
variate responses. We demonstrated that the multivariate extension is conceptually
straightforward mainly due to the utilization of matrix normal theory in constructing

our stacker. We have shown how this stacker performs transfer learning, transmitting
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Figure 5.6: Trajectory of the ratio of RMSPE from molecular descriptor embeddings
only model to the RMSPE from SMILE string embeddings only model for dynamic
weights scenario

knowledge from base deep learners trained on a different dataset. We have also
shown how multiple restarts in the MEnKF-ANN algorithm enable us to identify a
switch in the model averaging weights. We note that this aspect of our stacker is
important because, as shown in Chapter 3, the property of EnKF forces the trajectory
of the forecast estimates to converge in the long run regardless of the initialization.
With a switch in the model weight, we would expect the forecasts to have different
distributions under different regimes; hence, vanilla EnKF cannot handle such a
situation.

On the limitation side, this approach relies on sequential training of each data
partition and hence cannot be parallelized. Additionally, in order to identify regime
switch, it requires stability in the regime in most partitions. In other words, if the
dataset rows are randomly permuted, MEnKF-ANN will fail to identify which data
point comes from which regime. We emphasize that MEnKF-ANN; in its current
version, is not a model that can detect change points. It is simply an exploratory tool

that exploits the asymptotic properties of EnKF and KF to assess the stability of
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the steady-state solution of the state variable. The guiding hypothesis is that if the
data-generating process remains stationary, then the steady-state solution of the state
variable in EnKF will not depend upon the initialization. Therefore, if MEnKF-ANN
is trained sequentially with multiple restarts, the state variables will converge to the
same steady-state distribution. If we observe that the steady state distribution of the
state variables depends on the initialization, then it simply indicates non-stationarity
in the data-generating process. Our simulation study simply offers a proof-of-concept
that if the non-stationarity lies in the specification of mean in the measurement model,
then tracking the trajectories of the cross-learner weights under multiple restarts can
potentially reveal the dependence of the steady solution of that state variable on the
initialization.

Future research will be devoted to alleviating the foregoing limitations. For
computational benefit, we propose to train each data partition using multiple overdis-
persed initializations parallelly. We can then track the model weight trajectory for
each initialization. We will thus end up with a collection of trajectories for each
partition. A functional ANOVA on these trajectories could be used to determine
whether the population mean of these trajectories remains the same across the data
partition.

Turning to regime switch integration, we propose using the regime-switching
state-space model [15] instead of vanilla EnKF. Such integration will offer further

generalization to the stacking approach.
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Chapter 6

Conclusion

In this dissertation, we have proposed a generalized approach for model averaging
multiple ANNs. Although there is a rich repository of literature discoursing EnKF
theory and model averaging procedures, this dissertation, to the best of our knowledge,
is the first one to demonstrate that the EnKF framework could be naturally extended
to perform model averaging of multiple ANNs. We used feed-forward ANN architecture
for the base learners and trained individual ANNs and their convex combinations
simultaneously using Ensemble Kalman Filter updating equations. The utility of
our EnKF-trained ANN is that it captures the epistemic uncertainty in the model
parameters in a more coherent way and under certain conditions generates the minimum
mean square error estimates of all the model parameters that enter into the state
matrix. Additionally, EnKF explicitly characterizes the joint distributional profile
of the state variable and therefore the predictive distribution is explicitly written in
the form of the conditional distribution of the query points given the training dataset
and the input features associated with the query points. Hence, the conditional
expectation of this predictive density is the minimum mean square error estimator of
the point prediction and the conditional quantiles form genuine predictive intervals. We
empirically demonstrate that the coverage probability associated with these predictive

intervals achieves a nominal level. Additionally, when the response space is compact,
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we demonstrate that the average width of the prediction interval is small enough to
make these intervals useful. On the passing, we note that the uncertainty intervals
generated by the customary Monte Carlo dropout procedure falls far short of the
nominal level.

