Published in Transactions on Machine Learning Research (04,/2024)

Temporal Difference Learning with Compressed Updates:
Error-Feedback meets Reinforcement Learning

Aritra Mitra amitra2@ncsu.edu
Department of Electrical and Computer Engineering
North Carolina State University

George J. Pappas pappasg@seas.upenn.edu
Department of Electrical and Systems Engineering
University of Pennsylvania

Hamed Hassani hassani@seas.upenn. edu
Department of Electrical and Systems Engineering
University of Pennsylvania ™

Reviewed on OpenReview: https: //openreview. net/ forum? id=dltUedmUVT

Abstract

In large-scale distributed machine learning, recent works have studied the effects of compress-
ing gradients in stochastic optimization to alleviate the communication bottleneck. These
works have collectively revealed that stochastic gradient descent (SGD) is robust to struc-
tured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly,
despite the surge of interest in multi-agent reinforcement learning, almost nothing is known
about the analogous question: Are common reinforcement learning (RL) algorithms also
robust to similar perturbations? We investigate this question by studying a variant of the
classical temporal difference (TD) learning algorithm with a perturbed update direction,
where a general compression operator is used to model the perturbation. Our work makes
three important technical contributions. First, we prove that compressed TD algorithms,
coupled with an error-feedback mechanism used widely in optimization, exhibit the same
non-asymptotic theoretical guarantees as their SGD counterparts. Second, we show that our
analysis framework extends seamlessly to nonlinear stochastic approximation schemes that
subsume Q-learning. Third, we prove that for multi-agent TD learning, one can achieve linear
convergence speedups with respect to the number of agents while communicating just O(l)
bits per iteration. Notably, these are the first finite-time results in RL that account for general
compression operators and error-feedback in tandem with linear function approximation and
Markovian sampling. Our proofs hinge on the construction of novel Lyapunov functions that
capture the dynamics of a memory variable introduced by error-feedback.

1 Introduction

Stochastic gradient descent (SGD) is at the heart of large-scale distributed machine learning paradigms such
as federated learning (FL) (Koneény et al., 2016). In these applications, the task of training high-dimensional
weight vectors is distributed among several workers that exchange information over networks of limited
bandwidth. While parallelization at such an immense scale helps to reduce the computational burden, it
creates several other challenges: delays, asynchrony, and most importantly, a significant communication
bottleneck. The popularity and success of SGD can be attributed in no small part to the fact that it
is extremely robust to such deviations from ideal operating conditions. In fact, by now, there is a rich

*This work was supported by NSF Award 1837253, NSF CAREER award CIF 1943064, and The Institute for Learning-enabled
Optimization at Scale (TILOS), under award number NSF-CCF-2112665.

https://openreview.net/forum?id=dltUedmUVT

Published in Transactions on Machine Learning Research (04,/2024)

literature that analyzes the robustness of SGD to a host of structured perturbations that include lossy
gradient-quantization (Seide et al., 2014; Alistarh et al., 2017) and sparsification (Wen et al., 2017; Stich
et al., 2018). For instance, SignSGD - a variant of SGD where each coordinate of the gradient is replaced
by its sign - is extensively used to train deep neural networks (Aji & Heafield, 2017; Bernstein et al., 2018).
Inspired by these findings, in this paper, we ask a different question: Are common reinforcement learning
(RL) algorithms also robust to similar structured perturbations?

Motivation. Perhaps surprisingly, despite the recent surge of interest in multi-agent/federated RL, almost
nothing is known about the above question. To fill this void, we initiate the study of a robustness theory for
iterative RL algorithms with compressed update directions. We primarily focus on the problem of evaluating
the value function associated with a fixed policy p in a Markov decision process (MDP). Just as SGD is the
workhorse of stochastic optimization, the classical temporal difference (TD) learning algorithm (Sutton, 1988)
for policy evaluation forms the core subroutine in a variety of decision-making algorithms in RL (e.g., Watkin’s
Q-learning algorithm). In fact, in their book (Sutton & Barto, 2018), Sutton and Barto mention: “If one had
to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference
(TD) learning." Thus, it stands to reason that we center our investigation around a variant of the TD(0)
learning algorithm with linear function approximation, where the TD(0) update direction is replaced by a
compressed version of it. Moreover, to account for general biased compression operators (e.g., sign and
Top-k), we couple this scheme with an error-feedback mechanism that retains some memory of TD(0) update
directions from the past.

Other than the robustness angle, a key motivation of our work is to design communication-efficient algorithms
for the emerging paradigms of multi-agent RL (MARL) and federated RL (FRL). In existing works on
these topics (Doan et al., 2019; Qi et al., 2021; Jin et al., 2022; Khodadadian et al., 2022), agents typically
exchange high-dimensional models (parameters) or model-differentials (i.e., gradient-like update directions)
over low-bandwidth channels, keeping their personal data (i.e., rewards, states, and actions) private. In the
recent survey paper on FRL by (Qi et al., 2021), the authors explain how the above issues contribute to
a major communication bottleneck, just as in the standard FL setting. However, no work on MARL or
FRL provides any theory whatsoever when it comes to compression/quantization in RL. Our work takes a
significant step towards filling this gap via a suite of comprehensive theoretical results that we discuss below.

1.1 Our Contributions

The main contributions of this work are as follows.

1. Algorithmic Framework for Compressed Stochastic Approximation. We develop a general
framework for analyzing iterative compressed stochastic approximation (SA) algorithms with error-
feedback. The generality of this framework stems from two salient features: (i) it applies to nonlinear
SA with Markovian noise; and (ii) the compression operator covers several common quantization
and (biased) sparsification schemes studied in optimization. As an instance of our framework, we
propose a new algorithm called EF-TD (Algorithm 1) to study extreme distortions to the TD(0) update
direction. Examples of such distortion include, but are not limited to, replacing each coordinate
of the TD(0) update direction with just its sign, or just retaining the coordinate with the largest
magnitude. While such distortions have been extensively studied for SGD, we are unaware of any
analagous algorithms or analysis in the context of RL.

2. Analysis under Markovian Sampling. In Theorem 1, we show that with a constant step-
size, EF-TD guarantees linear convergence to a ball centered around the optimal parameter. Up
to a compression factor, our result mirrors existing rates in RL without compression (Srikant &
Ying, 2019). Moreover, the effect of the compression factor exactly mirrors that for compressed
SGD (Beznosikov et al., 2020). The significance of this result is twofold: (i) It is the first result in
RL that accounts for general compression operators and error-feedback in tandem with Markovian
sampling and linear function approximation; and (ii) It is the first theoretical result on the robustness
of TD learning algorithms to structured perturbations. One interesting takeaway from Theorem 1 is
that “slowly-mizing" Markov chains have more inherent robustness to distortions/compression. This
appears to be a new observation that we elaborate on in Section 4.

Published in Transactions on Machine Learning Research (04,/2024)

3. Analysis for General Nonlinear Stochastic Approximation. In Section 5, we study Algorithm 1
in its full generality by considering a compressed nonlinear SA scheme with error-feedback, and
establishing an analog of Theorem 1 in Theorem 2. The significance of this result lies in revealing
that the power and scope of the popular error-feedback mechanism (Seide et al., 2014) in large-scale
ML is not limited to the optimization problems it has been used for thus far. In particular, since
the nonlinear SA scheme we study captures certain instances of Q-learning (Chen et al., 2019),
Theorem 2 conveys that our results extend well beyond policy evaluation to decision-making (control)
problems as well.

4. Communication-Efficient M ARL. Since one of our main goals is to facilitate communication-
efficient MARL, we consider a collaborative MARL setting that has shown up in several recent
works (Doan et al., 2019; Khodadadian et al., 2022; Liu & Olshevsky, 2021a). Here, M agents interact
with the same MDP, but observe potentially different realizations of rewards and state transitions.
These agents exchange compressed TD update directions via a central server to speed up the process
of evaluating a specific policy. In this context, we ask the following fundamental question: How
much information needs to be transmitted to achieve the optimal linear-speedup (w.r.t. the number of
agents) for policy-evaluation? To answer this question, we propose a multi-agent version of EF-TD.
In Theorem 3, we prove that by collaborating, each agent can achieve an M-fold speedup in the
dominant term of the convergence rate. Importantly, the effect of compression only shows up in
higher-order terms, leaving the dominant term unaffected. Thus, we prove that by transmitting
just O(l) bits per-agent per-round, one can preserve the same asymptotic rates as vanilla
TD(0), while achieving an optimal linear convergence speedup w.r.t. the number of
agents. We envision this result will have important implications for MARL. Our analysis also leads
to a tighter linear dependence on the mixing time compared to the quadratic dependence in the only
other paper that establishes linear speedups under Markovian sampling (Khodadadian et al., 2022).

5. Technical Challenges and Novel Proof Techniques. One might wonder whether our results
above follow as simple extensions of known analysis techniques in RL. In what follows, we explain
why this isn’t the case by outlining the key technical challenges unique to our setup, and our novel
proof ideas to overcome them. First, a non-asymptotic analysis of even vanilla TD(0) under Markovian
sampling is known to be extremely challenging due to complex temporal correlations. Our setting
is further complicated by the fact that the dynamics of the parameter and the memory variable
are intricately coupled with the temporally-correlated Markov data tuples. This leads to a complex
stochastic dynamical system that has not been analyzed before in RL. Second, we cannot directly
appeal to existing proofs of compression in optimization since the problems we study do not involve
minimizing a static loss function. Moreover, the aspect of temporally correlated observations is
completely absent in compressed optimization since one deals with i.i.d. data. The above discussion
motivates the need for new analysis tools beyond what are known for both RL and optimization.

e New Proof Ingredients for Theorems 1 and 2. To prove Theorem 1, our first innovation is to
construct a novel Lyapunov function that accounts for the joint dynamics of the parameter and the
memory variable introduced by error-feedback. The next natural step is to then analyze the drift of
this Lyapunov function by appealing to mixing time arguments - as is typically done in finite-time
RL proofs (Bhandari et al., 2018; Srikant & Ying, 2019). This is where we again run into difficulties
since the presence of the memory variable due to error-feedback introduces non-standard delay terms
in the drift bound. Notably, this difficulty does not show up when one analyzes error-feedback in
optimization since there is no need for mixing time arguments of Markov chains. To overcome this
challenge, we make a connection to what might at first appear unrelated: the Incremental Aggregated
Gradient (IAG) method for finite-sum optimization. Our main observation here is that the elegant
analysis of the IAG method by Gurbuzbalaban et al. (2017) shows how one can handle the effect
of “shocks" (delayed terms), as long as the amplitude and duration of the shocks is not too large.
This ends up being precisely what we need for our purpose: we carefully relate the amplitude of the
shocks to our Lyapunov function, and their duration to the mixing time of the underlying Markov
chain. We spell out these details explicitly in Section 7.

Published in Transactions on Machine Learning Research (04,/2024)

e New Proof Ingredients for Theorem 3. Despite the long list of papers on MARL, the only
one that establishes a linear speedup (w.r.t. the number of agents) in sample-complexity under
Markovian sampling is the very recent paper by Khodadadian et al. (2022); all other papers end up
making a restrictive i.i.d. sampling assumption (Doan et al., 2019; Liu & Olshevsky, 2021a; Shen
et al., 2023) to show a speedup. The proof in (Khodadadian et al., 2022) is quite involved, and
relies on Generalized Moreau Envelopes. This makes it particularly challenging to extend their proof
framework to our setting where we need to additionally contend with the effects of compression
and error-feedback. As such, we provide an alternate proof technique for establishing the linear
speedup effect that relies crucially on a new variance reduction lemma under Markovian data, namely
Lemma 2. This lemma is not just limited to TD learning, and may be of independent interest to the
MARL literature. Lemma 2, coupled with a finer Lyapunov function (relative to that for proving
Theorem 1) enable us to establish the desired linear speedup result under Markovian sampling for
our setting. We elaborate on these points in Section 7.

Scope of our Work. We note that our work is primarily theoretical in nature, in the same spirit as several
recent finite-time RL papers (Dalal et al., 2018; Bhandari et al., 2018; Srikant & Ying, 2019; Doan et al., 2019;
Khodadadian et al., 2022), none of which come with any simulations. We do, however, report simulations on
moderately sized (100 states) MDPs that reveal: (i) without error-feedback (EF), compressed TD(0) can end
up making little to no progress; and (ii) with EF, the performance of compressed TD(0) complies with our
theory. These simulations are in line with those known in optimization for deep learning (Stich et al., 2018;
Aji & Heafield, 2017; Lin et al., 2017; Stich & Karimireddy, 2019), where one empirically observes significant
benefits of performing EF. Succinctly, we convey: compressed TD learning algorithms with EF are just as
robust as their SGD counterparts, and exhibit similar convergence guarantees.

1.2 Related Work

In what follows, we discuss the most relevant threads of related work.

e Analysis of TD Learning Algorithms. An analysis of the classical temporal difference learning
algorithm (Sutton, 1988) with value function approximation was first provided by Tsitsiklis & Van Roy
(1997). They employed the ODE method (Borkar & Meyn, 2000) - commonly used to study stochastic
approximation algorithms - to provide an asymptotic convergence rate analysis of TD learning algorithms.
Finite-time rates for such algorithms remained elusive for several years, till the work by Korda & La (2015).
Soon after, Narayanan & Szepesvari (2017) noted some issues with the proofs in (Korda & La, 2015).
Under an i.i.d. sampling assumption, Lakshminarayanan & Szepesvéri (2017) and Dalal et al. (2018) went
on to provide finite-time rates for TD learning algorithms. For the more challenging Markovian setting,
finite-time rates have been recently derived using various perspectives: (i) by making explicit connections
to optimization (Bhandari et al., 2018); (ii) by taking a control-theoretic approach and studying the drift
of a suitable Lyapunov function (Srikant & Ying, 2019); and (iii) by arguing that the mean-path temporal
difference direction acts as a “gradient-splitting" of an appropriately chosen function (Liu & Olshevsky,
2021b). Each of these interpretations provides interesting new insights into the dynamics of TD algorithms.

The above works focus on the vanilla TD learning rule. Our work adds to this literature by providing an
understanding of the robustness of TD learning algorithms subject to structured distortions.

e Communication-Efficient Algorithms for (Distributed) Optimization and Learning. In the last
decade or so, a variety of both scalar (Seide et al., 2014; Wen et al., 2017; Bernstein et al., 2018; Alistarh
et al., 2017), and vector (Mayekar & Tyagi, 2020; Gandikota et al., 2021) quantization schemes have been
explored for optimization/empirical risk minimization. In particular, an aggressive compression scheme
employed popularly in deep learning is gradient sparsification, where one only transmits a few components of
the gradient vector that have the largest magnitudes. While empirical studies (Aji & Heafield, 2017; Lin
et al., 2017) have revealed the benefits of extreme sparsification, theoretical guarantees for such methods
are much harder to establish due to their biased nature: the output of the compression operator is not an
unbiased version of its argument. In fact, for biased schemes, naively compressing gradients can lead to
diverging iterates (Karimireddy et al., 2019; Beznosikov et al., 2020). In (Stich et al., 2018; Alistarh et al.,
2018), and later in (Karimireddy et al., 2019; Lin et al., 2022), it was shown that the above issue can be

Published in Transactions on Machine Learning Research (04,/2024)

“fixed" by using a mechanism known as error-feedback that exploits memory. This idea is also related to
modulation techniques in coding theory (Gray, 2012). Recently, Beznosikov et al. (2020) and Gorbunov et al.
(2020) provided theoretical results on biased sparsification for a master-worker type distributed architecture,
and Mitra et al. (2021) studied sparsification in a federated learning context. For more recent work on the
error-feedback idea, we refer the reader to (Richtérik et al., 2021; Gruntkowska et al., 2022).

Our work can be seen as the first analog of the above results in general, and the error-feedback idea in
particular, in the context of iterative algorithms for RL.

Finally, we note that while several compression algorithms have been proposed and analyzed over the years,
fundamental performance bounds were only recently identified by Mayekar & Tyagi (2020), Gandikota et al.
(2021), and Lin et al. (2022). Computationally efficient algorithms that match such performance bounds were
developed by Saha et al. (2022). While all the above results pertain to static optimization, some recent works
have also explored quantization schemes in the context of sequential-decision making problems, focusing on
multi-armed bandits (Hanna et al., 2022; Mitra et al., 2022; Pase et al., 2022).

