First Identification of Caudal Bifurcation in the Texas Spotted Whiptail (Aspidoscelis gularis gularis)

Sam C. Godwin, Department of Biological Sciences, Clemson University, Clemson, SC; sgodwin273@gmail.com

Benjamin T. Camper, Department of Biological Sciences, Clemson University, Clemson, SC; bcamper@g.clemson.edu

Riley T. Manuel, Department of Ecology and Evolutionary Biology, University of Michigan, MI; rtmanuel@umich.edu

Luis A. Garcia, Department of Wildlife & Fisheries Biology, Clemson, SC; Igarci5@g.clemson.edu

James M. Walker, Department of Biological Sciences, University of Arkansas, Fayetteville, AR; jmwalker@uark.edu

James E. Cordes, Division of Arts and Sciences, Louisiana State University Eunice, Eunice, LA; jcordes@lsue.edu

Sharon A. Bewick, Department of Biological Sciences, Clemson University, Clemson, SC; sbewick@clemson.edu

audal wounds in many species of lizards can cause a variety of responses, ranging from simple wound healing and continued tail growth to the development of one or more supernumerary branches at the injury site. An injury to the tail in many lizards (i.e., incomplete caudal loss) most often results in a bifurcated tail (i.e., old tail growth and new tail growth; Bateman and Fleming 2009, Pheasey et al. 2014, Walker and Flanagan 2019). Caudal bifurcation has been documented in numerous groups of lizard species that exhibit tail regeneration (e.g., iguanids, scincids, lacertids, agamids, and geckonids [Tamar et al. 2013, Vergilov and Natchev 2017, Koleska 2018, Ofori 2018]) and groups of salamander species that exhibit tail regeneration (e.g., salamandrids, ambystomatids, and plethodontids [Semlitch et al. 1981, Henle et al. 2012, Hartzell 2017]).

Although Aspidoscelis is a diverse lizard genus, tail bifurcation has only been documented in relatively few species within this group. More specifically, tail bifurcation has only been reported in five species within Aspidoscelis: A. exsanguis, A. neomexicanus, A. uniparens (Bateman and Chung-MacCoubrey 2013), A. sexlineatus (Trauth et al. 2014) and A. velox (Cordes and Walker 2013, Caicedo-Martínez et al. 2022). However, other closely related species with documented tail bifurcation include Cnemidophorus lemniscatus (Walker and Flanagan 2019) and Kentropyx pelviceps (Caicedo-Martínez et al. 2022). Here, we report the first known instance of tail bifurcation in the Texas Spotted Whiptail (Aspidoscelis gularis gularis; Baird and Girard, 1852).

On Tuesday, 11 July 2023, a male *A. g. gularis* was captured in a prawn trap (ca. 26.0640°N, -98.0234°W, WGS84) used to capture whiptail lizards as part of a larger field study at the La Coma Land Tract. This is a small natural area within the Lower Rio Grande Valley National Wildlife Refuge and is situated directly south of Weslaco, Hidalgo County, Texas. It stretches roughly 1.754 km along the Rio Grande (i.e., ca. 26.059809°N, -98.021574°W to 26.063297°N,

-98.032800°W, WGS84, elev. ca. 23 m). Our observation was unusual in that it exemplified an early stage of tail bifurcation (Fig. 1, C and D), with the secondary tail growth measuring only 6 mm from the node of bifurcation. The dorsal and ventral color patterns (Fig. 1, A and B) indicate that the individual is a male. We further everted the hemipenes to confirm the sex. This individual had a snout-vent length of 82 mm and a tail length of 162 mm. The node of tail bifurcation started 55 mm from the caudal end of the tail. Note that the images were taken post-collection of a tail clip sample (10 mm) for genetic analysis. This individual has been recaptured twice, first on Sunday, 16 July 2023 and then on Thursday, 20 July 2023.

