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Min-Max Optimization under Delays

Arman Adibi, Aritra Mitra, and Hamed Hassani

Abstract— Delays and asynchrony are inevitable in large-
scale machine-learning problems where communication plays
a key role. As such, several works have extensively analyzed
stochastic optimization with delayed gradients. However, as far
as we are aware, no analogous theory is available for min-
max optimization, a topic that has gained recent popularity
due to applications in adversarial robustness, game theory,
and reinforcement learning. Motivated by this gap, we examine
the performance of standard min-max optimization algorithms
with delayed gradient updates. First, we show (empirically)
that even small delays can cause prominent algorithms like
Extra-gradient (EG) to diverge on simple instances for which EG
guarantees convergence in the absence of delays. Our empirical
study thus suggests the need for a careful analysis of delayed
versions of min-max optimization algorithms. Accordingly,
under suitable technical assumptions, we prove that Gradient
Descent-Ascent (GDA) and EG with delayed updates continue
to guarantee convergence to saddle points for convex-concave
and strongly convex-strongly concave settings. Our complexity
bounds reveal, in a transparent manner, the slow-down in
convergence caused by delays.

I. INTRODUCTION

Min-max optimization is a fundamental problem with
applications in various fields, including game theory [1], ma-
chine learning [2], robust optimization [3], and more recently,
adversarial robustness [4]. As such, the convergence analysis
of various min-max optimization algorithms has received
considerable attention over the years [5]–[8]. While this has
resulted in a rich literature that provides non-asymptotic
guarantees for the vanilla versions of these algorithms, not
much is known about their robustness to different types of
perturbations that show up in practice. In particular, for large-
scale machine learning problems involving communication
between multiple servers and agents, such perturbations get
manifested in the form of (unavoidable) delays and asyn-
chrony. Consequently, several works have extensively studied
stochastic optimization with delayed gradients; since the
literature on this topic is vast, we refer the reader to [9]–[13]
and the references therein. However, to our knowledge, there
is no analogous theory for min-max optimization. Motivated
by this gap, the goal of our paper is to build an understanding
of the effect of delays on the convergence of common min-
max optimization algorithms like Gradient Descent-Ascent
(GDA) and Extra-Gradient (EG). Our main contributions in
this regard are as follows.
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A. Summary of Main Results

• We start with a result that is perhaps surprising. In
Section II-A, we empirically examine the effect of delays
on the behavior of the Extra-Gradient algorithm due to
Korpelevich [5]. We observe that even with the smallest
possible delay, i.e., a unit delay, EG diverges on a simple
convex-concave function; see Fig. 1.1 Notably, in the absence
of delays, EG provably guarantees convergence to a saddle-
point for this function. This observation, although empirical,
suggests that delays can have non-trivial effects on the

convergence of popular min-max optimization algorithms.

• Our empirical study conveys the message that tech-
nical assumptions that are typically not required to study
vanilla EG might, in fact, turn out to be needed to ensure
convergence under delays. Accordingly, in Section III, we
study DEG - a version of EG with updates based on delayed
gradients - for smooth, convex-concave functions over a
bounded domain. In Theorem 1, we show that DEG guaran-
tees convergence to a saddle-point at a rate O(

√
τmax/

√
T ),

where T is the number of iterations, and τmax is a uniform
bound on the delays. Our proof of this result is based on
a connection to adversarial perturbations on statistical min-
max learning problems in the recent work [14].

In the absence of delays, the convergence rates of EG

and Gradient Descent-Ascent (GDA) are O(1/T ) [15] and
O(1/

√
T ) [6], respectively. Our empirical divergence result

(see Footnote 1) and Theorem 1 collectively suggest that

under delays, the behavior of EG is similar to that of GDA.

• To further investigate the above point, we turn our
attention to the behavior of GDA under delays in Section IV;
we refer to this delayed version as DGDA. For smooth,
convex-concave functions with bounded gradients, we prove
that DGDA exhibits a convergence rate of O(

√
τmax/

√
T )

- exactly like DEG; see Theorem 2. However, unlike the
analysis for DEG, we do not assume a bounded domain.
Instead, we provide a careful analysis to argue that with
suitable step-sizes, the iterates of DGDA remain bounded.

• All our results above pertain to scenarios where there
is some underlying assumption of boundedness (either on
the gradients or on the domain). Thus, one may ask: Can

min-max optimization algorithms under delays converge in

the absence of such boundedness assumptions? In Section V,
we answer this question in the affirmative by studying DGDA
for smooth, strongly convex-strongly concave functions. We
prove that DGDA guarantees linear convergence to the saddle

point at a rate of O(exp(−T/τ3max)); see Theorem 3.

1The Gradient Descent-Ascent (GDA) algorithm diverges on this instance
even in the absence of delays [7].
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As far as we are aware, our results above are novel and
provide the first steps toward theoretically understanding the
robustness of min-max optimization algorithms to delay-
induced perturbations. Our results are summarized in Table I.

II. PROBLEM SETTING

In this section, we start by describing the basic setup of a
min-max optimization problem. Next, we show empirically
how EG can diverge with even one-step delays. Finally, we
conclude the section by outlining some technical assumptions
that will be made for the majority of the paper to ensure
boundedness and convergence of iterates.