2 Model and Problem Setup

We consider a Markov Decision Process (MDP) denoted by M = (S, A, P, R,v), where S is a finite state
space of size n, A is a finite action space, P is a set of action-dependent Markov transition kernels, R is a
reward function, and v € (0,1) is the discount factor. For the majority of the paper, we will be interested in
the policy evaluation problem where the goal is to evaluate the value function V), of a given policy p; here,
u:S — A. The policy p induces a Markov reward process (MRP) characterized by a transition matrix P,
and a reward function R.! In particular, P(s,s’) denotes the probability of transitioning from state s to state
s' under the action p(s); R(s) denotes the expected instantaneous reward from an initial state s under the
action of the policy p. The discounted expected cumulative reward obtained by playing policy p starting
from initial state s is given by:

Vu(s) =E

34 Ris)lso =] , W
t=0

where s; represents the state of the Markov chain (induced by p) at time ¢, when initiated from sy = s. It is
well-known (Tsitsiklis & Van Roy, 1997) that V,, is the fixed point of the policy-specific Bellman operator
T, :R* = R" ie., T,V, = V,, where for any V € R",

(TLV)(s) = R(s) +7 Y _ P(s,8)V(s), Vs € S.

s'eS

Linear Function Approximation. In practice, the size of the state space S can be extremely large. This
renders the task of estimating V), ezactly (based on observations of rewards and state transitions) intractable.
One common approach to tackle this difficulty is to consider a parametric approximation Vy of V. in the
linear subspace spanned by a set {¢r}re(x] of K < n basis vectors, where ¢ = [¢(1),...,¢n(n)]T € R™
Specifically, we have Vy(s) = Zle 0(k)én(s), where 6 = [0(1),...,0(K)]"T € RE is a weight vector. Let
® € R"*K be a matrix with ¢, as its k-th column; we will denote the s-th row of ® by ¢(s) € R¥ and refer
to it as the feature vector corresponding to state s. Compactly, Vy = ®0, and for each s € S, we have that
Va(s) = (#(s),0). As is standard, we assume that the columns of ® are linearly independent, and that the
feature vectors are normalized, i.e., for each s € S, ||¢(s)||3 < 1.

The TD(0) Algorithm. The goal now is to find the best parameter vector #* that minimizes the distance
(in a suitable norm) between Vj and Vy.. To that end, we will focus on the classical TD(0) algorithm within
the family of TD learning algorithms. Starting from an initial estimate 6y, at each time-step t = 0,1, ..., this
algorithm receives as observation a data tuple X; = (s¢, s¢41, 7 = R(s¢)) comprising of the current state,
the next state reached by playing action p(s;), and the instantaneous reward r;. Given this tuple X;, let us

1For simplicity of notation, we have dropped the dependence of P and R on the policy u.

Published in Transactions on Machine Learning Research (04,/2024)

Q,0)=0 Q5(6)

Q5(6)
1<8 <6

Figure 1: A geometric interpretation of the operator Qs(-) in Algorithm 1. A larger § induces more distortion.

Algorithm 1 The EF-TD Algorithm

1: Input: Initial estimate 6y € R¥ initial error e_; = 0, and step-size a € (0, 1).
2: fort=20,1,... do

3: Observe tuple X; = (s¢, St41,7t)-

4 Compute perturbed TD(0) direction hy:

he = Qs (er—1 + g¢(64)) - (3)
5: Update parameter: 6;11 = 0; + ahy.
6: Update error: e; = e;_1 + g¢(6;) — he.
7: end for

define g:(0) = g(X¢,0) as:

9:(0) 2 (ry + (d(5041),0) — (6(51),6)) d(s¢),V0 € RE.

The TD(0) update to the current parameter 6; with step-size a; € (0,1) can now be described succinctly as:
Or41 = 0 + 190 (61). (2)

Under some mild technical conditions, it was shown in (Tsitsiklis & Van Roy, 1997) that the iterates generated
by TD(0) converge almost surely to the best linear approximator in the span of {¢ }re[x]- In particular,
8, — 0%, where 6* is the unique solution of the projected Bellman equation IIp7,(®0*) = ®6*. Here, D is a
diagonal matrix with entries given by the elements of the stationary distribution 7 of the kernel P. Moreover,
IIp(-) is the projection operator onto the subspace spanned by {¢x }re[x] With respect to the inner product
(-,Yp. The key question we explore in this paper is: What can be said of the convergence of TD(0) when
the update direction g:(0;) in equation 2 is replaced by a distorted/compressed version of it? In the next
section, we will make the notion of distortion precise, and outline the various technical challenges that make
it non-trivial to answer the above question.

3 Error-Feedback meets TD Learning

In this section, we propose a general framework for analyzing TD learning algorithms with distorted update
directions. Extreme forms of such distortion could involve replacing each coordinate of the TD(0) direction
with just its sign, or retaining just k& € [K] of the largest magnitude coordinates and zeroing out the rest. In
the sequel, we will refer to these variants of TD(0) as SignTD(0) and Topk-TD(0), respectively. Coupled with
a memory mechanism known as error-feedback, it is known that analogous variants of SGD exhibit, almost
remarkably, the same behavior as SGD itself (Stich et al., 2018). Inspired by these findings, we ask: Does
compressed TD(0) with error-feedback exhibit behavior similar to that of TD(0)?

Our motivation behind studying the above question is to build an understanding of: (i) communication-efficient
versions of MARL algorithms where agents exchange compressed model-differentials, i.e., the gradient-like
updates (see Section 6); and (ii) the robustness of TD learning algorithms to structured perturbations. It is

Published in Transactions on Machine Learning Research (04,/2024)

important to reiterate here that our motivation mirrors that of studying perturbed versions of SGD in the
context of optimization.

Description of EF-TD. In Algorithm 1, we propose the compressed TD(0) algorithm with error-feedback
(EF-TD). Compared to equation 2, we note that the parameter 6; is updated based on h; - a compressed
version of the actual TD(0) direction g;(6;), where the compression is due to the operator Qs : RX — RE.
The information lost up to time ¢ — 1 due to compression is accumulated in the memory variable e;_1, and
injected back into the current step as in equation 3. In line with compressors used for optimization, we
consider a fairly general operator Qg that is required to only satisfy the following contraction property for
some § > 1:

1
1950) - 013 < (1= 5) o130 € =¥, ()

A distortion perspective. For 6 # 0, it is easy to verify based on equation 4 that (Qs(0),6) > 1/(26)]|0]|3 >
0, i.e., the angle between Q;(0) and 6 is acute. This provides an alternative view to the compression perspective:
one can think of Qs(6) as a tilted version of 8, with a larger § implying more tilt, and § = 1 implying no
distortion at all. See Figure 1 for a visual interpretation of this point.

The contraction property in equation 4 is satisfied by several popular quantization/sparsification schemes.
These include the sign operator, and the Top-k operator that selects k coordinates with the largest magnitude,
zeroing out the rest. Importantly, note that the operator Qs does not necessarily yield an unbiased version of
its argument. In optimization, error-feedback serves to counter the bias introduced by Qs. In fact, without
error-feedback, algorithms like SignSGD can converge very slowly, or not converge at all (Karimireddy et al.,
2019). In a similar spirit, we empirically observe in Fig. 2 (later in Section 8) that without error-feedback,
SignTD(0) can end up making little to no progress towards 6*. However, understanding whether error-feedback
guarantees convergence to 8* is quite non-trivial. We now provide some intuition as to why this is the case.

Need for Technical Novelty. Error-feedback ensures that past (pseudo)-gradient information is injected
with some delay. Thus, for optimization, error-feedback essentially leads to a delayed SGD algorithm. As
long as the objective function is smooth, the gradient does not change much, and the delay-effect can be
controlled. This intuition does not carry over to our setting since the TD(0) update direction is not a stochastic
gradient of any fized objective function.? Thus, controlling the effect of the compressor-induced delay requires
new techniques for our setting. Moreover, unlike the SGD noise, the data tuples {X;} are part of the same
Markov trajectory, introducing further complications. Finally, since the parameter updates of Algorithm 1
are intricately linked with the error variable e;, to analyze their joint behavior, we need to perform a more
refined Lyapunov drift analysis relative to the standard TD(0) analysis. Despite these challenges, in the sequel,
we will establish that EF-TD retains almost the same convergence guarantees as vanilla TD(0).

Remark 1. [t is important to emphasize that even though the error vector e; in EF-TD might be dense, e;
never gets transmitted. The communication-efficient aspect of EF-TD stems from the fact that it only requires
communicating the compressed update direction hy - a vector that can be represented by using just a few bits
(depending on the level of compression). This fact is further clarified in our description of the multi-agent
version of EF-TD in Section 6 (see line 6 of Algorithm 2 in Section 6).

4 Analysis of EF-TD under Markovian Sampling

The goal of this section is to provide a rigorous finite-time analysis of EF-TD under Markovian sampling. To
that end, we need to introduce a few concepts and make certain standard assumptions. We start by assuming
that all rewards are uniformly bounded by some 7 > 0, i.e., |R(s)| < 7,Vs € S. This ensures that the value
functions exist. Next, we state a standard assumption that shows up in the finite-time analysis of iterative
RL algorithms (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al., 2019; Patil et al., 2023; Doan et al.,
2019; Khodadadian et al., 2022).

Assumption 1. The Markov chain induced by the policy p is aperiodic and irreducible.

2As observed by Bhandari et al. (2018) and Liu & Olshevsky (2021b), this can be seen from the fact that the derivative of
the TD update direction produces a matrix that is not necessarily symmetric, unlike the symmetric Hessian matrix of a fixed
objective function.

Published in Transactions on Machine Learning Research (04,/2024)

The above assumption implies that the Markov chain induced by p admits a unique stationary distribution
7 (Levin & Peres, 2017). Let ¥ = ®"D®. Since ® is full column rank, ¥ is full rank with a strictly
positive smallest eigenvalue w < 1. To appreciate the implication of the above assumption, let us define the
“steady-state" version of the TD update direction as follows: for a fixed § € RX | let

g(e) £ Est~7r,st+1~P“(-\st) [g(Xta 0)] :

We now introduce the notion of the mixing time 7.

Definition 1. Define 7. £ min{t > 1: ||E [¢(X%,0)|Xo] — g(0)|l2 < e (|0]|2 + 1), Yk > ¢,V € RE VX,}.

Assumption 1 implies that the total variation distance between the conditional distribution P (s; = +|sg = s)
and the stationary distribution 7 decays geometrically fast for all ¢ > 0, regardless of the initial state
s € § (Levin & Peres, 2017). As a consequence of this geometric mixing of the Markov chain, it is not hard to
show that 7. in Definition 1 is O (log(1/e)); see, for instance, Chen et al. (2019). The precision that suffices
for all results in this paper is € = 2, where recall that « is the step-size. Henceforth, we will simply use 7
as a shorthand for 7,. Finally, let us define o £ max{1,7,||0*|2} as the variance of our noise model, and
dy 2 ||0; — 0*||2. We can now state the first main result of this paper.

Theorem 1. Suppose Assumption 1 holds. There exist universal constants c¢,C > 1 such that the iterates
generated by EF-TD with step-size a < _wld—y) satisfy the following VT > T:

cmax{d,7}

E[d}] < (1 — W)T_T +0 <OM) , where Cy = O(d? + o). (5)

The proof of Theorem 1 is provided in Appendix D. We now discuss the key implications of this result.

Discussion. Theorem 1 tells us that EF-TD guarantees linear convergence of the iterates to a ball around
0*, where the size of the ball scales with the variance o2; this exactly matches the behavior of vanilla
TD (Bhandari et al., 2018; Srikant & Ying, 2019). Since the step-size « scales inversely with the distortion
factor d, we observe from equation 5 that the exponent of linear convergence gets slackened by J; once again,
this is consistent with analogous results for SGD with (biased) compression (Beznosikov et al., 2020). The
variance term, namely the second term in equation 5, has the ezact same dependence on 7,w, and v as one
observes for vanilla TD (Bhandari et al., 2018, Theorem 3). Observe that in this term, the effects of 7 and ¢
in inflating the variance are additive. Moreover, even in the absence of compression, the dependence of the
variance term on the mixing time 7 is known to be unavoidable (Nagaraj et al., 2020). This immediately
leads to the following interesting conclusion: when the underlying Markov chain induced by the policy mizes
“slowly”, i.e., has a large mizing time T, one can afford to be more aggressive in terms of compression, i.e.,
use a larger 9§, since this would lead to a variance bound that is no worse than in the uncompressed setting.
Said differently, Theorem 1 reveals that slowly-mixing Markov chains have a higher tolerance to distortions.
This observation is novel since no prior work has studied the effect of distortions to RL algorithms under
Markovian sampling. It is also interesting to note here that the phenomenon described above shows up in
other contexts too: for instance, the authors in Gandikota et al. (2021) showed that certain quantization
mechanisms in optimization automatically come with privacy guarantees.

Theorem 1 is significant in that it is the first result to reveal that coupled with error-feedback,
EF-TD is robust to extreme distortions. We will corroborate this phenomenon empirically as well in
Section 8. The other key takeaway from Theorem 1 is that the scope of the error-feedback mechanism - now
popularly used in distributed learning - extends to stochastic approximation problems well beyond just static
optimization settings.

In Appendix B, we analyze a simpler steady-state version of EF-TD to help build intuition. There, we also
provide an analysis of compressed TD learning algorithms that do not employ any error-feedback mechanism.
Our analysis reveals that such schemes can also converge, provided the compression parameter § satisfies a
restrictive condition. Notably, as evident from the statement of Theorem 1, we do not need to impose any
restrictions on ¢ for the convergence of EF-TD.

Published in Transactions on Machine Learning Research (04,/2024)

5 Compressed Nonlinear Stochastic Approximation with Error-Feedback

For the TD(0) algorithm, the update direction g;(6) is affine in the parameter 6, i.e., g¢(0) is of the form
A(X:)0 — b(X:). As such, the recursion in equation 2 can be seen as an instance of linear stochastic
approximation (SA), where the end goal is to use the data samples {X;} to find a 6 that solves the linear
equation Af = b; here, A and b are the steady-state versions of A(X;) and b(X;), respectively. The more
involved TD(\) algorithms within the TD learning family also turn out to be instances of linear SA. Instead
of deriving versions of our results for TD(A) algorithms in particular, we will instead consider a much more
general nonlinear SA setting. Accordingly, we now study a variant of Algorithm 1 where g(X,) is a general
nonlinear map, and as before, X; comes from a finite-state Markov chain that is assumed to be aperiodic and
irreducible. We assume that the nonlinear map satisfies the following regularity conditions.

Assumption 2. There exist Lo > 1 s.t. the following hold for any X in the space of data tuples: (i)
lg(X,61) = g(X.02)ll2 < L|61 — 2|2, V01,02 € R™, and (i) [|g(X,0)|]2 < L(||0]|2 + 0), V0 € R,

Assumption 3. Let §(0) = Ex,x [9(X;,0)], V0 € RE | where 7 is the stationary distribution of the Markov
process {Xi}. The equation g(0) = 0 has a solution 6%, and 35 > 0 s.t.

(0 - 07,5(0) — 5(07)) < —BI|0 — 07|12, Y0 € RX. (6)

In words, Assumption 2 says that g(X,#) is globally uniformly (w.r.t. X) Lipschitz in the parameter 6.
Assumption 3 is a strong monotone property of the map —g(f) that guarantees that the iterates generated by
the steady-state version of equation 2 converge exponentially fast to 68*. To provide some context, consider
the TD(0) setting. Under feature normalization and the bounded rewards assumption, the global Lipschitz
property is immediate. Moreover, Assumption 3 corresponds to negative-definiteness of the steady-state
matrix A = Ex, .[A(X})]; this negative-definite property is also easy to verify (Srikant & Ying, 2019). For
optimization, Assumptions 2 and 3 simply correspond to L-smoothness and §-strong-convexity of the loss
function, respectively. For simplicity, we state the main result of this section for L = 2; the analysis for a
general L follows identical arguments.