Acknowledgements—The Clemson group was funded by National Science Foundation award #2105604 to SAB. Site access was allowed under USFWS permit LRGV-04-26-23-SAB held by BTC. Funding for JEC was provided by an Endowed Professorship through Louisiana State University Eunice Foundation and Opelousas General Hospital and supplemented by the J.M. Walker Family Trust.

Literature Cited

Bateman, H.L., and A. Chung-MacCoubrey. 2013. Aspidoscelis exsanguis (Chihuahuan Spotted Whiptail), Aspidoscelis neomexicana (New Mexico Whiptail), Aspidoscelis uniparens (Desert Grassland Whiptail). Bifurcated tails. Herpetological Review 44:663.

Bateman, P.W., and P.A. Fleming. 2009. To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology 277:1-14.

Caicedo-Martínez, L.S., I.Y. Mejía-Fontecha, J.A. Rojas-Morales, J.R. Caicedo-Portilla, and H.E. Ramírez-Chaves. 2022. Tail abnormalities in four lizard species (*Anolis, Hemidactylus, Iguana, Kentropyx*) from Colombia. Herpetology Notes

Caudal wounds in many species of lizards can cause a variety of responses, ranging from simple wound healing and continued tail growth to the development of one or more supernumerary branches at the injury site.

15:797-803.

Cordes, J.E., and J. M. Walker. 2013. *Aspidoscelis velox* (Plateau Striped Whiptail). Bifurcation. Herpetological Review 44:319.

Hartzwell, S.M. 2017. Tail bifurcation in a Northern Dusky Salamander, *Desmognathus fucus* (Caudata: Plethodontidae) Herpetological Notes 10:181-182.

Henle, K., B. Mester, S. Lengyel, and M. Puky. 2012. A review of a rare type of anomaly in amphibians, tail duplication and bifurcation, with description of three new cases in European species (*Triturus dobrogicus*, *Triturus carnifex*, and *Hyla arborea*). Journal of Herpetology 46:451-455.

Koleska, D. 2018. First record of tail bifurcation in *Asaccus gallagheri* from the United Arabian Emirates. Herpetological Notes 11:115-116.

Ofori, B.Y., P., Martey, Y. Musah, and D. Attuquayefio. 2018. Tail bifurcation in the African Rainbow lizard (*Agama picticauda* Peters 1877) from Ghana, West Africa. Herpetology Notes 11:843-845.

Pheasey, H., P. Smith, J. Brouard, and K. Arkinson. 2014. *Vanzosaura rubricauda* (Red-tailed

Vanzosaur). bifurcation and trifurcation. Herpetological Review 45:138-139.

Semlitsch, R.D., G.B. Moran, and C.A. Shoemaker. 1981. *Ambystoma talpoideum* (Mole Salamander). Morphology. Herpetological Review 12:69.

Tamnar, K., E. Maza, and S. Meiri. 2013. Ophisops elegans (Snake-Eyed Lizard). Bifurication. Herpetological Review 44:146.

Trauth, S.E., J.M. Walker, and J.E. Cordes. 2014. Aspidoscelis sexlineata sexlineata (Six-lined Racerunner). Supernumerary caudal anomalies and a bifid tail. Herpetological Review 45:492-493.

Vergilov, V., and N. Natchev. 2017. First record of tail bifurcations in the snake-eyed skink (*Ablepharus kitaibelii* Bibron & Bory de Saint-Vincent, 1833 from Pastrina hill (northwestern Bulgaria). Arxius de Miscel-Iania Zoologica 15:224-228.

Walker, J.M., and A. Flanagan. 2019. *Cnemidophorus lemniscatus* (Rainbow Whiptail). Caudal wound and bifurcation. Herpetological Review 50:371-372.

Fig. 1. Dorsal **(A)** and ventral **(B)** photographs of male *Aspidoscelis gularis gularis* captured with a bifurcated tail. Photographs **C** and **D** exemplify the positioning of the observed tail bifurcation.