The basic min-max optimization setup. Let X and Y
be nonempty, convex subsets of Rm and Rn, respectively.2

Given a mapping of the form f : X × Y → R, we are
interested in solving the following optimization problem:

min
x∈X

max
y∈Y

f(x, y). (1)

Throughout the paper, we will assume that f(x, y) is con-

tinuously differentiable in x and y, and convex-concave over
X × Y . Specifically, f(·, y) : X → R is convex for every
y ∈ Y , and f(x, ·) : Y → R is concave for every x ∈ X .
Our goal is to find a saddle point (x∗, y∗) of f(x, y) over
the set X × Y , where a saddle point is defined as a vector
pair (x∗, y∗) ∈ X × Y that satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ X , y ∈ Y. (2)

For any x̄ ∈ X and ȳ ∈ Y , let ∇xf(x̄, ȳ) and ∇yf(x̄, ȳ)
denote the partial gradients of f(x, y) with respect to x and y,
respectively, at (x̄, ȳ). Typical first-order iterative min-max
optimization algorithms such as GDA, EG, and Optimistic
Gradient Descent-Ascent (OGDA) aim to solve for (x∗, y∗)
based on an oracle that provides partial gradients of f(x, y)
evaluated at the most recent iterates of the algorithm.

The delay model. Not much, however, is known about
scenarios where the oracle is imperfect. To that end, we stud-
ied the effect of adversarial perturbations on the partial gradi-
ents of f(x, y) in our recent work [14]. In this work, we take
a different stance. Instead of considering arbitrary adversar-
ial perturbations, we will focus on structured perturbations
induced by delays. As mentioned earlier in the Introduction,
the source of such delays could be communication latencies
or system-level computational challenges such as stragglers,
both of which are prevalent in distributed systems. In this
work, given an iterative min-max optimization algorithm that
generates a sequence of iterates {(xk, yk)}, we assume that
at iteration k, we only have access to partial gradients of
f(x, y) computed at a stale iterate (xk−τk , yk−τk), i.e., we
have access to ∇xf(xk−τk , yk−τk) and ∇yf(xk−τk , yk−τk),
where τk is the delay at iteration k. While we allow the
delays to be time-varying, throughout the paper, we will work
under the running assumption that all delays are uniformly
bounded, i.e., there exists some positive integer τmax such
that τk ≤ τmax, ∀k.

2While we will assume that X and Y are bounded sets in Section III,
this assumption will be later relaxed in Sections IV and V.

Our goal is to understand what happens, when for com-
puting the next iterate (xk+1, yk+1), one uses these delayed
gradients as opposed to ∇xf(xk, yk) and ∇yf(xk, yk).
Specifically, we ask:

• Can we hope for convergence to saddle points using
delayed versions of algorithms like GDA and EG?

• If so, for different classes of functions, how do the
convergence rates get affected by τmax?

In the next subsection, we demonstrate (empirically) that
the answers to such questions are more nuanced than what
one might initially expect.

A. Divergence of Extra-Gradient Algorithm under Delay

Let us start by quickly reviewing how the Extra-gradient
(EG) algorithm for finding saddle-points operates in an
unconstrained setting. EG first computes a set of mid-points
(x̂k, ŷk) by using partial gradients evaluated at the current
iterate (xk, yk):

x̂k ← xk − α∇xf(xk, yk)

ŷk ← yk + α∇yf(xk, yk),
(3)

where α is a suitable step-size. Next, using gradients evalu-
ated at the mid-points, EG computes the next iterates as

xk+1 ← xk − α∇xf(x̂k, ŷk)

yk+1 ← yk + α∇xf(x̂k, ŷk).
(4)

For smooth, convex-concave functions, the above EG pro-
cedure guarantees convergence to a saddle-point at a rate of
O(1/T ), where T is the number of iterations [15]. Moreover,
to achieve this convergence, one does not need to make any
assumption of a bounded domain or bounded gradients.

Now to illustrate the challenges posed by delays, let us
consider solving the following problem

min
x

max
y
⟨x, y⟩, (5)

using a version of EG where all partial gradients are evaluated
at iterates that are delayed by just one time-step.3 Whereas
one might have expected a slow-down in convergence due
to delays, Figure 1 shows that in this specific setting, a unit
delay causes EG to diverge! This demonstrates that delays
can lead to non-trivial phenomena for standard min-max
algorithms, thereby justifying our current study.

A rough explanation for the above phenomenon is as
follows. In [8], the authors argued that EG can be studied as
an approximate version of the Proximal Point (PP) algorithm,
which, in turn, operates as follows:

xk+1 ← xk − α∇xf(xk+1, yk+1)

yk+1 ← yk − α∇yf(xk+1, yk+1).
(6)

When the gradients on the right-hand side of the above
equations are evaluated at one-step-delayed iterates, the
above algorithm reduces to the GDA algorithm. Unlike EG,
however, GDA can diverge for smooth, convex-concave prob-
lems like the one in Eq. (5), even in the absence of delays. In

3Formally, the delayed EG algorithm we study is outlined in Algorithm 1.



