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Abstract. Internet of Things (IoT) devices have increased drastically
in complexity and prevalence within the last decade. Alongside the pro-
liferation of IoT devices and applications, attacks targeting them have
gained popularity. Recent large-scale attacks such as Mirai and VPNFil-
ter highlight the lack of comprehensive defenses for IoT devices. Existing
security solutions are inadequate against skilled adversaries with sophis-
ticated and stealthy attacks against IoT devices. Powerful provenance-
based intrusion detection systems have been successfully deployed in
resource-rich servers and desktops to identify advanced stealthy attacks.
However, IoT devices lack the memory, storage, and computing resources
to directly apply these provenance analysis techniques on the device.
This paper presents ProvloT, a novel federated edge-cloud secu-
rity framework that enables on-device syscall-level behavioral anomaly
detection in IoT devices. ProvloT applies federated learning techniques
to overcome data and privacy limitations while minimizing network over-
head. Infrequent on-device training of the local model requires less than
10% CPU overhead; syncing with the global models requires sending
and receiving ~2MB over the network. During normal offline operation,
ProvIoT periodically incurs less than 10% CPU overhead and less than
65MB memory usage for data summarization and anomaly detection.
Our evaluation shows that ProvIoT detects fileless malware and stealthy
APT attacks with an average F1 score of 0.97 in heterogeneous real-world
IoT applications. ProvIoT is a step towards extending provenance anal-
ysis to resource-constrained IoT devices, beginning with well-resourced
IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.
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1 Introduction

The Internet of Things (IoT) revolution established a radical new computing
paradigm that traditional security protocols have failed to comprehensively
cover. With the recent development of small and powerful devices [8,39,65],
increased network connectivity [70] has allowed IoT devices, including wearables,
drones, and autonomous vehicles, to be deployed at an unprecedented scale [31].
These IoT devices are not only independently security critical [1, 78], but they are
also entry points into a network to perform data theft, surveillance, and denial-
of-service [21,22,83] attacks. As IoT technology’s attack surface increases, so will
the prevalence of attacks targeting IoT devices.

Traditional stealthy attack techniques are quickly being adapted to threaten
ToT devices and cyber-physical systems [15,42]. Various security solutions for IoT
devices have been proposed to defend against these attacks, but they are limited
in their capability to defend against skilled adversaries [60, 71]. Beyond the legacy
approach to defense, several provenance-based security approaches [14,41,43,82]
have been proposed to protect conventional IT infrastructure (e.g., server and
desktop computers) against sophisticated malicious actors. Instead of a naive
dependence on static signatures, provenance-based solutions analyze the runtime
behavior of known programs to detect anomalies.

Provenance-based defenses provide a promising approach for IoT devices as
well. These defenses first capture the benign behavior of the program by aggre-
gating auditing data to show causal relations between system events. These
causal events are represented as a provenance graph, which is then vectorized
so that machine-learning (ML) techniques can model the typical (i.e., benign)
behavior of the program. Provenance graphs are rising in popularity along-
side advances in graph-based learning approaches [29]. However, the overhead
incurred by graph techniques that digest an entire provenance graph is unac-
ceptably high for most IoT devices.

Since most IoT devices run on limited resources, system components such as
the CPU, memory, and storage are engineered to serve a single dedicated task,
leaving scarce resources for security. Network bandwidth is likewise constrained
in mobile IoT situations. These limitations severely hinder the data processing
efforts required to support graph-based ML security solutions for IoT systems.
Since the quality of the data deteriorates, the detection accuracy of ML models
using the data also deteriorates. Additionally, the often scattered nature of IoT
deployment makes the task of consistent and stable data collection challenging.

To address these issues, we propose ProvIoT, a novel federated edge-cloud
collaborative security architecture for IoT that extends the detection capability
of IoT security against sophisticated and stealthy attacks. ProvIoT aims to pro-
vide a system-wide behavioral graph analysis framework for the IoT domain. To
overcome the IoT specific data collection and privacy constraints, ProvIoT uses
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a federated edge-cloud collaborative framework with two major components: (1)
A Local Brain for system event collection, summarization, model training and
anomaly detection in an edge device, and (2) a Cloud Brain for performing
federated averaging [55] on these local models to produce a global model and
orchestrating the distribution of the global model.

Our work extends a path-based graph summarization approach for system
provenance analysis [41,43,82] that reduces computational overhead by extract-
ing subgraphs (i.e., causal paths) from the whole provenance graph. We design
a novel federated anomaly detection framework using Local Brains and a Cloud
Brain in the context of IoT. Our prototype runs Local Brains on multiple IoT
platforms — ARM-based IoT, edge GPU devices [39,65], and x86-based Linux
hosts. For a long term evaluation, we deployed Local Brains to 33 devices and
collected low-level system events over twelve months.

The Cloud Brain established global behavioral models for the twenty com-
monly installed programs listed in Table 3 and the five major IoT use cases listed
in Table2. We evaluated ProvIoT against real-world IoT malware designed to
impersonate long-running and trusted software which included both natively
fileless malware and malware [20] that uses a fileless wrapper [36]. We also used
realistic testbeds to reproduce prominent attacker tactics, techniques, and pro-
cedures (TTPs) that comprise the essential components of advanced persistent
threat (APT) campaigns following the MITRE ATT&CK framework. Our evalu-
ation results in Sect. 7 show that ProvIoT efficiently constructs behavioral mod-
els that can accurately detect stealthy attacks, including fileless IoT malware
and APT-style attack campaigns.

In summary, our work brings in the following contributions:

— To the best of our knowledge, ProvIoT is the first proposed provenance based
security detection approach in the context of IoT that counters stealthy
attacks using federated learning and on-device detection.

— ProvloT provides a new design choice for federated edge-cloud collabora-
tive security learning by streamlining computationally expensive graph-based
behavioral security in the IoT context.

— We extensively evaluated the efficiency and effectiveness of ProvloT with
realistic deployments. Adversarial cases are carefully designed using realistic
attack cases and fileless malware samples.

— We will publish the complete IoT provenance dataset and tools required for
our data analysis pipeline [61] as open artifacts.

2 Background

In this section, we first introduce fileless attacks, their operations, and their
application to the IoT domain. We then provide insights for using in-host system
provenance graphs to build behavioral models in IoT devices.
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2.1 Fileless Attacks on IoT Devices

In this paper, fileless attack refers to a group of attack techniques with no
footprint in the file system. Alternative terms used in the field include “zero-
footprint”, or “living off the land” [26].