The connection between our approach and deep learners is revealed when we
allocate different columns of the state matrix to the feature embeddings coming from
different base deep learners (or from different arms of a multi-arm deep learner).
MEnKF-ANN now essentially approximates the dense prediction layers in the con-
stituent deep learners by feed-forward ANNs and estimates the within-learner and
cross-learner weights simultaneously. Unlike the conventional stacking approach,
MEnKF-ANN does not use the predicted values generated by the DLs as covariates
for the meta-learner, thereby ignoring the uncertainty associated with the output
generated by each of these DLs. We posit that the assumption of non-stochasticity
in the input of meta-learners is not tenable, particularly when we have deep learners
as base models because almost all deep learners are trained with dropout layers
which structurally induce stochasticity in the predictions. Our method utilizes the
embeddings extracted from the deep learners and does not make any assumption
regarding the stochasticity of the output generated by the base models.

We showed that MEnKF-ANN construction is useful in performing transfer
learning, particularly when the target domain requires a reduced model to be trained
as compared to more complex models that were trained in the source domain. Observe
that conventional stacking would first require retraining of the source domain models
in the target domain and then estimate the stacking weights on hold-out validation
data in the target domain. MEnKF-ANN does not require retraining of source domain
models. It simply extracts the required embeddings for the features in the target

domain and trains base ANNs and their convex combination simultaneously on the
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target domain data. We also develop a multivariate extension of MEnKF-ANN and
demonstrate that this extension simply requires expansion in the dimension of the state
matrix. All distribution specifications and updating equations retain the same form
with appropriate changes in the matrix dimensions. Finally, we show that instead of
letting MEnKF-ANN scan the entire training set in a single go, if we perform multiple
restarts across different partitions of the training data, the convergence properties of
EnKF could be exploited to identify if there is an abrupt change in the mean function
of the observation model. We offered a proof-of-concept simulation exercise to assess
whether MEnKF-ANN could detect if the model-averaging weights change from one
training set to another.

There are several limitations of the proposed approach. First, MEnKF-ANN
produces optimal (in minimum mean square error sense) estimates of the within-learner
and cross-learner weights under the assumptions specified in Chapter 2. If any of those
assumptions are violated, optimality of the estimates is not guaranteed, MEnKF-ANN
simply boils down to an algorithm that can perform in-situ model averaging. Second,
in its current formulation, MEnKF-ANN cannot perform model averaging on deep
learners directly. That is, the current computation protocol cannot have f(.) and g(.)
to be deep learners themselves. More restrictively, it cannot handle non-numeric input
features. That is, we need to supply numeric values for vtf and v{. Therefore, to handle
object-type input features (say, images), MEnKF-ANN would require an autoencoder-
type technique to convert the object inputs to vector-valued features. Third, as the
name of our approach suggests, we only consider feed-forward ANNs as the base
learners. In its current state, MEnKF-ANN can handle different ANN architectures,
but it cannot handle two very different base learners - for instance, an ANN and a
regression tree. Observe that conventional stacking does not suffer from this problem

because the stacking formulation (as shown in (1.1)) is agnostic to the architecture of



105

the base models that generate the predictions. Fourth, the uncertainty statement that
MEnKF-ANN attached to the predicted values of the target variables only captures
the uncertainty arising due to our lack of knowledge about the model parameters.
It assumes that the true data-generating model appears in the set of models that
are being averaged. Consequently, uncertainty due to our lack of knowledge about
the model itself is not properly quantified in the distribution profile of the model
parameters and predictive distributions. Finally, some of the illustrative examples
should be interpreted with caution- particularly when it comes to transfer learning
and detection of model switch. Our intention in deploying MEnKF-ANN in those
situations was to demonstrate that this framework is flexible enough to perform several
functions. But, there exist multiple techniques that are explicitly developed to handle
those tasks [19, 49]. Consequently, we cannot claim that MEnKF-ANN generates
optimal predictions under these situations. It only offers a potential candidate model.

In terms of future research directions, introducing particle filters in this context
is an obvious way to relax the Gaussianity assumption hard-wired in MEnKF-ANN.
Additionally, formally introducing switching Kalman Filters to draw inferences on the
switching regime model will add more rigor to our current approach. Theoretically,
we can generalize this approach to multilayer ANN instead of the current single-layer
feed-forward ANN. With this generalization, we can prove that we can consistently
approximate any deep learner because [27, 8] proved that sufficiently complex multilayer
feed-forward networks can accurately approximate arbitrary mappings from input

space to the response space.
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