TABLE I: The table below presents a summary of our findings, outlining the conditions required for each algorithm to
achieve the specified convergence rate. In the smooth convex-concave case, the convergence rate corresponds to the number
of iterations needed for the duality gap to be less than ϵ. For the smooth strongly convex-strongly concave case (SC-SC),
the rate corresponds to the number of iterations needed for the distance to saddle points to be less than ϵ. It is worth noting
that in this table, we hide the dependence on G, L, and the strong-convexity parameter in the O notation.

Algorithm Bounded Gradient Bounded Domain SC-SC Convex-Concave Convergence Rate

Delayed Extra-Gradient (DEG) ! ! × ! O( τmax

ϵ
2 )

Delayed Gradient Descent-Ascent (DGDA) ! × × ! O( τmax

ϵ
2 )

Delayed Gradient Descent-Ascent (DGDA) × × ! × O(τ3max log( 1
ϵ
))
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Fig. 1: The Extra-gradient algorithm fails to converge, even
with just one step delay, for the optimization problem
minx maxy⟨x, y⟩. In this plot, we used a step size of α =
0.2. However, with the same step size and no delay, the
Extra-gradient algorithm converges to the origin, which is
the saddle-point for this problem.

particular, some assumption on the boundedness of domain
or gradients is needed to ensure the convergence of GDA

for convex-concave problems. From the above discussion,
we conclude that since EG with delays tends to behave like
GDA, we need to impose additional technical assumptions
to ensure convergence to saddle points. As such, we will
impose the following assumption of bounded gradients at
various points in the paper.

Assumption 1. There exists a constant G > 1 such that the

following holds for all x ∈ X , and all y ∈ Y: ∥∇xf(x, y)∥≤
G, and ∥∇yf(x, y)∥≤ G.4

We will also make the following standard assumption that
the partial gradients of f(x, y) are Lipschitz continuous.

Assumption 2. There exists a constant L > 1 such that the

following holds for all x1, x2 ∈ X , and all y1, y2 ∈ Y:

∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L (∥x1 − x2∥+∥y1 − y2∥) ,
∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L (∥x1 − x2∥+∥y1 − y2∥) .

4We will use ∥·∥ to represent the Euclidean norm.

III. ANALYSIS OF DELAYED EXTRA-GRADIENT FOR

CONVEX-CONCAVE FUNCTIONS

In Section II-A, we saw that in the absence of a projection
step to ensure the boundedness of iterates, the EG algorithm
diverges on very simple functions, even with a one-step
delay. Based on this empirical observation, in this section, we
study delayed extra-gradient (DEG) - outlined in Algorithm 1
- under additional assumptions. In particular, throughout this
section, we will work under Assumptions 1 and 2, i.e., we
will assume that the partial gradients of f(x, y) are Lipschitz
continuous and uniformly bounded. It is important to note
here that the divergence of DEG, as illustrated in Figure 1,
occurs when we do not impose Assumption 1. Thus, this
assumption will play a crucial role in our analysis.

The update rule for DEG (Algorithm 1) involves two steps.
In the first step, DEG computes a midpoint (x̂k, ŷk) based on
partial gradients evaluated at a stale iterate (xk−τk , yk−τk);
see Eq. (7). In the second step, DEG computes the next
iterate (xk+1, yk+1) based on partial gradients evaluated at
a stale mid-point (x̂k−τ̂k , ŷk−τ̂k); see Eq. (8). There are two
important things to take note of here. First, in each of the
above updates, we project onto X ×Y to ensure the bound-
edness of iterates. Second, our analysis is general enough to
accommodate time-varying delays; furthermore, we allow τk
and τ̂k to also be different. That said, as mentioned before,
we will work under the running assumption that all delays are
bounded uniformly by τmax, i.e., max{τk, τ̂k} ≤ τmax, ∀k.

Key Insight and Outline of Analysis. The starting
point of our analysis for DEG is the observation that the
errors induced by delays can be interpreted as bounded

perturbations. As we shall see in Lemma 3, the boundedness
of the delay-induced errors follows as a direct consequence
of Assumptions 1 and 2, and the uniform boundedness
assumption on the delays. This key observation allows us
to immediately make a connection to our prior work in [14],
where we studied min-max optimization under adversarial
perturbations. Building on this connection, we start with the
following result that establishes some basic inequalities for
our subsequent analysis; the proof of this result follows the
same steps as that of [14, Lemma 1].



Algorithm 1 Delayed Extra-Gradient (DEG)

Require: Initial vectors x1 ∈ X , y1 ∈ Y; algorithm
parameters: step-size α > 0.

1: for k = 1, . . . , T do

2:
x̂k ← ΠX (xk − α∇xf(xk−τk , yk−τk))

ŷk ← ΠY (yk + α∇yf(xk−τk , yk−τk)) .
(7)

3:

xk+1 ← ΠX (xk − α∇xf(x̂k−τ̂k , ŷk−τ̂k))

yk+1 ← ΠY (yk + α∇xf(x̂k−τ̂k , ŷk−τ̂k)) .
(8)

4: end for

Lemma 1. For the DEG algorithm, the following inequalities

hold for all k ∈ [T ], x ∈ X , and y ∈ Y:5

2α⟨∇xf(xk−τk , yk−τk), x̂k − x⟩ ≤ ∥x− xk∥2 − ∥x− x̂k∥2 − ∥x̂k − xk∥2

−2α⟨∇yf(xk−τk , yk−τk), ŷk − y⟩ ≤ ∥y − yk∥2 − ∥y − ŷk∥2 − ∥ŷk − yk∥2

2α⟨∇xf(x̂k−τ̂k , ŷk−τ̂k), xk+1 − x⟩ ≤ ∥x− xk∥2 − ∥x− xk+1∥2 − ∥xk+1 − xk∥2

−2α⟨∇yf(x̂k−τ̂k , ŷk−τ̂k), yk+1 − y⟩ ≤ ∥y − yk∥2 − ∥y − yk+1∥2 − ∥yk+1 − yk∥2.