Fileless attacks are characterized by the impersonation of trusted off-the-shelf
applications and pre-installed system utilities. Since many of these trusted appli-
cations are commonly used by users and system administrators, it is harder for
defenses to block access to them to prevent such attacks completely. Such imper-
sonation techniques have seen rising popularity in recent cyberattacks [26,51].
Instead of storing the malware payload directly onto the disk before executing it,
this malware uses the strategy of “living off the land” by injecting it into benign
running processes (e.g., trusted applications) and avoiding detection by execut-
ing only in process memory. During runtime, the malware may also rename itself
to a seemingly benign process name using a prctl(PR_SET_NAME) call. These
impersonation approaches have diverged and evolved in multiple ways in IoT
systems [33,34]. Some possible impersonation approaches are highlighted below.

Process Injection. ptrace() is a system API used to support code injection
to another process for development purposes. However, attackers have abused
ptrace() to inject malicious code into the memory of legitimate processes [13].

In-Memory Execution. The memfd create() system API family creates an
anonymous file in memory-mounted file systems. Using memfd create(), an
attacker can directly load malware from the memory space without writing a
payload to the filesystem. This attack enhances the traditional attack strategy
of storing malware in transient storage (e.g., /tmp, /var/run, /dev/shm). With
memfd _create(), the malware further reduces its footprint, preventing users
from locating it with standard filesystem access even during runtime. Multiple
loader frameworks [36] exist that are able to encode regular file-based malware
into different fileless variants.

Case Study: FritzFrog. In January 2020, a security group discovered and
reported FritzFrog [42], a sophisticated peer-to-peer (P2P) malware botnet.
FritzFrog is a crypto mining worm that breaks into and spreads through SSH
servers. Written in Golang to natively target different architectures, FritzFrog
uses fileless techniques to leave no traces on the filesystems of the infected
devices. We specifically consider FritzFrog in the context of IoT devices.
FritzFrog performs file operations in memory to impersonate a regular benign
system process’s identity. After the initial break-in, FritzFrog masquerades as the
nginx web server or the ifconfig process. The infected IoT device connects to a
command and control (C&C) server via encrypted sessions to seemingly benign
beacons. Then, the malware infects other IoT devices to mine cryptocurrencies
by exploiting a weakness in SSH services. Figure 1 compares the behavior of the
original nginx process and that of FritzFrog impersonating nginx. Although
FritzFrog leaves no filesystem footprint, provenance-based intrusion detection
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Fig. 1. FritzFrog malware impersonating nginx web-server.

systems can detect and defend against it as the behavior of benign nginx and
FritzFrog are distinct.

2.2 System Provenance and Graph Learning

ProvIoT extends system provenance analysis [53], originally proposed by King et
al. [45], to implement on-device edge IoT behavior monitoring system. System
provenance operates through the installation of a data collection agent on each
host to collect syscall level system events. These events are then sent to an
in-memory database to build a causality graph by associating data and control
dependencies between processes, files, and network resources. The events that
system provenance collects are as follows: (1) process events, such as process
create and destroy; (2) file events, including file read, write, and execute; and
(3) network events, including socket create, destroy, read, and write.

With the increased deployment of provenance-based security solutions in
the last decade [35], the output of system provenance, the provenance graph,
forms the foundation for graph-based learning and detection approaches. In this
regard, provenance graphs best represent the runtime characteristics of system
entities and have quickly become an essential source of input to model a pro-
gram’s runtime behavior. Along with recent developments in graph-based learn-
ing approaches [46,67], research on behavioral modeling and its application for
anomaly detection has gained considerable momentum [43,82].

While Graph Neural Network (GNN)-based learning analysis techniques have
exploded in popularity, they often struggle to digest provenance graphs, which
are large and extremely dense. Typically, system provenance graphs contain
many nodes and edges that store the different labels and detailed attributes
system events. For instance, our graph dataset produced nodes and edges with
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an average of 10 ~ 15 attributes for node and edge types. In our attempt to
evaluate a GNN-based framework on our data, we encountered many limitations
with the open-sourced framework [76,84] especially in regard to the processing
power needed to process provenance graphs.

Works such as [43,82] have addressed the challenge of data processing over-
head in general Neural Network (NN) approaches by implementing efficient path
selection to build behavior models for detecting anomalous deviations. To adapt
this design for use in IoT devices, we collect system-level events on the IoT
devices and summarize them using the path selection approach. Recent advances
in IoT machine learning frameworks have also made significant strides in execut-
ing sophisticated neural architectures in low-resource IoT environments [10,52].
The Local Brain locally trains a model on local data and shares only the model
weights with the Cloud Brain. The Cloud Brain aggregates the model weights in
a federated way [27] to build behavioral profiles that integrate global perspectives
across multiple devices while preserving each device’s privacy.

3 Threat Model

Our threat model assumes that the data collection and summarization pipeline
on the IoT device is trusted i.e., the integrity of the provenance records are
guaranteed by existing secure provenance systems [41,43,62,82]. This assump-
tion is consistent with existing provenance research that requires end-host data
collection and reporting [43,53,82]. Securing and verifying the trustworthiness
of the end-host data reporting is an important research topic that is orthogonal
to our research [19]. Procedural dataset poisoning is outside the scope of our
work. We consider the use of distributed consensus protocols [49] or attestation
approaches that extend the root of trust with hardware level support [79].

Attacks targeting the IoT platform, communication infrastructure [18], or
the analysis process running in the cloud are outside the scope of this paper.
We further assume that the reporting agents are honest and restrict our target
ToT devices to those with at least 375MB of RAM [60,71] to support prove-
nance summarization. Many modern commodity IoT devices (e.g., smart ther-
mostats [3], smart watches [2], smart fridges [16], smart doorbells [11], and smart
home devices [5]) are equipped with 512MB or more of RAM.

ProvloT attempts to detect malicious behavior in IoT systems by learning
the distribution of expected benign behaviors and reporting significant devi-
ations from that expectation. We primarily consider APT scenarios [62] and
fileless malware [42,58,80] that impersonates one or more of a set of whitelisted
programs to evade traditional IDS [41] mechanisms.

4 System Overview

Figure 2 presents the architecture of ProvIoT, that is composed of two collab-
orating subsystems: Local Brains and a Cloud Brain. Each Local Brain gathers
host-level monitoring data from the IoT device into an in-memory database. It
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Fig. 2. The federated training pipeline of ProvIoT.

then summarizes the data and converts it to neural embeddings for ML model
training. Data summarization only incurs 10% CPU usage and 656MB of RAM
overhead. We can set the relevant local events and model training to run infre-
quently during low-load periods. After the local training, the Local Brain sends
the updated neural weights to the Cloud Brain.

The Cloud Brain uses federated averaging [55] to combine the weights
received from the Local Brains into a global model, which is sent back to each
Local Brain for use in detection. The Local Brain can then perform detection
directly on the IoT device using the federated global model. Periodically, the
Local Brain will synchronize with the Cloud Brain, pushing up its local weights
and fetching the updated global model. The only communication that the Local
Brains have with the Cloud Brain is the communication of model weights during
training. The Local Brains are fully capable of defending the IoT devices even
when disconnected from the network.