Theorem 2. Suppose Assumption 2 holds with L = 2, and Assumption 3 holds. Let B = min{B,1/8}. There
exist universal constants ¢,C > 1 such that Algorithm 1 with step-size a < W guarantees

T—7 2
E[d}] < Cy (1 — g?_) +0 (OL(TECS)U) NT > 7, where Cy = O(di + o2). (7)

Discussion. We note that the guarantee in Theorem 2 mirrors that in Theorem 1, and represents our
setting in its full generality, accounting for nonlinear SA, Markovian noise, compression, and error-feedback.
Providing an explicit finite-time analysis for this setting is one of the main contributions of our paper. Now
let us comment on the applications of this result. As noted earlier, our result applies to TD(\) algorithms
and SGD under Markovian noise (Doan, 2022); the effect of compression and error-feedback was previously
unknown for both these settings. More importantly, certain instances of Q-learning with linear function
approximation can also be captured via Assumptions 2 and 3 (Chen et al., 2019). The key implication is that
our analysis framework is not just limited to policy evaluation, but rather extends gracefully to decision-making
(control) problems. This speaks to the significance of Theorem 2.

6 Communication-Efficient Multi-Agent Reinforcement Learning (MARL)

A key motivation of our work is to develop communication-efficient algorithms for MARL. This is particularly
relevant for networked /federated versions of RL problems where communication imposes a major bottleneck (Qi
et al., 2021). To that end, we consider a collaborative MARL setting that has appeared in various recent
works (Qi et al., 2021; Doan et al., 2019; Liu & Olshevsky, 2021a; Jin et al., 2022; Khodadadian et al.,
2022; Shen et al., 2023). The setup comprises of M agents, all of whom interact with the same MDP,
and can communicate via a central server. Every agent seeks to evaluate the same policy p. The purpose
of collaboration is as in the standard FL setting: to achieve a M-fold reduction in sample-complexity by
leveraging information from all agents. In particular, we ask: By exchanging compressed information via the

Published in Transactions on Machine Learning Research (04,/2024)

Algorithm 2 Multi-Agent EF-TD

1: Input: Initial estimate 6y € R¥ | initial errors e; _; = 0,Vi € [M], and step-size o € (0, 1).
2: fort=20,1,... do

3: Server sends 6; to all agents.

4: for i € [M] do

5: Observe tuple X; ¢ = (Sit, Sit41,Tit)-

6: Compute compressed TD(0) direction h;; = Q5 (e;,t—1 + ¢i,¢(0:)), and send h; ; to server.
7 Update error: e;; = €; -1 + it (6:) — Rt

8: end for

9: Server updates the model as follows: 6,41 = 6, + ahy, where h; = (1/M) Zz’e[M] hi .
10: end for

server, is it possible to expedite the process of learning by achieving a linear speedup in the number of agents?
While such questions have been extensively studied for supervised learning, we are unaware of any work that
addresses them in the context of MARL. We further note that even without compression or error-feedback,
establishing linear speedups under Markovian sampling is highly non-trivial, and the only other paper that
does so is the very recent work of Khodadadian et al. (2022). As we explain later in Section 7, our proof
technique departs significantly from (Khodadadian et al., 2022).

We propose and analyze a natural multi-agent version of EF-TD, outlined as Algorithm 2. In a nutshell,
multi-agent EF-TD operates as follows. At each time-step, the server sends down a model 6;; each agent ¢
observes a local data sample, computes and uploads the compressed direction h; ¢, and updates its local error.
The server then updates the model. Transmitting compressed TD(0) pseudo-gradients is consistent with both
works in FL (Karimireddy et al., 2020), and in MARL (Qi et al., 2021; Doan et al., 2019; Khodadadian et al.,
2022), where the agents essentially exchange model-differentials (i.e., the update directions), keeping their
raw data private. It is worth noting here that while all agents play the same policy, the realizations of the
data tuples {X; .} may vary across agents. Let 0, = 0, + aé;_q, where &, = (1/M) Zie[M] eit, and define

d; £ ||6; — 6*||2. We can now state our main convergence result for Algorithm 2.

Theorem 3. Suppose Assumption 1 holds. There exist universal constants c,C > 1 such that with step-size
a< 20 Cand Oy = O(d% + o?), Algorithm 2 guarantees the following VT > 27:

— cmax{d,7}’

E[d7] < Cy (1 - L%T_ ”)T_QT +0 (L‘)(f‘;)) X—j +0 (O‘Zfl(al“xf‘:;w) 2. ®)
Ty To T3

The proof of Theorem 3 is deferred to Appendix E. There are several key messages conveyed by Theorem 3.
We discuss them below.

Message 1: Linear Speedup. Observe that the noise variance terms in equation 8 are T, and T3, where
Ty is O(a?), i.e., a higher-order term in a. Thus, for small «, T, is the dominant noise term. Compared
to the noise term for vanilla TD in (Bhandari et al., 2018, Theorem 3), T in our bound has exactly the
same dependence on 7, w, and -, and importantly, exhibits an inverse scaling w.r.t. M, implying a M -fold
reduction in the variance o2 relative to the single agent setting. This is precisely what we wanted. For exact
convergence, we can set a = O(log(MT?)/T) to make Ty and T of order O(1/T7?), and the dominant term
Ty = O(0?/(MT)). Thus, relative to the O(c?/T) rate of TD(0), we achieve a linear speedup w.r.t. the
number of agents M in our dominant term T.

Message 2: Communication-efficiency comes (nearly) for free. The second key thing to note is that
the dominant 75 term is completely unaffected by the compression factor §. Indeed, the compression factor §
only affects higher-order terms that decay much faster than T5. This means that we can significantly ramp
up 8, thereby communicating very little, while preserving the asymptotic rate of convergence of TD(0) and
achieving optimal speedup in the number of agents, i.e., communication-efficiency comes almost for free. For
instance, suppose Qs(-) is a top-1 operator, i.e., h; ; has only one non-zero entry which can be encoded using

10

Published in Transactions on Machine Learning Research (04,/2024)

O(1) bits. In this case, although § = K, where K is the potentially large number of features, the dominant
O (02/(MT)) term remains unaffected by K. Thus, in the context of MARL, our work is the first to
show that asymptotically optimal rates can be achieved by transmitting just O(l) bits per-agent
per time-step.

Message 3: Tight Dependence on the Mixing Time. Compared to Khodadadian et al. (2022) - the only
other paper in MARL that provides a linear speedup under Markovian sampling - our dominant term 75 has
a tighter O(7) dependence on the mixing time 7 as compared to the O(72) dependence in Khodadadian et al.
(2022, Theorem 4.1). It should be noted here that the O(7) dependence is known to be information-theoretically
optimal (Nagaraj et al., 2020).

A few remarks are in order before we end this section.

Remark 2. We note that the bound in Theorem 3 is stated for éT, not Or. Since O = Op + aér_1, to output
Or, the server needs to query e;, 7—1 from each agent i only once at time T' — 1. We believe that this one
extra step of communication can also be avoided via a slightly sharper analysis. We provide such an analysis
in Appendiz F, albeit under a common i.i.d. sampling model (Dalal et al., 2018; Doan et al., 2019; Liu &
Olshevsky, 2021a).

Remark 3. While our MARL result in Theorem 3 is for TD learning, in light of the developments in
Section 5, we note that one can develop analogs of Theorem 3 for multi-agent Q-learning as well.

Remark 4. Suppose we set M =1 in equation 8, and compare the resulting bound with that in equation 5.
While the effect of the distortion § shows up as a higher-order O(a?) term in the former, it manifests as
a O(«) term in the latter. The difference in these bounds can be attributed to the fact that we use a finer
Lyapunov function to prove Theorem 3 relative to that which we use to prove Theorem 1. We do so primarily
for the sake of exposition: the relatively simpler proof of Theorem 1 (compared to Theorem 3) helps build
much of the key intuition needed to understand the proof of Theorem 3.

7 Technical Challenges in Analysis and Overview of our Proof Techniques

We now discuss the novel steps in our analysis. Complete proof details are provided in the Appendix.

Proof Sketch for Theorem 1. Inspired by the perturbed iterate framework of Mania et al. (2015), our first
step is to define the perturbed iterate 0, = 0, +aep_1. Simple calculations reveal: §t+1 =0, + ag: (). Notice
that this recursion is almost the same as equation 2, other than the fact that the TD(0) update direction is
evaluated at 6, instead of §,. Thus, to analyze the above recursion, we need to account for the gap between
9, and 6,, the cause of which is the memory variable e;_;. Accordingly, our next key step is to construct a
novel Lyapunov function v, that captures the joint dynamics of 6; and e;_:

e £ E[d} + a?|lec|[3], where d} = |6, — 673, (9)

As far as we are aware, a potential function of the above form has not been analyzed in prior RL work. Our
goal now is to exploit the geometric mixing property in Assumption 1 to establish that 1; decays over time
(up to noise terms). This is precisely where the intricate coupling between the parameter 0,, the memory
variable e;, and the Markovian data tuples {X;} makes the analysis quite challenging. Let us elaborate.
To exploit mixing-time arguments, we need to condition sufficiently into the past and bound drift terms of
the form ||6; — 9~t_TH2. This is where the coupling between 6, and e; introduces non-standard delay terms,
precluding the direct use of prior approaches in RL (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al.,
2019). This difficulty does not show up in compressed optimization since one deals with i.i.d. data, precluding
the need for mixing-time arguments. A workaround here is to employ a projection step (as in Bhandari et al.
(2018); Doan et al. (2019)) to simplify the analysis. This is not satisfying for two reasons: (i) as we show
in the Appendix, the simplification in the analysis comes at the cost of a sub-optimal dependence on the
distortion §; and (ii) to project, one needs prior knowledge of the set containing 6*; this turns out to be
unnecessary. Our key innovation here to bound the drift |6, — 6,_,|| is the following technical lemma.

Lemma 1. (Relating Drift to Past Shocks) For EF-TD, the following is true Vt > 7:
E[|6; — 6;—+]3] = O(a*7?) max vy + O(a*m%6?). (10)

t—r<t<t

11

Published in Transactions on Machine Learning Research (04,/2024)

104 o P ‘N 104 ’u T 2k :A“\l
10°F 3 10°F]
= —TD = —TD
10*f |- -EF-SignTD 10°F |- o -EF-SignTD
——SignTD ——SignTD

10! : : : 10! : : : :

10° 10 10° 10° 10* 10 10! 10 10° 10*

t t
Figure 2: Plots of the mean-squared error E; = |67 — 6*||3 for vanilla TD(0) without compression, and

SignTD(0) with (EF-SignTD) and without (SignTD) error-feedback. (Left) Discount factor v = 0.5. (Right)
Discount factor v = 0.9.

The above lemma relates the drift to damped “shocks" (delay terms) from the past, where (i) the amplitude
of the shocks is captured by our Lyapunov function; (ii) the duration of these shocks is the mixing time
7; and (iii) the damping arises from the fact that shocks are scaled by a?. In attempting to overcome one
difficulty, we have created another for ourselves via the “max" term in equation 10. This is where we make a
connection to the analysis of the TAG algorithm in Gurbuzbalaban et al. (2017) where a similar “max" term
shows up. Via this connection, we are able to analyze the following final recursion:

Yey1 < (1= caw(l —3))p + O(a7) t_mgﬁtwe +0(?) (1 + 6)o?, where ¢ < 1. (11)

Proof Sketch for Theorem 3. To establish the linear speedup property, we need a finer Lyapunov function
(and much finer analysis) relative to Theorem 1. Accordingly, we construct:

M
Z |€i,t||§]) (12)

i=1

_ 1
£ E[0, — 0%[|3] + Ca’E,—y, where E, £ 7

and C is a suitable design parameter. Using the techniques in Bhandari et al. (2018), Srikant & Ying (2019),
and Chen et al. (2019) to bound |[|g; +(#)||* unfortunately do not yield the desired linear speedup. Moreover,
it is unclear whether the Generalized Moreau Envelope framework in Khodadadian et al. (2022) can be
extended to analyze equation 12. As such, we depart from these works by establishing the following key
result by carefully exploiting the geometric mixing property.

Lemma 2. Let z(6;) = (1/M) Yicpn 9it(0r). Under Assumption 1, the following bound holds for Algo-
rithm 2: B[||2:(0:)]3] = O()E[d?] + O(a?)E;—1 + O(1/M + a*)a?, ¥t > 7.

The above norm bound on the average TD direction turns out to be the main ingredient in bounding the
drift terms for Algorithm 2, and eventually establishing a recursion of the form in equation 11 for =;.

8 Simulations

To corroborate our theory, we construct a MDP with 100 states, and use a feature matrix ¢ with K = 10
independent basis vectors. Using this MDP, we generate the state transition matrix P, and reward vector R,
associated with a fixed policy pu. We compare the performance of the vanilla uncompressed TD(0) algorithm
with linear function approximation to SignTD(0) with and without error-feedback. We perform 30 independent
trials, and average the errors from each of these trials to report the mean-squared error E; = |0 — 0*||3 for
each of the algorithms mentioned above. The results of this experiment are reported in Fig. 2. We observe
that in the absence of error-feedback, SignTD(0) can make little to no progress towards 6*. In contrast, the
behavior of SignTD(0) with error-feedback almost exactly matches that of vanilla uncompressed TD(0). Our

12

Published in Transactions on Machine Learning Research (04,/2024)

30 T T T T T T T T

k=50
-e-k =25
——k =10
0 > oo N
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t

Figure 3: Plot of the mean-squared error E; = ||p — 0*||% for EF-TD (Algo. 1), with Qs(+) chosen to be the
top-k operator. We study the effect of varying the number of components transmitted k.

10" T T T I
10! T T : T —M =1

0k

0k

10'E

& ' L’j 0

103

102

104

10 n
10" 10 10* 10 10*

10°
10"

Figure 4: Plots of the mean-squared error E; = || — 6*||3 for multi-agent EF-TD (Algorithm 2). (Left) Qs()
is the sign operator. (Right) Qs(-) is the Top-k operator with k = 2.

results align with similar observations made in the context of optimization, where SignSGD with error-feedback
retains almost the same behavior as SGD with no compression (Stich et al., 2018; Karimireddy et al., 2019).
We provide some additional experiments below.

e Simulation of Topk-TD(0) with Error-Feedback. We simulate the behavior of EF-TD with the operator
Qs(+) chosen to be a top-k operator. We consider the same MDP as above, with the rewards for this
experiment chosen from the interval [0 1]. The size of the parameter vector K is 50, and the discount factor
~ is set to be 0.5. We vary the level of distortion introduced by Qs(-) by changing the number of components
k transmitted. Note that § = K/k. As one might expect, increasing the distortion ¢ by transmitting fewer
components impacts the exponential decay rate; this is clearly reflected in Fig. 3.

Simulation of Multi-Agent EF-TD. To simulate the behavior of multi-agent EF-TD (Algorithm 2), we
consider the same MDP on 100 states as before with rewards in [0 1]. The dimension K of the parameter
vector is set to 10 and the discount factor v to 0.3. We consider two cases: one where Qs(-) is the sign
operator, and another where it is a top-2 operator, i.e., only two components are transmitted by each agent
at every time-step. We report our findings in Fig. 4, where we vary the number of agents M, and observe
that for both the sign- and top-k operator experiments, the residual mean-squared error goes down as we
scale up M. Since the residual error is essentially an indicator of the noise variance, our plots display a clear
effect of variance reduction by increasing the number of agents. Our observations thus align with Theorem 3.

13

Published in Transactions on Machine Learning Research (04,/2024)

9 Conclusion and Future Work

We contributed to the development of a robustness theory for iterative RL algorithms subject to general
compression schemes. In particular, we proposed and analyzed EF-TD - a compressed version of the classical
TD(0) algorithm coupled with error-compensation. We then significantly generalized our analysis to nonlinear
stochastic approximation and multi-agent settings. Concretely, our work conveys the following key messages:
(i) compressed TD learning algorithms with error-feedback can be just as robust as their optimization
counterparts; (ii) the popular error-feedback mechanism extends gracefully beyond the static optimization
problems it has been explored for thus far; and (iii) linear convergence speedups in multi-agent TD learning
can be achieved with very little communication. Our work opens up several research directions. Studying
alternate quantization schemes for RL and exploring other RL algorithms (beyond TD and Q-learning) are
immediate next steps. A more open-ended question is the following. SignSGD with momentum (Bernstein
et al., 2018) is known to exhibit convergence behavior very similar to that of adaptive optimization algorithms
such as ADAM (Balles & Hennig, 2018), explaining their use in fast training of deep neural networks. In a
similar spirit, can we make connections between SignTD and adaptive RL algorithms? This is an interesting
question to explore since its resolution can potentially lead to faster RL algorithms.