Next, to bound the impact of delays, we introduce the
following error vectors:

ex(xk, yk) " ∇xf(xk−τk , yk−τk)−∇xf(xk, yk),

ey(xk, yk) " ∇yf(xk−τk , yk−τk)−∇yf(xk, yk),

and

ex(x̂k, ŷk) " ∇xf(x̂k−τ̂k , ŷk−τ̂k)−∇xf(x̂k, ŷk),

ey(x̂k, ŷk) " ∇yf(x̂k−τ̂k , ŷk−τ̂k)−∇yf(x̂k, ŷk).

Let D = max{Dx, Dy}, where Dx and Dy are the
diameters of the sets X and Y , respectively. Leveraging
Lemma 1, our next result tracks the progress made by the
mid-point sequence {(x̂k, ŷk)} generated by DEG. The proof
of this result mirrors that of [14, Lemma 2].

Lemma 2. Suppose Assumptions 1 and 2 hold. Furthermore,

suppose α ≤ 1/(2L). Then, for the DEG algorithm, the

following holds for all k ∈ [T ], x ∈ X , and y ∈ Y:

α⟨∇xf(x̂k, ŷk), x̂k − x⟩ − α⟨∇yf(x̂k, ŷk), ŷk − y⟩

≤
1

2

(

∥x− xk∥2 − ∥x− xk+1∥2 + ∥y − yk∥2 − ∥y − yk+1∥2
)

+ αD (∥ex(xk, yk)∥+∥ex(x̂k, ŷk)∥+∥ey(xk, yk)∥+∥ey(x̂k, ŷk)∥) .

The above result sets things up nicely for a telescoping-
sum analysis. However, the missing piece right now is to
provide bounds on the delay-induced errors. We derive such
bounds in the following result.

Lemma 3. Suppose Assumptions 1 and 2 hold. For the DEG

algorithm, the following error-bounds then apply ∀k ∈ [T ]:

max{∥ex(xk, yk)∥, ∥ex(x̂k, ŷk)∥, ∥ey(xk, yk)∥, ∥ey(x̂k, ŷk)∥} ≤ ∆T ,

where ∆T = 6αGLτmax.

5Given a positive integer N , we use [N ] to represent the set {1, . . . , N}.

Proof. In what follows, we only show how to bound
∥ex(xk, yk)∥ and ∥ex(x̂k, ŷk)∥; bounds for the other two
error terms can be derived in an identical manner. We start
by bounding ∥ex(xk, yk)∥. From equation (8), we have

∥xk − xk−τk∥ ≤
k−1
∑

j=k−τk

∥xj+1 − xj∥

(a)
≤ α

⎛

⎝

k−1
∑

j=k−τk

∥∇xf(x̂j−τ̂j , ŷj−τ̂j )∥

⎞

⎠

(b)
≤ αGτmax,

(9)

where (a) follows from the non-expansive property of the
projection operator, and (b) follows from Assumption 1 and
the fact that τk ≤ τmax. Using the exact same steps, one can
establish the same bound for ∥yk − yk−τk∥. Thus, we have

∥ex(xk, yk)∥ = ∥∇xf(xk, yk)−∇xf(xk−τ , yk−τ )∥
(a)
≤ L(∥xk − xk−τk∥+∥yk − yk−τk∥)
(b)
≤ 2αGLτmax,

(10)

where (a) follows from smoothness, i.e., Assumption 2, and
(b) follows from Eq. (9). Now to bound ex(x̂k, ŷk), observe

∥ex(x̂k, ŷk)∥ = ∥∇xf(x̂k−τ̂k , ŷk−τ̂k)−∇xf(x̂k, ŷk)∥
(a)
≤ L(∥x̂k − x̂k−τ̂k∥+∥ŷk − ŷk−τ̂k∥)
≤ L(∥x̂k − xk∥+∥xk − xk−τ̂k∥+∥xk−τ̂k − x̂k−τ̂k∥
+ ∥ŷk − yk∥+∥yk − yk−τ̂k∥) + ∥yk−τ̂k − ŷk−τ̂k∥)
(b)
≤ 2αGLτmax + 4αGL
(c)
≤ 6αGLτmax.

In the above steps, (a) follows from Assumption 2, (b)
follows from (9) and the fact that for any j ∈ [T ], ∥x̂j−xj∥≤
α∥∇xf(xj−τj , yj−τj )∥≤ αG, and (c) follows from noting
that τmax ≥ 1. This concludes the proof.

We are now in a position to prove our first main result
which establishes complexity bounds for DEG for smooth
convex-concave functions with bounded gradients.