4.1 Local Brain

We deploy a Local Brain to each IoT device to collect host-level monitoring
data including process creations, file operations and network socket interactions.
The Local Brain’s training has the following major steps: (1) data collection,
(2) provenance graph generation, (3) causal path extraction, (4) feature vector
inference and (5) model training.

The first step in doing provenance analysis in IoT is data collection @), where
we collect system monitoring data and create system event records. Similar
to [41,43,53,62,82], we collect monitoring data for the following types of system
entities: processes, files, and Unix domain sockets. Each entity type is associated
with a set of attributes. For example, the attributes of a process are its creation
time, command used to invoke, executable path and other relevant information.
We use these entities and the interactions between them (e.g., creation, reading,
writing) to represent the system behaviors of the IoT device.

The collected data consists of raw syscall sequences which are translated
into meaningful system information (e.g., file descriptors are translated into file
paths and PIDs are translated into process names) and stored in the provenance
database. After translation, the data collection module processes the information
into system events, which embodies the interaction between two system entities.
Formally, we define a system event as er(ng, ng,t) where ng is the source entity,



248 K. Mukherjee et al.

ng is the destination entity, ¢ is the time when e occurs, and R is the relation-
ship (e.g., read, write, create). For example, Process A opens (with write
permission) File B at time T is e, (A, B,T).

System events are queried from an in-memory database to generate @ the
provenance graphs, G(p), for a particular program. The generated provenance
graphs are decomposed into subgraphs (i.e., provenance paths). Formally, we
define a causal path A in a provenance graph G(p) as an ordered sequence of
system events (or edges) {e1,€es,...,€,} in G(p), where Ve;,e;.1 € \, e;.dst ==
ei+1-src and e;.time < e;,1.time. The time constraint enforces that an event can
only be dependent on events in the past, which prevents infinite loops.

After causal paths are extracted from provenance graphs, the relevant causal
paths are extracted @) using a frequency database. Relevant causal paths during
training are the common causal paths since we want to train the behavioral
model with common provenance paths, but during anomaly detection relevant
causal paths are the rare, since we want to detect these rare behaviors.

The frequency database stores historical behavior information for a particular
program and is used during the ranking process, including how many times the
system has seen a particular system event in the past. For example, if an entry
in the frequency database is </bin/bash|CREATE|/bin/cat, [1000]>, it means
in the past /bin/bash created /bin/cat one thousand times. False positives
due to benign program evolution is an important issue for ML-based detectors.
Therefore, ProvloT updates the frequency database at run-time using benign
behavior to capture the evolution of program behavior.

The relevant causal paths are converted @ to feature vectors using
doc2vec [50]. The local model is then trained @ on the feature vectors, and
the model weights are sent @ to the Cloud Brain to update the global model
and propagate the localized information to the other connected Local Brain
instances. After the Local Brain receives the aggregated global model weights, it
starts the anomaly identification process. The Local Brain model uses the new
model weights to detect anomalous behavior and raises an alert if any anomalous
events are found. The pipeline is visualized in Fig.3 and explained in Sect. 5.

Since the only connection with the Cloud Brain host is for sending and receiv-
ing model weights, the network overhead is constant and independent of the
amount of data processed on each IoT device. Additionally, since the global
models are stored on the device itself, the Local Brain can still operate even if
the network connectivity is lost. This gives ProvIoT an advantage over other IoT
behavioral anomaly detectors [32,69] as it does not require the transmission of
the data to a centralized server for detection to occur. This also preserves the
privacy of the device. We describe the detection models in more detail in Sect. 5.

4.2 Cloud Brain

Since the Cloud Brain resides in the cloud, it has sufficient computing power to
aggregate @ the model updates from multiple Local Brain instances to build
the global detection models and to synchronize the aggregated global weights
with the Local Brain instances. This architecture scales more efficiently than
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Fig. 3. The detection pipeline of the Local Brain.

centralized off-device detection schemes because federated averaging is infrequent
and is less intensive than performing anomaly detection for an entire fleet of IoT
devices, so expanding the fleet does not dramatically increase the computational
requirements of the Cloud Brain.

Federated Aggregation. Device specific anomaly detection models are aggre-
gates them using the FederatedAveraging algorithm described in [55]. Because
each device gathers data only from the information it encounters, the data from
a single device represents a slice of all the potential benign behaviors. The aggre-
gation that takes place in the Cloud Brain improves the detection accuracy by
combining the different pieces of information from all the connected clients.

5 Federated Detection

A core component of ProvIoT is its ability to perform detection autonomously
on the IoT device without a centralized server. The local detection module raises
alerts when suspicious events occur.

While a centralized server is used to keep the detection module up to date,
it is not necessary for detection. The detection pipeline in the Local Brain use
the same data collection and preprocessing steps as the training pipeline, but
selects rare paths for detection instead of common paths for training.

The detection pipeline, shown in Fig. 3, works in the following manner: first,
the Local Brain will generate provenance graphs for each target program and
extract rare causal paths for consideration. These causal paths are converted
into causal sentences [82], which are combined to form a causal document. Next,
we use an NLP model, doc2vec [50], to embed the causal document as set of k-
dimensional feature vectors. Finally, we use the trained autoencoder [40] model
to detect the malicious causal paths as done by recent studies [41,62]. The intu-
ition is that when feature vectors are inferred using the doc2vec model, benign
causal paths will generate feature vectors that would be clustered separately
from anomalous feature vectors.

It is possible that there is no anomaly in a process, but a combination of
processes can lead to the anomaly, even still ProvIioT would be able to iden-
tify these anomalies. Since, during the graph building phase we capture both
the forward dependencies (e.g., creating new interactions with different system
artifacts or modifying system artifacts) and backward dependencies (e.g., cap-
turing the malware payload deployment event that started the attack as well
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Fig. 4. Example causal paths extracted from a provenance graph, GG, generated for
process, P;. Using the extracted causal paths the sentences are formed for a document,
D,.

as different program and data dependencies), we obtain a holistic system snap-
shot. Because malicious activities contain previously unseen behavior, their cor-
responding causal paragraphs will contain rare sentences, which will be inspected
during the detection process.

5.1 Graph Building and Path Selection

For each target program, the Local Brain will generate provenance graphs from
system events gathered in the data collection module. Causal paths are extracted
from the provenance graphs through a series of random walks. We consider the
rarest 15 % of the causal paths using [43]; 15 % was empirically determined in
our training phase. Following [43,62,82], the rarity of a causal path is calculated
using the frequency database introduced in Sect.4.1. The regularity of an event
is R(e = (u,v,7)) = %, and the regularity of a causal path is R(P =
(e1,€9,...,€,)) = H.epR(e) - a, where a is a correction factor to prevent the
regularity of long paths from trending towards zero. The rarity of a path is
simply the complement of its regularity, 1 — R(P).

