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Abstract

Motivated by applications in large-scale and
multi-agent reinforcement learning, we study
the non-asymptotic performance of stochas-
tic approximation (SA) schemes with delayed
updates under Markovian sampling. While
the effect of delays has been extensively stud-
ied for optimization, the manner in which
they interact with the underlying Markov
process to shape the finite-time performance
of SA remains poorly understood. In this
context, our first main contribution is to
show that under time-varying bounded de-
lays, the delayed SA update rule guarantees
exponentially fast convergence of the last it-
erate to a ball around the SA operator’s fixed
point. Notably, our bound is tight in its de-
pendence on both the maximum delay τmax,
and the mixing time τmix. To achieve this
tight bound, we develop a novel inductive
proof technique that, unlike various existing
delayed-optimization analyses, relies on es-
tablishing uniform boundedness of the iter-
ates. As such, our proof may be of inde-
pendent interest. Next, to mitigate the im-
pact of the maximum delay on the conver-
gence rate, we provide the first finite-time
analysis of a delay-adaptive SA scheme un-
der Markovian sampling. In particular, we
show that the exponent of convergence of
this scheme gets scaled down by τavg, as op-
posed to τmax for the vanilla delayed SA rule;
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here, τavg denotes the average delay across
all iterations. Moreover, the adaptive scheme
requires no prior knowledge of the delay se-
quence for step-size tuning. Our theoretical
findings shed light on the finite-time effects of
delays for a broad class of algorithms, includ-
ing TD learning, Q-learning, and stochastic
gradient descent under Markovian sampling.

1 INTRODUCTION

The goal of Stochastic Approximation (SA) theory, in-
troduced by Robbins and Monro (1951), is to find
the root (or fixed point) of an operator, given access
to noisy observations. The general framework of SA
finds applications in various fields like control, opti-
mization, and reinforcement learning (RL). Recently,
the surge of interest in distributed and asynchronous
learning has motivated the study of variants of SA -
e.g., stochastic gradient descent (SGD) - in the pres-
ence of delays. This leads to the study of iterative
optimization algorithms where the gradients used for
the iterative updates are computed at potentially stale
iterates from the past (Feyzmahdavian et al., 2016;
Koloskova et al., 2022). Notably, the literature on un-
derstanding the effects of delays in SA has focused
almost exclusively on optimization.
In particular, while delayed versions of more general
SA algorithms have been shown to perform well in
practice in the context of asynchronous and multi-
agent RL (Bouteiller et al., 2020), there is little to
no theory to substantiate these empirical observations.
Bridging the above gap is the main objective of this pa-
per. However, this task is non-trivial since the transi-
tion from optimization to RL requires contending with
one major challenge: in the latter, the noisy observa-
tions are typically generated from a Markov process.
As such, unlike the i.i.d. sampling assumption in op-
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timization, the observations in RL are temporally cor-
related. The interplay between such temporal correla-
tions and delayed updates remains poorly understood
in RL. Given this motivation, we provide the first com-
prehensive finite-time analysis of SA schemes under
Markovian sampling and delayed updates. As we ex-
plain later in the paper, this entails the development of
novel analysis techniques that may be of independent
interest to both the optimization and RL communities.

1.1 Related Works

To position our work and contributions, we now pro-
vide a brief summary of relevant literature. A more
elaborate survey is deferred to Appendix A.
• SA under Markovian Sampling. The asymptotic
convergence of SA under correlated Markov random-
ness was thoroughly investigated for temporal differ-
ence (TD) learning in the pioneering work by Tsit-
siklis and Vanroy (1997). However, finite-time anal-
yses for TD learning and linear SA were only recently
provided by Bhandari et al. (2018); Srikant and Ying
(2019). These contributions were followed by finite-
time analyses of more general nonlinear SA algorithms,
such as Q-learning (Chen et al., 2023b; Qu and Wier-
man, 2020). More recent work has delved into the
non-asymptotic convergence of decentralized SA (Zeng
et al., 2022; Doan, 2023).
• Delays and Asynchrony in Optimization. The study
of delays and asynchrony in distributed optimization
dates back to the seminal work by Tsitsiklis et al.
(1986). While the focus of this work was on asymp-
totic convergence, the current focus in ML has shifted
towards finite-sample guarantees. As such, motivated
by the growing popularity of distributed ML, a signifi-
cant body of work has explored the finite-time effects
of delays on the performance of stochastic optimiza-
tion algorithms such as stochastic gradient descent
(SGD), and variants thereof (Feyzmahdavian et al.,
2016; Gurbuzbalaban et al., 2017; Dutta et al., 2018;
Cohen et al., 2021; Koloskova et al., 2022; Glasgow
and Wootters, 2022; Nguyen et al., 2022). We note
here that stochastic optimization is a special case of
SA, where the noise samples that enter into the gra-
dients are generated in an i.i.d. manner, i.e., they
exhibit no temporal correlations. However, for appli-
cations centered around asynchronous multi-agent RL
(MARL) (Bouteiller et al., 2020; Chen et al., 2023a;
Mnih et al., 2016), one needs to contend with two
key challenges simultaneously: (i) the randomness in
the observations comes from a temporally correlated
Markov process, and (ii) the noisy SA operator is eval-
uated at potentially stale iterates. We are unaware
of any work that provides a finite-time analysis of SA
schemes that feature both the above challenges.

1.2 Contributions

In light of the above discussion, the main contributions
of this work are summarized below.

1. Novel Problem Formulation: Our work pro-
vides the first comprehensive finite-time conver-
gence analysis for delayed SA schemes under
Markovian sampling.

2. Tight Bound in the Constant Delay Case:
We start by analyzing the constant-delay setting
in Section 3, and prove exponential convergence of
the delayed SA update rule to a noise ball around
the fixed point of the SA operator; see Theorem 1.
Our analysis reveals that the exponent of conver-
gence gets scaled down by max{τ, τmix}, where
τ represents the constant delay, and τmix repre-
sents the mixing time of the underlying Markov
process. Notably, our result (i) complies with
existing finite-time bounds for non-delayed SA
schemes (Srikant and Ying, 2019); and (ii) ex-
hibits a tight dependence on the delay τ ; see Sec-
tion 3 for more discussion on this aspect.

3. Tight Bound for Time-Varying Delays: One
of the main contributions of this work is to gen-
eralize our result on constant delays to arbitrary
time-varying delays that are bounded. We pro-
vide such a result in Theorem 2 of Section 4,
where we show that the exponent of convergence
gets scaled down this time by max{τmax, τmix}.
Here, τmax is the maximum possible delay. An
interesting observation stemming from our analy-
sis is that for slowly mixing Markov chains where
τmix > τmax, the effect of delays gets subsumed
by the natural mixing of the underlying Markov
process. As such, slowly mixing Markov chains
tend to be more robust to delays.

4. Novel Proof Technique: As we explain in de-
tail in Section 4, achieving a tight dependence on
τmax in Theorem 2 requires a significantly differ-
ent proof technique than those existing. In partic-
ular, our proof neither employs generating func-
tion techniques as in (Arjevani et al., 2020), nor
the popular error-feedback framework as in (Stich
and Karimireddy, 2020). Instead, it relies on
a new inductive argument to establish uniform
boundedness of the iterates generated by the de-
layed SA scheme. This allows us to treat the
joint effect of delays and Markovian sampling as a
bounded perturbation, thereby considerably sim-
plifying the subsequent analysis. The resulting
approach is novel, and may be of independent in-
terest to both RL and optimization.
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5. Introduction and Analysis of a Delay-
Adaptive Algorithm: In Section 5, we pro-
pose and analyze an intuitive delay-adaptive SA
scheme, where an update is made only when the
staleness in the update direction falls below a care-
fully chosen threshold. In Theorem 3, we show
that the convergence rate of this scheme depends
on the average delay τavg, as opposed to the max-
imum delay τmax. Furthermore, the step-size for
this adaptive rule requires no knowledge at all of
the delay sequence.

6. Applications of Our Results: As we explain in
Section 2.2, our theoretical findings find applica-
tions in a variety of settings, including the effects
of delays in TD learning, Q-learning, and SGD
under Markovian sampling.

Motivation and Scope. One of the main practical mo-
tivations for the present study lies in multi-agent RL
where asynchronous communication naturally leads to
delays. That said, the scope of this paper is limited to
the single-agent case since even this basic setting poses
major technical challenges that remain completely un-
explored. As such, by laying the foundations for this
single-agent setting, our work opens up avenues for un-
derstanding and designing algorithms in more complex
MARL environments as future work. We also note
that this type of single-agent configuration has been
the key enabler for the fundamental understanding of
finite-time rates for SGD with delayed updates (under
i.i.d. sampling) (Feyzmahdavian et al., 2014; Arjevani
et al., 2020; Stich and Karimireddy, 2020).

2 PROBLEM FORMULATION

The objective of general SA is to solve a root finding
problem of the following form:

Find θ∗ ∈ Rm such that ḡ(θ∗) = 0, (1)

where, for a given approximation parameter θ ∈ Rm,
the deterministic function ḡ(θ) is the expectation of
a noisy operator g(θ, ot) taken over a distribution
π, and {ot} denotes a stochastic observation process,
which is typically assumed to converge in distribution
to π (Borkar, 2009; Meyn, 2023).

2.1 SA under Markovian Sampling

In this paper, we consider SA under Markovian sam-
pling, i.e., the observations {ot} are temporally corre-
lated and form a Markov chain. We define

ḡ(θ) ! Eot∼π[g(θ, ot)], (2)

where π is the stationary distribution of the Markov
chain {ot}. SA consists in finding an approximate
solution to (1) while having access only to sampled
instances g(θ, ot) of ḡ(θ). The typical iterative SA
update rule with a constant step size α is as fol-
lows (Srikant and Ying, 2019; Chen et al., 2022),

θt+1 = θt + αg(θt, ot). (3)

The asymptotic convergence of SA update rules of
the form in Eq. (3) under Markovian sampling was
first investigated by Tsitsiklis and Vanroy (1997). On
the other hand, finite-time convergence results under
Markovian sampling have only recently been estab-
lished for linear (Srikant and Ying, 2019; Bhandari
et al., 2018) and non-linear (Chen et al., 2022) SA,
requiring fairly involved analyses. Indeed, temporal
correlations between the samples of {ot}, which is also
inherited by the iterate sequence {θt}, prevents the
use of techniques commonly adopted for the finite-time
study of SA under i.i.d. sampling, triggering the need
for a more elaborate analysis.

2.2 Exemplar Applications

In this subsection, we provide some examples of the
considered SA setting under Markovian sampling.
TD learning. TD learning with linear function ap-
proximation is an SA algorithm that can be used to
learn an approximation of the value function Vµ(s) of a
Markov decision process (MDP) associated to a given
policy µ. In this example, we denote by s ∈ S the
MDP state from a finite n-dimensional state space S.
The algorithm works by iteratively updating a lin-
ear function approximation parameter θ ∈ Rm (with
m < n) of the (approximated) value function using the
following update rule:

θt+1 = θt + α(Rt + γV̂ (st+1;θt)− V̂ (st;θt))φ(st),

V̂ (s;θ) = θ⊤φ(s),
(4)

where α is the learning rate and 0 < γ < 1 a discount
factor. At iteration t, θt is the parameter vector of the
linear function approximation, st is the state of the
MDP that is part of a single Markovian trajectory, Rt

is the received reward, st+1 is the next state, V̂ (st;θt)
is the estimated value of the state st, and φ(s) ∈ Rm

is a feature vector that maps the state s to a vector in
Rm. The noise in the update rule is introduced by the
random reward Rt, and the random next state st+1

whose distribution is dictated by the transition prob-
abilities of the underlying Markov chain. Specifically,
the update in (4) is an instance of SA with

g(θt, ot) = (Rt + γV̂ (st+1;θt)− V̂ (st;θt))φ(st), (5)
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where ot = (Rt, st, st+1) is the correlated sampling pro-
cess inducing the randomness. For more formal details
on TD learning with linear function approximation,
see Srikant and Ying (2019); Bhandari et al. (2018).
Q-learning. Q-learning is a reinforcement learning
algorithm that can be used to learn an optimal policy
for a Markov decision process (MDP). In Q-learning,
the goal is to learn a Q-function that maps state-
action pairs to their corresponding expected rewards.
When the state and action spaces are large, one typi-
cally resorts to a parameterized approximation of the
Q-function for each state-action pair. The special
case of linear function approximation takes the form:
Q̂(s, a;θ) = θ⊤φ(s, a), where φ(s, a) is a fixed feature
vector for the state-action pair (s, a) ∈ S × A, and S
and A represent the (finite) state and action spaces,
respectively. The Q-learning update rule with linear
function approximation is another instance of SA that
takes the following form:

θt+1 = θt + αg(θt, ot),

g(θt, ot) = (Rt + γmax
a′∈A

Q̂(st+1, a
′;θt)− Q̂(st+1, at;θt))φ(st, at).

The notation in the above rule is consistent with what
we used to describe the TD update rule in (4). The
information used in each time-step is encapsulated in
ot = (Rt, st, at, st+1). For more details, we refer the
reader to (Chen et al., 2022).
SGD with Markovian noise. Stochastic Gradient
Descent (SGD) is a widely used optimization method
for minimizing a function F (θ) = Eo∼π[f(θ, o)] with
respect to a parameter vector θ ∈ Rm and a distribu-
tion π. SGD operates by updating the parameter vec-
tor iteratively in the direction of the function’s noisy
negative gradient. In this context, SGD can be re-
garded as an instance of SA with the update rule de-
fined as in (3), with g(θt, ot) = −∇f(θt, ot). In online,
dynamic settings, the samples {ot} used in SGD can
exhibit temporal correlations. In this respect, our re-
sults are applicable to the SGD framework in which
the samples {ot} are correlated and form a Markov
chain - a setting studied for example by Doan (2022)
and Even (2023).

2.3 SA with delayed updates

In many real-world applications, the SA operator g(·)
is only available when computed with delayed iterates
and/or observations. The main objective of this pa-
per is to provide a unified framework to analyse the
finite-time convergence of SA under the joint effects of
Markovian sampling and delayed updates. We proceed
by formally introducing the setting. We consider the
following stochastic recursion with delayed updates:

θt+1 = θt + αg(θt−τt , ot−τt), 0 ≤ τt ≤ t, (6)

where α is a constant step size and τt is the delay with
which the operator g(·) is available to be used at itera-
tion t. This specific update rule is motivated by many
scenarios of practical interest. For instance, in dis-
tributed machine learning and reinforcement learning,
it is often the case that the agents’ updates are per-
formed in an asynchronous manner (Bouteiller et al.,
2020; Chen et al., 2023a), leading naturally to update
rules of the form (6).
Update rules of the form (6) have been recently stud-
ied in the context of SA but with i.i.d. observations
(see for example the works by Koloskova et al. (2022)
and Nguyen et al. (2022) for SGD updates with de-
lays). However, to the best of our knowledge, noth-
ing is known about the finite-time convergence be-
haviour of such update rules under Markovian obser-
vations. Compared with i.i.d. settings, the Marko-
vian setting introduces major technical challenges, in-
cluding dealing with (i) the use of a delayed operator
g(θt−τt , ot−τt), and (ii) sequences of correlated obser-
vation samples {ot}, which, in turn, induce temporal
correlations in the iterates {θt}. The interplay be-
tween such delays and temporal correlations requires
a notably careful analysis, one which we provide as a
main contribution of this paper. The key features and
challenges of the analysis relative to previous works
and other settings are provided with more details in
sections 3 and 4.

2.4 Assumptions and Definitions

We proceed by describing a few assumptions needed
for our analysis. First, we make the following natu-
ral assumption on the underlying Markov chain {ot}
(Bhandari et al., 2018; Srikant and Ying, 2019; Chen
et al., 2022).
Assumption 1. The Markov chain {ot} is aperiodic
and irreducible.

Next, we state three further assumptions that are com-
mon in the analysis of SA algorithms.
Assumption 2. Problem (1) admits a solution θ∗,
and ∃µ > 0 such that for all θ ∈ Rm, we have

⟨θ − θ∗, ḡ(θ)− ḡ(θ∗)⟩ ≤ −µ∥θ − θ∗∥2. (7)

Assumption 3. There exists L > 0 such that for any
θ1,θ2 ∈ Rm and o ∈ {ot}, we have

∥g(θ1, o)− g(θ2, o)∥≤ L∥θ1 − θ2∥. (8)

Furthermore, there exists σ > 0 such that for any θ ∈
Rm, we have

∥g(θ, o)∥≤ L(∥θ∥+σ). (9)
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Assumption 2 is a strong monotone property of the
map −ḡ(θ) that guarantees that the iterates generated
by a “mean-path” (steady-state) version of Eq. (1),
θt+1 = θt + αḡ(θt), converge exponentially fast to θ∗.
Assumption 3 states that g(θ, ot) is globally uniformly
(w.r.t. ot) Lipschitz in the parameter θ.
Finally, we introduce an assumption on the time-
varying delay sequence {τt}.
Assumption 4. There exists an integer τmax ≥ 0
such that τt ≤ τmax, ∀t ≥ 0.

Remark 1. Assumption 2 holds for TD learning
(Lemma 1 and Lemma 3 in Bhandari et al. (2018))
with linear function approximation, variants of Q-
learning with linear function approximation (Chen
et al., 2022), and for strongly convex functions in
the context of optimization. Similarly, Assumption 3
holds for TD learning (Bhandari et al., 2018) and
Q-learning with linear function approximation (Chen
et al., 2022), and is typically made in the analysis of
SGD (Doan, 2022).