Theorem 1. Suppose Assumptions 1 and 2 hold. Moreover,

suppose the number of iterations T is large enough such that

T ≥ L. Then, with

α =

√

1

24GLτmaxT
,

the iterates generated by DEG satisfy:

max
y∈Y

f(x̄T , y)−min
x∈X

f(x, ȳT ) ≤ 10D2

√

GLτmax

T
, (11)

where x̄T = (1/T )
∑

k∈[T ] x̂k and ȳT = (1/T )
∑

k∈[T ] ŷk.

Proof. Let us start by noting that when T ≥ L, the choice of
step-size above satisfies α ≤ 1/(2L). Thus, we can invoke



Algorithm 2 Delayed Gradient Descent-Ascent (DGDA)

Require: Initial vector z1 = [x1; y1] ∈ Rm+n; algorithm
parameters: step-size α > 0.

1: for k = 1, . . . , T do

2:

zk+1 = zk − αΦ(zk−τk). (14)

3: end for

Lemma 2. From the convex-concave property of f(x, y), the
following inequalities hold ∀k ∈ [T ], x ∈ X , and y ∈ Y:

α (f(x̂k, ŷk)− f(x, ŷk)) ≤ α⟨∇xf(x̂k, ŷk), x̂k − x⟩
−α (f(x̂k, ŷk)− f(x̂k, y)) ≤ −α⟨∇yf(x̂k, ŷk), ŷk − y⟩.

Summing the two inequalities above, and using Lemmas 2
and 3, we obtain:

α (f(x̂k, y)− f(x, ŷk)) ≤
1

2

(

∥x− xk∥2 − ∥x− xk+1∥2
)

+
1

2

(

∥y − yk∥2 − ∥y − yk+1∥2
)

+ 4αD∆T ,

(12)

where ∆T is as defined in Lemma 3. From the convexity
of f(x, y) w.r.t. x and concavity w.r.t. y, note that we
have f(x̄T , y) ≤ (1/T )

∑

k∈[T ] f(x̂k, y) and f(x, ȳT ) ≥
(1/T )

∑

k∈[T ] f(x, ŷk), respectively. Combining this with
Eq. (12), we obtain

f(x̄T , y)− f(x, ȳT ) ≤
D2

αT
+ 4D∆T . (13)

The result follows by plugging into the above inequality the
choice of α in the statement of the theorem, and by noting
that the resulting bound holds for all x ∈ X and for all
y ∈ Y . This completes the proof.

Discussion. From Theorem 1, we conclude that for smooth
convex-concave functions, DEG guarantees that the primal-
dual gap converges to zero at a rate O(

√
τmax/

√
T ). The

primal-dual gap is zero if and only if (x̄T , ȳT ) is a saddle
point of f(x, y) over the set X × Y . Thus, DEG also
guarantees convergence to a saddle-point under delays. The
important thing to note here is that the O(1/T ) convergence
rate of EG gets significantly slackened in the presence
of delays; whether this is an artifact of our analysis or
fundamental is an open question. The O(1/

√
T ) rate of DEG

mirrors the rate of GDA in the absence of delays. In the
following sections, we will further explore this connection.

IV. ANALYSIS OF DELAYED GRADIENT

DESCENT-ASCENT FOR CONVEX-CONCAVE FUNCTIONS

In this section, we will examine the convergence of a
delayed version of the gradient descent ascent algorithm that
we refer to as DGDA. As before, we will continue to work
under Assumptions 1 and 2. However, we will set X = Rm

and Y = Rn, i.e., as a departure from the previous section,
the domains of the variables x and y are no longer assumed
to be bounded. As we shall soon see, this makes the analysis
more challenging relative to that in Section III.

To proceed, given any x ∈ Rm and y ∈ Rn, we will find it
convenient to define a new variable z = [x; y] that resides in
Rm+n. Next, corresponding to any z = [x; y], let us define
the function Φ : Rm+n → Rm+n as follows:

Φ(z) =

[

∇xf(x, y)
−∇yf(x, y)

]

, (15)

With these notations in place, we outline the steps of DGDA
in Algorithm 2; the steps are self-explanatory.

Analysis of DGDA. In our analysis, we will make use of
the following result from [16], stated for our purpose.

Lemma 4. Let Φ(z) be as defined in Eq. (15), and suppose

Assumption 2 holds for all z ∈ Rm+n. Then, the following

statements are true for any z1, z2 ∈ Rm+n:

1) ⟨Φ(z1)− Φ(z2), z1 − z2⟩ ≥ 0,
2) For any saddle-point z∗ = [x∗; y∗] of f(x, y), we have

Φ(z∗) = 0.

We start with a simple result that bounds the error ek "

Φ(zk) − Φ(zk−τk) induced by delays as a function of the
smoothness parameter L, the uniform bound on the gradients
G, and the maximum delay τmax.

Lemma 5. Suppose Assumptions 1 and 2 hold ∀z ∈ Rm+n.

Then, for any k ∈ [T ], the delay-induced error ek " Φ(zk)−
Φ(zk−τk) for DGDA satisfies

∥ek∥≤ 2αLGτmax. (16)

Proof. For any two points z = [x; y] and ẑ = [x̂; ŷ], we have

∥Φ(z)− Φ(ẑ)∥2 ≤
(a)
2 (L(∥x− x̂∥+∥y − ŷ∥))2

≤ 4L2∥z − ẑ∥2,
(17)

where we used Assumption 2 for the first inequality. Based
on the above inequality, we have

∥ek∥ = ∥Φ(zk−τk)− Φ(zk)∥
≤ 2L∥zk−τk − zk∥

≤ 2L
k−1
∑

j=k−τk

∥zj+1 − zj∥

≤ 2αL
k−1
∑

j=k−τk

∥Φ(zj−τj )∥≤ 2αLGτmax,

(18)

where the final step follows from Assumption 1.