The information embedded in the provenance graph needs to be extracted
to be used as features. One naive approach may be to use the whole provenance
graph for detection. However, using the entire graph will result in a lot of benign
noise (events) being mixed into the overall data and the overhead needed to
digest the entire graph for ML purposes are unreasonable in an IoT context.
Many stealthy malware writers use this property to attempt to blend in with
the surrounding benign noise in the graph. Thus, we use a frequency database,
as defined in [43] to extract rare causal paths from the whole provenance graph.
An example of causal paths extracted from a provenance graph in Fig. 4.
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Fig. 5. Example detection workload for graph G; in Fig.4. After the document D; is
formed, the causal sentences in the document are converted into feature vectors (fv)
using doc2vec model. Then the fv are fed into the autoencoder to get the reconstructed
fv. Sentences are flagged as anomalous if the mean squared error between the original
fv and the reconstructed fv is above a threshold determined during training.

For each selected path, ProvIoT removes the host/entity-specific features,
such as host name and identifier, from each node and edge. This process ensures
that the extracted representation is general for the subsequent learning tasks.

5.2 Document Embedding Model

The extracted causal paths need to be vectorized before they can be processed
by the local detection model. As illustrated in Fig. 4, we first translate the causal
paths into causal sentences, a process detailed in [82]. These causal sentences
collectively form a document. Following recent methodologies [62,82], we employ
the doc2vec Natural Language Processing (NLP) model [50] to transform these
causal sentences into their corresponding feature vectors, as depicted in Fig. 5.
Our docZ2vec model, trained using data from benign deployments, ensures that
causal sentences common in benign contexts yield neural embeddings that are
more similar to each other compared to embeddings from rare causal sentences.

5.3 Federated Autoencoder

In ProvIoT, each Local Brain trains autoencoder models on the feature vectors
from 5.2 and shares the model weights with the Cloud Brain for aggregation using
federated averaging [55]. After fetching the global autoencoder models from the
Cloud Brain, the Local Brain is ready to independently detect anomalies.

The Cloud Brain is distinct from the central server in the current state-of-
the-art (SOTA) provenance system for IoT [32,69], which collects all the device
data over the network and performs anomaly detection serverside. ProvloT’s
on-device detection approach affords several advantages: (1) sending only the
model weights over the network both reduces network overhead and preserves
the privacy of activities on the IoT device; (2) on-device detection allows the
IoT device to remain protected even when disconnected from the network; and
(3) distributing the detection workload to the edge devices allows ProvIoT to
scale horizontally with the size of the IoT device fleet, rather than requiring a
vertically scaling central server.

The Local Brain’s autoencoder models follow a typical structure for anomaly
detection. The autoencoder has an encoder, which maps the benign feature vec-
tors to a latent space representation that captures behavioral patterns, and a
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decoder, which reconstructs the original input. To detect anomalies, we measure
the Mean Squared Error (MSE) of the reconstructed input and the original input;
the input is flagged as anomalous if the MSE is higher than an experimentally
determined threshold, which for our implementation was the 99th percentile.
The intuition behind this detection scheme is that the autoencoder can effec-
tively reconstruct benign samples similar to the ones it was trained on, but should
struggle to reconstruct samples that are substantially different (i.e., anomalies).

6 Implementation

Our ProvIoT prototype was written in C++, Java, and Python. The system level
data collection agent was written in C4++ with the provenance graph generator
and path selection module implemented in Java. The document embedding and
ML model were implemented in Python. The Local Brain’s data pipeline modules
communicate using the Unix domain socket.

System Level Data Collection. In a Local Brain, our prototype’s data col-
lection module uses the Linux audit framework to collect a subset of system calls
relevant to our interested system entities (i.e., files, processes, and network sock-
ets), which include system calls for (1) file operations (e.g., read(), write(),
unlink()), (2) network socket operations (e.g., connect (), accept()), (3) pro-
cess operations (e.g., fork(), exec(), exit ()). We used SQLite as an in-memory
database where system level data are stored. The in-memory database is com-
putationally lightweight and executes queries quickly. Therefore, our provenance
graph generation can be done without putting too much strain on the IoT
device’s resources. The primary workload of the IoT device is taken into con-
sideration as well as the limited onboard resources, such that the Local Brain
will pause data collection and subsequent processes (e.g., graph generation, path
extraction, training and detection) if the resource usage exceeds a present thresh-
old, set at 30% CPU time or 1024MB memory by default.

Data Processing and Summarization. We use the NLP doc2vec model in
the Gensim Library [9] for document embedding. The Keras library with Tensor-
flow [77] backend was used to implement the autoencoder model. The autocoder
model has four fully connected layers with 50, 10, 10, and 50 neurons respectively.
The first two layers are used for encoding, and the last two are used for decoding.
The Adam optimizer with L1 regularization is used to prevent overfitting.

7 Evaluation

In this section, we evaluate ProvloT’s efficacy in detecting stealthy attacks in IoT
devices. To this end, we seek answers for the following three research questions

(RQs):
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RQ1: Detection Accuracy. How effective is ProvIoT at detecting stealthy
attacks (e.g., fileless IoT malware impersonating trusted system pro-
grams) and APT campaigns? (Sects. 7.3, 7.4)

RQ2: Benefit of Federated Architecture. What benefits does the collabo-
rative architecture have over a centralized approach? (Sect.7.5)

RQ3: Resource Efficiency. What CPU and memory overhead does ProvloT
incur? (Sect. 7.6)

7.1 Dataset

In this section, we introduce the provenance datasets that consist of provenance
graphs generated by capturing the benign and malicious IoT system’s behavior.

Dataset Components. Our datasets consist of three major components: for-
ward graphs, backward graphs and causal paths. The forward graphs consist of
all the system events that are caused by the process associated with a Point
of Interest (POI) event, e.g., process creation, file and socket reads/writes. The
backward graphs consist of the system events that created the POI event. We
merge the forward and the backward graphs to get a unified graph that captures
all the system events associated with the POI event. We then extract causal
paths from this unified graph; the size statistics for the graphs and causal paths
are shown in Table3 in the appendix. To generate a graph dataset for a given
program, we use all process creations for the given program name as POI events
to build forward and backward graphs.