We now introduce the following notion of mixing time
τmix, that plays a crucial role in our analysis, as in the
analysis of all existing finite-time convergence studies
of SA under Markovian sampling.
Definition 1. Let τmix be such that, for every θ ∈ Rm

and o0, we have

∥E [g(θ, ot)|o0]− ḡ(θ)∥≤ α (∥θ∥+1) , ∀t ≥ τmix. (10)

Remark 2. Note that Assumption 1 implies that the
Markov chain {ot} mixes at a geometric rate. This, in
turn, implies the existence of some K ≥ 1 such that
τmix in Definition 1 satisfies τmix ≤ K log( 1

α ). In
words, this means that for a fixed θ, if we want the
noisy operator g(θ, ot) to be α-close (relative to θ) to
the expected operator ḡ(θ), then the amount of time we
need to wait for this to happen scales logarithmically in
the precision α.

3 WARM UP: STOCHASTIC
APPROXIMATION WITH
CONSTANT DELAYS

In this section, we present the first finite-time conver-
gence analysis of a SA scheme with a constant delay
under Markovian sampling. With respect to the SA
scheme with delayed updates introduced in (6), we fix
τt = τ , where τ represents the constant delay. This
leads to the following update rule:

SA with Constant Delay:

θt+1 =

{
θ0 if 0 ≤ t < τ,

θt + αg(θt−τ , ot−τ ) if t ≥ τ.

(11)

We set θt+1 to θ0 for the first τ time-steps to simplify
the exposition of the analysis; such a choice is not nec-
essary, and one can use other natural initial conditions
here without affecting the final form of our result. We
now state our first main result that provides a finite-
time convergence bound for the update rule in (11).
Theorem 1. Suppose Assumptions 1-3 hold. Let
wt ! (1 − 0.5αµ)−(t+1) and WT =

∑T
t=0 wt. Let

θout be an iterate chosen randomly from {θt}Tt=0, such
that θout = θt with probability wt

WT
. Define rout !

∥θout−θ∗∥ and τ̄ ! max{τ, τmix}. There exists a uni-
versal constant C1 ≥ 2, such that, for α ≤ µ

C1L2τ̄ , the
following holds for the rule in (11) ∀T ≥ 0:

E
[
r2out

]
≤ Cα exp (−0.5αµT ) +O(σ2)

αL2τ̄

µ
, (12)

with Cα = O
(

1
αµ + τ̄σ2

µ

)
. Setting α = µ

C1L2τ̄ , we get

E
[
r2out

]
≤ Cτ̄ exp

(
−0.5

µ2

C1L2τ̄
T

)
+O(σ2), (13)

with Cτ̄ = O
(

2C1L
2τ̄

µ2 + σ2τ̄
µ

)
.

Main Takeaways: We now outline the key takeaways
from the above Theorem. From (13), we note that the
delayed SA scheme in (11) guarantees exponentially
fast convergence (in mean-squared sense) to a ball
around the fixed point θ∗, where the size of the ball
is proportional to the noise-variance level σ2. For SA
problems satisfying Assumptions 1-3, a convergence
bound of this flavor is consistent with what is observed
in the non-delayed setting as well under Markovian
sampling, when one employs a constant step-size. See,
for instance, the bounds for TD learning in (Srikant
and Ying, 2019; Bhandari et al., 2018), and for Q-
learning in (Chen et al., 2022).
The Effect of Delays. A close look at (13) reveals that
the exponent of convergence in the first term of (13)
scales inversely with τ̄ = max{τ, τmix}. Hence, if
τ ≥ τmix, the constant delay τ can slacken the rate
of exponential convergence to the noise ball. Is such
an effect of the delay τ inevitable, or just an artifact
of our analysis? We elaborate on this point below.
On the Tightness of our Bounds. It turns out that the
inverse scaling of the exponent with τ shows up even
for SGD with constant delays under i.i.d. sampling -
a special case of the general SA scheme we study here.
Furthermore, this dependency has been shown to be
tight for SGD in (Arjevani et al., 2020). As such, our
rate in Theorem 1 is tight in its dependence on the de-
lay τ . We also note that the inverse scaling of the expo-
nent with the mixing time τmix is consistent with prior
work (Srikant and Ying, 2019; Bhandari et al., 2018),
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Table 1: Summary of results. Here, we do not show problem specific constants other than τmix and τmax.

Algorithm Variance Bound Bias Bound
Constant Delay (11) O(σ2) O

(
exp

(
−T

max{τ,τmix}

))

Time-Varying Delays (14) O(σ2) O
(
exp

(
−T

max{τmix,τmax}

))

Time-Varying Delays
Delay-Adaptive Update (23) O(σ2) O

(
exp

(
−T

τmix.τavg

))

and is, in fact, unavoidable (Nagaraj et al., 2020). To
sum up, in Theorem 1 we provide the first finite-time
convergence bound for a SA scheme with updates sub-
ject to constant delays under Markovian sampling, and
establish a convergence rate that has tight dependen-
cies on both the delay τ and the mixing time τmix.
Slowly-mixing Markov Chains are Robust to Delays.
An interesting conclusion from our analysis is that
if the underlying Markov chain mixes slowly, i.e., if
τmix is large, and in particular, if τmix > τ , then the
convergence rate will be dictated by τmix, since then
τ̄ = max{τ, τmix} = τmix. In other words, the effect
of the delays will be dominated by the natural mixing
effect of the underlying Markov process. This observa-
tion is novel to our setting and analysis, and absent in
optimization under delays with i.i.d. sampling.
Comments on the Analysis. Our proof for Theorem 1
- provided in Appendix B.1 - is partially inspired by
the analysis in (Stich and Karimireddy, 2020). How-
ever, the key technical challenge relative to (Stich and
Karimireddy, 2020) arises from the need to simultane-
ously contend with delays and temporal correlations
introduced by Markovian sampling; notably, the ex-
isting literature on optimization under delays (Stich
and Karimireddy, 2020; Dutta et al., 2018; Koloskova
et al., 2022) does not need to deal with the latter as-
pect. This dictates the need for new ingredients in
the analysis that we outline in Appendix B.1. How-
ever, as we explain in Appendix B.2, the technique
we employ to prove Theorem 1 falls apart in the face
of time-varying delays. In the next section, we will
explain in some detail how to overcome this challenge.

4 STOCHASTIC APPROXIMATION
WITH TIME-VARYING DELAYS

The goal of this section is to analyze (6) in its full
generality by accounting for Markovian sampling and
arbitrary time-varying delays that are only required to
be bounded, as per Assumption 4. In particular, we
will study the following SA update rule:

SA with Time-Varying Delays:
θt+1 = θt + αg(θt−τt , ot−τt), τt ≤ min{t, τmax}.

(14)

The main contribution of this paper - as stated below

- is a finite-time convergence result for the above rule.
Theorem 2. Suppose Assumptions 1-4 hold. Let rt !
∥θt − θ∗∥, and τ̄ ! max{τmix, τmax}. There exists a
universal constant C ≥ 2, such that, for α ≤ µ

CL2τ̄ ,
the iterates generated by the update rule (14) satisfy
the following ∀T ≥ 3τ̄ :

E
[
r2T
]
≤
(
exp (−2αµT ) +

αL2(τmix + τmax)

µ

)
O(σ2).

(15)
Setting α = µ

CL2τ̄ , we get

E
[
r2T
]
≤
(
exp

(
− 2µ2T

CL2τ̄

)
+ 1

)
O(σ2). (16)

Main Takeaways: Comparing (16) with (13), we
note that our bound in Theorem 2 for time-varying de-
lays mirrors that for the constant delay setting in The-
orem 1, with τmax appearing in the exponent in (16)
exactly in the same manner as τ shows up in (13).
Thus, all the conclusions we drew in Section 3 after
stating Theorem 1 carry over to the setting we study
here as well. In particular, since the constant-delay
model is a special case of the arbitrary-delay model
(with bounded delays), and we have already argued
the tightness of our bound for the constant-delay set-
ting, the dependencies of our bound (in (16)) on the
maximum delay τmax, and the mixing time τmix, are
optimal. At this stage, one might contemplate the
need for studying the constant-delay case in Section 3,
given that our results in this section clearly subsume
the former. To explain our rationale, it is instructive
to consider what is already known about delays in op-
timization under i.i.d. sampling.
Some of the early works analyzing the effect of time-
varying bounded delays on gradient descent and vari-
ants thereof, show that for smooth, strongly-convex ob-
jectives, the iterates generated by the delayed rule con-
verge exponentially fast (Assran et al., 2020; Feyzmah-
davian et al., 2016; Gurbuzbalaban et al., 2017). How-
ever, the exponent of convergence in these works is
sub-optimal in that it scales inversely with τ2max, as
opposed to τmax in our bound in Theorem 2. More
recently, under a constant delay τ , the authors in (Ar-
jevani et al., 2020) established the optimal dependence
on τ in the exponent for quadratics; the same result
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was generalized to smooth, strongly-convex functions
in (Stich and Karimireddy, 2020). While our analysis
for the constant-delay case in Theorem 1 borrows some
ideas from that in (Stich and Karimireddy, 2020), such
a technique appears to be insufficient for achieving the
tight dependence on τmax in Theorem 2.
The proof of Theorem 2 departs from previous proof
techniques for optimization under delays, avoiding
the need for using generating functions as in (Arje-
vani et al., 2020), or the error-feedback framework
with carefully crafted weighted averages of iterates as
in (Stich and Karimireddy, 2020). The purpose of
studying the constant-delay case first is precisely to
highlight the critical points that make it difficult to
adapt the aforementioned existing proof techniques to
suit our needs - we provide such a discussion in Ap-
pendix B.2. Relative to the above works that only
provide bounds for a constant delay under i.i.d. sam-
pling, our proof of Theorem 2 adopts a conceptually
simpler route: it relies on a novel inductive argument
to demonstrate the uniform boundedness of iterates.
Surprisingly, this simpler approach - which we explain
in some detail in the next section - provides a tight
bound for the more challenging general case of time-
varying delays under Markovian sampling.

4.1 Overview of Our Proof Technique

In this section, we begin by outlining the main chal-
lenges that make it difficult to adapt existing optimiza-
tion and RL proofs to our setting. We then explain the
key novel technical ingredients that allow us to over-
come such challenges. To proceed, let us define the
error (at time t) introduced by the delay as follows:

et ! g(θt, ot)− g(θt−τt , ot−τt). (17)

Using the above in (14) yields

θt+1 = θt + αg(θt, ot)− αet. (18)

We examine ∥θt+1 − θ∗∥2 using (18), which leads to

∥θt+1 − θ∗∥2= Jt,1 + α2Jt,2 − 2αJt,3, with (19)

Jt,1 ! ∥θt − θ∗ + αg(θt, ot)∥2,
Jt,2 ! ∥et∥2,
Jt,3 ! ⟨et,θt − θ∗⟩+ α⟨et,g(θt, ot)⟩.

(20)

Note that the presence of Jt,2 and Jt,3 in (19) is a
consequence of the delay, and does not show up in
the analysis of vanilla non-delayed SA schemes. Our
convergence analysis is built upon providing bounds in
expectation on each of the three terms defined in (20).
We now elaborate on why this task is non-trivial.

• Challenge 1: Bounding the Drift. Bounding Jt,1
in (20) requires exploiting the geometric mixing prop-
erty of the underlying Markov chain in (10). To do so,
the standard technique in SA schemes with Markovian
sampling is to condition on the state of the system suf-
ficiently into the past. This creates the need to bound
a drift term of the form ∥θt−θt−τmix∥. In the absence
of delays, there are two main approaches to handling
this drift term. In (Bhandari et al., 2018), the authors
are able to provide a uniform bound on this term by as-
suming a projection step. However, such a projection
step may be computationally expensive, and requires
knowledge of the radius of the ball that contains θ∗.
In (Srikant and Ying, 2019), the authors were able to
bypass the need for a projection step via a finer analy-
sis; in particular, Lemma 3 in (Srikant and Ying, 2019)
provides a bound of the following form:

∥θt − θt−τmix∥≤ O(ατmix)(∥θt∥+σ), ∀t ≥ τmix. (21)

The key feature of the above result is that it relates
the drift to the current iterate θt. However, for the
delayed SA scheme we study in (14), a bound of the
form in (21) no longer applies. The reason for this
follows from the fact that the presence of delays in our
setting causes the drift ∥θt−θt−τmix∥ to be a function
of not just the current iterate, but several other iterates
from the past. Thus, we need a new technical result
that is able to explicitly relate the drift to all past
iterates over a certain time window. We provide such
a result in Lemma 1.
• Challenge 2: Handling Delay-induced Errors
and Temporal Correlations. Bounding Jt,3 in (20)
requires handling the term ⟨et,θt − θ∗⟩. This step is
much more challenging compared to the i.i.d. sampling
setting considered in the optimization literature with
delays (Zhou et al., 2018; Koloskova et al., 2022; Ar-
jovsky et al., 2017; Cohen et al., 2021). The difficulty
here arises due to the statistical correlation among the
terms et = g(θt, ot) − g(θt−τt , ot−τt) and θt − θ∗. In
particular, there are two issues to contend with: (i)
due to the correlated nature of the Markovian samples,
E [g(θt, ot)] ̸= ḡ(θt), and (ii) the observation ot−τt in-
fluences the iterate θt. In view of the above issues, we
depart from the standard routes employed in the opti-
mization literature to handle similar delay-induced er-
ror terms, and employ a careful mixing time-argument
instead to bound ⟨et,θt − θ∗⟩.
• Challenge 3: Time-Varying Delays. As we al-
luded to earlier in Section 3, the extension from the
constant-delay setting to the time-varying setting ap-
pears to be quite non-trivial. In Appendix B.2, we
consider a few potential candidate proof strategies for
the setting with time-varying delays; these include:
(i) a natural extension of the technique we use to
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prove Theorem 1, and (ii) an adaptation of the proof
in (Feyzmahdavian et al., 2014). Unfortunately, while
these strategies do end up providing rates, the expo-
nent of convergence exhibits a sub-optimal inverse scal-
ing with τ2max.

4.2 Auxiliary Lemmas

The proof of Theorem 2 hinges on three new techni-
cal results. We outline them below. Our first result
provides bounds in expectation on drift terms of the
form ∥θt − θt−τ∥2. To state this result, we define
τ ′ ! 2τmax + τmix, and rt,2 ! maxt−τ ′≤l≤t E

[
r2l
]
.

Lemma 1. For any t ≥ τmix, we have

(i) E
[
∥θt − θt−τmix∥2

]
≤ 2α2τ2mixL

2(2rt,2 + 3σ2).

Similarly, for any t ≥ 0 and τt ≤ t,

(ii) E
[
∥θt − θt−τt∥2

]
≤ 2α2τ2maxL

2(2rt,2 + 3σ2).

Unlike the analogous drift bounds in the RL liter-
ature (Srikant and Ying, 2019), Lemma 1 bounds
the drift as a function of the maximum iterate-
suboptimality rt,2 over a horizon whose length scales
as O(τmix + τmax). Exploiting Lemma 1, we can pro-
vide bounds on E [Jt,1], E [Jt,2], and E [Jt,3] in terms
of rt,2. This is the subject of the next result.
Lemma 2. Let t ≥ τ ′ = 2τmax + τmix. Then

(i) E [Jt,1] ≤ (1− 2αµ)E
[
r2t
]
+O(α2τmixL

2rt,2)

+O(α2τmixL
2σ2).

(ii) E [Jt,2] ≤ O(L2(2rt,2 + 3σ2)).

(iii) E [−Jt,3] ≤ O(αL2(τmix + τmax)(rt,2 + σ2)).

The most challenging part of proving the above lemma
is part (iii), where mixing time arguments need to be
carefully applied to deal with temporal correlations.
Plugging the above bounds in (19) yields:

E
[
r2t+1

]
≤ (1− 2αµ)E

[
r2t
]
+O(α2L2τ̄)(rt,2 + σ2),

(22)
where τ̄ ! max{τmix, τmax}. The above inequality
suggests that the one-step progress can be captured
by a contractive term, and an additive perturbation
that jointly captures the effects of delays and Marko-
vian sampling. The crucial step now is to handle this
perturbation term, while achieving the optimal depen-
dence on τmax. Our key technical innovation here is
to use a novel inductive argument to prove that the
iterates generated by (14) remain uniformly bounded
in expectation. We have the following result.
Lemma 3. Suppose α ≤ µ

Cτ̄L2 . There exists a univer-
sal constant C ≥ 1 such that for all t ≥ 0, it holds that
E
[
r2t
]
≤ O(σ2).

The above result immediately implies that the per-
turbation term appearing in (22) can be uniformly
bounded by O(α2L2τ̄σ2). From this point onward, the
analysis is straightforward. It is worth emphasizing
here that the idea of establishing a uniform bound
on the perturbations induced by delays and Markovian
sampling - without a projection step - is the main de-
parture from all existing analyses.

5 DELAY-ADAPTIVE
STOCHASTIC APPROXIMATION

In the previous section, we analyzed the vanilla de-
layed SA rule under time-varying delays. Notably, the
resulting convergence rate was dependent on the max-
imum delay, τmax, and selecting the proper step size
required a priori knowledge of τmax. In practice, the
worst-case delay τmax may be very large, leading to
slow convergence of (14); furthermore, τmax may be
unknown. Here, we introduce a new delay-adaptive up-
date rule whose convergence rate only depends on the
average delay, τavg = 1

T

T∑
t=1

τt, for the T iterations over
which the algorithm is executed. Moreover, the pro-
posed delay-adaptive algorithm does not require any
knowledge of the delay sequence at all for tuning the
step size. Our proposed rule is as follows.