Unlike the analysis in Section III where the boundedness
of the domain implied bounded iterates, we need to do
more work to establish that the iterates generated by DGDA

remain bounded. Leveraging Lemma 5, the following result
establishes this key fact.

Lemma 6. Suppose Assumptions 1 and 2 hold ∀z ∈ Rm+n.

Let z∗ = [x∗; y∗], and suppose the step-size α satisfies

α ≤
1

2
√
LGτmaxT

.

Then, for the DGDA algorithm, the following holds ∀k ∈ [T ]:

∥zk − z∗∥2≤ 10B, where B = max{∥z1 − z∗∥2, G}. (19)



Proof. From Eq. (14) and the definition of ek, we have

∥zk+1 − z∥2=∥zk − αΦ(zk)− z∥2

+ α2∥ek∥2+2α⟨ek, zk − z − αΦ(zk)⟩
=∥zk − z∥2+α2∥Φ(zk)∥2−2α⟨Φ(zk), zk − z⟩
+ α2∥ek∥2+2α⟨ek, zk − z − αΦ(zk)⟩
≤∥zk − z∥2+2α2G2 − 2α⟨Φ(zk), zk − z⟩
+ 4α4G2L2τ2max +2α⟨ek, zk − z⟩

︸ ︷︷ ︸

T1

−2α2⟨ek,Φ(zk)⟩
︸ ︷︷ ︸

T2

.

(20)
We now proceed to bound T1 and T2. For T2, we have:

T2

(a)
≤α2∥ek∥2+α2∥Φ(zk)∥2

(b)
≤4α4G2L2τ2max + 2α2G2,

where (a) follows from the elementary fact that for any two
scalars c, d ∈ R, it holds that

cd ≤
1

2
c2 +

1

2
d2. (21)

Moreover, for (b), we used Lemma 5 and Assumption 1. For
bounding T1, observe that

T1 = 2α⟨ek, zk − z⟩
≤ 2α∥ek∥∥zk − z∥
(a)
≤ 4α2GLτmax∥zk − z∥

=
(

2α
√

GLτmax

)(

2α
√

GLτmax∥zk − z∥
)

(b)
≤ 2α2GLτmax + 2α2GLτmax∥zk − z∥2,

(22)

where we again appealed to Lemma 5 for (a). For (b), we
used Eq. (21). Plugging in the above bounds on T1 and T2

into Eq. (20), simplifying using L,G ≥ 1, and rearranging
terms, we arrive at the following inequality:

2α⟨Φ(zk), zk − z⟩ ≤
(

1 + 2α2LGτmax

)

∥zk − z∥2

− ∥zk+1 − z∥2+A,
(23)

where A = 2α2GLτmax(1 + 2G + 4α2GLτmax). Now
setting z = z∗ in the above inequality, and noting that
⟨Φ(zk), zk − z∗⟩ ≥ 0 based on Lemma 4, we obtain the
following recursive inequality that holds for all k ∈ [T ]:

∥zk+1 − z∗∥2≤
(

1 + 2α2LGτmax

)

∥zk − z∗∥2+A. (24)

Defining rk " ∥zk − z∗∥, β "
(

1 + 2α2LGτmax

)

, and
iterating the above inequality, we obtain:

r2k ≤ βk−1r21 +

⎛

⎝

k−2
∑

j=0

βj

⎞

⎠A

≤ βk−1r21 +
βk

β − 1
A

≤ βT r21 +
βT

β − 1
A.

(25)

We will now bound each of the terms above by using the
elementary fact that for any c ∈ R, it holds that (1+c) ≤ ec.

When the step-size α satisfies

α ≤
1

2
√
LGτmaxT

,

we have

βT ≤
(

1 +
1

2T

)T

≤ e0.5 ≤ 2. (26)

Furthermore, it is easy to see that

A

β − 1
≤

(

1 + 2G+
1

T

)

≤ 4G.

Combining the above bounds leads to the claim of the
lemma. This concludes the proof.

Based on the above result, let us introduce a set H as
follows:

H " {z|∥z − z∗∥2≤ 10B}, (27)

where B = max{∥z1 − z∗∥2, G}. From Lemma 6, we note
that as long as the step-size α is chosen appropriately, the
iterate sequence {zk} generated by DGDA belongs to H.
Moreover, z∗ ∈ H trivially. With these observations in place,
we now prove our main convergence result for DGDA for
smooth convex-concave functions with bounded gradients.

Theorem 2. Suppose Assumptions 1 and 2 hold ∀x ∈ Rm

and ∀y ∈ Rn. Let the step-size be chosen to satisfy

α =
1

2
√
LGτmaxT

.