Benign Dataset. We consulted our university’s Institutional Review Board
(IRB) to develop an ethical experimental protocol for selecting volunteers for
benign data collection. Once the volunteers were chosen, they received informa-
tion about how their data would be used and securely stored to ensure confiden-
tiality. The benign data collection took place over a period of twelve months, from
January 2021 to December 2021, and resulted in the collection of over 30 TB of
data. The benign profile for the programs was constructed by gathering system
events from a diverse set of 33 devices, including ARM-based IoT devices such
as Raspberry Pi, Google TPU, and NVIDIA Jetson Nano boards [8,39,65]. The
device platforms consist of 1 Google TPU, 1 NVIDIA Jetson Nano, 3 Raspberry
Pi 4, 5 Raspberry Pi 3B+, 5 desktops, 5 laptops, and 13 servers. Importantly, the
provenance graphs that capture the behavior of a given system program exhibit
a relative consistency across different IoT devices and platforms.

The IoT devices in our benign testbeds performed various IoT tasks and com-
mon system operations categorized as IoT Applications and System Programs
respectively in Table 3. Using this system event data, we generated provenance
graphs for popular IoT applications [25] and common system programs [33,34]
that are frequently targeted for impersonation. We chose 1000 benign process
instances for each of the 20 programs and 150 instances for each of the 5 IoT
applications to create the benign dataset. The provenance graphs generated from
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the benign IoT applications consisted of 237,923.84 causal paths, 1,046.97 ver-
tices, and 1,534.66 edges (IoT Application in Table 3) on average. Similarly, the
provenance graph generated from the Linux system processes had an average
of 168,652.11 causal paths, 332.49 vertices, and 398.48 edges (System Program
in Table3). For readers interested in further details about the statistics of the
benign dataset and how it was generated, please refer to Sect. A.

Malicious Dataset. We created two isolated testbeds to run the malicious
workloads. Firstly, we launched publicly known IoT malware using a fileless
wrapper [36] to impersonate the identities of the popular IoT applications
in Table2. Second, we conducted a typical APT scenario by carefully coordi-
nated the APT attack vector with the MITRE ATT&CK [59] framework to
comprise the end-to-end attack [59] campaign. We launched a stealthy attack
campaign that contains five kill-chain [12] stages (Table5) — (S1) gain access
by injecting a malicious payload into an active benign process; (S2) establish a
foothold by communicating back to a C&C server over HTTPS (port 443); (S3)
deepen access using a privilege escalation exploit [57], (S4) move laterally by
scanning the local network for vulnerable hosts with open ports; and (S5) look,
learn, and remain by exfiltrating sensitive user data to the C&C server. Each
attack stage was conducted by different attack TTPs using Metasploit [57].

process

socket

file

Fig. 6. Attacker injects and creates fileless malware as a child process of motion process.
The provenance graph captures the attacker’s behavior which can be used for detection.

We injected each attack TTP into five common IoT applications listed in
Table 2 using a fileless wrapper [36]. Therefore, the IoT application’s behavior
captured in the provenance graph would contain additional nodes and edges
(i.e., malicious subgraphs) corresponding to the malicious behavior due to the
injected attack TTPs. Because the malicious payload behaves differently than
the benign application behavior, those malicious subgraphs are likely to contains
rare and anomalous paths that will be detected by the Local Brain. In Fig. 6,
we render the simplified provenance graph where we injected one of the attack
TTPs to motion. It adds a subgraph whose size is proportional to the number
of malicious activities performed.

We performed the program impersonation experiment five times for each of
the four fileless IoT malware samples, with a total of twenty impersonation tar-
gets (Table 1), resulting in a total of 400 experiments. We conducted the APT
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Table 1. ProvIoT is highly effective in distinguishing IoT malware impersonating as
benign system process as evident from high F1 scores. Grey cells contain low F1 score to
indicate indistinguishable malware behavior for system process, discussed in Sect. 7.3.

Impersonation Malware
target

BASHLITE FritzFrog ransomware lizkabab

bash 0.98 0.96 0.96 0.98
cat 0.93 0.99 1.00 0.97
cp 0.92 0.97 0.92 0.95
cron 0.97 0.98 0.98 0.97
dash 0.95 0.96 1.00 0.98
dbus-daemon 0.94 0.95 0.92 0.98
dd 0.96 0.97 0.98 0.99
firefox 0.97 0.96 0.99 1.00
grep 0.96 0.97 0.94 0.95
java 0.96 0.96 0.96 0.98
1s 0.99 0.96 0.94 0.98
nginx 0.97 0.98 0.98 0.96
perl 0.96 0.96 0.95 0.97
ps 0.98 0.97 0.95 0.97
python 0.93 0.97 0.93 0.99
m 0.92 0.96 0.93 0.98
service 0.93 0.95 0.90 0.99
sh 0.96 0.97 0.91 0.98
smbd 0.96 0.96 0.99 0.99
sshd 0.97 0.96 0.97 0.98
Average 0.96 0.97 0.96 0.98

scenario seven times on each of the five APT attack stages for five IoT applica-
tions (Table5), totaling 175 experiments to build the APT dataset. Combining
all our experiments, we conducted a total of 575 experiments (175 APT + 400
malware) to create the anomalous dataset. The provenance graphs collected from
the malware evaluation have an average of 11,726.98 causal paths, 207.25 ver-
tices, and 211.35 edges. The provenance graphs for the APT Kill chain scenario
have an average of 19,716.37 causal paths, 435.49 vertices, and 481.40 edges.
Interested readers can refer to Appendix Sect. A for further details.

7.2 Experimental Protocol

To generate the training and validation sets, we extract all the causal paths from
the provenance graphs generated during benign deployment, reserving 90% of
the data for training and 10% for validation. To generate the test set, we extract
the rarest 15% of causal paths from the malicious testbeds, which simulates a
real environment that has been attacked [43,82] and includes a mix of benign and
anomalous paths. The Local Brain instances train on the benign training data
and propagate their model weights to the Cloud Brain. The Cloud Brain then
performs federated aggregation on those models to generate a global model, then
propagates the global model back to the Local Brain instances. Each Local Brain
tunes its detection threshold using its own validation set. In intrusion detection,
we emphasize the importance of unsupervised learning because the defender
should not make strong a priori assumptions about the attacker’s behaviors.
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Fig. 7. High detection accuracy of ProvIoT against APT attacks using federated learn-
ing, some rare exceptions which are discussed in Sect. 7.4.

7.3 IoT Malware Detection

To represent a wide variety of malware, we selected two popular IoT malwares
from [37], a natively fileless IoT malware [42], and a typical ransomware that
would target an IoT system. We injected these well-known IoT malwares into
trusted system processes using a fileless wrapper [36] to impersonate them. The
detection results, summarized in Table1, demonstrate that ProvIoT achieves
high F1 scores for the majority of combinations, ranging from 0.96 to 0.98.
This indicates that even when IoT malware is fileless and impersonates benign
programs, its behavior remains distinct from the original system behavior.