Delay-adaptive SA:

θt+1 =

{
θt + αg(θt−τt , ot−τt) ∥θt − θt−τt∥≤ ϵ,

θt otherwise.
(23)

The rationale behind the above rule is quite sim-
ple: it makes an update only if the pseudo-gradient
g(θt−τt , ot−τt) available at time t is not too stale in
the sense that it is evaluated at an iterate that is at
most ϵ away from the current iterate θt. Unlike the
vanilla SA update rule, we can control the effect of de-
lays on the convergence rate by carefully picking the
threshold ϵ. This is reflected in the next result.
Theorem 3. Suppose Assumptions 1-4 hold. Let rt !
∥θt − θ∗∥. There exists a universal constant C2 ≥ 1
such that for α ≤ µ

C2L2τmix
, and ϵ = α, the iterates

of (23) satisfy the following for T ≥ τmix:

E
[
r2T
]
≤
(
exp

(
−αµT

4(τavg + 1)

)
+

L2ατmix

µ

)
O(σ2).

Additionally, if we set α = µ
C2L2τmix

, we obtain

E
[
r2T
]
≤
(
exp

(
−µ2T

4C2L2τmix(τavg + 1)

)
+ 1

)
O(σ2).

Discussion and Insights. Relative to Theorem 2,
there are two main takeaways from the above result:
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(i) the choice of the step-size α requires no information
about the delay sequence, and (ii) the exponent of con-
vergence gets scaled down by τavg, and not τmax. This
result is significant because it is the first to provide a
finite-time result for a delay-adaptive SA scheme un-
der Markovian sampling.
We now provide some intuition as to what makes the
above result possible. The vanilla SA rule in (14) al-
ways makes an update, no matter how delayed the
pseudo-gradients are. As a result, to counter the ef-
fect of potentially large delays, one needs to necessar-
ily use a conservative step-size α that scales inversely
with τmax. This is precisely what ends up slackening
the final convergence rate. In sharp contrast, our pro-
posed delay adaptive SA rule in (23), by design, rejects
overly stale pseudo-gradients. This allows us to ana-
lyze (23) as a variant of the non-delayed SA rule in
(3) with at most O(ϵ) error. To see this, observe that
∥θt − θt−τt∥≤ ϵ implies ∥g(θt, o) − g(θt−τt , o)∥≤ Lϵ.
Thus, every time we update, we move in the correct
direction up to only a small amount of error. We for-
malize this key insight in Appendix B.3, where we pro-
vide the full proof of Theorem 3. In Appendix C, we
also provide simulation results comparing non-delayed
SA with the vanilla delayed SA update (6), and with
the delay-adaptive algorithm (23).

6 CONCLUSIONS AND FUTURE
WORK

We studied the interplay between delays and Marko-
vian sampling in the context of general stochastic ap-
proximation with a contractive operator. Our analy-
sis allowed for arbitrary time-varying (potentially ran-
dom) delays that are uniformly bounded. Leveraging
a novel inductive proof technique, we provided the first
non-asymptotic convergence result for this setting, ob-
taining a rate that has a tight dependence on both the
maximum delay τmax and the mixing time of the under-
lying Markov chain, τmix. Furthermore, we proposed
the first delay-adaptive SA scheme that features two
distinct advantages relative to a vanilla delayed SA
protocol: (i) the rates for the former depend on the
average delay τavg as opposed to the maximum delay
τmax; and (ii) implementing the delay-adaptive rule re-
quires no knowledge whatsoever of the delay sequence.
The insights and novel analysis techniques from our
work pave the way for various interesting future re-
search avenues. We discuss some of them below.

1. The most natural next step would be to con-
sider the study of asynchronous multi-agent RL
algorithms where delays are inevitable. In this
context, a recent line of work on federated RL
has revealed the benefits of cooperation among

the agents by establishing linear speedups in the
sample complexity of learning, despite Markovian
sampling (Khodadadian et al., 2022; Dal Fabbro
et al., 2023; Wang et al., 2023; Zhang et al., 2024).
Can we continue to expect such speedups in the
presence of delays? What if we have stragglers
in the system that slow down the pace of com-
putation? Do the ideas (Dutta et al., 2018; Rei-
sizadeh et al., 2022) that apply in the context
of distributed optimization/supervised learning to
tackle stragglers carry over to the MARL setting?
This remains an open direction worth exploring.

2. At a high level, the findings in this paper con-
tribute to a robustness theory for iterative RL al-
gorithms. While we specifically focused on robust-
ness to delays, we believe that the tools that were
developed in the process should apply to the study
of robustness to other types of structured pertur-
bations. For instance, in a recent paper, Mitra
et al. (2023) showed that TD learning protocols
(with linear function approximation) can be just
as robust to extreme compression/sparsification
as their SGD counterparts, e.g., the SignSGD algo-
rithm (Bernstein et al., 2018). We conjecture that
the inductive proof used to study delays here can
simplify and sharpen the results in Mitra et al.
(2023). We plan to verify this conjecture as part
of future work.

3. Yet another avenue is to consider RL settings
more general than the ones studied here. In partic-
ular, all our results relied on the strong monotone
property in Assumption 2. Deriving tight rates
under arbitrary delays in the absence of such an
assumption will likely require some work. One
could also seek to generalize our results to set-
tings that involve nonlinear function approxima-
tion schemes (e.g., neural nets) as in Tian et al.
(2023); Cayci et al. (2023), or to two-time-scale
SA protocols that capture actor-critic methods.

4. Finally, delays in physical systems often adhere
to some structure. For instance, one can imag-
ine such delays being generated randomly from
some distribution. If so, if the delays are gener-
ated in an i.i.d. manner, one should be able to
compute estimates of the mean and higher-order
moments (if they exist) of the delay distribution
with high probability, given enough samples. Can
we exploit such information to design algorithms
with better bounds than in this paper? Intuition
dictates that this should be possible. However,
to our knowledge, this remains a relatively unex-
plored direction.
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SUPPLEMENTARY MATERIALS

A Related Work

In this section, we review selected works related to the existing literature on delays in optimization, bandits, and
reinforcement learning (RL).

A.1 Delays in Optimization

The study of delays and asynchrony in optimization has been a topic of interest since the seminal work by Bert-
sekas and Tsitsiklis (1989), which investigates convergence rates of asynchronous iterative algorithms in parallel
or distributed computing systems. Subsequently, many researchers have explored the effects of delay and asyn-
chrony on various learning and optimization methods. We summarize some of the significant works in this area
below.
Agarwal and Duchi (2011) focus on distributed delayed stochastic optimization, specifically gradient-based opti-
mization algorithms that rely on delayed stochastic gradient information. They analyze the convergence of such
algorithms and propose procedures to overcome communication bottlenecks and synchronization requirements.
Their work demonstrates that delays are asymptotically negligible, achieving order-optimal convergence results
for smooth stochastic problems in distributed optimization settings.
Stich and Karimireddy (2020) introduce an error-feedback framework, which examines stochastic gradient descent
(SGD) with delayed updates on smooth quasi-convex and non-convex functions. They derive non-asymptotic
convergence rates and show that the delay only linearly slows down the higher-order deterministic term, while the
stochastic term remains unaffected. This result illustrates the robustness of SGD to delayed stochastic gradient
updates, improving upon previous rates for different forms of delayed gradients. Notably, this work provides the
best-known rate for SGD with i.i.d. noise. It is worth mentioning that most existing literature has focused on
bounds depending only on the maximum delay. However, the recent works of Cohen et al. (2021) and Koloskova
et al. (2022) have explored convergence rates that depend on the average delay sequence.
The aforementioned studies on delays in optimization contribute to understanding the impact of delays and
asynchrony in various optimization algorithms. They provide insights into the convergence properties and shed
light on the robustness of these methods to different forms of delay. Nevertheless, there is still a gap in the liter-
ature regarding the finite-time convergence rates of delayed stochastic approximation schemes under Markovian
sampling/noise.

A.2 Delays in Bandits

There has been significant research efforts on the impact of delays in bandits. Some of the key works in this area
are summarized in the following.
Non-stochastic multi-armed bandits with unrestricted delays were studied in Thune et al. (2019). The authors
prove that the “delayed" Exp3 algorithm achieves the O(

√
(KT +D) lnK) regret bound for variable but bounded

delays. They also introduce a new algorithm that handles delays without prior knowledge of the total delay,
achieving the same regret bound. The paper provides insights into the regret bounds for bandit problems with
delays.
The challenges of stochastic linear bandits with delayed feedback, where the feedback is randomly delayed and de-
lays are only partially observable, were addressed in Vernade et al. (2020). The authors propose computationally
efficient algorithms, OTFLinUCB and OTFLinTS, capable of integrating new information as it becomes avail-
able and handling permanently censored feedback. The authors prove optimal regret bounds for the proposed
algorithms and validate their findings through experiments on simulated and real data.
Another paper investigates a variant of the stochastic K-armed bandit problem called “bandits with delayed,
aggregated anonymous feedback" (Pike-Burke et al., 2018). In this setting, the player observes only the sum of
a number of previously generated rewards that arrive in each round, and the information of which arm led to a
particular reward is lost. The authors provide an algorithm that achieves the same worst-case regret as in the
non-anonymous problem when the delays are bounded.
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The above papers demonstrate that it is possible to design algorithms that can achieve good performance in the
presence of delays in bandits. However, the performance metric of interest in these papers is typically cumulative
regret. It is important to note here that the conclusions drawn for such a regret metric do not necessarily have
implications for the sample-complexity bounds we care about in this work in the context of delayed stochastic
approximation.

A.3 Delays in RL

Until recently, the field of reinforcement learning had not thoroughly explored the impact of delays. In what
follows, we highlight some key research works in this area.
Bouteiller et al. (2020) conducted a study on reinforcement learning with random delays, specifically focusing
on environments with delays in actions and observations. They introduced the Delay-Correcting Actor-Critic
(DCAC) algorithm, which incorporates off-policy multi-step value estimation to accommodate delays. Through
theoretical analysis and practical experiments using a delay-augmented version of the MuJoCo continuous control
benchmark, the authors demonstrated that DCAC outperforms other algorithms in delayed environments. In
this work, however, no finite-time convergence analysis is provided for the analyzed algorithms.
Mnih et al. (2016) introduced asynchronous methods for deep reinforcement learning. They presented a
lightweight framework that utilizes asynchronous gradient descent to optimize deep neural network controllers.
The authors showed that parallel actor-learners have a stabilizing effect on training and achieve superior per-
formance compared to state-of-the-art methods in domains such as Atari games and continuous motor control
problems. Note that, however, although large measurement campaigns are conducted, no finite-time convergence
analysis is performed in this work.
Chen et al. (2023a) studied the problem of policy learning in environments with delayed or missing observations.
They showed that it is possible to learn a near-optimal policy in this setting, even though the agent does not
have access to the most recent state of the system. They established near-optimal regret bounds for this case.
Note that this work focuses on regret analysis, while ours is focused on the impact of the joint effect of delays
and Markovian sampling on the finite-time rate of convergence to the SA solution, which we study through the
lenses of analyzing the interplay between maximum/average delay and mixing time on the convergence rates we
provide.
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B Proofs of the Theorems

In this Appendix, we provide the proofs for the theoretical results stated in the paper. We start by recalling
some implications of the Assumptions of Section 2 in the following.

Preliminaries

First, recall that from Assumption 2 we have, ∀θ ∈ Rd:
⟨θ∗ − θ, ḡ(θ)⟩ ≥ µ∥θ∗ − θ∥2. (24)

Throughout the proof, we will often invoke the mixing property (see Definition 1), which implies that, for a fixed
θ, the following is true:

∥E [g(θ, ot)|ot−τmix ]− ḡ(θ)∥≤ α (∥θ∥+σ) . (25)
We will also use the fact that the SA update directions and their steady-state versions are L-Lipschitz (Assump-
tion 3), i.e., ∀o ∈ {ot}t∈N, and ∀θ,θ′ ∈ Rd, we have:

∥ḡ(θ)− ḡ(θ′)∥≤ L∥θ − θ′∥, and
∥g(θ, ot)− g(θ′, ot)∥≤ L∥θ − θ′∥.

(26)

We further have
∥g(θ, o)∥≤ L(∥θ∥+σ), ∀o ∈ {ot}t∈N, ∀θ ∈ Rd. (27)

Given that (x+ y)2 ≤ 2(x2 + y2), ∀x, y ∈ R, we will often use the following inequality:
∥g(θ, ot)∥2≤ L2(∥θ∥+σ)2 ≤ 2L2(∥θ∥2+σ2). (28)

Without loss of generality, we assume that

L ≥ 1, σ ≥ max{∥θ0∥, ∥θ∗∥}, µ < 1. (29)
We will often use the fact that, for any x, y ∈ R, we have

xy ≤ 1

2
(x2 + y2). (30)

In addition, we will often use the fact that, for t ≥ 2, ai ∈ R, i = 0, ..., t− 1, it holds
(

t−1∑

i=0

ai

)2

≤ t
t−1∑

i=0

a2i (31)

B.1 Proof of Theorem 1 and Related Lemmas

First, we recall the definition of the SA recursion with constant delay:

θt+1 =

{
θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ ). if t ≥ τ
(32)

For analysis purposes, we define a virtual iterate, θ̃t. This virtual iterate is updated with the SA update direction
without delays, and it is defined as follows:

θ̃t+1 = θ̃t + αg(θt, ot), θ̃0 = θ0. (33)
We also introduce the related error term dt, which is the gap between the virtual iterate and the actual iterate.

θ̃t = θt + dt, with d0 = 0. (34)

From the definition of θ̃t, we can write the following recursions for dt, for t ≥ 0:
dt+1 = dt + α(g(θt, ot)− g(θt−τ , ot−τ )). (35)

We define g(θl, ol) = θl = dl = 0 for l < 0. We also define r̃t = ∥θ̃t − θ∗∥. For convenience, we define r̃t = 0 for
t < 0.
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B.1.1 Auxiliary Lemmas

Here, we present the main Lemmas needed to prove Theorem 1. We start with three bounds on ∥dt∥, ∥dt∥2 and∑T
t=0 wt∥dt∥2, as follows.

Lemma 4. The following three inequalities hold:

(i) ∥dt∥ ≤ ατLσ + αL
t−1∑

l=t−τ

∥θl∥, (36)

(ii) ∥dt∥2 ≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

∥θl∥2, (37)

(iii)
T∑

t=0

wt∥dt∥2 ≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑

t=0

wt∥θ̃t∥2, (38)

where (iii) holds for α ≤ 1
4τL .

Part (iii) of this Lemma is key to obtain the bound in (104). In the next Lemma, we provide bounds on the
terms ∥θ̃t − θ̃t−τmix∥ and ∥θ̃t − θ̃t−τmix∥2.
Lemma 5. For any t ≥ τmix, we have

(i) ∥θ̃t−τmix − θ̃t∥ ≤ Lαστmix + Lα
t−1∑

l=t−τmix

∥θl∥. (39)

(ii) ∥θ̃t−τmix − θ̃t∥2 ≤ 2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑

l=t−τmix

∥θl∥2. (40)

Note that this Lemma is a variation of Lemma 3 in Srikant and Ying (2019), which is key to invoke mixing time
arguments to get finite-time convergence bounds in existing non-delayed SA analysis. Let us define

nt ! ∥g(θt, ot)∥2,
mt ! ⟨g(θt, ot)− g(θ̃t, ot), θ̃t − θ⋆⟩,
ht ! ⟨θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩.

(41)

To obtain a bound in the form (96), we need to bound E [ht] properly, for which, in turn, we need Lemma 5.
Furthermore, note that, in contrast to Srikant and Ying (2019), the bound is obtained for the sequence of virtual
iterates. In the next lemma, we provide bounds for the three key terms of the bound in (90), i.e., ∥g(θt, ot)∥2,
mt, and E [ht].
Lemma 6. For all t ≥ 0, we have

(i) nt ≤ 4L2∥dt∥2+8L2r̃2t + 10L2σ2, (42)

(ii) mt ≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑

l=t−τ

(
∥dl∥2+2r̃2l

)
, (43)

(iii) E [ht] ≤
{
111σ2L2, for 0 ≤ t ≤ τmix

4ατmixL2
(
8σ2 + 3E

[
r̃2t
])

+ 8αL2
∑t−1

l=t−τmix
E
[
∥dl∥2+2r̃2l

]
, for t ≥ τmix

(44)

where (iii) holds for α ≤ 1
36L2τmix

.

The proof of this last Lemma relies on the bound on ∥dt∥ established in Lemma 4. The proof of (iii) relies
on the mixing properties of the Markov chain {ot} and on the bounds on ∥θt − θt−τmix∥ and ∥θt − θt−τmix∥2
established in Lemma 5. Part (iii) is the key and most challenging part of the proof, which allows us to get to
the bound in (96). Using this last Lemma, in combination with Lemma 4, we are able to get the bound in (12).
The conclusion of the proof is enabled by using E

[
r2t
]
≤ 2E

[
r̃2t
]
+ 2E

[
∥dt∥2

]
and some further manipulations.
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B.1.2 Proofs of Auxiliary Lemmas

We first state and prove the following lemma, which we will use later in the proof of Theorem 1.
Lemma 7. For wt ! (1− 0.5µα)−(t+1) with α ≤ µ

Cτ̄ , C ≥ 2, the following inequality holds for 0 ≤ i ≤ 2τ̄ , and
for any t,

wt ≤ 2wt−i. (45)

Proof.

wt = wt−i

(
1− µα

2

)−i

(a)
≤ wt−i

(
1− µ2

2C τ̄

)−i

(b)
≤ wt−i

(
1− µ2

2C τ̄

)−τ̄

(c)
≤ wt−i

(
1− 1

4τ̄

)−τ̄

(d)
≤ wt−i

(
1 +

1

2τ̄

)τ̄

(e)
≤ wt−i exp

(
1

2

)

≤ 2wt−i.