Then, the iterates generated by DGDA satisfy:

max
y:(x̄T ,y)∈H

f(x̄T , y)− min
x:(x,ȳT )∈H

f(x, ȳT ) ≤ 44B

√

GLτmax

T
,

where x̄T = (1/T )
∑

k∈[T ] x̂k, ȳT = (1/T )
∑

k∈[T ] ŷk, and

the set H is as defined in Eq. (27).

Proof. Recall the following notation from Lemma 6: rk =
∥zk − z∗∥ and B = max{r21, G}. Let us start by noting
that the choice of step-size in the statement of the theorem
complies with that used to establish Lemma 6. Thus, we
can invoke Lemma 6 to conclude that for any z ∈ H, the
following is true:

∥zk − z∥2≤ 2r2k + 2∥z − z∗∥2≤ 40B, (28)

where the last inequality follows from the definition of the
set H. Using Eq. (23) from Lemma 6, we then have for any
z ∈ H:

2α⟨Φ(zk), zk − z⟩ ≤ ∥zk − z∥2−∥zk+1 − z∥2+A

+ 2α2LGτmax∥zk − z∥2

≤ ∥zk − z∥2−∥zk+1 − z∥2+Ā,

where Ā = A + 80α2LGBτmax, A = 2α2GLτmax(1 +
2G + 4α2GLτmax), and we used Eq. (28). Now summing
the above inequality from k = 1 to T , we obtain

T
∑

k=1

2α⟨Φ(zk), zk − z⟩ ≤∥z1 − z∥2+ĀT. (29)



Moreover, from Proposition 1 in [15], we have

T
∑

k=1

2α⟨Φ(zk), zk − z⟩ ≥ 2αT (f(x̄T , y)− f(x, ȳT )). (30)

Combining the above display with Eq. (29) then yields the
following bound ∀z = [x; y] ∈ H:

f(x̄T , y)− f(x, ȳT ) ≤
∥z1 − z∥2

2αT
+

Ā

2α
. (31)

Let us simplify the bound by first noting that for α chosen
as in the statement of the theorem, it holds that Ā ≤
88α2GBLτmax. Moreover, since z ∈ H, we have

∥z1 − z∥2≤ 2r21 + 2∥z − z∗∥2≤ 22B.

Plugging in the above bounds in Eq. (31) then gives us:

f(x̄T , y)− f(x, ȳT ) ≤
11B

αT
+ 44αGBLτmax. (32)

The result follows from simply substituting the choice of α
in the statement of the theorem.

Discussion. The main message conveyed by Theorem 2
is that for smooth convex-concave functions with bounded
gradients, the convergence rates of DGDA and DEG are
identical in terms of their dependence on τmax and T . This
complies with the intuition developed earlier in the paper
that EG under delays behaves like GDA.

V. ANALYSIS OF DELAYED GRADIENT

DESCENT-ASCENT FOR STRONGLY CONVEX-STRONGLY

CONCAVE FUNCTIONS

For smooth strongly convex-strongly concave functions,
it is known that GDA guarantees linear convergence to the
saddle point in the absence of delays [17]. In this section, we
ask: Does DGDA (Algorithm 2) also guarantee linear conver-
gence to the saddle point for smooth strongly convex-strongly

concave functions? Our analysis in this section will provide
an answer to this question in the affirmative. Moreover,
we will precisely quantify how the maximum delay τmax

slackens the exponent of linear convergence relative to when
there is no delay. To get started, we now provide a formal
definition of strongly convex-strongly concave functions.

Assumption 3. The function f(x, y) is µ-strongly convex-µ-

strongly concave (SC-SC) over X×Y , i.e., for all x1, x2 ∈ X
and y1, y2 ∈ Y , the following holds:

f(x2, y1) ≥ f(x1, y1) + ⟨∇xf(x1, y1), x2 − x1⟩+
µ

2
∥x2 − x1∥2,

f(x1, y2) ≤ f(x1, y1) + ⟨∇yf(x1, y1), y2 − y1⟩ −
µ

2
∥y2 − y1∥2.

Throughout this section, we will set X = Rm and
Y = Rn, i.e., we will make no assumption of bounded
domains. Furthermore, unlike prior sections, we will drop
the assumption of bounded gradients, i.e., we will no longer
work under Assumption 1.

Analysis of DGDA. To proceed, we start by recalling
two results from [17] that will play a crucial role in our
subsequent analysis; at this point, we remind the reader of
the definition of Φ(·) in Eq. (15).

Lemma 7 ( [17] ). Suppose Assumptions 2 and 3 hold. Then,

∀z, ẑ ∈ Rm+n, we have

L∥z − ẑ∥2≥ ⟨Φ(z)− Φ(ẑ), z − ẑ⟩ ≥ µ∥z − ẑ∥2. (33)

Lemma 8 ( [17] ). Suppose Assumptions 2 and 3 hold. Then,

∀z, ẑ ∈ Rm+n, we have

⟨Φ(z)− Φ(ẑ), z − ẑ⟩ ≥
µ

4L2
∥Φ(z)− Φ(ẑ)∥2. (34)

Recall the definitions of iterate-suboptimality and delay-
induced error: rk = ∥zk − z∗∥ and ek = Φ(zk)−Φ(zk−τk).
As before, our starting point will be to establish a bound on
∥ek∥. However, to establish a linear convergence rate, we
need to provide a finer analysis relative to that in Lemmas 3
and 5. In particular, unlike these results which established
uniform convergence bounds on ∥ek∥, we will instead seek
to bound ∥ek∥ as a function of a suitably defined iterate-
suboptimality-metric. Our next result formalizes this idea.