However, some (impersonation target, malware) pairs, highlighted in Table 1,
proved challenging for ProvIoT to reliably detect: BASHLITE was able to effec-
tively masquerade as cp and rm because it primarily performs file copy and
delete operations on the local device while preparing to participate in the bot-
net; ransomware effectively impersonated cp with large amounts of file copy
operations, dbus-daemon with significant inter-process communication for cryp-
tographic exchanges, service with manipulation of antivirus services, and sh
with command execution.

7.4 APT Detection

The consistently high detection accuracy [41,82] of ProvIoT, as measured by
precision, recall, and F1 score, is showcased in Fig. 7. Outside some rare excep-
tions, which will be discussed in more depth, the precision ranges from 0.93 to
0.99, the recall ranges from 0.97 to 1, and F1 scores range from 0.95 to 0.99.
The results show that ProvIoT can reliably detect APT attacks while limiting
the number of false alarms.

ProvloT generates more false positives than false negatives, evidenced by its
higher average recall (99%) than average precision (95%). This trend is also seen
in other anomaly detection systems [41,82]. The high F1 score shows that the
threshold is chosen in such a way that the actual anomalous behaviors (true
positives) are detected rather than reducing FPs. Therefore, ProvIoT does not
compromise on its detection ability to address false positive rates.
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False Negative Cases. Even with path-based behavioral modeling, certain
attack cases (e.g., move laterally (S4) attack for google) are hard to detect
because the attacker’s behavior is extremely similar to the application’s benign
behavior. The precision is 0.99 and the recall is 0.89, which is much lower than
the second-lowest recall rate of 0.97. The move laterally (S4) stage scans for
vulnerable ports to exploit, which is behaviorally similar to google scanning
ports for available IP cameras.

False Positive Cases. ProvIoT has delivered steady and robust detection per-
formance across our various APT workloads (Table 2). Against some APT stages,
ProvIoT had a relatively high false positive rate such as Deepen Access (S3) for
google has precision of 0.86 and recall of 0.99, Establishing a Foothold (S2) for
kodi has precision of 0.90 and recall of 1, Gain Access (S1) for motion has pre-
cision of 0.88 and recall of 1; Move Laterally(S4) for samba has precision of 0.86
and recall of 0.99 and zeek has precision of 0.86 and recall of 0.97.

These instances of high false positive rates are due to system interactions with
high behavioral variance. We investigated these cases and outlined the explana-
tions based on the ground truth:kodi often reads hidden configuration files,
downloads files containing streaming links from the internet and writes them to
temporary locations; google creates and stops many short-lived threads; motion
changes directory and file permission configuration for camera video storage;
samba and zeek both scan and listen to different IPs and ports, which generates
noisy provenance graphs (high variance). We see a high rate of false positives
surrounding the creation and modification of temporary files and directories;
since these behaviors are rare and not well-represented in the benign dataset,
so they are marked as anomalous even when the actions are not malicious. The
majority of the malicious paths were marked correctly as anomalous even though
the precision score was below 0.90, the recall score was above 0.96. These results
show that ProvIoT is very effective in detecting stealthy malware.

7.5 Federated Learning Benefits

(a) Centralized vs. Federated (b) Federated Community Benefit
1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5 —— Precision
—— Recall
0.4 0.4
Precision Recall 0 2 4 6 8 10 12 14 16
BN Centralized BB Federated Number of Clients

Fig. 8. (a) Federated performance is similar to centralized performance on the same
data. (b) Increasing the number of clients increases performance by increasing the
amount of data in the system.
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We evaluate ProvloT’s federated approach against a traditional centralized
architecture using kodi as a representative application. Figure 8(a) shows that
ProvIoT trades just 1% precision for the scalability, privacy, and reliability ben-
efits of the federated architecture. The centralized model was trained on the
full dataset and achieved 0.97 precision and 0.99 recall. For ProvloT, we used
the 16 clients from our benign deployment that had kodi installed for train-
ing, then evaluated those models in our malicious testbeds. In this experiment,
ProvIoT achieved 0.96 precision and 0.99 recall, performing almost identically
to the centralized approach.

To demonstrate how ProvIoT is able to overcome the data view limitation
of provenance-based anomaly detection on IoT devices, we visualize the average
performance of the Local Brains as more clients are incorporated into the system
in Fig. 8(b). By adding new Local Brains that see different data, the Cloud Brain
is able to aggregate the incoming models to export a global model that better
understands the full benign distribution. These model improvements manifest in
improved recall and precision as new clients are introduced.

ProvloT’s federated approach provides critical benefits for IoT in data local-
ization and privacy. The primary security benefit is localized detection, which
reduces network overhead, allows detection in the absence of a network connec-
tion, and distributes the global detection workload across the federated devices.
Further, because we only share model weights, specific system events are not
shared with the network, which preserves the privacy of the data.

7.6 ProvloT Overhead

- Resource utilization by ProvioT
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Fig. 9. On RaspberryPi 4B, Local Brain’s processing and prediction uses <10% CPU
and 65MB memory. Model training takes about 375MB memory and <10% CPU.

We experimentally demonstrate the overhead imposed by ProvIoT using an
event database containing 7,085 process creation events, 56,587 file interactions,
and 3,608 network interactions. This is typical for 24 h of execution. We experi-
mented using different ARM IoT devices such as RaspberryPi 4B board [8] with
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four CPU cores and 8 GB memory for CPU only device; Jetson Nano [65] with
four CPU cores, 4 GB memory and NVIDIA gpu; and Google Edge TPU [39]
with single core, 512 MB memory, and edge TPU ML accelerator. To train a
reliable model for kodi, ProvIoT requires two weeks worth of data, which results
in 5.46 GB of data and four weight synchronizations.

To accurately characterize the overhead imposed on the edge IoT devices,
we need to consider two different modes of execution: training and detection.
Training occurs infrequently (approximately once per week) and requires less
than 10% of the CPU processing power and less than 375MB of memory for less
than four minutes as shown in Fig. 9. Detection occurs frequently (approximately
once per day) and requires less than 10% of the CPU processing power and less
than 66MB of memory for less than two minutes as shown in Fig. 9. Even during
peak resource utilization (i.e., during training), ProvIoT does not monopolize the
IoT resources. Many home IoT devices, such as smart fridges, thermostats, and
doorbells [2,3,5,11,16] contain sufficient memory to support on-device training.

8 Limitations

Hardware Constraints. The most prominent limitation of ProvIoT is the
memory utilization of 375 MB during local training phase as measured in
Sect. 7.6. Therefore, ProvIoT cannot be used for IoT which do not have at least
512 MB of RAM, such as ESP32 boards. ProvIoT is suitable for mid to large
scale IoT devices. Real world vendors need to ensure that their products posses
the required resources before deploying our system.

