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Abstract

Statistical agencies rely on sampling techniques to collect
socio-demographic data crucial for policy-making and re-
source allocation. This paper shows that surveys of important
societal relevance introduce sampling errors that unevenly im-
pact group-level estimates, thereby compromising fairness in
downstream decisions. To address these issues, this paper in-
troduces an optimization approach modeled on real-world sur-
vey design processes, ensuring sampling costs are optimized
while maintaining error margins within prescribed tolerances.
Additionally, privacy-preserving methods used to determine
sampling rates can further impact these fairness issues. This
paper explores the impact of differential privacy on the statis-
tics informing the sampling process, revealing a surprising
effect: not only is the expected negative effect from the addi-
tion of noise for differential privacy negligible, but also this
privacy noise can in fact reduce unfairness as it positively
biases smaller counts. These findings are validated over an
extensive analysis using datasets commonly applied in census
statistics.

1 Introduction

Statistical agencies across various countries gather,
anonymize, and disseminate socio-demographic data, which
is foundational to high-impact applications such as policy
development, urban planning, and public health initiatives
(USCB 2023b; FHWA 2023; USCB 2022). In the United
States, for example, Census Bureau data guide more than
$2.8 trillion in federal funding yearly (U.S. Census Bureau
2023; Tran et al. 2021). Major surveys such as the Ameri-
can Community Survey (ACS) (USCB 2024), the Current
Population Survey (CPS) (USCB 2023a), and the National
Health Interview Survey (NHIS) (CDC 2024) are central to
gathering essential demographic data. The ACS, for exam-
ple, annually collects data from approximately 3.54 million
housing unit addresses across the United States (about a 1%
sample of the U.S. population). This sample-based approach
allows the ACS to provide detailed insights into the popula-
tion’s living conditions, educational attainment, employment,
and health status, among other factors.

The accuracy of these demographic reports is thus crucial
to ensure that resources and policy measures are effectively
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targeted toward appropriate population segments. However,
despite their critical role, the collection of these statistics typ-
ically involves surveying a small fraction of the population,
inherently introducing sampling errors. While these surveys
strive to provide estimates with controlled error rates and
confidence intervals, such control is typically applied across
the entire survey population. However, this approach can lead
to varying error rates among population groups, particularly
those distinguished by ethnicity, introducing biases in critical
downstream tasks relying on this data.

Therefore, the first major contribution of this paper is to
address the need for developing sampling schemes that not
only aim to reduce costs but also meet acceptable errors
within each demographic group. The approach explored re-
casts the sampling process as an optimization program, en-
suring that statistical accuracy is maintained across diverse
sub-populations within prescribed confidence errors.

The second major contribution of this work is to analyze
the impacts of privacy-enhancing technologies on the biases
of demographic data. In particular, we focus on differential
privacy (DP) (Dwork et al. 2006) as implemented by the
U.S. Census Bureau. Interestingly, contrary to prevailing in-
tuition in the literature (Fioretto et al. 2022), our findings
suggest that these privacy measures do not necessarily ex-
acerbate disparities under Laplace mechanism. In fact, it is
possible that differential privacy can surprisingly mitigate the
observed unfairness by boosting the representation of smaller
populations (minorities) due to positive biases introduced
during the DP post-processing phase. This observation pro-
vides a novel perspective on the tradeoffs between privacy
and fairness, demonstrating that DP can contribute positively
to fairness when implemented in contexts similar to those an-
alyzed in this work. A schematic illustration of the proposed
framework is provided in Figure 1.

Contributions. This paper makes several contributions:

1. First, we show that conventional sampling strategies may
overlook potential disparate impacts on crucial ethnic
demographic groups. This aspect, illustrated in more detail
in Section 3, provides the basis for the proposed work.

2. We then introduce an optimization approach aimed at mit-
igating these disparate errors, detailed in Section 4. The
proposed approach is modeled on real-world survey de-
sign processes, such as those employed by the ACS, which
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Figure 1: 1. Population statistics from previous years are often used to inform the survey design process; Differential privacy
can be used at this stage to protect sensitive information (e.g., population counts). 2. The survey process includes selecting the
amount of the population to sub-sample as well as collecting information from individuals in multiple phases (e.g., phone calls
and in-person interviews). 3. The collected data is used for important tasks, such as the allocation of funds or the release of
migration patterns. The paper studies the fairness impacts of this pipeline (steps 1 and 2) on multiple population segments.

involve two phases: remote communications (e.g., phone
calls, emails) and door-to-door, geographically targeted
interventions. Our optimization framework is designed
to optimize sampling costs while ensuring that error mar-
gins are within the prescribed error tolerance with a high
probability for each population segment.