14

Published in Transactions on Machine Learning Research (04,/2024)

References

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Advances in Neural Information Processing Systems, 30:
1709-1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli.
The convergence of sparsified gradient methods. In Advances in Neural Information Processing Systems,
pp. 5973-5983, 2018.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic gradients.
In International Conference on Machine Learning, pp. 404-413. PMLR, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine Learning, pp.
560-569. PMLR, 2018.

Aleksandr Beznosikov, Samuel Horvath, Peter Richtdrik, and Mher Safaryan. On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learning with
linear function approximation. In Conference on learning theory, pp. 1691-1692. PMLR, 2018.

Vivek S Borkar. Stochastic approrimation: a dynamical systems viewpoint, volume 48. Springer, 2009.

Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469, 2000.

Zaiwei Chen, Sheng Zhang, Thinh T Doan, Siva Theja Maguluri, and John-Paul Clarke. Performance
of g-learning with linear function approximation: Stability and finite-time analysis. arXiv preprint
arXiw:1905.11425, pp. 4, 2019.

Gal Dalal, Baldzs Szorényi, Gugan Thoppe, and Shie Mannor. Finite sample analyses for td (0) with function
approximation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed td (0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on Machine
Learning, pp. 1626-1635. PMLR, 2019.

Thinh T Doan. Finite-time analysis of markov gradient descent. IEEE Transactions on Automatic Control,
2022.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient method with
linear convergence rate. In 2014 IEEFE international workshop on machine learning for signal processing
(MLSP), pp. 1-6. IEEE, 2014.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vgsgd: Vector quantized stochastic
gradient descent. In International Conference on Artificial Intelligence and Statistics, pp. 2197-2205.
PMLR, 2021.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtarik. Linearly converging error
compensated sgd. Advances in Neural Information Processing Systems, 33, 2020.

Robert M Gray. Source coding theory, volume 83. Springer Science & Business Media, 2012.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtarik. Ef21-p and friends: Improved theoretical
communication complexity for distributed optimization with bidirectional compression. arXiv preprint
arXiv:2209.15218, 2022.

15

Published in Transactions on Machine Learning Research (04,/2024)

Mert Gurbuzbalaban, Asuman Ozdaglar, and Pablo A Parrilo. On the convergence rate of incremental
aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035-1048, 2017.

Osama A Hanna, Lin Yang, and Christina Fragouli. Solving multi-arm bandit using a few bits of communication.
In International Conference on Artificial Intelligence and Statistics, pp. 11215-11236. PMLR, 2022.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Federated reinforcement learning with
environment heterogeneity. In International Conference on Artificial Intelligence and Statistics, pp. 18-37.
PMLR, 2022.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feedback fixes
signsgd and other gradient compression schemes. arXiv preprint arXiv:1901.09847, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under markovian sampling. In International Conference on Machine Learning,
pp. 10997-11057. PMLR, 2022.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich. A unified theory of
decentralized sgd with changing topology and local updates. arXiv preprint arXiv:2003.10422, 2020.

Jakub Kone¢ny, H Brendan McMahan, Daniel Ramage, and Peter Richtarik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiw:1610.02527, 2016.

Nathaniel Korda and Prashanth La. On td(0) with function approximation: Concentration bounds and
a centered variant with exponential convergence. In International conference on machine learning, pp.
626-634. PMLR, 2015.

Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: Constant step-size
and iterate averaging. arXiv preprint arXiv:1709.04073, 2017.

David A Levin and Yuval Peres. Markov chains and mizing times, volume 107. American Mathematical Soc.,
2017.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods. IEEFE
Transactions on Information Theory, 2022.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

Rui Liu and Alex Olshevsky. Distributed td (0) with almost no communication. arXiv preprint
arXiv:2104.07855, 2021a.

Rui Liu and Alex Olshevsky. Temporal difference learning as gradient splitting. In International Conference
on Machine Learning, pp. 6905-6913. PMLR, 2021b.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael T Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint
arXiv:1507.06970, 2015.

Prathamesh Mayekar and Himanshu Tyagi. Ratq: A universal fixed-length quantizer for stochastic opti-

mization. In International Conference on Artificial Intelligence and Statistics, pp. 1399-1409. PMLR,
2020.

16

Published in Transactions on Machine Learning Research (04,/2024)

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in federated learning:
Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing Systems, 34:
14606-14619, 2021.

Aritra Mitra, Hamed Hassani, and George J Pappas. Linear stochastic bandits over a bit-constrained channel.
arXiv preprint arXiw:2203.01198, 2022.

Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least squares regression
with markovian data: Fundamental limits and algorithms. Advances in neural information processing

systems, 33:16666-16676, 2020.

C Narayanan and Csaba Szepesvari. Finite time bounds for temporal difference learning with function
approximation: Problems with some “state-of-the-art” results. Technical report, Technical report, 2017.

Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus and optimization in multi-agent
networks. IEEE Transactions on Automatic Control, 55(4):922-938, 2010.

Francesco Pase, Deniz Gilindiiz, and Michele Zorzi. Remote contextual bandits. In 2022 IEEE International
Symposium on Information Theory (ISIT), pp. 1665-1670. IEEE, 2022.

Gandharv Patil, LA Prashanth, Dheeraj Nagaraj, and Doina Precup. Finite time analysis of temporal
difference learning with linear function approximation: Tail averaging and regularisation. In International
Conference on Artificial Intelligence and Statistics, pp. 5438-5448. PMLR, 2023.

Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: techniques, applications,
and open challenges. arXiv preprint arXiv:2108.11887, 2021.

Peter Richtarik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically
faster error feedback. Advances in Neural Information Processing Systems, 34:4384-4396, 2021.

Rajarshi Saha, Mert Pilanci, and Andrea J Goldsmith. Efficient randomized subspace embeddings for
distributed optimization under a communication budget. IEEE Journal on Selected Areas in Information
Theory, 2022.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Towards understanding asynchronous advantage
actor-critic: Convergence and linear speedup. IEEE Transactions on Signal Processing, 2023.

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation andtd
learning. In Conference on Learning Theory, pp. 2803-2830. PMLR, 2019.

Sebastian U Stich. On communication compression for distributed optimization on heterogeneous data. arXiv
preprint arXiv:2009.02388, 2020.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd with
delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In Advances in
Neural Information Processing Systems, pp. 4447-4458, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9-44,
1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function approxi-
mation. In IEEFE Transactions on Automatic Control, 1997.

17

Published in Transactions on Machine Learning Research (04,/2024)

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in neural information
processing systems, pp. 1509-1519, 2017.

18

Published in Transactions on Machine Learning Research (04/2024)

Contents

1 Introduction
1.1 Our Contributions e
1.2 Related Work o o e e e e e e e

2 Model and Problem Setup

3 Error-Feedback meets TD Learning

4 Analysis of EF-TD under Markovian Sampling

5 Compressed Nonlinear Stochastic Approximation with Error-Feedback
6 Communication-Efficient Multi-Agent Reinforcement Learning (M ARL)
7 Technical Challenges in Analysis and Overview of our Proof Techniques
8 Simulations

9 Conclusion and Future Work

A Preliminary Results and Facts

B Building Intuition: Analysis of Mean-Path EF-TD
B.1 Can Compressed TD Methods Without Error-Feedback Still Converge?

C Warm-Up: Analysis of EF-TD with a Projection Step

D Analysis of EF-TD without Projection: Proof of Theorem 1 and Theorem 2
D.1 Bounding the Drift and Bias Terms

E Analysis of Multi-Agent EF-TD: Proof of Theorem 3

F Analysis of Multi-Agent EF-TD under an I.I.D. Sampling Assumption

19

11

12

14

20

22
25

27

34
36

42

50

Published in Transactions on Machine Learning Research (04,/2024)

A Preliminary Results and Facts

In this section, we will compile and derive some preliminary results that will play a key role in our subsequent
analysis. In what follows, unless otherwise stated, we will use || - || to refer to the standard Euclidean norm.
The next three results are from Bhandari et al. (2018).

Lemma 3. For all 61,0, € R¥, we have:

Vw01 — 0] < |[Ve, — Va,|lp < 1161 — 2.

We remind the reader here that in the above result, w is the smallest eigenvalue of the matrix ¥ = ® " D®.
Before stating the next result, we recall the definition of the steady-state TD update direction: for a fixed
0 € RX, let

g(a) £ Est~7r,st+1~P“(-\st) [g(Xh 9)] .

The next lemma provides intuition as to why the expected steady-state TD(0) update direction g(6) acts like
a “pseudo-gradient", driving the TD(0) iterates towards the minimizer * of the projected Bellman equation.

Lemma 4. For any 6 € RX, the following holds:
(0" = 0,3(0)) > (1 =)|[Ve- — V-

We will have occasion to use the following upper bound on the norm of the steady-state TD(0) update direction.
Lemma 5. For any 6 € RX, the following holds:

1591l < 2[[Vo- = Vollp.

The following bound on the norm of the random TD(0) update direction will also be invoked several times in
our analysis (Srikant & Ying, 2019).

Lemma 6. For any § € RE | the following holds ¥t > 0:
llge (@) < 2[10]| + 27 < 2|0]| + 20, (13)
where 0 = max{1, 7, ||0*||}.

As mentioned earlier in Section 3, compressed SGD with error-feedback essentially acts like delayed SGD.
Thus, for smooth functions where the gradients do not change much, the effect of the delay can be effectively
controlled. Unlike this optimization setting, we do not have a fixed objective function at our disposal. So how
do we leverage any kind of smoothness property? Fortunately for us, the steady-state TD(0) update direction
does satisfy a Lipschitz property; we prove this fact below.

Lemma 7. (Lipschitz property of steady-state TD(0) update direction) For all 01,0, € RX | we have:
19(61) — g(02)] < |61 — 2.

Proof. We will make use of the explicit affine form of g(6) shown below (Tsitsiklis & Van Roy, 1997):

§(0) =®" D (7,00 — ®0) = A9 — b, where A=®'D(yP, —I)®, andb=—d DR,,. (14)
In Bhandari et al. (2018), it was shown that AT A < ¥, where ¥ = &' D®. Furthermore, due to feature
normalization, it is easy to see that Apnax(X) < 1. Using these properties, we have:

13(61) = G(02)||> = (61 — 05) " ATA (61 — 0)
Amax (AT A)[|61 = 021

Amax(E)[|61 — 622
161 — 6|1,

= 15
S (15)
<

which leads to the desired claim. For the first inequality above, we used the Rayleigh-Ritz theorem (Horn &
Johnson, 2012, Theorem 4.2.2). O

20

Published in Transactions on Machine Learning Research (04,/2024)

An immediate consequence of the above result, in tandem with the fact that g(6*) = 0, is the following upper
bound on the norm of the steady-state TD(0) update direction: V6 € R¥ | we have

19O = llg(8) — g(67)I| < (|6 = "[| < |6]] + o (16)

Essentially, this shows that the bound in Lemma 6 applies to the steady-state TD(0) update direction as well.
Next, we prove an analog of the Lipschitz property in Lemma 7 for the random TD(0) update direction.

Lemma 8. (Lipschitz property of the noisy TD(0) update direction) For all 01,05 € RE we have:
9:(01) — ge(02) | < 2[[61 — 02

Proof. As in the proof of Lemma 7, we will use the fact that the TD(0) update direction is an affine function
of the parameter 0. In particular, we have

g:(0) = A(X,)0 — b(X;), where A(X;) =®(s,)® (5441) — ®(s,)P " (5¢), and by = —p(s4)rs.

Thus, we have
l9¢(61) — g:(02)]| = | A(X¢) (61 — 02) ||
< [[AX) 1161 — -

5 (17)
< (Yl (sea1)[| + [2(s)[1?) 101 — O]
< 2|61 — 62,
where for the last step we used that ||®(s)|| < 1,Vs € S. O
In addition to the above results, we will make use of the following facts.
« Given any two vectors z,y € R¥, the following holds for any 7 > 0:
2 2 1 2
lz+yl” <@ +n)lzl”+ (1 o [yl (18)
« Given m vectors x,..., %, € RX, the following is a simple application of Jensen’s inequality:

S

i=1

2 m
<m . (19)
=1

21

Published in Transactions on Machine Learning Research (04,/2024)

B Building Intuition: Analysis of Mean-Path EF-TD

Since the dynamics of EF-TD are quite complex, and have not been studied before, we provide an analysis in
this section for the simplest setting in our paper: the noiseless steady-state version of EF-TD where ¢;(6;) in
line 4 of Algorithm 1 is replaced by g(6;). We refer to this variant as the mean-path version of EF-TD, and
compile its governing equations below:

hy = Qs (es—1 + g(0)) ,
9t+1 = Gt + aht, (20)
er =er—1 + g(0r) — hy,

where the above equations hold for t = 0,1, ..., with §y € RX, and e_; = 0. The goal of this section is to
provide an analysis of mean-path EF-TD, and, in the process, outline some of the key ideas that will aid us in
the more involved settings to follow. We have the following result.

Theorem 4. (Noiseless Setting) There exist universal constants ¢,C > 1, such that the iterates generated
by the mean-path version of EF-TD with step-size a = (1 —v)/(cd) satisfy the following after T iterations:

* 1_,720‘] g *
lor -1 <2 (1- L) oo - 013, (21)

Discussion. Theorem 4 reveals linear convergence of the iterates to 8*. When § = 1, i.e., when there is
no distortion to the TD(0) direction, the linear rate of convergence exactly matches that in Bhandari et al.
(2018). Moreover, when ¢ > 1, the slowdown in the linear rate by a factor of ¢ is also exactly consistent with
analogous results for SGD with (biased) compression (Beznosikov et al., 2020). Thus, our result captures - in
a transparent way - precisely what one could have hoped for.

To proceed with the analysis of mean-path EF-TD, we will make use of the perturbed iterate framework from
Mania et al. (2015). In particular, let us define the perturbed iterate 6; £ 9, + aey_;. Using equation 20, we
then obtain: -
Or41 = 0141 + ey

=0+ ahy + a(er—1 + g(0r) — hy) (22)

= 9~t + a§(9t)
The final recursion above looks almost like the the standard steady-state TD(0) update direction, other
than the fact that g(6;) is evaluated at 6;, and not 6;. To account for this “mismatch" introduced by the
memory-variable e; 1, we will analyze the following composite Lyapunov function:

e 2 10— 0°1° + a?[leca . (23)

Note that the above energy function captures the joint dynamics of the perturbed iterate and the memory
variable. Our goal is to prove that this energy function decays exponentially over time. To that end, we start
by establishing a bound on [|f;1; — 6*|| in the following lemma.

Lemma 9. (Bound on Perturbed Iterate) Suppose the step-size o is chosen such that oo < (1 —~)/8.
Then, the iterates generated by the mean-path version of EF-TD satisfy:

lee—1]. (24)

~ . ~ . a(l — N N 5a3
[Bess =01 < 16— 01 = 22005, = ey +

1—7)

Proof. Subtracting 6* from each side of equation 22 and then squaring both sides yields:
01 — 6717 = (16 — 671 + 28, — 6", (6:)) + o”||(6:) >
=10 = 0711 + 20(0; — 07, 3(0¢)) + & [|g(00)|* + 2a(0¢ — 01, 5(61))

(a) . B 1 _ ~
< 16 — 6*[* + 2a(8, — 6*,3(6,)) + (O‘ - 77) 15(6:) 1% + an)|f; — 6. (25)

b) | ~ _ 1 B
D 1, — 0°7 + 20(6, — 0°,5(61)) + (a+ n) 15O + a®nllecs |2

22

Published in Transactions on Machine Learning Research (04,/2024)

For (a), we used the fact that for any two vectors z,y € R the following holds for all > 0,

1 n
< —lz)* + Z|y)>.
(2,9) < 5o llell? + 3wl

We will pick an appropriate n shortly. For (b), we used the fact that from the definition of the perturbed
iterate, it holds that 6; — 0; = ae;_1. We will now make use of Lemma’s 4 and 5. We proceed as follows.