To reduce memory overhead, it is possible to train the local models on smaller
batches of data, but train more frequently. This approach “flattens the curve” of
resource usage, requiring more total computation, but reducing the peak memory
usage. Increasing the training frequency may also increase the models’ vulnera-
bility to incremental dataset shifting attacks. The Local Brain training frequency
can be modulated independently of the Cloud Brain synchronization frequency.

Privacy of Federated Learning. Recent advancements have shown that
attackers can use model weights to infer statistics about the training dataset.
These statistics can then be used to craft targeted payloads and APT stages that
blend in with the typical behavior of the system to evade detection. To protect
the confidentiality and ensure the integrity of the model weights, communication
between the Local Brains and the Cloud Brain should be encrypted and signed
using public/private key pairs, which can be distributed by the vendor during
manufacturing. To further improve the privacy preservation, the communication
of model weights and computation of federated averaging can leverage recent
advancements in fully homomorphic encryption for IoT devices [17,54], which
shifts the heavy computational workload to the resource-rich Cloud Brain; this
method would preserve the privacy of the IoT devices even against an attacker
with full read access to the Cloud Brain and the capacity to recover private data
from model weights alone.
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Poisoning on Federated Learning. In ProvIloT, the design tradeoff between
false positives due to benign software evolution and vulnerability to malicious
incremental model shifting attacks is parameterized by the frequency of training
and synchronization between the Local Brains and the Cloud Brain. In the real
world, this tradeoff is of critical importance and will require careful consideration
by experts on the security requirements of the specific application of ProvIoT.

9 Related Work

IoT Security. With the growth of IoT, a significant number of vulnerabili-
ties have been identified in IoT devices [58,74,80], protocols [86], applications,
and platforms [38]. In response to IoT attacks, diverse detection and prevention
approaches have been proposed, such as network-based solutions [75], platform-
based solutions [32,69,72,73] and application-based solutions [44,82]. Our work
defends against stealthy attacks including fileless malware and APTs.

Cosson et al. [32] and Rieger et al. [69] has proposed a centralized node-
level monitoring system for IoT using network traffic. However, it requires the
local devices to send their local data to a centralized server where the detection
occurs. ProvIoT has a major advantage over [32] because the users’ data does
not leave the local device and detection occurs on the local device without a net-
work connection. [60,63,71] have showed how to do federated anomaly detection
on IoT, but solely focused on network data. While the network data is impor-
tant, stealthy attacks can easily circumvent those defenses with specially crafted
network packets. To the best of our knowledge, we are the first to propose a
federated, privacy preserving, collaborative learning framework using host-level
provenance data for IoT.

IoT Defenses. General intrusion detection [37,81] approaches have been exten-
sively studied. For example, [28] and [68] designed defenses to detect routing
attacks. However, their work focuses on the 6LoWPAN protocol. Our work
focuses on creating a generalized federated framework for IoT.

Recently, several anomaly-based solutions have been proposed to detect dif-
ferent IoT attacks. SDN-based approaches [66], signature-based approaches [48]
and machine learning based approaches [24,30,56,63,64] have been proposed
to detect IoT botnet attacks such as Mirai. However, these approaches only
focus on analyzing network traffic, limiting their capability in detecting attacks
with minimal network footprints. The most directly related previous work is
[32,69], which forwards telemetry data for the entire IoT fleet to a central server
for anomaly detection; ProvIoT improves upon the privacy and scalability of
[32,69] by enabling on-device detection with federated learning and provenance
analysis.
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10 Discussion and Future Work

Real-Time Prevention. Although we focus on a detection system in this
paper, ProvIoT can be easily extended to provide real-time prevention [23]
(e.g., blocking or killing anomalous processes). ProvIoT can also be augmented
with other kinds of defenses (e.g., dynamic quarantine or deep inspection) when
it raises alerts. ProvIoT supports online forensic analysis including backtracking
analysis and data query by leveraging its extensive system event collection.

Applicability to IoT Devices with Other OSes. While our current imple-
mentation and evaluation mainly focuses on Linux-based IoT devices, our app-
roach is general and applicable to the devices with other operating systems, such
as Windows, TinyOS, or Riot. For example, the Windows OS also has a system
to log system events [4] that ProvIoT can use to generate provenance graphs for
training and anomaly detection.

Trends in IoT Capacity and ML Overhead. As a step towards bring-
ing powerful provenance-based threat detection to IoT devices, ProvIoT syn-
ergizes both with advancements in increasing hardware power in IoT devices
and low-resource ML [10]. Indeed, recent work [52] has demonstrated training a
43-layer CNN in less than 256KB of RAM. We envision new works that com-
bine ProvIoT’s federated architecture with innovations in memory-constrained
provenance analysis to extend on-device protection to the general IoT space.

11 Conclusion

In this paper, we present ProvIoT, a novel end-to-end edge-cloud collaborative
security framework for IoT security. ProvIoT adapts modern provenance graph-
based anomaly detection to IoT devices. ProvIoT is the first anomaly detection
framework to perform on-device provenance analysis with federated learning in
IoT devices. ProvloT preserves the privacy of local system events and achieves
high detection accuracy while incurring low overhead and enabling localized
detection. We extensively evaluated ProvIoT with a realistic provenance dataset
against real-world ToT malware and APT attack campaigns. ProvioT detects
fileless malware and APT attacks with an average Fl-score of 0.97 and 0.99,
respectively. During periodic detection cycles, ProvIoT incurs less than 10% CPU
overhead, 66MB memory overhead, and does not require network connectivity.
The detection with infrequent training cycles incurs similar CPU overhead, less
than 375MB memory overhead, and up to 2MB network bandwidth consumption
for model updates.

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.
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A Appendix

A.1 ToT Workload.

The Table 2 shows the typical usage for the IoT applications. Typical usage for
media center (e.g., kodi [47]) is to browse different streams to find playable
and downloadable content. kodi was used to download different medias from
the wed along with browsing different steams. A voice assistant such as Google
Assistant [6] was used for answering common questions such as “what is the
weather like?”. An IP camera (e.g., motion [7]) was used to stream our lab
setting from our home. We used a network attached storage unit to access files
from remote locations as well as to modify the files. Finally, we used a network
security monitoring tool (e.g., zeek [85]) to sniff and inspect at the network
traffic that was generated in our lab environment.

Table 2. The IoT applications chosen for evaluation as well as their usage examples.

Usages Application Scenario
Voice Assistant google  Inquired general knowledge and everyday
household questions to Google Assistant.
Media Center kodi Updated media streams and played media
during different parts of the day.
IP Camera motion  Started streaming multiple live camera
streaming server and watched them.
Network Attached Storage samba Performed network storage action such as list
all the files, delete a file, or add a file.
Network Security Monitor zeek Investigated the network traffic coming from

IoT using Zeek

A.2 Dataset Statistics.