Next, Section 5 explores the impact of differential privacy
on the statistics informing the sampling process. Since
the noise adopted by differential privacy can influence
the estimation of group sizes, we ask if it may negatively
affect the reliability of the error bounds established in our
model and exacerbate unfairness. Surprisingly, we found
that on real U.S. survey data, not only is the impact of this
noise negligible, but also due to an intriguing by-product
of positive bias induced by DP post-processing on small
counts, the resulting sampling process exhibits reduced
unfairness across various population segments.

2 Preliminaries and Goals

This paper considers a target population, such as the U.S. pop-
ulation, segmented into G distinct groups characterized by
race, socio-economic status, and other demographic factors.
Let N represent the total population size, with V; indicating
the size of each group i € [G]. We examine the population
statistics @(N), such as average income or poverty levels,
and aim to estimate these via subsampling. The subsample,
of size n where n < N, is used to derive the estimates 6(n).
In particular, this analysis extends to group-specific statistics,
where é(nl) represents estimates from a subsample of size
n; (the number of individuals sampled from group ), and
0(N;) represents the actual statistics for group 4.

To ease notation, in the discussions that follow, @ and 0
will be used to represent the true population statistics and
their estimates from the subsample, respectively, when clear
from the context. Similarly, within each group i € [G], 0;

and 6; will denote the actual statistics for the population and
their corresponding estimates from the subsample.
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Accuracy and fairness. The accuracy of these estimates is
evaluated through their error and variance, defined for group
i as Err(0;) = |0; — 6;|, and Var(6;) = E[02] — (E[6;])?,
respectively. The primary goal is to devise sampling strate-
gies that minimize the sampling cost—defined in subsequent
sections—while ensuring that the probability of an estima-
tor’s error exceeding a certain threshold (;) for each group i:

Pr(|Err(6;)] > vi) < o, Vi€ [G],

remains less than a.
Unfairness in this context is quantified by the maximum
discrepancy in estimator’s variances between any two groups,

&var = max |Var(éi) - Var(éj)|,
,JEG

since the goal of the survey process is controlling confidence
intervals across various populations.

In the first part, this paper will discuss the development
of optimal sampling schemes that balance the reduction of
sampling costs against the constraints on estimator’s accuracy
for each group. Subsequently, we will examine the impact
of privacy on the biases and variance of the various sub-
populations, specifically when privacy-preserving counts N;
are used instead of the actual group population counts [V;.
We next discuss the notion of privacy adopted in this study.

Differential privacy. Differential Privacy (DP) (Dwork
et al. 2000) is a rigorous privacy notion that characterizes
the amount of information of an individual’s data being dis-
closed in a computation. Formally, a randomized mechanism
M : X — R with domain X and range R satisfies (¢, 0)-
differential privacy if for any output O C R and datasets
x,x’ € X differing by at most one entry (written  ~ x’),

PrM(z) € O] < exp(e) PriM(z') € O] +6. (1)

Intuitively, DP states that specific outputs to a query are
returned with a similar probability regardless of whether the
data of any individual is included in the dataset. Parameter
€ > 0 describes the privacy loss of the mechanism, with values



close to 0 denoting strong privacy. When § =0, mechanism
M is said to achieve e- or pure-DP.

A function f from a dataset € X" to an output set O CR"
can be made differentially private by injecting random noise
onto its output. The amount of noise relies on the notion of
global sensitivity Ay =maxg~q || f(x) — f(x')]p, for pe
{1,2}. In particular, the Laplace mechanism for histogram
data release (sensitivity A =1), defined by /\/lLap(w) =x+
Lap(1/¢), where Lap(n) is the Laplace distribution centered
at 0 and with scaling factor 7, satisfies (¢, 0)-DP.

Post-processing. DP satisfies several important properties.
Notably, post-processing immunity ensures that privacy guar-
antees are preserved by arbitrary post-processing steps. More
formally, let M be an (¢, §)-DP mechanism and g be an arbi-
trary mapping from the set of possible output sequences to
an arbitrary set. Then, g o M is (e, §)-differentially private.