(46)

In (a), we used the bound on α; in (b), we used the bound on i; in (c), we used µ < 1 and C ≥ 2; in (d), we used

(1− x)−1 ≤ (1 + 2x) for 0 ≤ x ≤ 1

2
, (47)

and for (e), we used (1 + x)k ≤ exp(xk) for k ≥ 0.

Note that we defined g(θi, oi) = 0 for i < 0, θt = 0 for t < 0, and dt = 0 for t < 0. First, note that, starting
from the definition of dt in (35),

dt+1 = dt+ α (g(θt, ot)− g(θt−τ , ot−τ )

= dt−1 + α (g(θt−1, ot−1)− g(θt−1−τ , ot−1−τ ))

+ α (g(θt, ot)− g(θt−τ , ot−τ ))

= d0 + α
t∑

l=0

(g(θl, ol)− g(θl−τ , ol−τ ))

(∗)
= 0 + α

t∑

l=t−τ+1

g(θl, ol),

(48)

where (∗) follows because the overlapping terms in the sum cancel out. So, we obtain, for all t ≥ 0,

dt = α
t−1∑

l=t−τ

g(θl, ol). (49)

We can now prove Lemma 4, which is key to proving Theorem 1.

Proof of Lemma 4 - (i), (ii). From (49), using the triangle inequality and the bound on the update direc-
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tion (27), we get, recalling that σ ≥ ∥θ0∥,

∥dt∥ = ∥α
t−1∑

l=t−τ

g(θl, ol)∥

(27)
≤ αL

t−1∑

l=t−τ

(∥θl∥+σ)

≤ ατLσ + αL
t−1∑

l=t−τ

∥θl∥,

(50)

which proves (i). We now prove (ii). Using the triangle inequality and (31),

∥dt∥2 = ∥α
t−1∑

l=t−τ

g(θl, ol)∥2

(31)
≤ α2τ

t−1∑

l=t−τ

∥g(θl, ol)∥2.

(51)

Now, using the upper bound on the squared gradient norm (28),

∥dt∥2 ≤ α2τ
t−1∑

l=t−τ

∥g(θl, ol)∥2

≤ 2α2τL2
t−1∑

l=t−τ

(∥θl∥2+σ2)

≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

∥θl∥2,

(52)

which concludes the proof. "

Using the above inequalities, we can now prove part (iii) of Lemma 4.

Proof of Lemma 4 - (iii). First, recall that, from Lemma 4, we have

∥dt∥2≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

∥θl∥2. (53)
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Based on Lemma 7, for 0 ≤ i ≤ 2τ̄ , we have wt ≤ 2wt−i (see (46)). Using (53),

T∑

t=0

wt∥dt∥2 ≤
T∑

t=0

wt

(
2α2τ2L2σ2 + 2α2τL2

t−1∑

l=t−τ

∥θl∥2
)

≤ 2WTα
2τ2L2σ2 + 2α2τL2

T∑

t=0

wt

t−1∑

l=t−τ

∥θl∥2

(∗)
≤ 2WTα

2τ2L2σ2 + 4α2τL2
T∑

t=0

t−1∑

l=t−τ

wl∥θl∥2

(∗∗)
≤ 2WTα

2τ2L2σ2 + 4α2τ2L2
T∑

t=0

wt∥θt∥2

≤ 2WTα
2τ2L2σ2 + 8α2τ2L2

T∑

t=0

wt

(
∥θ̃t∥2+∥dt∥2

)

≤ 2WTα
2τ2L2σ2 + 8α2τ2L2

T∑

t=0

wt∥θ̃t∥2+
1

2

T∑

t=0

wt∥dt∥2,

(54)

where for (∗) we used the fact that wt ≤ 2wl for t − 2τ̄ ≤ l ≤ t − 1, and for (∗∗) we used the fact that each
element wl∥θl∥2 appears at most τ times in the sum, for l = 0, ..., T − 1 (note that, by definition, θl = 0 for
l < 0). In the last inequality, we used α ≤ 1

4τL . We can conclude getting

T∑

t=0

wt∥dt∥2≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑

t=0

wt∥θ̃t∥2. (55)

"

We now prove Lemma 5, that provides a bound on the norm of the gap ∥θ̃t−τmix − θ̃t∥ and its squared version
∥θ̃t−τmix − θ̃t∥2.

Proof of Lemma 5. Inequality (i) of the Lemma can be easily proved by applying the definition of the
recursion (33):

∥θ̃t−τmix − θ̃t∥ ≤
t−1∑

l=t−τmix

∥θ̃l+1 − θ̃l∥

≤ α
t−1∑

l=t−τmix

∥g(θl, ol)∥

≤ Lα
t−1∑

l=t−τmix

(∥θl∥+σ)

= Lαστmix + Lα
t−1∑

l=t−τmix

∥θl∥.

(56)

Similarly, for inequality (ii), note that, squaring equation (56),

∥θ̃t−τmix − θ̃t∥2 ≤ 2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑

l=t−τmix

∥θl∥2. (57)

"

We now prove Lemma 6, which provide bounds for ∥g(θt, ot)∥2, mt, and E [ht].
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Proof of Lemma 6 - (i). From (28), we have ∥g(θt, ot)∥2≤ 2L2(∥θt∥2+σ2), and so

nt = ∥g(θt, ot)∥2 ≤ 2L2(∥θt∥2+σ2)

≤ 2L2∥θt − θ̃t + θ̃t∥2+2L2σ2

≤ 4L2∥dt∥2+4L2∥θ̃t∥2+2L2σ2

≤ 4L2∥dt∥2+4L2∥θ̃t − θ∗ + θ∗∥2+2L2σ2

≤ 4L2∥dt∥2+8L2r̃2t + 8L2∥θ∗∥2+2L2σ2

≤ 4L2∥dt∥2+8L2r̃2t + 10L2σ2,

(58)

where we used ∥θ∗∥≤ σ. This concludes the proof. "

Proof of Lemma 6 - (ii). By the Cauchy-Schwarz inequality, Lipschitz continuity of g(θ, ot) in θ (see (26)),
and from the definition of dt, we get

mt = ⟨g(θt, ot)− g(θ̃t, ot), θ̃t − θ⋆⟩
≤ ∥g(θt, ot)− g(θ̃t, ot)∥∥θ̃t − θ∗∥
≤ L∥θ̃t − θt∥∥θ̃t − θ∗∥
= L∥dt∥r̃t.

(59)

Applying Lemma 4 to bound ∥dt∥, we get

mt ≤ L

(
ατLσ + αL

t−1∑

l=t−τ

∥θl∥
)
r̃t

= ατL2σr̃t + αL2
t−1∑

l=t−τ

∥θl∥r̃t

(30)
≤ 2ατL2σ2 + 2ατL2r̃2t + αL2

t−1∑

l=t−τ

(
∥θl∥2+r̃2t

)

= 2ατL2σ2 + 3ατL2r̃2t + αL2
t−1∑

l=t−τ

∥θl∥2

(31)
≤ 2ατL2σ2 + 3ατL2r̃2t + 2αL2

t−1∑

l=t−τ

(
∥dl∥2+∥θ̃l∥2

)

≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑

l=t−τ

∥dl∥2+4αL2
t−1∑

l=t−τ

r̃2l .

(60)

"

Next, we provide the proof of Lemma 6, which, in turn, provides a bound for E [ht] - the term related to
Markovian sampling whose analysis requires special care and mixing time arguments.
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Proof of Lemma 6 - (iii). We start with the case 0 ≤ t ≤ τmix. Note that, using (28),

ht = ⟨θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩
≤ ∥θ̃t − θ∗∥∥g(θ̃t, ot)− ḡ(θ̃t)∥
(30)
≤ 1

2
r̃2t +

1

2
∥g(θ̃t, ot)− ḡ(θ̃t)∥2

(31)
≤ 1

2
r̃2t + ∥g(θ̃t, ot)∥2+∥ḡ(θ̃t)∥2

(28)
≤ r̃2t

2
+ 2L2∥θ̃t∥2+2L2σ2 + 2L2∥θ̃t∥2+2L2σ2

≤ r̃2t
2

+ 8L2r̃2t + 12L2σ2

≤ 9L2r̃2t + 12L2σ2.

(61)

Recall that

θt+1 =

{
θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ ) if t ≥ τ
, (62)

from which we can write, for t ≥ τ ,

r2t+1 = r2t + 2α⟨θt − θ∗,g(θt−τ , ot−τ )⟩+ α2∥g(θt−τ , ot−τ )∥2

(30)
≤ r2t + αr2t + α∥g(θt−τ , ot−τ )∥2+α2∥g(θt−τ , ot−τ )∥2

α<1
≤ (1 + α)r2t + 2α∥g(θt−τ , ot−τ )∥2,

(63)

and note that, for t < τ , r2t+1 = r2t , and hence (63) holds true for all t ≥ 0. Now note that

∥g(θt−τ , ot−τ )∥2≤ 2L2(∥θt−τ∥2+σ2) ≤ 4L2r2t−τ + 6L2σ2. (64)

Therefore, we can write
r2t+1 ≤ (1 + α)r2t + 8αL2r2t−τ + 12αL2σ2. (65)

Now, we show that, for k < τmix,
r2k ≤ ρkr20 + ϵk, (66)

with ϵk = ρϵk−1 + β, ϵ0 = 0, where ρ = 1 + α + 8αL2 > 1, and β = 12αL2σ2. We show it by induction. The
base case k = 0 is trivially true. Now suppose that inequality (66) is true up to some k ≥ 0, thus

r2s ≤ ρsr20 + ϵs, ∀s ≤ k. (67)

We can get, noting that, for all k, 0 ≤ ϵk ≤ ϵk+1,

r2k+1 ≤ (1 + α)r2k + 8αL2rk−τ + 12αL2σ2

≤ (1 + α)(ρkr20 + ϵk) + 8αL2(ρkr20 + ϵk) + 12αL2σ2

= (1 + α+ 8αL2)ρkr20 + (1 + α+ 8αL2)ϵk + 12αL2σ2

= ρk+1r20 + ρϵk + β

= ρk+1r20 + ϵk+1,

(68)

which concludes the induction proof of (66). Now note that, given that L ≥ 1, ρ ≤ 1 + 9αL2, and, for
α ≤ 1

36L2τmix
,

ρk ≤ (1 + 9αL2)k ≤ (1 + 9αL2)τmix ≤ e9αL
2τmix ≤ e0.25 ≤ 2. (69)

Also note that, for all k ≤ τmix,

ϵk = β
k−1∑

j=0

(1 + 9αL2)j ≤ β
τmix−1∑

j=0

(1 + 9αL2)τmix ≤ 2βτmix, (70)
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and we can get, for all k ≤ τmix, noting that r20 ≤ 4σ2,

r2k ≤ 2r20 + 2βτmix = 2r20 + 24αL2σ2τmix ≤ 9σ2. (71)

Now note that, similarly to the calculations performed above, for t < τmix,

r̃2t+1 = r̃2t + 2α⟨θt − θ∗,g(θt, ot)⟩+ α2∥g(θt, ot)∥2

≤ (1 + α)r̃2t + 2α∥g(θt, ot)∥2

(28)
≤ (1 + α)r̃2t + 4αL2(∥θt∥2+σ2)

≤ (1 + α)r̃2t + 4αL2(2r2t + 3σ2).

(72)

Using the bound established in (71), we can get

r̃2t+1 ≤ (1 + α)r̃2t + 8αL2r2t + 12αL2σ2

≤ (1 + α)r̃2t + 84αL2σ2.
(73)

From this, we can proceed as follows:

r̃2t+1 ≤ (1 + α)r̃2t + 84αL2σ2

≤ (1 + α)2r̃2t−1 + (1 + α)84αL2σ2 + 84αL2σ2

≤ (1 + α)t+1r̃20 + 84αL2σ2
t∑

j=0

(1 + α)j .

(74)

So, for 0 ≤ t < τmix,

r̃2t+1 ≤ (1 + α)τmix r̃20 + 84αL2σ2
τmix∑

j=0

(1 + α)j . (75)

Now, given that L ≥ 1, note that, for ατmix ≤ 1
36L2 and j = 0, ..., τmix − 1, we have (1 + α)j ≤ (1 + α)τmix ≤

eατmix ≤ e0.25 ≤ 2. Thus, we get

r̃2t ≤ 2r̃20 + 84αL2σ2τmix ≤ 11σ2. (76)

Finally,

ht ≤ 9L2r̃2t + 12L2σ2

≤ 9L2(11σ2) + 12L2σ2

≤ 111L2σ2.

(77)

We now analyze the case in which t ≥ τmix. Adding and subtracting θ̃t−τmix in the left hand side of the inner
product, we have

ht = ⟨θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩
= ⟨θ̃t − θ̃t−τmix ,g(θ̃t, ot)− ḡ(θ̃t)⟩︸ ︷︷ ︸

T1

+ ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩︸ ︷︷ ︸
T2

, (78)
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where, using (27), Cauchy-Schwarz inequality and Lemma 5,

T1 ≤ ∥θ̃t − θ̃t−τmix∥(∥g(θ̃t, ot)∥+∥ḡ(θ̃t)∥)
(27)
≤ ∥θ̃t − θ̃t−τmix∥2L(∥θ̃t∥+σ)

≤ 2αL2

(
στmix +

t−1∑

l=t−τmix

∥θl∥
)
(∥θ̃t∥+σ)

≤ 2αL2στmix(∥θ̃t∥+σ) + 2αL2
t−1∑

l=t−τmix

∥θl∥(∥θ̃t∥+σ)

(30)
≤ 2αL2σ2τmix + 2αL2τmixσ∥θ̃t∥

+ 2αL2
t−1∑

l=t−τmix

(
1

2
∥θl∥2+

1

2
(∥θ̃t∥+σ)2

)

(31)
≤ 2αL2σ2τmix + αL2τmixσ

2 + αL2τmix∥θ̃t∥2

+ 2αL2
t−1∑

l=t−τmix

(
1

2
∥θl∥2+∥θ̃t∥2+σ2

)

≤ 11αL2σ2τmix + 6αL2τmixr̃
2
t + αL2

t−1∑

l=t−τmix

∥θl∥2.

(79)

So, taking the expectation,

E [T1] ≤ 11αL2σ2τmix + 6αL2τmixE
[
r̃2t
]
+ αL2

t−1∑

l=t−τmix

E
[
∥θl∥2

]
. (80)

Now, we focus on T2. Note that, adding and subtracting g(θ̃t−τmix , ot) and ḡ(θ̃t−τmix) to the right hand side of
the inner product, we can write

T2 = ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩
= T̄1 + T̄2 + T̄3

(81)

with

T̄1 = ⟨θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)⟩
T̄2 = ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− g(θ̃t−τmix , ot)⟩
T̄3 = ⟨θ̃t−τmix − θ∗, ḡ(θ̃t−τmix)− ḡ(θ̃t)⟩.

(82)
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We first bound T̄2 and T̄3. Note that, using the Lipschitz property of the TD update direction (26) and Lemma 5,

T̄2 ≤ ∥θ̃t−τmix − θ∗∥∥g(θ̃t, ot)− g(θ̃t−τmix , ot)∥
≤ L∥θ̃t−τmix − θ∗∥∥θ̃t−τmix − θ̃t∥
≤ L∥θ̃t−τmix − θ̃t + θ̃t − θ∗∥∥θ̃t−τmix − θ̃t∥
≤ Lr̃t∥θ̃t−τmix − θ̃t∥+L∥θ̃t−τmix − θ̃t∥2

≤ L2α

(
στmix +

t−1∑

l=t−τmix

∥θl∥
)
r̃t + L

(
2L2α2τ2mixσ

2 + 2L2α2τmix

t−1∑

l=t−τmix

∥θl∥2
)

= L2ατmix
1

2

(
σ2 + r̃2t

)
+

1

2
L2α

t−1∑

l=t−τmix

(
∥θl∥2+r̃2t

)

+ 2L3α2τ2mixσ
2 + 2L3α2τmix

t−1∑

l=t−τmix

∥θl∥2

≤ ατmixL
2σ2 + ατmixL

2r̃2t + αL2
t−1∑

l=t−τmix

∥θl∥2,

(83)

where in the last inequality we used α ≤ 1
8τmixL

. Taking the expectation,

E
[
T̄2

]
≤ ατmixL

2σ2 + ατmixL
2E
[
r̃2t
]
+ αL2

t−1∑

l=t−τmix

E
[
∥θl∥2

]
. (84)

With the same calculations, we can get

E
[
T̄3

]
≤ ατmixL

2σ2 + ατmixL
2E
[
r̃2t
]
+ αL2

t−1∑

l=t−τmix

E
[
∥θl∥2

]
. (85)

We now proceed to bound T̄1.