Lemma 9. Suppose Assumptions 2 and 3 hold ∀z ∈ Rm+n.

Then, for any k ∈ [T ], the delay-induced error ek = Φ(zk)−
Φ(zk−τk) for DGDA satisfies

∥ek∥≤ 2αMk, (35)

where Mk = Lτmax(
4L2

µ + 4L)maxk−2τmax≤t≤k rt.

Proof. For bounding ek, observe that

∥ek∥=∥Φ(zk−τk)− Φ(zk)∥
(a)
≤ 2L∥zk−τk − zk∥

≤ 2L
k−1
∑

j=k−τk

∥zj+1 − zj∥

≤ 2αL
k−1
∑

j=k−τk

∥Φ(zj−τj )∥

≤ 2αL
k−1
∑

j=k−τk

(

∥Φ(zj)∥+∥Φ(zj−τj )− Φ(zj)∥
)

(b)
≤ 2αL

k−1
∑

j=k−τk

(

∥Φ(zj)∥+2L∥zj−τj − zj∥
)

≤ 2αL
k−1
∑

j=k−τk

(

∥Φ(zj)∥+2Lrj−τj + 2Lrj
)

.

(36)
From Lemma 4, we know that Φ(z∗) = 0. Furthermore, from
Lemma 8 and the Cauchy–Schwarz inequality, we obtain

∥Φ(zk)∥∥zk − z∗∥≥ ⟨Φ(zk), zk − z∗⟩ ≥
µ

4L2
∥Φ(zk)∥2,

which means

∥Φ(zk)∥≤
4L2

µ
∥zk − z∗∥=

4L2

µ
rk,



Combining the above display with Eq. (36), we obtain

∥ek∥ ≤ 2αL
k−1
∑

j=k−τmax

(
4L2

µ
rj + 2Lrj−τj + 2Lrj

)

≤ 2αLτmax

(
4L2

µ
+ 4L

)

max
k−2τmax≤t≤k−1

rt

≤ 2αMk.

(37)

We will also make use of the following key result.

Lemma 10 ( [18]). Suppose we have a sequence of non-

negative real numbers, Vk, satisfying the inequality

Vk+1 ≤ pVk + q max
k−d(k)≤ℓ≤k

Vℓ,

for some non-negative constants p and q, where k ≥ 0 and

0 ≤ d(k) ≤ dmax for some positive constant dmax. If p+q <
1, then we have

Vk ≤ rkV0, where r = (p+ q)1/(1+dmax).

We now prove our main result for DGDA for the class of
smooth strongly convex-strongly concave (SC-SC) functions.

Theorem 3. Suppose Assumptions 2 and 3 hold ∀z ∈ Rm+n.

Let the step-size be chosen to satisfy

α =
µ3

1536L6τ2max
.

Then, the iterates generated by DGDA satisfy:

rk ≤
(

1−
µ4

3072L6τ2max

) k−1

6τmax

r1, (38)

where rk = ∥zk − z∗∥.

Proof. From the update rule of the DGDA algorithm and
Lemma 9, we have

∥zk+1 − z∗∥2−(1− αµ)∥zk − z∗∥2=
αµ∥zk − z∗∥2−2α⟨Φ(zk−τk), zk − z∗⟩+ α2∥Φ(zk−τk)∥2

≤ αµ∥zk − z∗∥2−2α⟨Φ(zk), zk − z∗⟩+ 2α2∥Φ(zk)∥2

+ 2α⟨ek, zk − z∗⟩+ 2α2∥ek∥2

≤ αµ∥zk − z∗∥2−2α⟨Φ(zk), zk − z∗⟩+ 2α2∥Φ(zk)∥2
︸ ︷︷ ︸

fk

+ 4α2Mkrk + 8α4M2
k

︸ ︷︷ ︸

pk

.

(39)
From Lemmas 7 and 8, we further know that

⟨Φ(zk), zk − z∗⟩ ≥ µ∥zk − z∗∥2, and

⟨Φ(zk), zk − z∗⟩ ≥
µ

4L2
∥Φ(zk)∥2.

When α ≤ µ
8L2 - a requirement met by the choice of step-

size in the statement of the theorem - it is easy to verify
that the above equations imply fk ≤ 0, where fk is as in
Eq. (39). We also have

pk ≤ 12α2M2
k ≤ α2C

(

max
k−2τmax≤t≤k

r2t

)

,

where C = 768L6

µ2 τ2max, and we used L ≥ µ for simplifica-
tions. From the above discussion, we conclude that

r2k+1 ≤ (1− αµ)r2k + α2C

(

max
k−2τmax≤t≤k

r2t

)

.

From the choice of step-size in the statement of the theorem,
it is easy to verify that 1 − αµ + α2C = 1 − 0.5αµ < 1.
Thus, we can immediately apply Lemma 10 to arrive at the
desired conclusion. This concludes the proof.

Discussion. Theorem 3 reveals that for smooth SC-SC
functions, DGDA guarantees linear convergence of the iter-

ates to the saddle-point. The result also clearly demonstrates
how the exponent of convergence gets affected by τmax.
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