This section contains the data set details shown in Tables3 and 4. In Table 3
the benign dataset is represented where we experimented with five commonly
used ToT programs [33] and twenty prevalent Linux system programs [53]. Table 4
shows the malicious data set which consists of two parts: four IoT malware which
impersonated the twenty Linux system programs and APT kill chain scenarios
conducted using the five IoT programs.
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Table 3. Number of vertices and edges used to create a benign profile for IoT appli-
cations and system programs

Avg. # of Avg. # of Avg. # of Avg. # of
causal paths total vertices forward vertices | backward
/ edges / edges vertices
/ edges
IoT Application
google 571,052.33 159.0 / 314.0 95.67 / 216.0 63.33 / 98.0
kodi 29,946.89 210.33 / 273.78 |149.33 / 176.89 | 61.0 / 96.89
motion 9,113.0 179.0 / 504.0 5.0 / 4.0 174.0 / 500.0
samba 85,347.0 2,537.0 / 2,857.0 | 76.4 / 120.8 2,460.6 / 736.2
zeek 494,160.0 2,149.5 / 3,724.5 | 1,032.5 / 1,124.5 | 1,117.0 / 2,600.0
average 237,923.84 1,046.97 / 271.78 / 328.44|775.19 /
1,534.66 1,206.22
System Program

bash 166,355.43 454.25 / 510.76 | 10.57 / 9.31 443.68 / 501.45
cat 184,346.43 310.51 / 210.9 9.0 / 6.99 301.51 / 203.91
cp 175,636.86 193.42 / 212.7 179.09 / 184.69 |14.33 / 28.01
cron 214,827.71 327.16 / 241.85 |10.27 / 9.96 316.89 / 231.89
dash 153,808.57 371.87 / 381.97 | 211.61 / 206.44 |160.26 / 175.53
dbus-daemon | 156,713.0 20.16 / 20.04 9.02 / 6.42 11.14 / 13.62
dd 213,601.29 995.5 / 1,003.6 551.68 / 501.81 | 443.82 / 501.79
firefox 176,843.86 194.22 / 504.56 | 15.84 / 18.78 178.38 / 485.78
grep 212,413.86 191.51 / 502.32 | 13.51 / 16.43 178.0 / 485.89
java 169,180.71 133.94 / 2224 17.44 / 19.63 116.5 / 202.77
1s 179,185.86 213.62 / 356.47 |10.25 / 9.3 203.37 / 347.17
nginx 258,367.17 514.27 / 514.13 | 500.76 / 501.26 | 13.51 / 12.87
perl 809.0 25.01 / 23.22 11.95 / 12.05 13.06 / 11.17
ps 181,846.43 834.01 / 998.14 |369.21 / 501.77 |464.8 / 496.37
python 161,755.57 365.71 / 348.31 |11.51 / 8.14 354.2 / 340.17
™m 174,590.43 452.89 / 440.38 | 15.06 / 18.5 437.83 / 421.88
service 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69
sh 208,367.43 445.01 / 851.27 | 4.16 / 357.78 440.85 / 493.49
smbd 201,559.57 355.37 / 371.15 |9.69 / 3.39 345.68 / 367.76
sshd 182,601.57 233.04 / 234.15 |9.35 /6.6 223.69 / 227.55
average 168,652.11 332.49 / 398.48|99.26 / 120.89 |233.23 / 277.59

Table 4. Number of vertices and edges used to create IoT Malware and APT attack

Avg. # of Avg. # of Avg. # of Avg. # of
causal paths total vertices forward vertices | backward
/ edges / edges vertices
/ edges
IoT Malware
BASHLITE 110.5 21.0 / 21.0 4.0 /3.0 17.0 / 18.0
FritzFrog 46,253.8 751.0 / T47.4 248.6 / 246.8 502.4 / 500.6
lizkebab 293.2 29.0 / 33.0 6.0 /4.0 23.0 / 29.0
randomware 250.4 28.0 / 44.0 8.0 / 12.0 20.0 / 32.0
average 11,726.98 207.25 / 211.35|66.65 / 66.45 140.6 / 144.9
APT Kill Chain Scenario
Gain Access (S1) 2,789.6 510.6 / 554.8 1952 / 537.6 15.4 /172
Establish a Foothold (S2) 46,763.75 470.25 / 550.12 | 398.38 / 429.5 71.88 / 120.62
Deepen Access (S3) 1,192.4 171.0 / 202.6 164.0 / 195.0 70/76
Move Laterally (S4) 27,314.33 97.5 / 116.0 70.17 / 84.83 27.33 / 31.17
Look, Learn and Remain (S5) | 20,521.75 928.12 / 983.5 897.38 / 929.62 | 30.75 / 53.88
average 19,716.37 435.49 / 481.40|405.03 / 435.31 | 30.47 / 46.09
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Table 5. APT TTPs

for cyber-killchain stages

Cyber-killchain Stages

Techniques (ATTCK
TTP)

Scenarios

Gain Access (S1)

Exploitation for Client
Execution

(T1203)

File and Directory Per-
missions

Modification (T1222)

Attackers modify a benign looking executable,

but once the user opens the application it can

be used by the attacker for arbitrary code execution
Attacker modifies objects in the system so that

it can be copied by lower privilege users that

the attacker has hijacked

Establish a Foothold (S2)

Data from Local System
(T1005)
Exfiltration
Channel
(T1041)

Over C2

Attacker moves around the file system,
finding files that contain valuable information
Attacker downloads valuable files into

a local directory

Deepen Access (S3)

Create and Modify sys-
tem process

Attacker creates a system process that can run in the
background and do reconnaissance or mine information

(T1543)

Service Stop Attacker stops firewall or external IDS

(T1489) services so that they cannot detect the APT
Move Laterally (S4) Process injection Attacker injects a vulnerable process such as

(T1055) a trojan into a benign application so that IDS

cannot differentiate

Look, Learn, and Remain (S

5

)

System Information Dis-
covery

(T1082)

Network Service Scan-
ning

(T1046)

Network Sniffing
(T1040)

Attacker discovers system hardware information so that
they can craft better exploits or exploit hardware
vulnerabilities

Attackers scan network services to find services they can
use as backup or use as a secondary mode of connections

Attackers sniff the network to find insecure
SSL connections or any other connections
to extract valuable information

A.3 APT Scenarios

The advanced Persistent Threat (APT) scenario was established in our malicious
testbed by loading APT kill-chain components using fileless wrapper (Table5).
The APT attack vectors were coordinated to comprise the end-to-end attack
campaign referring to MITRE ATT&CK framework.
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