E
[
T̄1

]
= E

[
⟨θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)⟩

]

= E
[
⟨θ̃t−τmix − θ∗,E

[
g(θ̃t−τmix , ot)|ot−τmix , θ̃t−τmix

]
− ḡ(θ̃t−τmix)⟩

]

≤ E
[
∥θ̃t−τmix − θ∗∥∥E

[
g(θ̃t−τmix , ot)|ot−τmix , θ̃t−τmix

]
− ḡ(θ̃t−τmix)∥

]

(∗)
≤ αE

[
∥θ̃t−τmix − θ∗∥(∥θ̃t−τmix∥+σ)

]

≤ αE
[
∥θ̃t−τmix − θ∗∥(∥θ̃t−τmix − θ∗∥+2σ)

]

≤ αE
[
1

2
∥θ̃t−τmix − θ∗∥2+1

2
(∥θ̃t−τmix − θ∗∥+2σ)2

]

≤ αE
[
1

2
∥θ̃t−τmix − θ∗∥2+∥θ̃t−τmix − θ∗∥2+2σ2

]

≤ 2αE
[
∥θ̃t−τmix − θ∗∥2+σ2

]

≤ 2αE
[
2∥θ̃t − θ∗∥2+2∥θ̃t − θ̃t−τmix∥2+σ2

]

≤ 2αE
[
2r̃2t + 2(2L2α2τ2mixσ

2 + 2L2α2τmix

t−1∑

l=t−τmix

∥θl∥2) + σ2

]

≤ 4αE
[
r̃2t
]
+ 3ασ2 + α

t−1∑

l=t−τmix

E
[
∥θl∥2

]
,

(86)
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where for (∗) we used Definition 1 of mixing time and the fact that σ ≥ 1, and in the last inequality we used
α ≤ 1

8τmixL
. So, we get

E [T2] = E
[
T̄1

]
+ E

[
T̄2

]
+ E

[
T̄3

]

≤ 6ατmixL
2E
[
r̃2t
]
+ 5ατmixL

2σ2 + 3αL2
t−1∑

l=t−τmix

E
[
∥θl∥2

]
.

(87)

Finally, we get
E [ht] = E [T1] + E [T2]

≤ 16ατmixL
2σ2 + 12ατmixL

2E
[
r̃2t
]
+ 4αL2

t−1∑

l=t−τmix

E
[
∥θl∥2

]

≤ 16ατmixL
2σ2 + 12ατmixL

2E
[
r̃2t
]

+ 8αL2
t−1∑

l=t−τmix

(
E
[
∥dl∥2

]
+ E

[
∥θ̃l∥2

])

≤ 32ατmixL
2σ2 + 12ατmixL

2E
[
r̃2t
]
+ 8αL2

t−1∑

l=t−τmix

E
[
∥dl∥2+2r̃2l

]
.

(88)

"

B.1.3 Proof of Theorem 1

First, we have
r̃2t+1 = r̃2t + 2α⟨g(θt, ot), θ̃t − θ⋆⟩+ α2∥g(θt, ot)∥2. (89)

Then, using (24), i.e., ⟨ḡ(θ̃t), θ̃t − θ⋆⟩ ≤ −µr̃2t , we have

r̃2t+1 = r̃2t + 2α⟨g(θt, ot), θ̃t − θ∗⟩+ α2∥g(θt, ot)∥2

= r̃2t + 2α⟨ḡ(θ̃t), θ̃t − θ⋆⟩+ 2αht + 2αmt + α2∥g(θt, ot)∥2

≤ (1− 2αµ)r̃2t + 2αht + 2αmt + α2nt.

(90)

We now apply the inequalities obtained in Lemma 6 to bound E [ht], mt, and nt. Recall that τ̄ = max{τ, τmix}.
Note that, from Lemma 6 - (iii), we can write E [ht] ≤ h̄t, defining

h̄t =

{
B if 0 ≤ t < τmix

qt if t ≥ τmix
, (91)

with B = 111σ2, and

qt = ατmixL
2
(
32σ2 + 12E

[
r̃2t
])

+ 8αL2
t−1∑

l=t−τmix

E
[
∥dl∥2+2r̃2l

]
. (92)

As a consequence, we can write, for every t ≥ 0,

E [ht] ≤ qt + B̄t, (93)

where, in turn,

B̄t =

{
B if 0 ≤ t < τmix

0 otherwise
. (94)

Also, recall that, from Lemma 6, we have

nt ≤ 4L2∥dt∥2+8L2r̃2t + 10L2σ2,

mt ≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑

l=t−τ

(
∥dl∥2+2r̃2l

)
.

(95)
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Combining these inequalities together, we have, for t ≥ 0,

E
[
r̃2t+1

]
≤ (1− 2αµ)E

[
r̃2t
]
+ 2αE [ht] + 2αE [mt] + α2E

[
∥g(θt, ot)∥2

]

≤ (1− 2αµ)E
[
r̃2t
]
+ 2α2τmixL

2
(
32σ2 + 12E

[
r̃2t
])

+ 16α2L2
t−1∑

l=t−τmix

E
[
∥dl∥2+2r̃2l

]

+ 12α2τL2σ2 + 6α2τL2E
[
r̃2t
]
+ 4α2L2

t−1∑

l=t−τ

E
[
∥dl∥2+2r̃2l

]

+ 4α2L2E
[
∥dt∥2+2r̃2t

]
+ 10α2L2σ2 + 2αB̄t.

(96)

Combining terms, we can get

E
[
r̃2t+1

]
≤ (1− 2αµ+ 48α2L2τ̄)E

[
r̃2t
]
+ 128α2L2τ̄σ2

+ 4α2L2E
[
∥dt∥2

]
+ 20α2L2

t−1∑

l=t−τ̄

E
[
∥dl∥2+2r̃2l

]
+ 2αB̄t,

(97)

where we have used τ+τmix ≤ 2τ̄ . Now, using the fact that r2t ≤ 2r̃2t +2∥dt∥2, which implies −r̃2t ≤ − r2t
2 +∥dt∥2,

we have
(1− 2αµ+ 48α2L2τ̄)E

[
r̃2t
]
= (1− αµ+ 48α2L2τ̄)E

[
r̃2t
]
− αµE

[
r̃2t
]

≤ (1− αµ+ 48α2L2τ̄)E
[
r̃2t
]
− αµ

E
[
r2t
]

2
+ αE

[
∥dt∥2

]
,

(98)

and, using µ ≤ 1, we can re-write (97) as

E
[
r̃2t+1

]
≤ (1− αµ+ 48α2L2τ̄)E

[
r̃2t
]
− αµ

E
[
r2t
]

2
+ 128α2L2τ̄σ2

+ α(1 + 4αL2)E
[
∥dt∥2

]
+ 20α2L2

t−1∑

l=t−τ̄

E
[
∥dl∥2+2r̃2l

]
+ 2αB̄t.

(99)

Multiplying both sides by wt, we have

wtE
[
r̃2t+1

]
≤ (1− αµ+ 48α2L2τ̄)wtE

[
r̃2t
]
− αµ

wtE
[
r2t
]

2
+ 128wtα

2L2τ̄σ2

+ α(1 + 4αL2)wtE
[
∥dt∥2

]
+ 20α2L2wt

t−1∑

l=t−τ̄

E
[
∥dl∥2+2r̃2l

]
+ 2αwtB̄t.

(100)

By summing over t = 0, ..., T , we get, with WT =
∑T

t=0 wt:

T∑

t=0

wtE
[
r̃2t+1

]
≤ (1− αµ+ 48α2L2τ̄)

T∑

t=0

wtE
[
r̃2t
]
− αµ

2

T∑

t=0

wtE
[
r2t
]

+ 128WTα
2L2τ̄σ2 + α(1 + 4αL2)

T∑

t=0

wtE
[
∥dt∥2

]

︸ ︷︷ ︸
p1

+ 20α2L2
T∑

t=0

wt

t−1∑

l=t−τ̄

E
[
∥dl∥2+2r̃2l

]

︸ ︷︷ ︸
p2

+2Wτmix−1αB.

(101)
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Note that, from Lemma 4 - (iii), we have, picking α ≤ 1
72τL2 ,

p1 =
T∑

t=0

wtE
[
∥dt∥2

]
≤ 4WTα

2τ2L2σ2 + 16α2τ2L2
T∑

t=0

wtE
[
∥θ̃t∥2

]

≤ 36WTα
2τ2L2σ2 + 32α2τ2L2

T∑

t=0

wtE
[
r̃2t
]

≤ ατWTσ2

2
+

ατ

2

T∑

t=0

wtE
[
r̃2t
]
.

(102)

Furthermore, using the fact that wt ≤ 2wl for l = t− τ̄ , ..., t− 1, the above bound on p1, and picking α ≤ 1
72τL2 ,

we can bound p2 as follows:

p2 =
T∑

t=0

wt

t−1∑

l=t−τ̄

E
[
∥dl∥2+2r̃2l

]

(a)
≤ 2

T∑

t=0

t−1∑

l=t−τ̄

wlE
[
∥dl∥2+2r̃2l

]

(b)
≤ 2τ̄

T∑

t=0

wtE
[
∥dt∥2+2r̃2t

]
.

≤ 2τ̄
T∑

t=0

wtE
[
∥dt∥2

]
+ 4τ̄

T∑

t=0

wtE
[
r̃2t
]

(c)
≤ 2τ̄

(
ατWTσ2

2
+

ατ

2

T∑

t=0

wtE
[
r̃2t
]
)

+ 4τ̄
T∑

t=0

wtE
[
r̃2t
]

≤ 5τ̄
T∑

t=0

wtE
[
r̃2t
]
+WTσ

2τ̄ ,

(103)

where for (a) we used Lemma 7, for (b) we used the fact that each element wl∥θl∥2 appears at most τ times in
the sum, for l = 0, ..., T − 1 (note that, by definition, ∥dl∥= r̃l = 0 for l < 0), and for (c), we used the bound on
p1. In the last inequality we simply used ατ ≤ 1. Plugging the two bounds on p1 and p2 in (101), we get

T∑

t=0

wtE
[
r̃2t+1

]
≤ (1− αµ+ 150α2L2τ̄)

T∑

t=0

wtE
[
r̃2t
]
− αµ

2

T∑

t=0

wtE
[
r2t
]

+ 150WTα
2L2τ̄σ2 + 2Wτmix−1αB.

(104)

Now, note that for α ≤ µ
100L2τ̄ , it holds that (1− 2αµ+150α2L2τ̄) ≤ (1− 0.5αµ). We can then re-write (104) as

T∑

t=0

wtE
[
r̃2t+1

]
≤ (1− 0.5αµ)

T∑

t=0

wtE
[
r̃2t
]
− αµ

2

T∑

t=0

wtE
[
r2t
]

+ 150WTα
2L2τ̄σ2 + 2Wτmix−1αB.

(105)

Now, dividing by WT both sides of (105), bringing
∑T

t=0 wtE
[
r̃2t+1

]
to the right hand side of the inequality and

−αµ
2

∑T
t=0 wtE

[
r2t
]

to the left side, we get

αµ

2

T∑

t=0

wt

WT
E
[
r2t
]
≤ 1

WT

T∑

t=0

(
wt(1− 0.5αµ)E

[
r̃2t
]
− wtE

[
r̃2t+1

])

+150α2L2τ̄σ2 +
2Wτmix−1αB

WT
.

(106)
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Now, recalling that wt = (1−0.5αµ)−(t+1), note that wt(1−0.5αµ) = wt−1, and we can get, noting that w−1 = 1,

T∑

t=0

(
wt(1− 0.5αµ)E

[
r̃2t
]
− wtE

[
r̃2t+1

])
=

T∑

t=0

(
wt−1E

[
r̃2t
]
− wtE

[
r̃2t+1

])

≤ E
[
r̃20
]
− wTE

[
r̃2T+1

]
≤ r̃20.

(107)

Hence, we can write (106) as

αµ

2

T∑

t=0

wt

WT
E
[
r2t
]
≤ r̃20

WT
+ 150α2L2τ̄σ2 +

2Wτmix−1αB

WT
. (108)

Now note that

Wτmix−1 =
τmix−1∑

t=0

wt =
τmix−1∑

t=0

(1− 0.5αµ)−(t+1) ≤
τmix−1∑

t=0

(1 + αµ)t+1 ≤ 2τmix (109)

and that
1

WT
≤ 1

wT
= (1− 0.5αµ)T+1, (110)

from which we can obtain, re-arranging the different terms in (108),

1

WT

T∑

t=0

wtE
[
r2t+1

]
≤ (1− 0.5αµ)T+1r̃20

(
2

αµ
+

4τ̄B

µ

)
+ 300

αL2τ̄σ2

µ

= Cα(1− 0.5αµ)T+1r̃20 + C2
αL2τ̄σ2

µ
,

(111)

where we define Cα =
(

2
αµ + 4τ̄B

µ

)
and C2 = 300. By plugging the maximum value for the step size α = µ

150L2τ̄ ,

we can get, defining Cτ̄ = τ̄
µ

(
2C1L

2

µ + 4B
)

,

1

WT

T∑

t=0

wtE
[
r2t+1

]
≤ C2(1− 0.5αµ)T+1r̃20 + 2σ2. (112)

Indeed, for α = µ
150L2τ̄ , it holds C2

αL2τ̄
µ = 2. Finally, by definition of θout in Theorem 1, note that we have

E
[
∥θout − θ∗∥2

]
=

1

WT

T∑

t=0

wtE
[
r2t
]
, (113)

and we can conclude the proof of Theorem 1. "
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B.2 Proof of Theorem 2 and Related Lemmas

Let rt ! ∥θt − θ∗∥. Define τ ′ = 2τmax + τmix, and recall

rt,2 ! max
t−τ ′≤l≤t

E
[
r2l
]
. (114)

As we mentioned in Section 3, the proof technique of Theorem 1 cannot be directly extended to a time-varying
delay setting. To see why this is the case, please take a look back at (49) in the proof of Theorem 1, and note
that the specific way in which we can write dt, which is crucial in several key steps of the proof, relies on the
fact that the delay is constant. Accordingly, we do not see how we could generalize that type of identity to a
time-varying delay setting in a way that leads to the convergence rate we are aiming to obtain. In the rest of
this section, we provide the details and the proofs of the auxiliary lemmas introduced in Section 4, and the proof
of Theorem 2, whose structure departs completely from the proof of Theorem 1 and whose outline has been
illustrated in Section 4.

B.2.1 Proofs of Auxiliary Lemmas

We start by proving Lemma 1, i.e., the bounds on terms of the form ∥θt − θt−τ∥2, for some 0 ≤ τ ≤ t.

Proof of Lemma 1. To prove (i), note that we can get

∥θt − θt−τmix∥2 ≤
(

t−1∑

l=t−τmix

∥θl+1 − θl∥
)2

(31)
≤ τmix

t−1∑

l=t−τmix

∥θl+1 − θl∥2

= τmixα
2

t−1∑

l=t−τmix

∥g(θl−τl , ol−τl)∥2

(28)
≤ 2α2τmixL

2
t−1∑

l=t−τmix

(∥θl−τl∥2+σ2)

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(2r2l−τl + 3σ2).

(115)

Taking the expectation on both sides of the inequality, we get

E
[
∥θt − θt−τmix∥2

]
≤ 2α2τmixL

2
t−1∑

l=t−τmix

(2E
[
r2l−τl

]
+ 3σ2)

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(2 max
t−τmix−τmax≤j≤t

E
[
r2j
]
+ 3σ2)

≤ 4τ2mixα
2L2rt,2 + 6α2τ2mixL

2σ2

= 2α2τ2mixL
2(2rt,2 + 3σ2).

(116)

With analogous computations, we can get part (ii) of the Lemma, i.e.

E
[
∥θt − θt−τt∥2

]
≤ 2α2τ2maxL

2(2rt,2 + 3σ2). (117)

"

Recall the definition of et:
et ! g(θt, ot)− g(θt−τt , ot−τt). (118)
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As illustrated in the outline of the analysis in Section 4, for the purpose of analysis, we write the update rule as
follows:

θt+1 = θt + αg(θt, ot)− αet, (119)
from which we can write

∥θt+1 − θ∗∥2= Jt,1 + α2Jt,2 − 2αJt,3, (120)
with

Jt,1 ! ∥θt − θ∗ + αg(θt, ot)∥2

Jt,2 ! ∥et∥2

Jt,3 ! ⟨et,θt − θ∗ + αg(θt, ot)⟩.
(121)

Proof of Lemma 2 - (i). Note that
Jt,1 = ∥θt − θ∗ + αg(θt, ot)∥2 = r2t + 2α ⟨θt − θ∗,g(θt, ot)⟩︸ ︷︷ ︸

Jt,11

+ α2 ∥g(θt, ot)∥2︸ ︷︷ ︸
Jt,12

.
(122)

We also observe that
E [Jt,12] = E

[
∥g(θt, ot)∥2

]

≤ E
[
2L2

(
∥θt∥2+σ2

)]

≤ 2L2
(
2E
[
r2t
]
+ 3σ2

)

≤ 2L2
(
2rt,2 + 3σ2

)
.