~ - 1
Wess — 0712 < 1 — 0% + 2060 — 67, 5(6,)) + a (a+ n) 13O + a®nllecs 2

(a) A N
< 110 — 071> = 2a(1 — 7)|| Vo, — Vo-

1 _
2 4a (a+ n) 1O + oPnllesi |

® N . -
21602 - a (2(1)4 (a+ n)) 195, — Vo I3 + a®nllecs 2 (26)
(e) . 4oy N N 403

< |6 — 0| — (1 —~ (1—) Vo, — Vo |5 + ——les—1 |2

(d) . a(l—fy) N N 403

< |10y — 0*|]? — —2|| Vo, — Vo= || + ——||es—1]|?.

< 6. — 67| 5 Ve, = Vo-llp + (1_’_)/)”615 1

In the above steps, (a) follows from Lemma 4; (b) follows from Lemma 5; (¢) follows by setting n = 4/(1 — v);
and (d) is a consequence of the fact that a < (1—~)/8. To complete the proof, we need to relate ||V, — Va-
to ||‘79~t — Ve*
This yields:

2
D
2. We do so by using the fact that for any z,y € R™, it holds that ||z +y[|3, < 2||z[|%, + 2[|y[%.

Vs, — V- II3, < 2I[Va, — Vo II3, + 2I1V5, — Va3
(a) R R -
< 2||Vo, — Vo |12, + 21|, — 0, (27)

< 2|V, = VorlIB + 2% |ler 1%,

where for (a), we used Lemma 3. Rearranging and simplifying, we obtain:

N A 1. A A
Vo, = Vi [< =51V, = Varl[B + 0 ler-a

Plugging the above inequality in equation 26 leads to equation 24. This completes the proof. O

The last term in equation 24 is one which does not show up in the standard analysis of TD(0), and is unique to
our setting. In our next result, we control this extra term (depending on the memory variable) by appealing
to the contraction property of the compression operator Qs(+) in equation 4.

Lemma 10. (Bound on Memory Variable) For the mean-path version of EF-TD, the following holds:

2, (28)

1 A A
Jee? < (1 g5 + 0%) el + 1651, ~ Vo

Proof. We begin as follows:

leell® = llec—1 + g(8:) — hal|®

= ller—1 + g(0:) — Qs (er—1 + 3(6,)) |I?

¢ (1 - (15) leer + 5602 (20)

2(1-5) (143)t + (1) @+ m oo,

23

Published in Transactions on Machine Learning Research (04,/2024)

for some 7 > 0 to be chosen by us shortly. Here, for (a), we used the contraction property of Qs(-) in equation 4;
for (b), we used the relaxed triangle inequality equation 18. To ensure that ||e;||* contracts over time, we

want
1 1
(1—5> (1+n><1 = n>(0-1).

Accordingly, suppose n = § — 1. Simple calculations then yield

(D602 (-asnen

Plugging these bounds back in equation 29, we obtain

1 _
Jee? < (1= 55) ev-al? + 251000

< (1 - 215) lles—al® +261g(0:) — g(6:) + g(0,)|?

1 B . .
< (1= 55) e+ 431g(6:) — (@ + 4510} P

—~
S
~

1 _ L
g@—%>M4W+MM—@W+MMMW

1 ~
:(Ldywﬁgwtw+ﬁw@w

(b) 1) (/
< (1 ~ 35 + 4a25> lec—1]® + 166V, — Vo-|D-

In the above steps, for (a) we used the Lipschitz property of the steady-state TD(0) update direction, namely
Lemma 7; and for (b), we used Lemma 5. This concludes the proof. O

Lemmas 9 and 10 reveal that the error-dynamics of the perturbed iterate and the memory variable are
coupled with each other. As such, they cannot be studied in isolation. This precisely motivates the choice of
the Lyapunov function ¢, in equation 23. We are now ready to complete the proof of Theorem 4.

Proof. (Proof of Theorem 4) Using the bounds from Lemmas 9 and 10, and recalling the definition of the
Lyapunov function v, from equation 23, we have

~ 1—7) 6406 - - 1 %et
< _*2_04((11— 12 2(1_ = 402 e it
’(/Jt-l-l = ||0t 0 H 4 (1 _'7) ||V:9t ‘/9 D +a 2 + 4o 6+ (1 _'7) ||et 1”
aw(l —7) 64ad ~ “12 o 1 9 Sa 9 (31)
<|1- 1— — 1-——+14 _

Al Az

where we used Lemma 3 in the last step. Our goal is to establish an inequality of the form ;1 < v}, for some
v < 1. To that end, the next step of the proof is to pick the step-size « in a way such that max{A;, A2} < 1.
Accordingly, with a = (1 — v)/(1285), we have that

_ (1—9)%wY . 1
./41—(1— 10245 ,andAgg 1_4(5 .

Furthermore, it is easy to check that A, < 4;. Combining these observations with equation 31, we obtain:

(1 77)2(") 0 *
Yigp1 < (1—1()%5 ([16: = %[+ o?[les—1]1?) -
P

24

Published in Transactions on Machine Learning Research (04,/2024)

Unrolling the above recursion yields:

Yr < (1(1_7)2&,>T%

10249
T (32)
2
— 1_M 160 — 072
10249 ’
where for the last step, we used the fact that e_; = 0. To conclude the proof, it suffices to notice that:
%12 0 s w2
|07 — 0% = |07 — 07 + 61 — 07|
~ 2 ~ 2
< — 0 -
< 2H?T 0 H2 + 2|[07 — Or|| (33)
=267 — 67| + 20 |ler—|*
= 2.
O

B.1 Can Compressed TD Methods Without Error-Feedback Still Converge?

Earlier in this section, we provided intuition as to why EF-TD converges by studying its dynamics in the
steady-state. One might ask: Can compressed TD algorithms without error-feedback still converge? If so,
under what conditions? We turn to answering these questions in this subsection. In what follows, we will
show that compressed TD without error-feedback can still converge, provided certain restrictive conditions
on the compression parameter § are met. Notably, these conditions are no longer needed when one employs
error-feedback. To convey the key ideas, we consider a mean-path version of compressed TD shown below:

Or1 =0 + aQs5(g(6:)), (34)

where Qs(-) is the compression operator in equation 4. From the above display, we immediately have

[0e1 — 0712 = (16 — 071 + 20:(0: — 0", Q5(3(61))) + *|| Q5 (3 (62)) |- (35)

Among the three terms on the R.H.S. of the above equation, notice that the only term that can lead to a
decrease in the iterate error |0, — 0*||? is clearly 2a(6; — 6%, Qs(g(6;))). As such, let us fix a § € R¥ | and
investigate what we can say about (6 — 0*, Q5(g(9))). First, notice that if there is no compression, i.e., 6 = 1,
then Qs(g(0)) = g(#), and we know from Lemmas 3 and 4 that

(6 —06%,3(0)) < —pllo — 6", (36)

where 8 =w(1 —7) € (0,1). It is precisely the above key property that causes uncompressed TD to converge
to 6*. Now let us observe:

(0 =07, Q5(9(0))) = (0 — 0%, 9(0)) + (6 — 07, Q5(3(0)) — 9(0))
<(0-6,900)) + 6 - 67[[1Q5(9(6)) — g(O)]

-0 gop+ [(1-3)10-llgo)

(b) * = 1 *|12
< (0-0%900) +4/{1—5 |10 —0"l

< (5 (1- }S)) AR

25

Published in Transactions on Machine Learning Research (04,/2024)

In the above steps, (a) follows from equation 4, (b) follows from equation 16, and (c) from equation 36.
Comparing equation 37 to equation 36, we conclude that for the distorted TD direction Q;5(g(6)) to ensure
progress towards 6%, we need the following condition to hold:

(1 - ;) < B. (38)

Simplifying, the above condition amounts to

0 < =/ (39)

The parameter 8 € (0,1) gets fixed when one fixes an MDP, the policy to be evaluated, and the feature
vectors for linear function approximation. The condition for contraction/convergence in equation 39 tells us
that this parameter § limits the extent of compression §. Said differently, one cannot choose the compression
level § to be arbitrarily large; rather it is dictated by the problem-dependent parameter 3. It is important to
note here that no such restriction on 0 is necessary when one uses error-feedback, as revealed by our analysis
for mean-path EF-TD. This highlights the benefit of using error-feedback in the context of compressed TD
learning. With these observations in place, let us return to our analysis of the update rule in equation 34.

For ease of notation, let us define
1
£ — 1— =
¢ (ﬂ (5)) ,

and note that if the compression parameter ¢ satisfies the condition in equation 39, then ¢ > 0. Plugging the
bound from equation 37 in equation 35, we obtain

[0e1 — 0712 = [16; — 071> + 20(0; — 0%, Q5(3(6:))) + 2] Qs(5(61)) >
< (1—2a0) |6 — 0*[1> + a?||Q5(3(6:)) — G(6:) + G(6:)]?
< (1—2a0Q) |16 — 071> + 20°[1Q5(9(0:)) — G(0:)|I” + 20%(|5(6,) ||

(a) . 1
< (=200 16 - 02+ 2 (2 3) @laton) P

(b)
< (1-2a¢ +4a?) 6, — 0°2,

where (a) follows from equation 4 and (b) from equation 16. Thus, with o < {/4, we have

0e41 — 6717 < (1 — aQ) |16, — 07]1*.

We conclude that when the compression parameter § satisfies the condition in equation 39, and the step-size
is chosen to be suitably small, the compressed TD update rule in equation 34 does converge linearly to 6*.

26

Published in Transactions on Machine Learning Research (04,/2024)

C Warm-Up: Analysis of EF-TD with a Projection Step

Before attempting to prove Theorem 1, it is instructive to analyze the behavior of EF-TD with a projection
step. The benefit of this projection step is that it makes it relatively easier to argue that the iterates generated
by EF-TD remain uniformly bounded; nonetheless, as we shall soon see, the analysis remains quite non-trivial
even in light of this simplification. Let us now jot down the governing equations of the dynamics we plan to
study.
he = Qs (et—1 + g:(0t))
041 =1 g (6 + ahy) , (41)
er = er—1+ ge(0r) — hy,

where II; g(-) denotes the standard Euclidean projection on to a convex compact subset B C R¥ that is
assumed to contain the fixed point 8*. We also note here that a projection step of the form in equation 41 is
common in the literature on stochastic approximation (Borkar, 2009) and RL (Bhandari et al., 2018; Doan
et al., 2019).

Our main result concerning the performance of the projected version of EF-TD is the following.

Theorem 5. Suppose Assumption 1 holds. There exists a universal constant ¢ > 1 such that the iterates
generated by the projected version of EF-TD (i.e., equation /1) with step-size o < (1 —+)/c satisfy the following
after T > T iterations:

(42)

., 52G?
E [0 — %3] < C1 (1 — aw(1 —7))” +0(“)

w(l =)
where C1 = O(a?62G? + G?), and G s the radius of the convex compact set B.

Main Takeaway. We note that the nature of the above guarantee is similar to that of Theorem 1. That
said, while the noise term in Theorem 1 is O(7 + d), it is O(762) in Theorem 5. In words, with the somewhat
cruder bounds we obtain via projection, we end up with a looser dependency on the distortion parameter §.
Moreover, the mixing time 7 and the distortion parameter § show up in multiplicative form in Theorem 5. In
Section D, we will provide a finer analysis (without the need for projection) that yields the tighter O(7 + §)
bound.

We now proceed with the proof of Theorem 5. Let us start by defining the projection error e, ; at time-step ¢ as
follows: ep s = 0y — (64—1 +ahy—1). We also define an intermediate sequence {ét} as follows: 0; £ 6,_1 +ahs_1.
Thus, 6, — 6, = ept- Next, inspired by the perturbed iterate framework in Mania et al. (2015), we define a
modified perturbed iterate as follows:

gt £ ét + aep_1q. (43)

Based on the above definitions, observe that
§t+1 =041+ ey

=0; + ahy +a(eg—1 + g:(0:) — hy)
=0 + agi(0:) + ae;—1 (44)
=0 + ey + agi(0;) + epe
= ét + Oégt(et) + ep,t.

Subtracting 8* from each side of equation 44 and then squaring both sides, we obtain:

101 — 01 = 110 — 0*[|* + 2a(8: — 0%, 9¢(0:)) + @* |91 (00) |* +2(0; — 0% + g (0:), 1) + lepill* . (45)
——

Cl Cz C3 C4

In what follows, we outline the key steps of our proof that involve bounding each of the terms C; — Cy.

e Step 1. The dynamics of the model parameter 0;, the Markov variable X;, the memory variable e;, and
the projection error e, ; are all closely coupled, leading to a dynamical system far more complex than the

27

Published in Transactions on Machine Learning Research (04,/2024)

standard TD(0) system. To start unravelling this complex dynamical system, our key strategy is to disentangle
the memory variable and the projection error from the perturbed iterate and the Markov data tuple. To do so,
we derive uniform bounds on e, h¢, and e, + by exploiting the contraction property in equation 4. This is
achieved in Lemma 12.

e Step 2. Using the uniform bounds from the previous step in tandem with properties of the Euclidean
projection operator, we control terms Co — C4 in Lemma 13.

e Step 3. Bounding C; takes the most work. For this step, we exploit the idea of conditioning on the system
state sufficiently into the past, and using the geometric mixing property of the Markov chain. As we shall see,
conditioning into the past creates the need to control ||0; — 0;—.||, ¥t > 7, where 7 is the mixing time. This is
done in Lemma 14. Using the result from Lemma 14, we bound C; in Lemma 15.

At the end of the three steps above, what we wish to establish is a recursion of the following form V¢ > 7:

E 041 — 0% < (1 — aw(@ — 7)) E[||6; — 6*||*] + O(a®752G?).

To proceed with Step 1, we recall the following result from Nedic et al. (2010).

Lemma 11. Let B be a nonempty, closed, convez set in RX. Then, for any x € RE, we have:

(a) (z5(z) — x,x —y) < —||25(z) — [,y € B.

(b) |s(z) = ylI? < llz = ylI* - [Ms(z) — z||*, ¥y € B.
To lighten notation, let us assume without loss of generality that all rewards are uniformly bounded by 1.
Our results can be trivially extended to the case where the uniform bound is some finite number R,,q;. To

make the calculations cleaner, we also assume that the projection radius G is greater than 1. We have the
following key result that provides uniform bounds on the memory variable and the projection error.

Lemma 12. (Uniform bounds on memory variable and projection error) For the dynamics in equa-
tion 41, the following hold ¥t > 0:

(a) |led]| < 60G.
(b) ||he]| < 156G.
() llep.tll < 15adG.

Proof. We start by noting that for all ¢ > 0,
llge(O) 1l = 1 A(Xe)0: — 0(Xp) || < [JAX) 0] + I6(X)]] < 2G +1 < 3G, (46)

where we used (i) the feature normalization property; (ii) the fact that the rewards are uniformly bounded by
1; and (iii) the fact that due to projection, ||6:] < 1,V¢ > 0. Next, observe that

lledl|> = llec—1 + ge(8e) — hel|?
= |les—1 + g:(8) — Qs (er—1 + g¢(64)) ||2

(a) 1
< (1 a 5) lec—1 + g+(60:)||? "

< (1-3) (12 Yl + (1= 3) s el

for some 7 > 0 to be chosen by us shortly. Here, for (a), we used the contraction property of Q;(+) in equation 4;
for (b), we used the relaxed triangle inequality in equation 18. To ensure that ||e;||? contracts over time, we

want))

28

Published in Transactions on Machine Learning Research (04,/2024)

Accordingly, suppose n = § — 1. Simple calculations then yield

R

Plugging these bounds back in equation 47 and using equation 46, we obtain
2 1 2 2
lleel® < {1 = 55 | llee—all” + 26]9:(60) |

1
< (1 - 25) les—1|* + 185G2.

Unrolling the dynamics of the memory variable thus yields:

1 t+1 t 1 k
< (1-= _1]|* + 185G 1—-—
fe? < (1-g5) el #1806 3 (1=)

[e%) 1 k
< 186G* e
< 186G Z<1 25)
k=0
= 366°G?,

where we used the fact that e_; = 0. Thus, |le:|| < 66G, which establishes part (a). For part (b), we notice
that hy = e;—1 — et + g¢(0:). This immediately yields:

1Pall < lleell + [lec—all + [lg:(00)[| < 120G + 3G < 156G,

where we used the fact that § > 1, the bound from part (a), and the uniform bound on g;(6;) established
earlier.