3 Real-World Impact: The ACS Case

Next, the paper looks at the implications of sampling strate-
gies in the American Community Survey (ACS), the largest
sampling effort in the U.S. carried out by the U.S. Census Bu-
reau. The ACS samples approximately 3.54 million housing
unit addresses annually, representing about 1% of the U.S.
population, and of those approximately 1.98 million result in
successful samples (USCB 2023c). This relatively small sam-
ple size introduces inherent uncertainties, termed sampling
errors, which are critical in understanding the limitations
and accuracies of the data collected. The Census Bureau ad-
dresses these uncertainties by calculating standard errors and
publishing margins of error at a 90 percent confidence level.

The sampling process in data collection efforts such as the
ACS introduces at least two fairness issues: disparate error
rates across different populations and disparate impact of
privacy-preserving mechanisms on sampling errors. Figure 2
illustrates the former issue, and we will focus on the latter in
Section 5. The figure shows the simulation results using 2021
data for Nebraska with a 1% sampling rate obtained from
IPUMS (Ruggles et al. 2024). The lines represent the errors
attained while estimating the population income, within 6
distinct sub-populations (x-axis). The red dotted horizontal
lines illustrate the target error rates. Mimicking real-world
behaviors, surveys are uniformly distributed so each group
receives a proportionate number based on its size.

Notice that, while the overall population errors (rightmost
bars, in dark-blue colors) are well within the prescribed con-
fidence errors, minority groups, such as Native (American
Indians), Black, and Asian, experience systematically larger
errors compared to the White population. This disparity arises
primarily due to smaller sample sizes among minority groups,
which result in higher margins of error (Kalsbeek 2003). Ad-
ditionally, when analyzing sub-populations by demographic
groups, these discrepancies reveal that they often do not ad-
here to the 90 percent confidence levels established by the
Census Bureau.

These disparities can have important repercussions given
the role of these estimators in driving key policy decisions and
beyond. Crucially, these behaviors are not well documented
and the next section delves into our first key contribution: an
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Figure 2: Disparate errors when allocating a proportional
number of surveys to each racial group in Nebraska using
2022 ACS data. 2021 ACS data is used to compute the propor-
tional allocation which subsample 1% of the total population.

optimization-based mitigation strategy.

4 The Optimal Sampling Design Problem

The proposed approach casts the sampling process for target
estimation as an optimization process, going beyond typical
cost minimization of large-scale surveys, to ensure that error
rates within each sub-population are met with high proba-
bility. This section first outlines the optimization problem,
considering real-world survey constraints, and then quanti-
fies the error of estimators for each sub-population, enabling
efficient implementation of the optimization model.

4.1 Modeling Real-World Sampling Processes

Large survey processes typically involve two phases. The first
phase adopts various remote data collection modes; for ex-
ample, the ACS has used internet interviews since 2013 and
computer-assisted phone interviewing until 2017 (Poehler
2022). The second phase relies on in-person, door-to-door
interviews, requiring the physical allocation of survey work-
ers. Although more expensive, this phase aims to improve
data completeness and reliability, especially in environments
where remote methods are less effective.

The efficacy of each phase is distinguished by distinct
failure rates— the likelihood that an individual, once con-
tacted, does not contribute data. These rates are denoted as
F}! and F? for the first and second phases respectively and
vary across different population segments ¢. The costs associ-
ated with each contact attempt are denoted by c¢; and co for
the first and second phases, respectively. Typically, the cost-
efficiency trade-off is clear: remote methods (Phase 1) are
cheaper but often less effective (F}! > F?), while in-person
interventions (Phase 2) yield higher success rates at a higher
cost (c; < cz). We define ¢g" as the targeted or feasible sam-
pling rate in region r once selected for phase 2. Further, ~;
represents the upper bound of acceptable error for population
segment ¢ (i.e., error rates depicted by the red dotted lines in
Figure 2), and « as the probability that this limit is exceeded.