(123)

Now note that, using (24),
Jt,11 = ⟨θt − θ∗,g(θt, ot)⟩ = −⟨θ∗ − θt, ḡ(θt)⟩

+ ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩
≤ −µr2t + ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
1

,
(124)

where we now omit the dependence on the iterate t in the terms we bound, for notational convenience. Now,
note that

T ′
1 = ⟨θt − θt−τmix ,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
11

+ ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
12

,
(125)

where, using the Cauchy-Schwarz inequality and the triangle inequality,
T ′
11 ≤ ∥θt − θt−τmix∥(∥g(θt, ot)∥+∥ḡ(θt)∥)

(27)
≤ 2L(∥θt − θt−τmix∥(∥θt∥+σ))

(∗)
≤ L

(
1

ατmixL
∥θt − θt−τmix∥2+ατmixL(∥θt∥+σ)2

)

(31)
≤ L

(
1

ατmixL
∥θt − θt−τmix∥2+2ατmixL(∥θt∥2+σ2)

)
,

(126)

where for (∗) we used the fact that, from (30), we have

ab = (
1√
c
a)(

√
cb) ≤ 1

2c
a2 +

cb2

2
, (127)

specifically with c = ατmixL. Taking the expectation on both sides and applying (ii) of Lemma 1, we get

E [T ′
11] ≤ L

(
1

2ατmixL
E
[
∥θt − θt−τmix∥2

]
+ ατmixL(2E

[
r2t
]
+ 3σ2)

)

≤ L

(
2α2τ2mixL

2

2ατmixL
(2rt,2 + 3σ2) + ατmixL(2rt,2 + 3σ2)

)

= 4ατmixL
2rt,2 + 6ατmixL

2σ2.

(128)
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Now, we proceed to bound E [T ′
12]. Note that

T ′
12 = ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩

= T̄1 + T̄2 + T̄3,
(129)

with
T̄1 = ⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τ )⟩
T̄2 = ⟨θt−τmix − θ∗,g(θt, ot)− g(θt−τmix , ot)⟩
T̄3 = ⟨θt−τmix − θ∗, ḡ(θt−τmix)− ḡ(θt)⟩.

(130)

We first bound T̄2 and T̄3. Note that, using the Lipschitz property of the TD update direction (26), and
calculations similar to the ones used to bound E [T ′

11], we get

T̄2 ≤ ∥θt−τmix − θ∗∥∥g(θt, ot)− g(θt−τmix , ot)∥
≤ L∥θt−τmix − θ∗∥∥θt−τmix − θt∥
(127)
≤ L2ατmix

2
r2t−τmix

+
∥θt − θt−τmix∥2

2ατmix
.

(131)

Taking the expectation and applying (ii) of Lemma 1, we can get

E
[
T̄2

]
≤ ατmixL2rt,2

2
+ 2ατmixL

2rt,2 + 3ατmixL
2σ2

≤ 3ατmixL
2(rt,2 + σ2).

(132)

With the same calculations, we can get

E
[
T̄3

]
≤ 3ατmixL

2(r2t,2 + σ2). (133)

We now proceed to bound T̄1.

E
[
T̄1

]
= E [⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩]
= E [⟨θt−τmix − θ∗,E [g(θt−τmix , ot)|ot−τ ,θt−τmix ]− ḡ(θt−τmix)⟩]
≤ E [∥θt−τmix − θ∗∥∥E [g(θt−τmix , ot)|ot−τmix ,θt−τmix ]− ḡ(θt−τmix)∥]
(∗)
≤ αE [∥θt−τmix − θ∗∥(∥θt−τmix∥+σ)]

≤ αE [∥θt−τmix − θ∗∥(∥θt−τmix − θ∗∥+2σ)]

≤ αE
[
1

2

(
r2t−τmix

+ 2r2t−τmix
+ 4σ2

)]

≤ 2α(rt,2 + σ2),

(134)

where for (∗) we used Definition 1 of the mixing time and the fact that σ ≥ 1. So, putting the above bounds
together, we get

E [T ′
12] = E

[
T̄1

]
+ E

[
T̄2

]
+ E

[
T̄3

]
≤ 8ατmixL

2(r2t,2 + σ2). (135)
This then implies

E [T ′
1] = E [T ′

11] + E [T ′
12]

≤ 4ατmixL
2rt,2 + 6ατmixL

2σ2 + 8ατmixL
2(rt,2 + σ2)

≤ 12ατmixL
2rt,2 + 14ατmixL

2σ2.

(136)

We also have
E [Jt,11] ≤ −µE

[
r2t
]
+ E [T ′

1] . (137)
Hence,

E [Jt,1] = E
[
r2t
]
+ 2αE [Jt,11] + α2E [Jt,12]

≤ (1− 2αµ)E
[
r2t
]
+ 28α2τmixL

2rt,2 + 34α2τmixL
2σ2,

(138)

which concludes the proof of the Lemma. "
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Proof of Lemma 2 - (ii). Note that

Jt,2 = ∥et∥2 = ∥g(θt, ot)− g(θt−τt , ot−τt)∥2

(31)
≤ 2

(
∥g(θt, ot)∥2+∥g(θt−τt , ot−τt)∥2

)

(28)
≤ 2

(
2L2(∥θt∥2+σ2) + 2L2(∥θt−τt∥2+σ2)

)

≤ 4L2(2r2t + 3σ2 + 2rt−τt + 3σ2).

(139)

Taking the expectation, we conclude getting

E [Jt,2] = E
[
∥et∥2

]
≤ 8L2(2rt,2 + 3σ2). (140)

Proof of Lemma 2 - (iii). In the following, we drop the dependence on the iteration t in most of the terms
we bound. We write

−Jt,3 = ⟨et,θt − θ∗ + αg(θt, ot)⟩
= ⟨−et,θt − θ∗⟩︸ ︷︷ ︸

∆

+α⟨−et,g(θt, ot)⟩︸ ︷︷ ︸
∆̄

. (141)

Note that
∆̄ = α⟨−et,g(θt, ot)⟩ ≤ α∥et∥∥g(θt, ot)∥

≤ α

2

(
∥et∥2+∥g(θt, ot)∥2

)
.

(142)

Using (140) and (28) to bound E
[
∥et∥2

]
and E

[
∥g(θt, ot)∥2

]
, respectively, we get

E
[
∆̄
]
≤ α

2

(
8L2

(
2rt,2 + 3σ2

)
+ 2L2

(
2rt,2 + 3σ2

))

= 10αL2rt,2 + 15αL2σ2.
(143)

We now proceed to bound ∆ as follows:

∆ = ⟨−et,θt − θ∗⟩ = ⟨−g(θt, ot) + g(θt−τt , ot−τt),θt − θ∗⟩
= ⟨−g(θt, ot) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆1

+ ⟨−g(θt, ot−τt) + g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆2

.

(144)

Note that, thanks to the Lipschitz property of the TD direction and with calculations analogous to the ones
performed to obtain the bound on E

[
T̄2

]
(see (131) and (132)), we get

E [∆2] ≤ E [L∥θt − θt−τt∥rt] ≤ 3ατmixL
2(rt,2 + σ2). (145)

We now bound ∆1:
∆1 = ⟨−g(θt, ot) + g(θt−τmix , ot),θt,−θ∗⟩︸ ︷︷ ︸

∆11

+ ⟨−g(θt−τmix , ot) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆12

.
(146)

With calculations analogous to the ones performed to obtain the bound on E
[
T̄2

]
(see (131) and (132)), we get

E [∆11] ≤ E [L∥θt − θt−τt∥rt] ≤ 3ατmixL
2(rt,2 + σ2). (147)

We now proceed to bound ∆12:

∆12 = ⟨−g(θt−τmix , ot) + ḡ(θt−τmix),θt − θ∗⟩︸ ︷︷ ︸
∆′

1

+ ⟨−ḡ(θt−τmix) + g(θt, ot−τt),θt − θ∗⟩.︸ ︷︷ ︸
∆′

2

(148)
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We have
∆′

1 = ⟨−g(θt−τmix , ot) + ḡ(θt−τmix),θt−τmix − θ∗⟩︸ ︷︷ ︸
∆′

11

+ ⟨−g(θt−τmix , ot) + ḡ(θt−τmix),θt − θt−τmix⟩.︸ ︷︷ ︸
∆′

12

(149)

Note that
∆′

12 ≤ ∥g(θt−τmix , ot)− ḡ(θt−τmix)∥∥θt − θt−τmix∥
≤ (∥g(θt−τmix , ot)∥+∥ḡ(θt−τmix)∥) ∥θt − θt−τmix∥
(27)
≤ 2L (∥θt−τmix∥+σ) ∥θt − θt−τmix∥
≤ 2L

(
r2t−τmix

+ 2σ
)
∥θt − θt−τmix∥

≤ 2αL2τmix(r
2
t−τmix

+ 2σ2) +
1

2ατmix
∥θt − θt−τmix∥2.

(150)

Taking expectation on both sides and applying Lemma 1, we get

E [∆′
12] ≤ 2ατmixL

2
(
E
[
r2t−τmix

]
+ 2σ2

)
+

1

2ατmix
E
[
∥θt − θt−τmix∥2

]

≤ 2ατmixL
2
(
rt,2 + 2σ2

)
+ ατmixL

2
(
2rt,2 + 3σ2

)

= 4ατmixL
2rt,2 + 7ατmixL

2σ2.

(151)

Now note that ∆′
11 can be bounded using the same calculations used for T̄1 in (134):

E [∆′
11] ≤ 2α(rt,2 + σ2). (152)

Next note that
∆′

2 = ⟨−ḡ(θt−τmix) + g(θt, ot−τt),θt − θ∗⟩
= ⟨−ḡ(θt−τmix) + g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆′
21

+ ⟨−g(θt−τmix , ot−τt) + g(θt, ot−τt),θt − θ∗⟩.︸ ︷︷ ︸
∆′

22

(153)

To bound E [∆′
22], we can proceed with calculations analogous to the ones performed to obtain the bound on

E
[
T̄2

]
(see (131) and (132)), getting

E [∆′
22] ≤ 3ατmixL

2(rt,2 + σ2). (154)

Now, we write
∆′

21 = ⟨−ḡ(θt−τmix) + ḡ(θt−τmix−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄1

+ ⟨−ḡ(θt−τmix−τt) + g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄2

.
(155)

We see that, as before, we can bound E
[
∆̄1

]
with the same procedure we used to bound E [∆′

22]:

E
[
∆̄1

]
≤ 3ατmaxL

2(rt,2 + σ2). (156)

We write
∆̄2 = ⟨−ḡ(θt−τmix−τt) + g(θt−τmix−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆̄21

+ ⟨−g(θt−τmix−τt , ot−τt) + g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄22

.
(157)
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Now note that E
[
∆̄22

]
can be bounded with calculations analogous to the ones performed to obtain the bound

on ∆̄1:
E
[
∆̄22

]
≤ E [L(∥θt−τmix−τt − θt−τmix∥∥θt − θ∗∥)]
≤ 3ατmaxL

2(rt,2 + σ2).
(158)

Next, observe that
∆̄21 = ⟨−ḡ(θt−τmix−τt) + g(θt−τmix−τt , ot−τt),θt−τmix−τt − θ∗⟩︸ ︷︷ ︸

∆̄211

+ ⟨−ḡ(θt−τmix−τt) + g(θt−τmix−τt , ot−τt),θt − θt−τmix−τt⟩︸ ︷︷ ︸
∆̄212

.
(159)

With calculations analogous to the ones performed to obtain the bound on E [∆′
12] (see (151)), we get

E
[
∆̄212

]
≤ E [∥θt − θt−τmix−τt∥L (∥ḡ(θt−τmix−τt)∥+∥g(θt−τmix−τt , ot−τt)∥)]
≤ 4α(τmix + τmax)L

2rt,2 + 7α(τmix + τmax)L
2σ2.

(160)

Finally, note that ∆̄211 can be bounded using the same calculations used for T̄1 in (134), yielding

E
[
∆̄211

]
≤ 2α(rt,2 + σ2). (161)

So, E [T3] can be upper-bounded by a sum of terms that are upper-bounded by either O(α)(r2t,2 + σ2),
O(ατmax)(r2t,2 + σ2), O(ατmix)(r2t,2 + σ2), or O(α)(τmix + τmax)(r2t,2 + σ2). Putting all the terms together,
we can get

E [−Jt,3] ≤ 28αL2(τmix + τmax)(rt,2 + σ2), (162)

which concludes the proof. "

Now, recall the definition of the update rule for delayed SA with time-varying delay under Assumption 4:

Delayed SA: θt+1 = θt + αg(θt−τt , ot−τt), τt ≤ min{t, τmax}. (163)

Consider the mean squared error term E
[
r2t
]
= E

[
∥θt − θ∗∥2

]
, and its expression derived in (120). Let us define

τ ′ = 2τmax + τmix. The bounds on E [Jt,1], E [Jt,2], and E [Jt,3] provided in the previous section are such that
the update rule (163) satisfies the following ∀t ≥ τ ′:

E
[
r2t+1

]
= E

[
∥θt+1 − θ∗∥2

]

= E [Jt,1] + α2E [Jt,2]− 2αE [Jt,3]

≤ (1− 2αµ)E
[
r2t
]
+ 98α2L2(τmix + τmax)(rt,2 + σ2),

(164)

with
rt,2 = max

t−τ ′≤l≤t
E
[
r2l
]
.

As mentioned in the outline of the analysis in Section 4, the final part of the proof of Theorem 2 is based on a
crucial argument that shows that, for a sufficiently small step size, the iterates generated by (163) are uniformly
bounded, which is shown in Lemma 3. Note that, starting from the above inequality (164), one could apply a
technique similar to Feyzmahdavian et al. (2014) to handle the delayed optimality gaps in the bound. However,
this technique would provide a suboptimal convergence rate with a τ2max dependency on the maximum delay. To
prove Lemma 3, that enables the obtainment of the tight linear dependence on τmax, we first provide the following
result, which proves the base case of the induction proof on which the proof of Lemma 3 relies on.
Lemma 8. Consider the update rule in (163) and let B = 9σ2. For 0 ≤ t ≤ τ ′ = 2τmax + τmix and α ≤ 1

24L2τ ′ ,
we have

E
[
r2t
]
≤ B, 0 ≤ t ≤ τ ′. (165)
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Proof. Note that
r2t+1 = r2t + 2α⟨θt − θ∗,g(θt−τt , ot−τt)⟩+ α2∥g(θt−τt , ot−τt)∥2

(30)
≤ r2t + αr2t + α∥g(θt−τt , ot−τt)∥2+α2∥g(θt−τt , ot−τt)∥2

≤ (1 + α)r2t + 2α∥g(θt−τt , ot−τt)∥2

(28)
≤ (1 + α)r2t + 4αL2(∥θt−τt∥2+σ2)

≤ (1 + α)r2t + 4αL2(2r2t−τt + 3σ2)

= (1 + α)r2t + 8αL2r2t−τt + 12αL2σ2.

(166)

Taking the expectation on both sides, we get

E
[
r2t+1

]
≤ (1 + α)E

[
r2t
]
+ 8αL2E

[
r2t−τt

]
+ 12αL2σ2. (167)

Hence, we get an inequality of the following form:

Vt+1 ≤ pVt + qVt−τt + β, 0 ≤ τt ≤ min{t, τmax}, (168)

with Vt = E
[
r2t
]
, p = 1 + α, q = 8αL2τmax, and β = 12αL2σ2. We define ρ = p+ q, noting that ρ > 1. We now

prove by induction that, for all t ≥ 0,
Vt ≤ ρtV0 + ϵt, (169)

where

ϵt =

{
ρϵt−1 + β for t ≥ 1

0 for t = 0
(170)

The base case is trivially satisfied, because V0 ≤ V0. As the induction hypothesis, suppose that (169) is true for
0 ≤ s ≤ k, for some k ≥ 0, so that

Vs ≤ ρsV0 + ϵs, 0 ≤ s ≤ k. (171)
Now, we check the property for k + 1, using (168), and noting that ϵk is an increasing sequence:

Vk+1 ≤ pVk + qVk−τk + β,

≤ p(ρkV0 + ϵk) + q(ρk−τkV0 + ϵk−τk) + β

≤ p(ρkV0 + ϵk) + q(ρkV0 + ϵk) + β

≤ (p+ q)ρkV0 + (p+ q)ϵk + β

= ρk+1V0 + ϵk+1.

(172)

From this, we can conclude the proof of (169). Now, note that

ϵt = β
t−1∑

j=0

ρj , (173)

and so we can write, for 0 ≤ t ≤ τ ′,

ρt ≤ ρτ
′
≤ (1 + α)τ

′
≤ eατ

′
≤ e0.25 ≤ 2, (174)

using the fact that α ≤ 1
4τ ′ . Hence, using the above results, we can get for 0 ≤ t ≤ τ ′:

E
[
r2t
]
≤ ρtr20 + ϵt ≤ 2r20 + β

τ ′−1∑

j=0

ρj ≤ 2r20 + 2βτ ′ = 2r20 + 2(12αL2σ2)τ ′

≤ 2r20 + σ2 ≤ 9σ2,

(175)

where we used the fact that α ≤ 1
24L2τ ′ and that r20 = ∥θ0 − θ∗∥2≤ 2∥θ0∥2+2∥θ∗∥2≤ 4σ2.

We have just shown that, for 0 ≤ t ≤ τ ′, it holds

E
[
r2t
]
≤ 9σ2. (176)
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Now, we provide the proof of Lemma 3, which relies on Lemma 8.

Proof of Lemma 3. We know from Lemma 8 that for t = 0, ..., τ ′, with τ ′ = 2τmax + τmix, and α ≤ 1
24L2τ ′ , we

have
E
[
r2t
]
≤ B. (177)

We now proceed by induction to show that the bound holds true also for any t ≥ τ ′, thus for all t ≥ 0. We
use (177) as the base case for the induction proof. Fix any t ≥ τ ′, and as the induction hypothesis, assume that
the property is true for all s satisfying τ ′ ≤ s ≤ t, i.e.,

E
[
r2s
]
≤ B ∀τ ′ ≤ s ≤ t. (178)

Now, from (164) we can write

E
[
r2t+1

]
≤ (1− 2αµ)E

[
r2t
]
+ 98α2L2(τmix + τmax)(rt,2 + σ2). (179)

Observe that from the induction hypothesis and the induction base case, the following is true:

rt,2 = max
t−τ ′≤l≤t

E
[
r2l
]
≤ B. (180)

Hence, we can write, recalling that B = 9σ2 ≥ σ2,

E
[
r2t+1

]
≤ (1− 2αµ)E

[
r2t
]
+ 98α2L2(τmix + τmax)(rt,2 + σ2)

≤ (1− 2αµ)B + 98α2L2(τmix + τmax)(B + σ2)

≤ (1− 2αµ)B + 2B98α2L2(τmix + τmax)

≤ (1− 2αµ+ 196α2L2(τmix + τmax))B.