Next, for part (c), we use part (b) of Lemma 11 to observe that

llep,ell? = T2,5(8:) — 6:]|* < 16 — 6], 6 € B.
Since the above bound holds for all 8 € B, and 6;_1 € B, we have

lepell? < 118 — O—1]|? = 02| he||® < 2250%5°G2,

where we used the fact that 6; = 6;_1 + ahs—1 by definition, and also the bound on ||| from part (b). This
concludes the proof. O

From the proof of the above lemma, bounds on terms Cy and C4 in equation 45 follow immediately. In our
next result, we bound the term Cs.

Lemma 13. For the dynamics in equation 41, the following holds for all t > 0:

2<ét -6 + agt(et)7 ep,t> S 450[2(52G2.
Proof. We start by decomposing the term we wish to bound into three parts:

2(9,5 — 9* + agt(et), ep’t> = 2<ét — 9* + Qey_1 + agt(et)7 ep,t>
= 2(0; — 0%, epe) +2ales 1, 1) + 20(ge (01), €pot) - (49)

C31 C32 633

We now bound each of the three terms above separately. For C3;, we have

2<§t — 0*, ep,t> = 2<0_t — 9*, 0,5 — 9_,5> S —2”9,5 - 0_t||2 = —2“61,),t||27 (50)

29

Published in Transactions on Machine Learning Research (04,/2024)

where we used part (a) of the projection lemma, namely Lemma 11, with = 6, and y = 0*; here, note that
we used the fact that 8* € B. Next, for C3o, observe that
2a(es—1, ep,0) < @Pflera|® + [lepll?

51
< 360%5°G + eyl 1

where we used the bound on ||e;—1]| from part (a) of Lemma 12. Notice that we have kept ||e,¢||? as is in the
above bound since we will cancel off its effect with one of the negative terms from the upper bound on Cs; .
Finally, we bound the term Cs3 as follows:

20(ge (0), ep) < (| ge(00)[I” + llep,t
< 90°G? + |lep|1?,

| 2

(52)

where we used the uniform bound on ¢;(6;) from equation 46. Combining the bounds in equations 50, 51,
and 52, and using the fact that § > 1 yields the desired result. O

Notice that up until now, we have not made any use of the geometric mixing property of the underlying
Markov chain. We will call upon this property while bounding C;. But first, we need the following intermediate
result.

Lemma 14. For the dynamics in equation 41, the following holds for all t > T:

10; — 0, || < 60aT5G. (53)

Proof. Based on equation 44, observe that

1841 — Gell < llge (@) | + llep.ell

< 3aG + 15a0G (54)
< 18adG.
We also note that t1
b= S (B~ B).
k=t—T1

Based on equation 54, we then immediately have

t—1
100 = Orll < D7 01 = Bl
k=t—T1
t—1 (55)
<) (18a6G)
k=t—T1

18a7dG.

IN

Our goal is to now relate the above bound on ||6; — 6;_,| to one on ||6; — 6;_.||. To that end, observe that

0p =0, + ces1 — Ep.t)
07 =0; +r+aes_7 1 — Ept—r-
This gives us exactly what we need:

100 = 0|l <110 = Or—r [l + ller—1 — erra]l + lepi—r — €pell
<16 — Op—r || + allec—1]l + llec—r—1ll + llepi—r|l + llep.s
< 18at1dG + 120G + 300G < 60aTdG,

(56)

where we used equation 55, parts (a) and (c) of Lemma 12, and assumed that the mixing time 7 > 1 to state
the bounds more cleanly. This completes the proof. O

30

Published in Transactions on Machine Learning Research (04,/2024)

We now turn towards establishing an upper bound on the term C; in equation 45.

Lemma 15. Suppose Assumption 1 holds. For the dynamics in equation 41, the following then holds ¥t > T :

E [2a<5t — 9*7gt(9t)>} < =2a(l-7v)E [”Vbt — Vp-

D] + 14540%67G>.

Proof. Let us first focus on bounding T = (0; — 0%, g;(6;) — g(6;)). Trivially, observe that

T =0y — 01—, 9¢(0r) — g(01)) + (Or—r — 0%, 9:(0:) — g(04)) -
T T

To bound T}, we recall from Lemma 7 that for all 8,60, € RE, it holds that

19(61) = g(02)[| < (161 — 2]].

Since g(6*) = 0, the above inequality immediately implies that ||g(0)|| < ||0]| + [|6*||, V0 € RE. In particular,
for any 6 € B, we then have that ||g(6)| < 2G (since 8* € B). Using the bound on ||6; — 0;_ .|| from Lemma
14, and the uniform bound on the noisy TD(0) update direction from equation 46, we then obtain
Ty < (|00 — O~ 1) (lge(62) — g(00)1)
< ([16: = Oz 1) (llge (@) + l9(6e)11) (57)
< 60aG (3G + 2G) = 300aT6G>.

To bound T3, we further split it into two parts as follows:

Ty = (01— —0",9:(01—7) — g(O0r—7)) + (O1r—r — 0%, 9:(01) — 91 (01—7) + G(01—7) — g(04)) -
To1 Taz

To bound Thz, we will exploit the Lipschitz property of the TD(0) update directions in tandem with Lemma
14. Specifically, observe that:

Top < [|0i—~ — 07[| ([l9¢(0r) — ge(Oe—7)|| + [|9(e—=) — g(6)]])
(a)
< 2G (ll9:(6¢) = 9¢(0:—)Il + |(0:—) — g(0:)]])
()
< 660 — 0|
())
< 360a7éG=.
In the above steps, (a) follows from projection; (b) follows from Lemmas 7 and 8; and (c) follows from Lemma

14. Tt remains to bound T5;. This is precisely the only place in the entire proof that we will use the geometric
mixing property of the Markov chain in Definition 1. We proceed as follows.

E[To] =E[(0s—r — 0, 9:(0:—+) — g(01—7))]
=E[E[{0—r —0",9:(0:—r) — g(Or—7))|0r—r, Xi—+]]
=E[{0;—r — 0", E[9:(01—7) — 9(01—7)|01—7, Xi—7])]
<E[|— — 0" I[E[ge(8e—r) — 5Ot |0r—r, Xo -] [l (59)
(a)

< 2aG (E[]|6:— — 07[I])
< 40sz7
where (a) follows from the definition of the mixing time 7. Combining the above bound with those in

equations 57 and 58, we obtain
E[T] < 664a76G?, (60)

31

Published in Transactions on Machine Learning Research (04,/2024)

where we used 7 > 1 and § > 1.
We can now go back to bounding C; as follows:
C1 =20 — 0" + aes—1 — ep s, 9:(01))
= 2a(f; — 0%, g:(61)) + 207 (er—1, ¢ (0:)) — 2cep,t, g (6r))
(

< 208, — 0%,9.(60)) + 207 er1 98] + 20l el (40 o
< 200y — 0%, g:(6;)) + 126025G?,
where we used equation 46, and parts (a) and (c) of Lemma 12. We continue as follows:
C1 < 200y — 0%,5(0;)) + 2aT + +126a25G>.
Using Lemma 4 and the bound we derived on T in equation 60, we finally obtain
EC1) < ~2a(1 = 9)E [[Va, — Vo 3] + 14540%6G2,
where in the last step, we used Lemma 4. O

We can now complete the proof of Theorem 5

Proof. (Proof of Theorem 5) We combine the bounds derived previously on the terms C;-C4 in Lemmas 12,
13, and 15 to obtain that Vi > 7,

E (041 — 0712 <E[[16: — 07[|2] — 2a(1 — 7)E [||x79t V- } + 14540%67G?
+9a2G? + 45025%G? + 2250262 G? (62)
<E[|6: — 07[3] = 2a(1 = 1)E [V, — Vor

} + 173302627 G2.

To proceed, we need to relate || Vs, — Vp-
it holds that ||z + y||3, < 2[|z||% + 2|y

2 to HIA/(;t —Vpy-||%. We do so by using the fact that for any z,y € R",
|%,. This yields:

V5, = Vo- I < 211V, = V- |1 + 211V, — VoIl
@ . . _ (63)
< 2|V, — Vo[+ 2116; — 64|,
where for (a), we used Lemma 3. We thus have
—2a(1 =) Vo, — VG*HD < —a(l =V, = Vo ll% + 2a(1 =)16, — 6c>
—a(l =V, = Vo- I +2a(1 = y)llaei—1 — epl? (64)
—a(l =NV, = Vo- |5 +4da(1 =) (@®lle—r[* + llep,e]®)
< —a(— V5, = Voullh + 1044a° (1 — 7)6°G?,
where we used Lemma 12. Plugging the above bound back in equation 62 yields:
E |61 — 0713] < E (16 — 6 1] — o1 = E [V, — Vo- 3] + 2777026262)

<(1—aw(l—7)E[|f: — 03] + 2777?52 7G?, vt > T,

where we used Lemma 3 in the last step. Unrolling the above recursion starting from ¢t = 7, we obtain

E [l — 073 < (1 —aw(1 =)' T E[6, — 0*[3] + 277702627G? Y (1 — aw(1 —7))"
22 w0 (66)
A 52G
= (1—aw(1—)""E[|6, —6%)3] + 2777%.

32

Published in Transactions on Machine Learning Research (04,/2024)

We now make use of the following equation twice.
ét = 01; + aep_1 — Ep,t-

First, setting ¢t = 7 in the above equation, subtracting 8* from both sides, and then simplifying, we observe
that ~
167 = %[< [0~ — 6" + aller—1][+ [lep,- [| = O (adG + G),

where we invoked Lemma 12. Thus,
E[||0. — 0%[3] = O (a?6*G* + G?).
Using similar arguments as above, one can also show that
107 — 6|12 < 31 — %12 + 3a2[ler—1 12 + Bllepel < 3lldr — 672 + O(a26°G2).

Plugging the two bounds we derived above in equation 66 completes the proof. O

33

Published in Transactions on Machine Learning Research (04,/2024)

D Analysis of EF-TD without Projection: Proof of Theorem 1 and Theorem 2

In this section, we will prove Theorem 1. In particular, via a finer analysis relative to that in Appendix C, we
will (i) show that the iterates generated by EF-TD remain bounded without the need for an explicit projection
step to make this happen; and (ii) obtain a tighter bound w.r.t. the distortion parameter 6. At this stage, we
remind the reader about the dynamics we are interested in analyzing:

he = Qs (es—1+ g+(6)) ,
0t+1 = 975 + tht, (67)
er = er—1+ ge(0r) — hy.

To proceed with the analysis of the above dynamics, let us define the perturbed iterate 0, 2 0, + aer_y.
Using equation 67, we then obtain:
0111 = 041 + ey
= Qt + Ctht + « (6t71 =+ gt(et) — ht) (68)
=0+ agi(0:).

The final recursion above looks almost like the TD(0) update, other than the fact that g;(6;) is evaluated at
0:, and not 6;. To account for this “mismatch" introduced by the memory-variable e;_1, we will analyze the
following composite Lyapunov function:

e £ Eld} + o®|le1]*], where df = [|6; — 6"]*. (69)

Note that the above energy function captures the joint dynamics of the perturbed iterate and the memory
variable. Our goal is to prove that this energy function decays exponentially over time (up to noise terms).
To that end, we start by establishing a bound on d? 1 in the following lemma.

Lemma 16. (Bound on Perturbed Iterate) Suppose the step-size a satisfies a < 1/12. For the EF-TD
algorithm, the following bound then holds for ¥t > 0

6 3

Syl + 2000 = 0%,0:8) 9(00) + 32007 (70)

Jt2+1 < (1= aw(l —7) +24a?) a2+
Proof. Subtracting 6* from each side of equation 68 and then squaring both sides yields:

d?+1 =d; + 2a(0; — 0%, g1(0,)) + (| g (6:) ||
=d? +2a(0; — 0%, g:(0,)) +2a(0; — 0%, g:(0:) — g:(8:)) + (| g+ (6:)]| . (71)
(*) (%) ()

We now have: 5 N - ~ -
(%) = 2a(0, — 6%, §(0:)) + 2a(0, — 0%, 9:(0:) — g(6))

- ~ . ~ e (72)
< 2aw(l —v)d; +2a(b: — 0%, g:(6:) — g(04)),
where in the second step, we invoked Lemmas 3 and 4. To bound (*x), we proceed as follows:
(@) . ~
(**) S 4adtH9t - 9t||
®) 2¢0 ~ -
< ;d?+2a77“9t — 64| (73)
(o) 2c0

72 3 2

= —d; +207nles—1 %,

n

3The requirement that a < 1/12 is not necessary to obtain the type of bound in equation 70. Instead, it only serves to
simplify some of the leading constants in the bound.

34

Published in Transactions on Machine Learning Research (04,/2024)

where 1 > 0 is a constant to be decided shortly. In the above steps, (a) follows from the Cauchy-Schwarz
inequality and the Lipschitz property of the TD(0) update direction in Lemma 8. For (b), we used the fact
that for any two scalars z,y € R, the following holds for all > 0,

n 2

L
zy < —x° + Zy°.

— 2n 2

Finally, for (c¢), we simply used the fact that 0; — 0; = cvey—1. To bound (* * %), observe that

(@)
lge(0)]1* < 4(ll6x]| + o)
< 8([10:]1* + o)

() _ ~
< 8 (3110 — 01 + 3116, — 071 + 3]|67[|* + %)

(©) y
< 2402 ||es_1||* + 24d? + 3202,

where (a) follows from Lemma 6, (b) follows from equation 19, and (c) follows from noting that ||6*|| < o.
Plugging the bounds in equations 72, 73, and 74 in equation 71, we obtain:

- 2 - - - .
diq < (1 —2aw(1 —v) + Wa + 24a2> d? + 203 (n 4 120)|les_1||* + 200, — 0%, g:(0,) — g(6y)) 75)
+ 320202,

2

The result follows from setting n = Sao and simplifying using o < 1/12. O

Unlike the standard TD(0) analysis, we note from Lemma 16 that the distance to optimality of the iterates is
intimately coupled with the magnitude of the memory variable e;. As such, to proceed, we need to bound the
growth of this memory variable. We do so in the following lemma.

Lemma 17. (Bound on Memory Variable) For the EF-TD algorithm, the following bound holds for
Vit > 0:

1 N
lles||? < (1 —55 T 16a26> lles—1||* + 645d? + 96502 (76)

Proof. We begin as follows:

lledl|* = llec—1 + ge(8e) — hel|?
= |les—1 + g¢(8) — Qs (er—1 + g¢(64)) ||2

(a)

< (1 - (1;) lles—1 + g:(8:)]1? (77)

< (1-3) (12 el + (1= 3) s el

where (a) follows from the contraction property of Qs(-) in equation 4, (b) makes use of the relaxed triangle
inequality in equation 18, and n > 0 is a constant to be chosen by us shortly. To ensure that ||e;|| contracts

35

Published in Transactions on Machine Learning Research (04,/2024)

over time, we set n = d — 1 to obtain:

Jee? < (1= 55) eveal? + 28l 601
<1 215) levr > +261190(6:) — 94(6,) + 94(6,)]1”
< (1 216> llee—111* + 41g:(6:) — g¢(0:)1I* + 4619 (8[|
%) (1 215) lles—1l|® + 16810 — 01 + 45]|g:(0,) (78)
_ (1 1 16a25) [T PACATE

—
IN=

(1 1, 16a25) lea s lI? + 326 (1|AL])° + 0*)

1 .
(1 5t 16a25) lec—1|® + 326 (2d; + 35°) .

In the above steps, for (a) we used the Lipschitz property of the noisy TD(0) update direction, and for (b), we
appealed to Lemma 6. This completes the proof. O

D.1 Bounding the Drift and Bias Terms

Inspecting Lemma 16, it is apparent that we need to bound the “bias" term (8, — 6*, g,(6;) — g(6;)). This
requires some work for the following reasons.

o In the (compressed) optimization setting, one does not encounter this term since gt(ét) is an unbiased
version of g(6;). Thus, taking expectations causes this term to vanish.

o In the standard analysis of TD(0), while one does encounter such a bias term (under Markovian
sampling), such a term features the true iterate ¢;, and not its perturbed version ;. This is where
we again need to carefully account for the error between 6; and 6;.

e In Appendix C, we derived a bound on the bias term by leveraging the uniform bounds on the
memory variable in Lemma 12. Such uniform bounds were made possible via the projection step.
Since we no longer have such a projection step at our disposal, we need an alternate proof technique.