We define the following program to optimize this process:

rnrnrmrze c1 (Z Di 1) +c2 (Z Z'r‘) (2a)

1€[d] TER
15t phase cost 2nd phase cost

2" phase samples

s.t. n; =p;N —l—z:z7 7N7 1-2) Vi € [G]
re€R
15t phase samples
(2b)
Pr([Err(6:(n:))| > vi) < o, Vi € [G], (2¢)
0<p; <1 VielG], z €{0,1} Vr € R. (2d)

The goal is to minimize the costs associated with contacting

individuals through the two sampling phases described above,
denoted by c; and co (objective (2a)), while ensuring that
the error across each demographic group ¢ does not exceed
~; with a probability greater than « (constraint (2c)). Deci-
sion variables p; model the fraction of group ¢ contacted in
the remote Phase 1, and z,., a binary variable, determines
whether workers are deployed in region r (where R is the set
of all regions) during Phase 2 (constraint (2d)). In the mini-
mizer notation p and z are used as shorthand for the vectors
(pi)icja) and (z,)r¢ g, respectively. Constraint (2b) defines
n;, the average number of individuals that respond to the
survey across Phases 1 and 2. In population of size N;, the
surveyor contacts p; N; individuals in Phase 1; p; N;(1 — F})
is then the rate at which individuals respond in expectation.
In Phase 2, in each region r, the surveyor reaches z,g" N,
individuals, making 2, N7 g"(1 — F?) the expected numbers
of responses from population ¢ in region r.

4.2 Tractable Error Quantification

A key challenge with solving Program (2) is Constraint (2c),
which involves a probability estimation. The lack of a closed-
form expression for this probability hinders the direct inte-
gration of this constraint into the optimization. To address
this, this section provides a tractable upper bound to be used
in place of the probability in Constraint (2c).

Note that, using Chebyshev’s inequality, the probability of
the estimator’s error exceeding +; is bounded above by:

o4

=Pr(|0; — 0;| > ;) < d ,5202)» 3)

%

Pr(|Err(0;)| > i)

where o (01) represents the variance of the estimator 6;. This
variance can then be estimated empirically, as done in prac-
tice (Poehler 2022), using prior data releases. This creates a
statistical proxy, which is discussed in the Section 4.3.

For a given confidence level c, from (3), we can replace

7( i) < «, and
obtain a closed-form approximation for the threshold v, as:

o%(0;) < an?. )
This new constraint strengthens the program by enforcing
Pr(|Err(8;)| > v:) < 7(9 ) < o, which restricts the likeli-

hood that the error in group ¢ exceeds the desired y; threshold,
thus tightening the optimization.

Constraint (2c) by the stronger constraint
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The variance of the estimator o

2(6

2/ C;
o%(6;) = e (%)
where C; is a constant that depends on the variance for group
i. This follows from the variance of the estimator o'2(6;)
being inversely proportional to the sample size n;." Thus, by
substituting this expression into Equation (4), constraint (2c)
can be replaced by the following tractable form:

;) can thus be expressed
as

C;
n; > —5,
ay;

Vi € [G]. (2¢)

4.3 Empirical Variance Estimation

In the above expression, C; is a constant that depends on the
variance of the population for group ¢ (see Equation (5)) and
can be estimated by approximating the variance of the target
estimates across a range of sampling rates. Figure 3 (left)
illustrates such an approach, showing how the variance of
each subgroup changes across sampling rates within practical
(e.g., budget) constraints that limit sampling to no more than
10% of the population. The middle and right figures also
report this effect when privacy is considered to protect the
sub-population counts NNV;, as discussed in Section 5.

Approximating the variance o2 (6;) relies on fitting a curve
of the form < for each population group 4, where a; is the
constant to be estimated and = = 3+ € [0, 1] represents the
sampling rate. These curves, referred to as proxy functions,
estimate the variance based on sampling rates rather than
absolute sample sizes, enabling a direct integration in our
error quantification constraints. Finally, to translate these
proxy functions into a usable format within the constraint
(2¢), we equate C; with a; N; as follows:

A Ci _ q ai a;N;
)= —=—=—— = .
7 ( ) n; xr ni/NZ- n;

5 Private Sampling Scheme

The sampling design discussed above assumes accurate
knowledge of population sizes; however, the confidential-
ity of collected micro-data is often legally mandated. For
example, it is regulated by Title 13 (U.S. Congress 1954)
in the U.S., and, to comply with it, the U.S. Census Bureau
used differential privacy for their 2020 decennial census re-
lease (Abowd 2018). However, the use of DP mechanisms in-
troduces perturbations in the data that may disproportionately
affect smaller populations (Tran et al. 2021; Zhu, Fioretto,
and Hentenryck 2022). This section studies how privacy-
protected statistics could influence fairness in data collection.