(181)

Thus, for α ≤ µ
196L2τ̄ ≤ µ

98L2τ ′ ≤ µ
98L2(τmix+τmax)

, we get 1− 2αµ+ 196α2L2(τmix + τmax) ≤ 1, implying

E
[
r2t+1

]
≤ B. (182)

This concludes the proof. "

Using this last Lemma in conjunction with (164), we can now prove Theorem 2.

B.2.2 Proof of Theorem 2

Note that, from (164), we can write, for T ≥ τ ′ = 2τmax + τmix,

E
[
r2t+1

]
≤ (1− 2αµ)E

[
r2t
]
+ 98α2L2(τmix + τmax)(rt,2 + σ2)

(∗)
≤ (1− 2αµ)E

[
r2t
]
+ 2B98α2L2(τmix + τmax),

(183)

where for (∗) we used the fact that, for α ≤ 1
196L2τ̄ , it holds rt,2 ≤ B = 9σ2, as established by Lemma 3. Iterating

the inequality, we get

E
[
r2t+1

]
≤ (1− 2αµ)t+1−τ ′

r2τ ′ + 98L2α2(τmix + τmax)2B
∞∑

j=0

(1− 2αµ)j

≤ (1− 2αµ)t+1−τ ′
r2τ ′ +

98L2α(τmix + τmax)B

µ

≤ (1− 2αµ)t+1−τ ′
B +

98L2α(τmix + τmax)B

µ
(∗)
≤ (1− 2αµ)t+12B +

98L2α(τmix + τmax)B

µ

≤ e−2αµ(t+1)2B +
98L2α(τmix + τmax)B

µ
,

(184)
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where (∗) follows because
(1− 2αµ)−τ ′

≤ e2αµτ
′
≤ e0.25 ≤ 2, (185)

and by noting that αµ ≤ α ≤ 1
196L2τ̄ ≤ 1

8τ ′ . Hence, for α ≤ 1
CL2τ̄ , with C = 196, we get the result. Setting

α = 1
CL2τ̄ , with C ≥ 196 and C ′ = 98, we can also get

E
[
r2T
]
≤ exp

(
− 2µ2T

CL2τ̄

)
2B +

C ′B

C
. (186)

"
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B.3 Proof of Theorem 3

For a precision threshold ϵ > 0 to be specified soon, recall that the update rule of delay-adaptive SA takes the
form:

θt+1 =

{
θt + α (g(θt−τt , ot−τt)) if ∥θt − θt−τt∥≤ ϵ

θt otherwise.
(187)

Let us define
β ! ϵ+ σ, and c ! Lβ,

where L > 0 is the Lipschitz constant defined in Assumption 3.
We use the following way of writing the update rule:

θt+1 = θt + αg(θt, ot)− αet, (188)

where et = g(θt, ot)− g(θt−τt , ot−τt). We also define the following indicator function It:

It =

{
1 if ∥θt − θt−τt∥≤ ϵ

0 otherwise.
(189)

B.3.1 Outline of the Analysis

Recall that It = 1 if ∥θt − θt−τt∥≤ ϵ and It = 0 otherwise. Then, we can express ∥θt+1 − θ∗∥2 as

∥θt+1 − θ∗∥2= It
(
Kt,1 + α2Kt,2 − 2αKt,3

)
+ (1− It)∥θt − θ∗∥2, (190)

with
Kt,1 ! ∥θt − θ∗ + αg(θt, ot)∥2,
Kt,2 ! ∥et∥2,
Kt,3 ! ⟨et,θt − θ∗ + αg(θt, ot)⟩.

(191)

In order to analyze the convergence of the delay-adaptive SA update rule, we first derive bounds for Kt,1, Kt,2,
and −Kt,3 for iterations in which It = 1. Then, we establish a lower bound on the number of iterations in which
It = 1. By using these two results, we are able to obtain the finite-time convergence rate of Theorem 3.

B.3.2 Auxiliary Lemmas

Similarly to Section 4, we provide three lemmas that are instrumental to proving the main result of this section,
i.e., Theorem 3. As in the case of the vanilla delayed SA update, we start by providing a result that provides
a bound on the norm of θt − θt−τ . Note that here, unlike the non-adaptive vanilla case of Section 4, we are
able to get a bound on ∥θt − θt−τ∥ which is a function only of the current iterate θt. This aspect significantly
simplifies the proof. Note that this step, which plays a crucial role in enabling us to remove the dependency of
the rate on the maximum delay, is provided by the specific adaptive update rule, which only uses SA update
directions g(θt−τt , ot−τt) when the distance between the delayed iterate θt−τt - at which the direction was
computed - and the current approximation parameter θt is smaller than the threshold ϵ, with ϵ set to α. In the
proof of Theorem 3 and related lemmas, without loss of generality, we also use negative indices for iterates and
observations. In particular, we define, for j < 0, θj = θ0 and oj = o0.
Lemma 9. For any τ ≥ 1 and t ≥ 0, we have

∥θt − θt−τ∥≤ 4Lατ(rt + 2β), (192)

where β = Lϵ+ Lσ.

Using Lemma 9, we can bound Kt,1, Kt,2, and Kt,3 in Lemma 10.
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Lemma 10. For t ≥ τmix, if It = 1, we have, for some absolute constants C11, C12 ≥ 1,

(i) E [Kt,1] ≤
(
1− 2αµ+ C11L

2(α2τmix)
)
E
[
r2t
]
+ C11L

2(α2τmix)β
2

(ii) E [Kt,2] ≤ 2L2τmix(E
[
r2t
]
+ β2)

(iii) E [−Kt,3] ≤ C12L
2ατmix(E

[
r2t
]
+ β2).

With the help of the previous lemma, we can rewrite Equation (190) as follows, when It = 1:

E
[
r2t+1

]
= E

[
∥θt+1 − θ∗∥2

]

= E [Kt,1] + α2E [Kt,2]− 2αE [Kt,3]

≤
(
1− 2αµ+ C11L

2(α2τmix)
)
E
[
r2t
]
+ C1L

2(α2τmix)β
2.

(193)

To finish the proof, we only need to determine the number of times we update the parameter in T iterations.
This can be achieved through the following lemma, which we borrow from Cohen et al. (2021). By utilizing this
lemma, we can complete the proof and obtain the bound presented in Theorem 3.

Lemma 11. Let τavg be the average delay, i.e., τavg = 1
T

T∑
t=1

τt. The number of updates that the delay-adaptive

SA algorithm makes is at least T
4τavg+4 .

In the remainder of the section, we first provide the proofs for all the auxiliary lemmas, and then conclude with
the proof of Theorem 3.

B.3.3 Proofs of Auxiliary Lemmas

Proof of Lemma 9. Let t
′
= t− τt, then

∥θt+1 − θt∥ ≤ αIt∥g(θt′ , ot′ )∥
≤ αLIt(∥θt′∥+σ)

≤ αLIt(∥θt∥+∥θt − θt′∥+σ)

≤ αLIt(∥θt∥+ϵ+ σ)

≤ αL (∥θt∥+β) ,

(194)

from which we get

∥θt+1∥≤ (1 + αL)∥θt∥+αLβ. (195)

In what follows, we will recursively use the above inequality in tandem with the following facts: (i) If It = 0,
then θt = θt−1 and our next steps hold trivially, and that (ii) θj = θ0 for j < 0. We then have that ∀t ≥ 0:

∥θt∥ ≤ (1 + αL)∥θt−1∥+αLβ

≤ (1 + αL)2∥θt−2∥+αLβ(1 + αL) + αLβ

≤ (1 + αL)τ∥θt−τ∥+αLβ
τ−1∑

j=0

(1 + αL)j

≤ 2∥θt−τ∥+2αLβτ,

(196)
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where we used ατL ≤ 1
4 and the fact that, for 0 ≤ j ≤ τ , (1 + x)j ≤ (1 + x)τ ≤ exτ ≤ 2 for xτ ≤ 1

4 .
Now, using the above inequality on ∥θt∥,

∥θt − θt−τ∥ ≤
t−1∑

j=t−τ

∥θj+1 − θj∥

(194)
≤

t−1∑

j=t−τ

αL(∥θj∥+β)

(196)
≤ αL

t−1∑

j=t−τ

(2∥θt−τ∥+2αLβτ) + ατLβ

≤ ατL(2∥θt−τ∥+2Lαβτ) + αLβτ

≤ 2αLτ∥θt−τ∥+2Lαβτ,

(197)

where in the last inequality we used the fact that ατ ≤ 1
4L . Moreover,

∥θt − θt−τ∥ ≤ 2ατL∥θt−τ∥+2Lαβτ

≤ 2ατL∥θt∥+2Lαβτ + 2ατL∥θt − θt−τ∥

≤ 2ατL∥θt∥+2Lαβτ +
1

2
∥θt − θt−τ∥,

(198)

which results in

∥θt − θt−τ∥≤ 4ατL∥θt∥+4Lαβτ. (199)

Recalling c = Lβ, we can write
∥θt − θt−τ∥ ≤ 4ατL∥θt∥+4αcτ

≤ 4ατL(rt + 2β).
(200)

Also note that (recall c = Lβ):

∥θt − θt−τ∥2 ≤ (4ατL∥θt∥+4αcτ)2

≤ (4ατLrt + 8αcτ)2

≤ 16(ατLrt + 2αcτ)2

(31)
≤ 32(α2τ2L2r2t + 4α2τ2c2)

≤ 32α2τ2L2(r2t + 4β2).

(201)

"

Note that for an iteration t in which an update is not made, i.e., It = 0, we have

∥θt+1 − θ∗∥2= ∥θt − θ∗∥2. (202)

If It = 1, we have:

∥θt+1 − θ∗∥2= ∥θt + αg(θt, ot)− θ∗∥2︸ ︷︷ ︸
Kt,1

+α2∥et∥2︸ ︷︷ ︸
Kt,2

−2α⟨et,θt − θ∗ + αg(θt, ot)⟩.︸ ︷︷ ︸
Kt,3

(203)

Proof of Lemma 10 - (i). In the following, we drop the dependence on the iteration t in the terms we bound.
We write

Kt,1 = ∥θt − θ∗ + αg(θt, ot)∥2 = r2t + 2α ⟨θt − θ∗,g(θt, ot)⟩︸ ︷︷ ︸
I1

+ α2 ∥g(θt, ot)∥2︸ ︷︷ ︸
I2

.
(204)
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Note that

E [I2] = E
[
∥g(θt, ot)∥2

] (28)
≤ 2L2

(
E
[
∥θt∥2

]
+ σ2

)
≤ 2L2

(
2E
[
r2t
]
+ 3σ2

)
. (205)

Next, note that

I1 = ⟨θt − θ∗,g(θt, ot)⟩ = −⟨θ∗ − θt, ḡ(θt)⟩
+ ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩
≤ −ω(1− γ)r2t + ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
1

.
(206)

Now,

T ′
1 = ⟨θt − θt−τmix ,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
11

+ ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
12

.
(207)

Using the fact that β ≤ σ and L ≥ 1, we can bound T ′
11 as follows:

T ′
11 ≤ ∥θt − θt−τmix∥∥g(θt, ot)− ḡ(θt)∥

(27)
≤ ∥θt − θt−τmix∥2L(∥θt∥+σ)

(201)
≤ (4ατmixL∥θt∥+4ατmixc)2L(∥θt∥+σ)

≤ 8ατmixL
2∥θt∥2+8αcτmixLσ + (8ατmixL

2σ + 8ατmixLc)∥θt∥
≤ 8ατmixL

2∥θt∥2+8αL2βτmixσ + (8ατmixL
2σ + 8ατmixL

2β)∥θt∥
≤ 8ατmixL

2∥θt∥2+8αL2τmixβ
2 + 32ατmixL

2β2 + 32ατmixL
2∥θt∥2

= 40ατmixL
2∥θt∥2+40ατmixL

2β2

≤ 80ατmixL
2r2t + 120ατmixL

2β2

≤ 40L2ατmix(2r
2
t + 3β2).

(208)

Taking expectations on both sides of the above display, we obtain

E [T ′
11] ≤ 40L2ατmix(2E

[
r2t
]
+ 3β2). (209)

Now, observe that

T ′
12 = ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩

= T̄1 + T̄2 + T̄3,
(210)

with
T̄1 = ⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩
T̄2 = ⟨θt−τmix − θ∗,g(θt, ot)− g(θt−τmix , ot)⟩
T̄3 = ⟨θt−τmix − θ∗, ḡ(θt−τmix)− ḡ(θt)⟩.

(211)

Note that, from (201), we have, recalling c = Lβ,

∥θt − θt−τmix∥2≤ 32α2τ2mixL
2
(
r2t + 4β2

)
. (212)

We now proceed to bound T̄2 and T̄3. Note that, using the Lipschitz property (Assumption 3) and the fact that
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α ≤ 1
12τmixL2 , we obtain

T̄2 ≤ ∥θt−τmix − θ∗∥∥g(θt, ot)− g(θt−τmix , ot)∥
≤ L∥θt−τmix − θ∗∥∥θt−τmix − θt∥
(30)
≤ ατmixL2

2
∥θt−τmix − θ∗∥2+ 1

2ατmix
∥θt−τmix − θt∥2

≤ ατmixL
2∥θt − θ∗∥2+ατmixL

2∥θt−τmix − θt∥2+
1

2ατmix
∥θt−τmix − θt∥2

≤ ατmixL
2r2t + ατmixL

2
(
32α2τ2mixL

2
(
r2t + 4β2

))

+
1

2ατmix

(
32α2τ2mixL

2
(
r2t + 4β2

))

≤ ατmixL
2r2t + ατmixL

2(r2t + β2) + 16ατmixL
2r2t + 64ατmixL

2β2

≤ ατmixL
2(18r2t + 65β2).

(213)

Taking the expectation, we get
E
[
T̄2

]
≤ ατmixL

2(18E
[
r2t
]
+ 65β2). (214)

With the same calculations, we can get

E
[
T̄3

]
≤ ατmixL

2(18E
[
r2t
]
+ 65β2). (215)

We now proceed to bound E
[
T̄1

]
. Using the fact that ατmix ≤ 1

12L2 , we can write

E
[
T̄1

]
= E [⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩]
= E [⟨θt−τmix − θ∗,E [g(θt−τmix , ot)|ot−τmix ,θt−τmix ]− ḡ(θt−τmix)⟩]
≤ E [∥θt−τmix − θ∗∥∥E [g(θt−τmix , ot)|ot−τmix ,θt−τmix ]− ḡ(θt−τmix)∥]
(25)
≤ αE [∥θt−τmix − θ∗∥(∥θt−τmix∥+σ)]

(30)
≤ α

2
E
[
∥θt−τmix − θ∗∥2+(∥θt−τmix − θ∗∥+2σ)2

]

≤ α

2
E
[
2r2t + 2∥θt − θt−τmix∥2+2∥θt−τmix − θ∗∥2+8σ2

]

≤ α

2
E
[
2r2t + 2∥θt − θt−τmix∥2+2

(
2∥θt − θt−τmix∥2+2∥θt − θ∗∥2

)
+ 8σ2

]

≤ 3αE
[
r2t
]
+ 3αE

[
∥θt − θt−τmix∥2

]
+ 4ασ2

≤ 3αE
[
r2t
]
+ 96α3τ2mix

(
E
[
r2t
]
+ 4c2

)
+ 4ασ2

≤ 4αE
[
r2t
]
+ 8αc2.

(216)

So, we obtain
E [T ′

12] = E
[
T̄1

]
+ E

[
T̄2

]
+ E

[
T̄3

]

≤ 4αE
[
r2t
]
+ 8αc2 + 2

(
ατmixL

2
(
18E

[
r2t
]
+ 65β2

))

≤ 46ατmixL
2
(
E
[
r2t
]
+ 3β2

)
.

(217)

Combining the bounds on E [T ′
11] and E [T ′

12], we obtain

E [T ′
1] = E [T ′

11] + E [T ′
12]

≤ 40ατmixL
2(2E

[
r2t
]
+ 3β2) + 46ατmixL

2
(
E
[
r2t
]
+ 3β2

)

≤ 130ατmixL
2(E

[
r2t
]
+ 2β2).

(218)

This immediately yields:

E [I1] ≤ −ω(1− γ)E
[
r2t
]
+ E [T ′

1]

≤ −ω(1− γ)E
[
r2t
]
+ 130ατmixL

2(E
[
r2t
]
+ 2β2).

(219)
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Hence,
E [Kt,1] = E

[
r2t
]
+ 2αE [I1] + α2E [I2]

≤
(
1− 2αµ+ 264α2τmixL

2
)
E
[
r2t
]
+ 526α2τmixL

2β2.
(220)

"

Proof of Lemma 10 - (ii).Using the notation t
′
= t− τt, we get

∥et∥= ≤ ∥g(θt′ , ot′ )− g(θt, ot′ )∥+∥g(θt, ot′ )− g(θt, ot)∥
≤ L∥θt − θt′ ∥+2L(∥θt∥+σ)

≤ 2L∥θt∥+Lϵ+ 2Lσ

≤ 2L∥θt∥+2L(ϵ+ σ)

= 2(L∥θt∥+c).