In order to bound (8, — 6*,g.(6;) — g(6;)), we will require a mixing time argument where we condition
sufficiently into the past. This, in turn, will create the need to bound the drift ||, — 6,_.|| of the perturbed
iterate 6;; here, recall that 7 is the mixing time. In the analysis of vanilla TD(0), the authors in Srikant &
Ying (2019) show how such a drift term can be related to the distance to optimality of the (true) iterate at
time t. The presence of the memory variable e; (that accounts for past errors) makes it hard to establish
such a result for our setting. As such, we will now establish a different bound on the drift [|§; — 6,_,|| as a
function of the maximum amplitude of our constructed Lyapunov function (in equation 69) over the interval
[t — 7,¢]. In this context, we have the following key result (Lemma 1 in the main body of the paper).

Lemma 18. (Relating Drift to Past Shocks) For EF-TD, the following is true ¥Vt > 7:

EfI0: — O—rll") < 120°7* _max ¢y +48a’r0”. (79)

t—7<t<

36

Published in Transactions on Machine Learning Research (04,/2024)

Proof. Starting from equation 68, observe that

[0e1 — 04| < atllge(62)]]

< a (|lge(0e) — ge (@)l + ll9¢(60))

(a) S

< 20 ([10: — 04 + 164 + o)
< 20 (alles—1]| + [|6:]| + o)
< 20 (alle; 1| + di + 20)

where (a) follows from Lemmas 6 and 8. We thus have

E [||9~t+1 - 0~t||2] < 120°E [o?|le—1 [|* + d? + 407

= 12021, + 480202,

(81)

where for the first step, we used equation 19, and for the second, the definition of ¢, in equation 69. Appealing
to equation 19 again, observe that

which is the desired claim.

t—1

E[|6: — 6 |%] <7 E [[|0e+1 — 0c|?]
b=t—T1

equation 81 =1

l=t—T1

< 120272 max 1y + 48027202,

t—7<0<t—1

12a%7 Z (W +402)

(82)

O

Interpreting v, as a “shock" from time-step ¢, Lemma 18 tells us that the drift of the perturbed iterate over
the interval [t — 7,¢] can be bounded above by the maximum shock over this interval (up to noise terms).
Fortunately, the effect of this shock is dampened by the presence of the O(a?) term multiplying it. Equipped
with Lemma 18, we now proceed to bound the bias term.

Lemma 19. (Bounding the Bias) Suppose Assumption 1 holds. Let the step-size o be such that at < 1/6.
For EF-TD, the following is then true ¥t > T:

E [(0; — 0", 9:(0;) — §(6,))] < 31arE [d7] + 103a7V; + 454ato?,

where

Proof. We start by decomposing the bias term T = (8, — 6*, g,(6;) — () as follows:

T= <§t - étf‘ragt(ét) = g(01)) + (0 — 9*7gt(9~t) —g(0:)) -

To bound 77, we note that

y.

A
Vi= ma

X
t—7<t<t—1

T T>

Ty < 10 = Or—rllllge(9e) — g(00)

1 - ~ aT ~ =
< Eﬂet — 0>+ 7||9t(9t) —g(6)]1?

IN

(@) 1

S T||ét—§t_7—”2+100[T(||§tH2+O'2)

2ar

1 - = .
< E"et — 0. ||* + 10a7(2d? + 30%),

37

. _ .
g 100 = 0= 11 + a7 (llg: (617 + [13(6:)]1%)

(83)

(84)

Published in Transactions on Machine Learning Research (04,/2024)

where for (a), we used Lemma 6 and equation 16. Taking expectations on both sides of the above inequality,
and using Lemma 18, we obtain:

E (T3] < 20a7E [d7]| + 6a7V; + 54aro”. (85)

Next, to bound 75, we decompose it as follows:

T2 = <§t77' - 0*7gt(§t77') - g(étfr» + <9~t7'r - 9*7 gt(ét) - gt(étfv'» + <9~th - 9*7 g(étf'r) - g(ét» .
() (%) (k)

We now proceed to bound each of the three terms above. Observe:
(%) < di—r[lge (1) — g1 (0e—r)
(a) . -
< 2d;— |6y — 04—+
< 2(ds + (10 — O~ |)1|0; — s |

~ ~ 2
(b) _ _
<2 (s/aTdt + W)

- 0, — 6,2
§4<a7’dt2+|t ‘ ”),

(86)

aT

where for (a), we used the Lipschitz property in Lemma 8, and for (b), we used the fact that a7 < 1. Taking
expectations on each side of the above inequality and appealing to Lemma 18, we obtain

E[(x%)] < 4aTtE [Jf] + 48a7V; 4 1920702, (87)

Using Lemma 7 and the same arguments as above, one can establish the exact same bound on E [(* *)] as
in equation 87. Before proceeding to bound (*), we make the observation that 6, inherits its randomness
from all the Markov data tuples up to time ¢ — 1, i.e., from {Xk}’,;;lo. We now have:

E[(x)]=E [<~t—r - 9*,gt(9~t77) - §(9~t77)>]

E[E [<(§t—‘r — 0", :(0y—r) — g(ét—‘r))lét—T,Xt—T”

=E[(0i—r — 0", E [9:(0:—7) — G(Or—7)0r—7, X —])]
E [Jt77||E [gt(étf'r) —§(0r—1)|0s—r, Xe—r]]

< aE [dy—r (10— || +1)]

bz (10— = Ocll + e + [10%]| +1)] (88)
(Ao + 10— O) (10— — 00 + i + 167 +1)]

(I + ||§t - ét—r”) (Hgt—r - ét” +d; + 20)}

IN A
© 2 9
& & &=

[
[
[

=

atE [(Jt + ||§t — ét—‘r” + 20’)2]
3atE [cif] + 3aTtE [||§t — ét,THQ] + 12a70?

IN NS IA

—~
0
N

< 3atE [Jf] + atV; + 16aro?.

In the above steps, (a) follows from the mixing property in Definition 1, (b) follows from the fact that 7 > 1,
and (c) follows by invoking Lemma 18 and simplifying using a7 < 1/6. Combining the above bound with
that in equation 87, we conclude that

E[T] < 11a7E [d}] + 97arV; + 400ar0”.

Combining the above bound with that in equation 85 completes the proof. O

38

Published in Transactions on Machine Learning Research (04,/2024)

We now have all the pieces needed to prove Theorem 1.

Proof. (Proof of Theorem 1) We break up the proof into two parts. In the first step, we establish a
recursion for our potential function ;. In the second step, we analyze this recursion by making a connection
to the analysis of the Incremental Aggregated Gradient (IAG) algorithm in Gurbuzbalaban et al. (2017).

Step 1: Establishing a Recursion for ;. Combining the bound on the bias term in Lemma 19 with
Lemma 16, and simplifying using 7 > 1, we obtain the following inequality V¢ > 7:

3
E[d71] < (1 - aw(l —)+ 86a°7) E [d}] + 206a>TV; + > bo” [llec—1]?] + 9400”720

(1-7)

Combining the above display with the bound on the memory variable in Lemma 17, and using the definition
of the potential function ;, we then obtain V¢t > 7:

Prp1 < (1 — aw(l —) + 860°T + 64a%0) E [d}] + 20607V}

Ay
1 6o (89)
+a? (1 -5t 16025 + M) E [[les—1*] + «®(9407 + 966)0.
As
Our immediate goal is to pick « such that max{A;, As} < 1. Accordingly, it is easy to check that if
w(l —7) (1-1)
d a<
= T3aar MM Y= Tones (90)
then)
2
It is also easily verified that with the choice of step-size in equation 90, the following hold:
16025 < L and _ o < i,
80 w(l—~) — 8
implying that
1
Ay <1— —.
=04
Finally, note that based on the choice of « in equation 90, we have
1 _
oL awld=)
49 2
Combining all the above observations, we obtain that for all ¢ > 7:
1 —
Yry1 < (1 - w> Yy + 2060°T (t max 111@) +O(a®(1 + 6)a?). (91)

If the second term (i.e., the “max" term) in the above bound were absent, one could easily unroll the resulting
recursion and argue linear convergence to a noise ball. In what follows, we will show that one can still
establish such linear convergence guarantees for equation 91.

Step 2: Analyzing equation 91 via a connection to the IAG algorithm. To see how we can
analyze equation 91, we take a quick detour and recap the basic idea behind the IAG method for finite-sum
optimization. Say we want to minimize

f@) =55 3 hil)

i€[M]

39

Published in Transactions on Machine Learning Research (04,/2024)

where each component function is smooth. The IAG method does so in a computationally-efficient manner by
processing each of the component functions one at a time in a deterministic order, and crucially, by maintaining
a memory of the most recent gradient values of each of the component functions. This memory introduces
certain delayed gradient terms in the update rule. In Gurbuzbalaban et al. (2017), it was shown that the
presence of these delayed terms leads to a recursion of the form in equation 91. This turns out to be the key
observation needed to complete our analysis. In particular, we recall an important lemma from Feyzmahdavian
et al. (2014) (used in Gurbuzbalaban et al. (2017)) that will help us reason about equation 91.

Lemma 20. Let {G:} be a sequence of non-negative real numbers satisfying

Giz1 <pGy+q max Gy+r, teEN,
(t—Te)4 <Lt

for some non-negative constants p, q, and r. Here, for any real scalar x, we use the notation (x); = max{z,0}.
Ifp+q<1and 0 <7t < Timaw, ¥t > 0 for some positive constant Tpqz, then

Gy < p'Go +¢e,Vt > 0,

where
r

1
p= (p+ q) W maz, and € = ————.
) (I-p—q)

Comparing equation 91 to Lemma 20, we note that for us:

1—
p=1-— aw(l =7) 5 7)7(1 = 2060’7, = O(a®(T + 0)0?), and 7, = T,
where 7 is the mixing time. Now suppose « is chosen such that
w(l—9)
< —". 2
= Tgo4r (92)
Then, we immediately obtain that
1-— 1-—
p+q=l—w+206a27<l—w.

Setting C1 = maxo<r<r ¥k, and appealing to Lemma 20 then yields the following V1" > 7:
T—r1
1-— do?
or <oy (1- 0=, (T 907
8T w(l—7)

where we used the facts that (1 — z)® < 1 — ax for x,a € [0,1], and 7 > 1, to simplify the final expression.
Next, note that

E[|6r — 6% =E [|6r — 6 + b — 6°)]
< 2E [ll6r - 0*11°] + 2B [107 - 67|
= 2K [&2] + 20°E [l]eza]
— 2.
We conclude that VT' > T,

2] <20, (1- 2U=20) o (2,

Furthermore, from the requirements on the step-size « in equations 90 and 92, we note that for the above
inequality to hold, it suffices for « to satisfy:

w(l—7)
<D
“= 52 max{r,d}

40

Published in Transactions on Machine Learning Research (04,/2024)

The only thing that remains to be shown is that C; = maxo<p<r ¥r = O(d% + 02) based on our choice of
step-size above. This follows from straightforward calculations that we provide below for completeness.

From equation 68, we have ~ ~ ~
A7y = df + 200, — 0%, g:(61)) + | g (6]

< (14 @)d; + 2alg:(6,)|I? (94)
< (1 +490)d? + 4803 ||e;_1||? + 64a0?,

where in the last step, we used equation 74. Combining the above bound with Lemma 17, we obtain the
following inequality for all ¢ > 0:

- 1
Y1 < (14 49a + 640*S)E [df] + o (1 55t 16026 + 48a> E [llec—1]?] + (64 + 960°6)0”. (95)

Using the fact that ad < 1/824, we can simplify the above display to obtain
i1 < (14 500); + 65002, Vt > 0. (96)

Unrolling the above inequality and using e_; = 0, we have that for 0 < k < 7:
k—1
U < (14 500)"dg + 6500 (1 4 500)7 (97)
=0

Now since (1 +z) < €%,V € R, and a < 1/(2007), note that (1 + 50a)* < (1 +50a)” < %25 < 2. Thus, for
0 <k <7, we have
Yy < 2d3 + 130a70? < 2d3 + o2,

where in the last step, we used 130ar < 1. Thus, C1 = maxo<p<r ¥ = O(d% + 02). This concludes the
proof. O

We conclude this section with a note on the proof of Theorem 2.

Proof of Theorem 2: A careful inspection of the proof of Theorem 1 reveals that we never explicitly used
the fact that the TD update direction is an affine function of the parameter #. This was done on purpose to
provide a unified analysis framework to not only reason about linear stochastic approximation schemes with
error-feedback, but also their nonlinear counterparts. As such, under Assumptions 2 and 3, the analysis for
the nonlinear setting in Section 5 follows ezactly the same steps as the proof of Theorem 1. All one needs to
do is replace w(1 — «) in the proof of Theorem 1 with 3, where 8 is as in Assumption 3. Everything else
essentially remains the same. We thus omit routine details here.

41

Published in Transactions on Machine Learning Research (04,/2024)

E Analysis of Multi-Agent EF-TD: Proof of Theorem 3

In this section, we will analyze the multi-agent version of EF-TD outlined in Algorithm 2. The main technical
challenge relative to the single-agent analysis conducted in Appendices C and D is in establishing the
linear speedup property w.r.t. the number of agents M under the Markovian sampling assumption. As we
mentioned earlier in the paper, this turns out to be highly non-trivial even in the absence of compression and
error-feedback. The only work that establishes such a speedup (under Markovian sampling) is Khodadadian
et al. (2022), where the authors use the framework of Generalized Moreau Envelopes to perform their analysis.
Although the analysis in Khodadadian et al. (2022) is elegant, it is quite involved, and it is unclear whether
their framework can accommodate the error-feedback mechanism. Moreover, the analysis in Khodadadian
et al. (2022) leads to a sub-optimal O(72) dependence on the mixing time 7 in the main noise/variance term.
In light of the above discussion, we will provide a different analysis in this section that:

o Departs from the Moreau Envelope approach in Khodadadian et al. (2022),
o Achieves the optimal O(7) dependence on the mixing time 7 in the dominant noise term,
o Establishes the desired linear speedup property, and

o Shows that the effect of the distortion parameter ¢ can be relegated to a higher-order term.

Crucial to achieving all of the above desiderata are a few novel ingredients in the proof that we now outline.
First, we will require a more refined Lyapunov function than we used earlier. Before we introduce this
Lyapunov function, let us define a couple of objects:

_ 1 - 1
(43 £ M Z €ity and ht £ M Z hi,t-
1€[M] i€[M)]

Next, let us define a perturbed iterate for this setting as 6; £ 6, + aé,_1. The potential function we employ

is as follows:
M
> |ei,t||21 , (98)

=1

- 1
E £ E [0, — 0%[]?] + Ca®Ey_y, where E; £ T7E

and C' > 1 is a constant that will be chosen by us later. Compared to the Lyapunov function v; in equation 69
that we used for the single-agent setting, =; differs in two ways. First, it incorporates the memory dynamics
of all the agents. A more subtle difference, however, stems from the fact that the second term of =; is scaled
by a3, and not o2 (as in equation 69). This higher-order dependence on «a will serve a twofold purpose: (i)
help to shift the effect of § to a higher-order term, and (ii) partially help in achieving the linear-speedup
property. Unfortunately, however, the new Lyapunov function on its own will not suffice in terms of achieving
the linear speedup effect completely. For this, we need a careful way to bound the norm of the average TD
direction defined below: 1

2(0) & i .Z gi+(0),¥0 € RE. (99)

i€[M]

An immediate way to bound z;(#) is to appeal to the bound on the norm of the TD update direction in
Lemma 6. Indeed, this is what we did while proving Theorem 1, and this is also the typical approach for
bounding norms of TD update directions in the centralized setting (Srikant & Ying, 2019; Chen et al., 2019).
The issue with adopting this approach in the multi-agent analysis is that it completely ignores the fact that
the observations of the agents are statistically independent. As such, following this route will not lead to
any “variance-reduction" effect (key to the linear speedup property). At the same time, it is important to
realize here that while the Markov data tuples are independent across agents, for any fixed agent 4, {X;+}
comes from a single Markov chain. This makes it trickier to analyze the variance of z:(6;). Via a careful
mixing time argument, our next result (Lemma 2 in the main body of the paper) shows how this can be
done. Before stating this result, we remind the reader that we have used 7 as a shorthand for 7., with € = o?.
While a precision of € = « sufficed for all our prior single-agent analyses, we will need € = a? for the MARL
case (to create higher-order noise terms in «).