More precisely, we consider population sizes N, released
differentially-privately for each group ¢ € [G] and region
r € R, emulating the census data release. Therefore, instead
of having access to the exact V], the survey designer only
has access to imperfect, noisy estimates given by:

NI =max (0, N + Lap(Az/e)), (6)
"For n iid random variables z; ~ A (u, o) and estimator £ =
2

ZZLI"' . Var()=Var(+ Y "z;) = L Var(Y'z:) = no’ ==

n
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Figure 3: Estimating the variance of mean income in Connecticut using race as a subgroup with different privacy budget ¢.
Points: actual estimator measurement, curves: proxy function fitting. Results averaged over 200 trials and 200 data points.

where Az =1 (sensitivity of the count query). We further
note that the noisy counts are post-processed to ensure non-
negativity (as is done in the U.S. Census (Spence 2023)), here
using the max(0, .) operator.

The challenge in this context is that noise can distort es-
timates of population sizes [V, , influencing the number of
individuals n; who respond to the survey in each group . This
distortion affects errors in Constraint (2b) and compromises
achieving the desired error targets and confidence levels. This
section outlines our second key contribution: we offer theoret-
ical insights into the biases introduced by using IV, instead
of N, while Section 6 will offer a practical analysis of these
impacts. Our main result is a closed-form expression for the
bias of the estimate 1\7[ , showing that this bias is invariably
positive
Theorem 1. Foralli € [G), r € R, the bias of estimate N
is given in closed-form by:

~ ~ Ax Ne
B(NT) =E {N{} - N] = S exp (— A > > 0.

Observe that not only is the bias term always positive (¢
is always positive), but also for fixed privacy budget ¢, this
bias is higher on groups with small N;. This implies that
minority populations, such as Native Americans, are more
likely to be overestimated. Further, if all other parameters
are fixed, when ¢ increases, the bias decreases; in extreme
cases, when ¢ — oo (no privacy), the bias converges to 0,
and when ¢ — 0 (perfect privacy), the bias grows large. This
implies an interesting effect: the bias-induced overestimation
of minority populations and its beneficial effects in correcting
for under-allocations increase as ¢ decreases. Surprisingly,
and contrary to much of previous known effects (Fioretto et al.
2022), in the context studied here, enforcing stronger privacy
induces less unfairness towards minority populations!

This result implies the following corollary deriving the bias
of the aggregated (e.g., state level) counts on Ny =3 o N/

given the various N (e.g., county level), highlighting once
again a more pronounced effect on minority populations:

Corollary 1. The bias of the aggregated counts for each
subgroup on the state level is

r€[R]

This further highlights that while this positive bias will
have a major relative impact on minority populations, over-
estimating minority populations allows a standard sampling
scheme to allocate more surveys to minorities, thus reduc-
ing their relative errors. An empirical analysis of this phe-
nomenon is provided in Section 6.2.

It is important to note that the U.S. Census Bureau im-
plemented the TopDown Algorithm for the 2020 Census, a
differential privacy mechanism designed to ensure hierarchi-
cal consistency across varying geographical units. Rather
than introducing a positive bias across all populations, the
algorithm introduces a positive bias towards minority groups
and a negative bias towards majority groups to maintain con-
sistency in the hierarchical statistics (Michael Hawes 2020).
Here, we use a differentially private mechanism without hier-
archical consistency for simplicity and clearer analysis.

6 Experimental Results

Next, the paper provides empirical evidence for the efficacy
of the proposed optimization method on real-world data and
settings first without and then with privacy considerations at
hand. The experiments examine survey costs, group fairness,
and utility offered by the proposed fairness-aware method.

Datasets and settings. The experiments use ACS data from
IPUMS (Ruggles et al. 2024) for 2021 and 2022, leveraging
2021 data for estimating the various N, and 2022 data as
ground truth for sampling and assessing target estimators.
We divide geographical units based on Census Tract-level
data, each containing about 4,000 individuals. The focus is
on estimating annual total pre-tax personal income across
different ethnic and educational groups as defined by IPUMS
and the Census Bureau. We focus on Connecticut as the
primary state for analysis here.