(221)

Note that, using the above inequality, we have

∥et∥≤L∥θt∥+2c. (222)

Using this inequality, we can get
E
[
α2Kt,2

]
≤ α2E

[
∥et∥2

]

≤ α2E
[
(L∥θt∥+2c)2

]

≤ α2E
[(
2L2∥θt∥2+8c2

)]

≤ 4α2L2E
[
r2t
]
+ 12α2c2.

(223)

"

Proof of Lemma 10 - (iii). We write

−Kt,3 = ⟨−et,θt − θ∗ + αg(θt, ot)⟩
= ⟨−et,θt − θ∗⟩︸ ︷︷ ︸

∆

+α⟨−et,g(θt, ot)⟩︸ ︷︷ ︸
∆̄

. (224)

Note that using (223), we have
∥et∥2≤ 4L2r2t + 12c2. (225)

Using this fact, we can get
∆̄ = α⟨−et,g(θt, ot)⟩

≤ α∥et∥∥g(θt, ot)∥
(30)
≤ α

2

(
∥et∥2+∥g(θt, ot)∥2

)

(28)
≤ α

2

(
4L2r2t + 12c2 + 2L2(2r2t + 3σ2)

)

≤ α

2
(8L2r2t + 18c2)

≤ 4αL2r2t + 9αc2,

(226)

implying that
E
[
∆̄
]
≤ αL2(4E

[
r2t
]
+ 9β2). (227)

We now proceed to bound ∆ as follows:

∆ = ⟨−et,θt − θ∗⟩ = ⟨−g(θt, ot) + g(θt−τt , ot−τt),θt − θ∗⟩
= ⟨−g(θt, ot) + ḡ(θt)− ḡ(θt) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆1

+ ⟨−g(θt, ot−τt) + g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆2

.

(228)
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Next, noting that ∥g(θt, ot−τt)− g(θt−τt , ot−τt)∥≤ L∥θt − θt−τt∥≤ Lϵ, we have

∆2 ≤ Lϵrt ≤
αL

2

(
r2t +

( ϵ

α

)2)
. (229)

Now, using the fact that ϵ ≤ α and 1 ≤ σ ≤ β, we have

∆2 ≤ αL

2
(r2t + β2), (230)

and

∆1 ≤ ⟨−g(θt, ot) + ḡ(θt),θt − θ∗⟩︸ ︷︷ ︸
∆11

+ ⟨−ḡ(θt) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆12

. (231)

Note that ∆11 = T ′
1 for T ′

1 defined above (see (206)), and therefore can be bounded accordingly as in (218):

E [∆11] ≤ 130ατmixL
2(E

[
r2t
]
+ 2β2). (232)

We now bound E [∆12] as follows:

∆12 = ⟨−ḡ(θt) + g(θt, ot−τt),θt − θ∗⟩
= ⟨−ḡ(θt−τt) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆′
1

+ ⟨−ḡ(θt) + ḡ(θt−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

2

.

(233)

Note that using the fact that ϵ ≤ α, we have

∆′
2 ≤ L∥θt − θt−τt∥∥θt − θ∗∥
≤ L(ϵrt)

≤ L

(
αr2t +

ϵ2

α

)

≤ Lα(r2t + β2).

(234)

We now bound E [∆′
1] as follows:

∆′
1 = ⟨−ḡ(θt−τt) + g(θt, ot−τt),θt − θ∗⟩
= ⟨−ḡ(θt−τt) + g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆′
11

+ ⟨−g(θt−τt , ot−τt) + g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

12

.

(235)

Note that, using Lipschitzness (Assumption 3) and the same calculations used to arrive at (234), one can obtain

∆′
12 ≤ ∥g(θt−τt , ot−τt)− g(θt, ot−τt)∥∥θt − θ∗∥

≤ L∥θt−τt − θt∥∥θt − θ∗∥
≤ Lα(r2t + β2).

(236)

Let us also observe that
∆′

11 = ⟨−ḡ(θt−τt) + g(θt−τt , ot−τt),θt − θ∗⟩
= ⟨−ḡ(θt−τt) + ḡ(θt−τt−τmix),θt − θ∗⟩︸ ︷︷ ︸

∆̄1

+ ⟨−ḡ(θt−τt−τmix) + g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄2

.

(237)
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Now, using Lemma 9 and the fact that ϵ ≤ β, we have

∆̄1 ≤ L (∥θt−τt − θt−τt−τmix∥) ∥θt − θ∗∥
≤ 4ατmixL

2(∥θt−τt∥+β)rt

≤ 4ατmixL
2(∥θt∥+ϵ+ β)rt

≤ 4ατmixL
2(rt + 3β)rt

= 4ατmixL
2(r2t + 3βrt)

≤ 4ατmixL
2(3r2t + 2β2).

(238)

We also have that
∆̄2 = ⟨−ḡ(θt−τt−τmix) + g(θt−τt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆̄21

+ ⟨−g(θt−τt−τmix , ot−τt) + g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄22

.
(239)

Observe that with calculations analogous to the ones done to arrive at (238), we can obtain

E
[
∆̄22

]
≤ 4ατmixL

2(3E
[
r2t
]
+ 2β2). (240)

Now, we write
∆̄21 = ⟨−ḡ(θt−τt−τmix) + g(θt−τt−τmix , ot−τt),θt−τt−τmix − θ∗⟩︸ ︷︷ ︸

∆̄211

+ ⟨−ḡ(θt−τt−τmix) + g(θt−τt−τmix , ot−τt),θt − θt−τt−τmix⟩︸ ︷︷ ︸
∆̄212

.
(241)

We first bound ∆̄212. Using Lemma 9 and (27),

∆̄212 ≤ ∥ḡ(θt−τt−τmix)− g(θt−τt−τmix , ot−τt)∥∥θt − θt−τt−τmix∥
≤ 2L(∥θt−τt−τmix∥+σ)∥θt − θt−τt−τmix∥
≤ 2L(∥θt∥+∥θt − θt−τt−τmix∥+σ)∥θt − θt−τt−τmix∥
≤ 2L(∥θt∥+∥θt − θt−τt−τmix∥+σ)∥θt − θt−τt−τmix∥.

(242)

Furthermore, using (200) from Lemma 9 and the fact that ϵ ≤ α, we have

∥θt − θt−τt−τmix∥ ≤ ∥θt − θt−τt∥+∥θt−τt − θt−τt−τmix∥
≤ ϵ+ ∥θt−τt − θt−τt−τmix∥
≤ ϵ+ 4ατmixL(rt−τt + 2β)

≤ α+ 4ατmixL(rt + ϵ+ 2β)

≤ 13ατmixL(rt + β).

(243)

Hence, given that σ ≤ β and ατmix ≤ 1
26L2 ,

∆̄212 ≤ 2L(∥θt∥+∥θt − θt−τt−τmix∥+σ)∥θt − θt−τt−τmix∥
(30)
≤ 2L

26ατmixL
∥θt − θt−τmix−τt∥2+

13ατmixL2

2
(∥θt∥+∥θt − θt−τmix−τt∥+β)2

≤ 26ατmixL
2(r2t + β2) +

13ατmixL2

2
(2(∥θt∥+∥θt − θt−τmix−τt∥)2 + 2σ2)

≤ 26ατmixL
2(r2t + β2) + 13ατmixL

2(2∥θt∥2+2∥θt − θt−τmix−τt∥2+σ2)

≤ 26ατmixL
2(r2t + β2) + 13ατmixL

2(4r2t + 4β2 + 2(132)α2τ2mixL
22(r2t + β2) + σ2)

≤ 92ατmixL
2(r2t + β2).

(244)
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To conclude, we bound E
[
∆̄211

]
. We use (25), the fact that ατmix ≤ 1 and (243). For notational convenience,

define t′ ! t− τt − τmix. Using manipulations similar to the ones performed above, we can get

E
[
∆̄211

]
= E [⟨ḡ(θt′)− g(θt′ , ot−τt),θt′ − θ∗⟩]
= E [⟨ḡ(θt′)− E [g(θt′ , ot−τt)|θt′ , ot′ ] ,θt′ − θ∗⟩]
≤ E [∥ḡ(θt′)− E [g(θt′ , ot−τt)∥] ∥θt′ − θ∗∥]
≤ E [(α)(∥θt′∥+σ)(∥θt′ − θt∥+∥θt − θ∗∥)]
≤ αE [(rt + ∥θt′ − θt∥+σ)(rt + ∥θt′ − θt∥+β)]

≤ 196L2α(E
[
r2t
]
+ β2).

(245)

Putting together the above bounds, we can conclude that

E [−Kt,3] ≤ C12L
2ατmix(E

[
r2t
]
+ β2), (246)

where C12 = 440. "

Proof of Lemma 11. The proof follow the same arguments as in Cohen et al. (2021), we provide details only
for completeness. Recall the definition of the average delay up to time T , τavg ! 1

T

∑T
t=1 τt. Consider U2τavg ,

the number of steps t for which the delay τt is at least 2τavg. We must have U2τavg ≤ T
2 (otherwise the total sum

of delays exceeds τavgT , contradicting the definition of τavg). On the other hand, let k be the number of updates
that the algorithm makes. Let t1 < t2 < . . . < tk be the steps in which an update is made. Denote t0 = 0 and
tk+1 = T . Now, fix i and consider the steps at times sn = ti +n for n ∈ [1, 2, . . . , ti+1 − ti − 1]. In all those steps
no update takes place and θsn = θti . We must have τsn > n for all n (otherwise θt = θt−tτt

for t = sn and an
update occurs). In particular, we have that τsn ≥ 2τavg in at least ti+1 − ti − 1− 2τavg steps. Formally,

# of steps in [ti, ti+1] with delay bigger or equal to 2τavg

≥ max{0, ti+1 − ti − 1− 2τavg}
≥ ti+1 − ti − 1− 2τavg.

(247)

Hence,

U2τavg ≥
k−1∑

i=0

(ti+1 − ti − 1− 2τavg)

= T − k(1 + 2τavg).

Finally, it follows that T − k(1 + 2τavg) ≤ T
2 which implies k ≥ T

4(τavg+1) . "

B.3.4 Initial Condition

Now, we provide a bound on the initial condition r2t for t ≤ τmix. Note that

r2t+1 = r2t + 2α⟨θt − θ∗,g(θt−τt , ot−τt)⟩+ α2∥g(θt−τt , ot−τt)∥2

(30)
≤ r2t + αr2t + α∥g(θt−τt , ot−τt)∥2+α2∥g(θt−τt , ot−τt)∥2

≤ (1 + α)r2t + 2α∥g(θt−τt , ot−τt)∥2

(28)
≤ (1 + α)r2t + 4αL2(∥θt−τt∥2+σ2)

≤ (1 + α)r2t + 4αL2(2ϵ2 + 2∥θt∥2+σ2)

≤ (1 + 17αL2)r2t + 28αL2σ2

≤ (1 + 17αL2)t+1r20 + 28αL2σ2
t∑

j=0

(1 + αL2)j .

(248)
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Using α ≤ 1
68τmixL2 and (1 + x) ≤ ex ≤ 2 for x ≤ 0.25, we have:

r2τmix
≤ (1 + 17αL2)τmixσ2 + 28αL2σ2τmix(1 + 17αL2)τmix

≤ e17αL
2τmixσ2 + 28αL2σ2τmixe

17αL2τmix

≤ 2σ2 + 56αL2σ2τmix

≤ 3σ2.

(249)

B.3.5 Proof of Theorem 3

Putting together the results of Lemma 10, we have, for It = 1:

E
[
∥θt+1 − θ∗∥2

]
= E [Kt,1] + E

[
α2Kt,2

]
− E [2αKt,3]

≤
(
1− 2αµ+ 264α2τmixL

2
)
E
[
r2t
]
+ 526α2τmixL

2β2

+ 4α2L2E
[
r2t
]
+ 12α2c2 + 2C12L

2α2τmix(E
[
r2t
]
+ β2) (250)

≤
(
1− 2αµ+ 1152α2τmixL

2
)
E
[
r2t
]
+ 1418L2α2τmixβ

2. (251)

Assume t
′

0, t
′

1, t
′

2, . . . t
′

k ∈ [T ] are iterations in which updates happen after iteration τmax + τmix, so that
τmix + τmax ≤ t

′

0 ≤ t
′

1 ≤ · · · ≤ t
′

k. Then, we have rj = rt′i
for all j ∈ [t

′

i, t
′

i+1). We can write, for all
j ∈ [t

′

i+1, t
′

i+2):
E
[
r2j
]
= E

[
r2
t
′
i+1

]

= E
[
∥θt

′
i+1−1 − θ + αg(θt

′
i+1−1, ot′i+1−1)∥

2
]

+ α2E
[
∥et′i+1−1∥

2
]

− 2αE
[
⟨et′i+1−1θt

′
i+1−1 − θ∗ + αg(θt

′
i+1−1, ot′i+1−1)⟩

]

= E
[
∥θt

′
i
− θ + αg(θt

′
i
, ot′i

)∥2
]
+ α2E

[
∥et′i∥

2
]

− 2αE
[
⟨et′iθt

′
i
− θ∗ + αg(θt

′
i
, ot′i

)⟩
]

≤
(
1− 2αµ+ 1152α2τmixL

2
)
E
[
r2
t
′
i

]

+ 1418L2α2τmixβ
2.

(252)

By choosing the step size to be α ≤ µ
1152L2τmix

, we have for all j ∈ [t
′

i+1, t
′

i+2):

E
[
r2j
]
≤
(
1− 2αµ+ 1152α2τmixL

2
)
E
[
r2
t
′
i

]
+ 1418L2α2τmixβ

2

≤ (1− αµ)︸ ︷︷ ︸
ρ

E
[
r2
t
′
i

]
+ 1418L2α2τmixβ

2.
(253)

By recursively using the above equation, we have

E
[
r2T
]
≤ ρkE

[
r2
t
′
0

]
+ γ, (254)

with ρ = (1 − αµ) and γ ! 1418L2ατmixβ2µ−1. Based on Lemma 11, k ≥ T
4τavg+4 − τmix, and based on (249),

we know E
[
r2
t
′
0

]
= E

[
r2τmix

]
≤ 3σ2. This yields:

E
[
r2T
]
≤ ρkE

[
r2
t
′
0

]
+ γ ≤ ρk3σ2 + γ ≤ exp

(
−αµ

T

4τavg + 4
+ αµτmix

)
3σ2 + 1418

L2ατmix(ϵ+ σ)2

µ

≤ exp

(
−αµ

T

4τavg + 4

)
6σ2 + 1418

L2ατmix(ϵ+ σ)2

µ
,

(255)
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where we used exp
(

µ2

1152L2

)
≤ exp

(
1

1152L2

)
≤ 2.

Additionally, if we set ϵ = α, α = α0 = µ
1152L2τmix

, we obtain, defining C2 ! 1152,

E
[
r2T
]
≤
(
exp

(
−µ2T

4C2L2τmix(τavg + 1)

)
6 + 8

)
σ2. (256)

This completes the proof.
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Figure 1: Simulation performance of a TD(0) learning algorithm under delayed updates and Markovian sam-
pling. We compare three different algorithms: a non-delayed TD learning algorithm, a vanilla-delayed algorithm
(equivalent to update rule (6)), and a delay-adaptive algorithm (equivalent to update rule (23)).

C Simulation Results

In this section, we show numerical results to validate our theoretical analysis. We simulate a TD(0) learning
algorithm for policy evaluation via linear function approximation, with a setting similar to the one adopted
by Dal Fabbro et al. (2023) (see technical report) and Mitra et al. (2023) for TD learning under communication
constraints. We generate a Markov Decision Process with a state space S of dimension |S|= 20, resorting to value
function approximation with a feature space spanned by d = 10 orthonormal basis vectors. We set the discount
factor of the problem to γ = 0.5. We generate the delay sequence by picking a random delay τt at each iteration
t as a uniform random variable in the range [1, τmax]. We set the maximum delay to τmax = 200. We compare
a non-delayed version of TD learning (“non delayed”) with the delayed scenario, for which we implement both
the vanilla approach (update rule in (6)) and the proposed delay-adaptive strategy (update rule in (23)). For
the delay-adaptive algorithm, as required by the theory (Theorem 3), we set ϵ = α. To validate our theoretical
results, we compare the results obtained with the different algorithms when the step size is the same for all
algorithms. Specifically, we set α = 0.35. We show the results in Fig. 1. As expected based on the results on
Theorem 2 and 3, we see that both the vanilla-delayed and the delay-adaptive algorithms converge to bigger noise
balls around the best linear approximation parameter θ∗. At the same time, we see that the rate of convergence
of the delay-adaptive algorithm (for the same choice of step-size) is worse than the vanilla-delayed one, while
the convergence ball is smaller (for the delay-adaptive). This is in line with the theoretical results. Indeed, if
we substitute the same step size in the bounds of Theorem 2 and 3, we get a worse rate for the delay-adaptive
algorithm but a better convergence ball. Note that the main advantage of the delay-adaptive algorithm is the
fact that, unlike the vanilla-delayed algorithm, the choice of step size does not inversely depend on the maximum
delay in the delay sequence. Thus, the delay-adaptive algorithm allows one to be less conservative in the step-size
choice and agnostic of the maximum delay.
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