Algorithms. This analysis evaluates various survey alloca-
tion mechanisms, comparing their efficiency, fairness, and
effectiveness in achieving desired confidence levels, not only
at the entire state level but also at the sub-population levels:

¢ Standard Allocation: This baseline method, also known
as proportional stratified random sampling, allocates sur-
veys to each population group ¢ in proportion to their size.
This approach is a stronger baseline than simple random
sampling for two key reasons: it provides more precise
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Figure 4: Relative group errors from estimating mean income
in Connecticut.

population estimates by reducing variance within each sub-
group?, and it ensures that the sample proportions are rep-
resentative of the overall population (Lohr 1998).

* Optimization: Phase 1 Only: This variant applies the
optimization from Program (2), assuming the survey is
conducted by only using the first phase. More concretely,
the program excludes the 2nd phase components in (2a)
and (2b). This model mirrors the proportional stratified
random sampling by optimizing survey numbers within a
single operational phase.

* Optimization: Phase 1 and 2: This approach uses both
phases as outlined in optimization (2), aligning closely
with practical survey methodologies. Note that the choice
of failure rates and costs influences the optimization out-
comes. In particular, high failure rates (F! and F}?) or low
error tolerances (« and -y) increase the total survey cost
due to more failures and tighter constraints. The default
confidence constraints are set at & = 0.1 and ; = 10% of
the mean income for each subgroup ¢. Default failure rates
are F! = 0.60 and F? = 0.20 Vi € [G], and the cost of
surveying a region in phase 2 is set to be 500 times more
expensive than the cost of reaching out to an individual
with phone calls in phase 1. Finally, the sampling rates for
geographies are set as ¢" = 0.1 Vr € R. This translates to
sampling 400 people per selected region.

Evaluation metrics. The evaluation of these mechanisms
focuses on three primary metrics:

1. Survey cost: Measured as a percentage of the cost refer-
ence used by the standard allocation.

2. Fairness of variance: Assesses the equitable distribution
of survey errors across different groups.

3. Confidence compliance: Evaluates the ability to meet
the prescribed confidence errors (v;) at a 10% thresh-
old, which aligns with the current standards of the ACS
(Poehler 2022), and setting o = 0.1.

2The number of surveys per subgroup has no variance.
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Figure 5: Number of surveys allocated for each subgroup in
the experiments reported in Figure 4.

Further exploration of the impact of privacy on these metrics
is detailed in Section 6.2.

6.1 Optimized Sampling: Errors and Fairness

We start by assessing the performance of two variants of our
method (“Phase 1 Only” vs. “Phase 1 and 2”) against the
standard allocation mechanism, without DP considerations.

The results, summarized in Figure 4, show that the Stan-
dard Allocation method yields the lowest variance of error
when estimating the overall population’s income. However,
this method disproportionately affects minorities, who re-
ceive fewer surveys and experience a higher variance of er-
ror at the group level. This discrepancy results in the worst
fairness of variance ({v,,) observed (refer to table under Fig-
ure 4), and minority groups even fail to meet the confidence
constraints set for their estimations!

In contrast, the Phase 1 Only optimization approach
achieves a more uniform error variance across all subgroups
while using the same budget used in the Standard Allocation
method. Inspecting the optimization solutions, it can be ob-
served that equity is achieved by allocating a similar number
of surveys to each subgroup, irrespective of their population
size. Figure 5 reports the number of survey allocations by
race and by each method, and provides a clear view of the
nature of the disparities. This redistribution significantly low-
ers the error variance for minorities (including Native, Black,
Asian, Other, and Multi.), while slightly increasing it for the
majority (White). Importantly, this approach enhances fair-
ness and ensures all groups meet the confidence thresholds,
addressing the main drawback of the Standard Allocation.

Next, we focus on our main approach. As discussed in
Section 4, phase 2 is characterized by a higher success rate
(FZ-1 > FZ-Q) at a greater cost (c; < cg). Despite its higher
per-survey cost, phase 2’s low failure rate results in a higher
number of successful samples for the same overall cost, mak-
ing the Phase 1 and 2 method substantially cheaper (86% of
Phase 1 Only cost) (see table under Figure 4). However, once
regions are selected for phase 2, simple random sampling is
executed at a 10% rate (¢g") from each chosen region. This
method introduces some uncertainty in the number of suc-
cessful samples for each subgroup, although the optimizer pri-
oritizes regions with high densities of the targeted population.
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Figure 6: Relative errors from estimating mean income using DP-noised N;" in Connecticut. Each region used in the phase 2
contains approximately 4,000 people, similar to the size of Census Tracts.

e\ Race White Black | Native | Asian Other Multi. Total
0 2,039,731 | 315,568 | 7,571 | 143,584 | 215,150 | 295,844 | 3,017,448
10 2,039,355 [ 315,182 | 7,524 | 143,226 | 214,766 | 295,482 | 3,015,535

1 2,039,298 | 315,199 | 7,699 | 143,260 | 214,736 | 295,495 | 3,015,687
0.1 2,038,844 [ 315,320 | 10,681 | 143,846 | 214,555 | 295,705 | 3,018,951
0.01 2,034,218 | 321,513 | 42,068 | 158,498 | 222,160 | 304,533 | 3,082,990

Table 1: Impact of DP on estimated population size for each
race in Connecticut using prior (e.g., ACS 2021 dataset).

This slightly reduces the performance and fairness of variance
compared to the Phase I Only optimization. Nonetheless, the
Phase I and 2 method meets (by construction) the confidence
constraints for every group, as empirically demonstrated.

6.2 DP-Sampling: Errors and Fairness

Next, we focus on the setting with differential privacy, em-
ploying the privately adjusted counts N, as described in
Equation (6). The results are reported in Figure 6, again for
the state of Connecticut.

The first surprising result comes when analyzing the Stan-
dard Allocation approach. While one might expect the added
noise to exacerbate errors for minorities, here adding more
noise reduces the variance of errors for minorities! This in-
teresting behavior occurs because the induced strong positive
bias overestimates the minority population size resulting in
a higher allocation of surveys to these groups, as observed
by our theoretical analysis in Section 5. Table 1 summarizes
this effect, where it is possible to observe how much the
smallest group (Native) size is conflated with the addition of
noise (smaller ). This increased allocation not only reduces
the error variance but also improves fairness, countering the
typical expectation that more noise increases error.

On the other hand, the Phase I Only optimization appears
to be insensitive in the variance of errors with respect to e.
This stability arises due to C';, which determines the required
number of samples, does not depend on group size. Thus,
noise added to the population count does not impact sur-
vey distribution, maintaining consistent error variance across
varying noise levels.

In contrast, the Phase I and 2 method experiences slight
changes in the variance of errors with added noise. This is
due to how noise affects the selection of regions for Phase
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2, which relies on the population composition from prior
data. More noise increases the probability of incorrect region
selection, altering survey distribution and consequently, error
variance.

The observed higher positive bias in minorities as ¢ de-
creases is explained by Corollary 1: it notes that a smaller N,
leads to larger positive biases. This implies that the region
size used in phase 2 directly influences the level of positive
bias.

Finally, note that the larger positive bias observed as e — 0
in Table 1 led to less discrepancy between the population
sizes of different subgroups by overestimating the minorities.
This results in a more uniform allocation of surveys across
subgroups, thereby improving fairness. This suggests that
allocating an equal number of surveys to each group, irre-
spective of population size, may result in roughly the same
relative errors.

7 Conclusion

This work was motivated by the observations of unfairness in
large survey efforts of critical importance for driving many
policy decisions and allocations of large amounts of funds
and benefits. This paper showed that in surveys like the Amer-
ican Community Surveys, traditional sampling methods dis-
proportionally affect minority groups, leading to biased sta-
tistical outcomes. To address these issues, we introduced
an optimization-based framework to ensure fair represen-
tation in error margins in each population segment while
minimizing the total sampling costs. Additionally, this paper
examined the effects of differential privacy on the accuracy
and fairness of the realized surveys. Contrary to common
intuitions, our findings reveal that differential privacy can
reduce unfairness by introducing positive biases beneficial to
underrepresented populations. These findings are validated
through rigorous and comprehensive experimental analysis
using real-world data, demonstrating the effectiveness of the
proposed optimization-based strategies in terms of enhancing
fairness without compromising data utility and costs.

We believe that these results may have significant impli-
cations for policy formulation and resource allocation with
critical societal and economic impacts.
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