42

Published in Transactions on Machine Learning Research (04,/2024)

Lemma 21. (Controlling the norm of the Average TD Direction) Suppose Assumption 1 holds. For
Algorithm 2, the following are then true Vt > 7:

2
E [|l2(00)[”] < 8E [dF] + (?\4 +8a4) o?, where dy = |0, — 0*||, and (100)
2 72 2 32 4 2 7 0 *
E [[|z¢(6:)[|?] < 16E [d}] + 160°Ey—1 + 77 T8t) 0% where d; = 0: — 6% (101)

Proof. Let us start with the following set of observations:

2

1
ll2:(00) 117 = el > gi(00)
1 || & ?
=2 Z(Qv‘t(@)*gzt +Zgzt
=1

2

IN

(102)

9 || M
e Z 9it(01) — gi,4(07))
M i=1

IN

5 M
MZ”gi,t(at)_git()|I? Ve
=1

Zglt 9*

2
2
SSdf‘i‘m

M
> gi(67)
1=1

where in the last step, we used the Lipschitz property in Lemma 8. Next, to bound the second term in the
above display, we split it into two parts as follows.

M

:ZHQH ||2+Z 9i4(0%),95,1(07)) -
i=1
—_——

1,7=1
i#]
()

(+%)

To bound (%), we simply use Lemma 6 and the fact that ||6*|| < o to conclude that

M
D llgie (6717 < 8M(||6"|* + 0®) < 16M 0.

i=1

Now to bound (xx), let us zoom in on a particular cross-term, and write it out in a way that highlights the
sources of randomness. Accordingly, consider the term

T = (9:,6(07), 95,4(07)) = (9(X1, 07), 9(Xj1, 07))-

Since §* is deterministic, we note that the randomness in 7 originates from the Markov data samples Xj ;
and Xj;,. Moreover, since X;; and X, are independent for ¢ # j, we have

E[T] = (Elg(Xis, 07)], E[g(Xj, 07))).

Now if X;; and X;; were sampled i.i.d. from the stationary distribution 7, each of the two expectations
within the above inner-product would have amounted to g(6*) = 0. Thus, the cross-terms would have
vanished. Since for each agent ¢, X, ; comes from a Markov chain, these expectations do not, unfortunately,

43

Published in Transactions on Machine Learning Research (04,/2024)

vanish any longer. Nonetheless, we now show that for ¢ > 7, one can still make the cross-terms suitably
“small" by exploiting the mixing property in Definition 1. Observe:

E[T] = (E[g(X:, 0%, E[g(X; . 0%)])
W (R [E[g(Xis, 07)|Xi0—r] — §(0%)], E[E [9(X;1,0")|X;0—r] — §(6%)])

(b) . s X _ e

< |[E[E [g(Xi, 07 Xi 7] — g(07)][| > [[E[E [g(X;., 07)| Xje -] — g(67)]]] (103)
(C) - * * - *
< E[IE [9(Xi0, 0)Xi -] = g(07)I] x E[IIE [9(Xje, 07) | Xj0—7] — g(6°)]]]
(4) 4 * 2
< (1071 + 1)
< 45202,

In the above steps, (a) follows from the tower property of expectation in conjunction with g(6*) = 0. For (b),

we used the Cauchy-Schwarz inequality, and (c) follows from Jensen’s inequality. Finally, (d) is a consequence
of the mixing property in Definition 1. We immediately conclude:

E ()] < 4M?02%a’.

Putting the above pieces together and simplifying leads to equation 100. To go from equation 100 to equa-
tion 101, we simply note that

E [d7] < 2E [d?] + 20°E [||0: — 6,]|*] = 2E [d7] + 20°E [[|é,—1]|?] < 2E [d?] + 202 E;_;. (104)

This concludes the proof. O

Essentially, Lemma 21 shows how the variance of the average TD update direction can be scaled down by
a factor of M, up to a O(a*) term. As we shall soon see, this result will play a key role in our subsequent
analysis of Algorithm 2. We now proceed to derive a multi-agent version of Lemma 16.

Lemma 22. Suppose Assumption 1 holds and the step-size « satisfies o < 1/16. For Algorithm 2, the
following bound then holds for ¥t > T:

~ - 5a3 32
2 1< (] -~ 2 2 2 [94 4\ 2
(&) < (1- aw(l =) +160%) B [E] + — 2B +20E[4] +a (M + 8a) o2 (105)
where A = (0, — 0%, 2,(0;) — (6;)).
Proof. Simple calculations reveal that
- . 1 -
9t+1 = 9,5 + « M G[ZM] gi,t(et) = Ht =+ azt(Qt). (106)

Subtracting 6* from each side of the above equation and then squaring both sides yields:

dity = d7 +20(0, — 07, 2(6,)) + o?||24(0,)]?
= dN% + 20&<§t — 9*, Zt(ét)> + 20é<0~t — 0*, zt(ﬁt) — Zt(ét)> +Ot2HZt(9t)H2 . (107)
() (%) (k)

We now have: B 5 - - -
(%) = 2a(0, — 0%, G(0,)) + 20(0, — 0%, 2(6,) — g(0;))

~2 v e (108)
< —20w(1 —y)d? + 2a(0; — 0%, 2.(0;) — g(6,)),

44

Published in Transactions on Machine Learning Research (04,/2024)

where in second step, we invoked Lemmas 3 and 4. To bound (xx), we proceed as follows:

(**) S 404Jt||0t - ét”
20 = ~
< Fd% + 20m||0; — 64
(109)

2a ~ _
—d} +2a°n]|e;4|?
n

2% -
< 2B 4 20°E,_,

n

where 7 > 0 is a constant to be decided shortly. In the first step above, we used the fact that since each g; ;(6)
is 2-Lipschitz (see Lemma 8), the definition of z;() in equation 99 implies that z;(6) is also 2-Lipschitz. To
bound (*xx), we directly use Lemma 21. Combining the above bounds, and simplifying by setting n = ﬁ
and using a < 1/16 leads to the desired claim. O

In what follows, we will focus on bounding the bias term A = (6, — 6*, z,(6;) — g(6;)) by following the same
high-level steps as in the proof of Theorem 1. The key difference, however, will come from invoking Lemma 21
instead of Lemma 6. We start with a bound on the drift ||y — 0;_.||.

Lemma 23. Suppose Assumption 1 holds. Then for Algorithm 2, we have the following bound ¥Vt > 27:

. ~ 32
E[||0; — 6,—||*] < a?7®> max Gy, where Gy 2 16E [d?] + 160%E;_1 + | — + 8a* | o2. 110
¢ M

t—r<<t—1

Proof. The proof is a direct application of Lemma 21. Indeed, notice that

t—1

E 10 =6 ?) <7 D E[l0e41 — 0ell?]

l=t—T1

equatwn 106
a*r Z E [||2¢(60)[|] (111)
{=t—T1

equation 101

T max Gy,
t—r<i<t—1

which is the desired claim. In the last step, we invoked Lemma 21 by noting that since t > 27, we have that
£ > 7 in the above steps - a requirement for using Lemma 21. O

Equipped with Lemmas 21 and 23, we now proceed to bound the bias term following steps similar in spirit to
the proof of Lemma 19.

Lemma 24. Suppose Assumption 1 holds. Let the step-size be such that aT < 1/3. For Algorithm 2, the
following is then true ¥Vt > 27:

E [(0; — 0%, 2(0:) — §(0;))] < 13a7E [d}] + 11aT , max G +120°%0 (112)

Proof. We start by decomposing the bias term (8, — 6%, z,(6,) — §(8;)) as follows:

A= (0 = 0, 2(0;) — §(02)) + (Op—r — 0%, 2(0;) — G(61)) -
Ay Az

45

Published in Transactions on Machine Learning Research (04,/2024)

To bound Ay, we note that

Ar < 10 = e [[12:(0e) — g(Br)l]

1~ ~ aT ~ =
< @H@t — 0>+ 7”%(90 —g@))?
(113)

IN

1 - - s
1= B P + a7 (1481 + [3G)]1?)

IN

1 - . _ .
E”et = O |1* + a7 (l2:(0,)|* + 4d7)

where the last step follows from Lemmas 3 and 5. Taking expectations on both sides of the above inequality,
and using Lemmas 21 and 23 yields:

E[A] < 4atE [CZ?] + ar max Gy + arG,
2 t—r<e<t—1 (114)

< 4atE [d?] +2ar max Gy
t—7<t<t

Next, to bound As, we decompose it as follows:

Or—7)) + (Or—r — 0%, 20(0;) — 20(01—7)) + (By—r — 0%, 5(0y—7) — G(01)) .
(%) () (%)

Ao

I
—~
)
-
|
3
|
>
*
I
o~
—~
)
R
|
3
SN—
|
QI

We now proceed to bound each of the three terms above. Let us start by observing that

(**) < Jt—rnzt(ét) - Zt(ét—T)H

a)

—~

2(2;_.,. ||9~t - ét—‘r H

<
< 2(dy + 1|6 — Op—r)10 — 1|

(115)

~ ~ 2
(b) _ _
<2 (x/ondt + W)

N 0, — 6,2
§4<a7’dt2+|t ! ”),
aT

where for (a), we used the fact that z;(0) is 2-Lipschitz, and for (b), we used the fact that a7 < 1. Taking
expectations on each side of the above inequality and invoking Lemma 23, we obtain

32
E [(+%)] < 4a7E [d7] + 4042_@2;{9 Gy (116)

46

Published in Transactions on Machine Learning Research (04,/2024)

As before, the exact same bound as in the above display applies to E [(x * *)]. We now turn to the main step
in this proof.

E[(*)] =E [<§t—7 — 0%, 2(0y—r) — §(ét—r)>]

_ 1 M _ _
=E {0 = 0", 37 Z (9,6 (Or—7) — g(9m))>1
=E |E [(ét_r - 9*7 % Z (gi7t(9~t—7—) - g(ét—r>)>|ét—‘r7 {vat—T}jG[M]]‘|

i=1

g

=E [{6i—r — 0" % > (B (9040001 { X1+ }jepan)] — §(9~t—r))>]

i=1

M

a ~ L1 . o

CE e =0, (B [9000) 017, Xiar] — g(em))ﬂ)
=1

® |- M

SE dtT Z ta9t7|9t T zt ‘r]_get'r”

(c) . _
< & [dy—r ([|6i—-]| + 1)]

(d)

< 30°E [d}] + 30’E [||9t — 0 |I°] + 120°07

(©)
< 30’E [df] + 30’ max G, +120%0°

tf‘rgégtfl

(f)
< arE [d] + a7 max Gg—|— 12020
<<

t—7

In the above steps, (a) follows from the fact that the Markov data tuples are independent across agents; (b)
follows from the Cauchy-Schwarz and the triangle inequality; (c) is a consequence of the mixing property in
Definition 1; for (d), we used steps similar to those for arriving at equation 88; for (e), we used the bound on
the drift from Lemma 23; and finally for (f), we simplified terms using a7 < 1/3 and 7 > 1. Combining the
above bounds, we obtain

E[As] < 9arE [d7] + 9a7't max_ Gy + 120202

The above display, in tandem with equation 114, leads to the claim of the lemma. O

47

Published in Transactions on Machine Learning Research (04,/2024)

We are now ready to prove Theorem 3.

Proof. (Proof of Theorem 3) As in the proof of Theorem 1, our first step is to establish a recursion for the
Lyapunov function Z; in equation 98. To that end, appealing to Lemmas 22 and 24, using the definition of
Gy, and some algebra leads to the following bound for all ¢ > 27 :

5a3
w(l =)

- 32
+ 352027 max E [df] + 3520*7 max Eo_1 + 2402 <7’ (+ 8a4> + a> 2.
t—T<0<t t—7<0<t M

E [CZ?JFJ < (1 —aw(l =)+ 42a27) E [Jf] + E, 4

(118)

Now similar to the proof of Lemma 17, we have the following for each i € [M]:

B flessl?) < (1 55) B llese-rlP] + 208 [lgso(601)

1 ~ -
< (1 - 25) E [llec—11%] + 163E |6, — 6,12) + 43E [l g:.+(8.)[1] (119)

< (1 ~ 215> E [llese—1]*] + 16026 E;_1 + 649E [d7] + 9650°.
Averaging the above bound across all agents then yields:

E, < (1 - 2% + 16a25) E;_1 + 640E [d7] + 9650°. (120)
Combining the above display with equation 118, and using the definition of =;, we obtain V¢ > 27 :

— ~ 1)
i | S (1 — aw(l - ’7) + 420[27' + 64060[3) E [dﬂ + CCVS (]. — % + 16&2(5 + CM) Et,1
+352a%7 max E [Jﬂ +352a% max E,;1+ R
t—T<e<t t—7<L<t
. 1 5
S (1 — OéLU(l — ’Y) + 420(27' + 64060[3) E [dﬂ + 0043 (1 — % + 160&25 + CM) Et—l

max Co*E, 1+ R (121)

t—7<l<t

352ar

+ 352027 max =y +
t—7<t<t

. 1)
S (1 — aw(l — ’Y) + 42@27 + 6405@3)]E [dﬂ + COZS (1 — % + 160[26 =+ CM) Et—l

B,

B1

1
+ 352art (a + C’) max Zy+ R,

t—7<t<t

where 2
R = 2407 (T (M + 8a4> + a> a2 +96Ca3d52.

Our goal is to now carefully pick a and C so as to ensure that max{Bj, Ba} < 1. Let us start with Bs.

Suppose

1 281
o< L g oo 2816max{é T}

122
126 w(l—7) (122)
It is easy to then verify that
1
B 1—-—.
T
As for By, we note that if
w(l =) (123)

< 2\
“ = 850 max{s, 7}’

48

Published in Transactions on Machine Learning Research (04,/2024)

then
aw(1 =)

B <1— 5

Also, under the requirement on the step-size a in equation 123, it is easy to check that

1 aw(l —7)
1- — <1277
1 2

In light of the above discussion, we conclude that V¢t > 27:

OLCU(]. — }/) 1 —_
= < = = .
41 <1) =+ 352ar <Oz + C) . m??q =g+ R (124)

We are almost in a position to invoke Lemma 20. All that remains to be verified is whether

1 _
w+352a27'+352% <1

p q

1-—

With the choice of C' in equation 122, if we set

w(l—7)
<2
“ = T9816r
then one can verify that
aw(l —
prqg<l-— %

Combining all our prior requirements on «, we conclude that if

w(l—9)
—_— 12
“= 2816 max{d, 7} [(125)
then the following holds for all 7" > 27:
_ aw(l =)\ 4R
r<Cy (11— —= _ 126
= 1(8T) —i_ozw(l—'y)7 (126)
where ('} = maxg<p<2, 2. Simple calculations reveal that
AR 0 at 12 Lo a? max{§,7}9 2.
aw(l—7) w(l—=v)) M w?(1 —7)?
Using the above bound, and noting that E [d?] < Z7, we have that VT > 27:
E[®) < (1 aw(l =)\ Lo art o? L0 o?max{6,7}0\ (127)
- —) = -) o*.
th =1 87 w(l—7v)) M w2(1 —~)?

The fact that C; = O(d? + 0?) follows from straightforward algebra similar to that in the proof of Theorem 1.
This completes the proof. O

49

Published in Transactions on Machine Learning Research (04,/2024)

F Analysis of Multi-Agent EF-TD under an |.I.D. Sampling Assumption

In this section, we provide a simpler (relative to that in Appendix E) analysis of the MARL setting under
a common i.i.d. sampling assumption. Essentially, we consider a setting where for each agent ¢, at each
time-step ¢, s;; is sampled independently (from the past and across agents) from the stationary distribution
w, and then s; ;41 is sampled from P, (-|s;+). As it turns out, this particular “i.i.d. model" has been widely
studied in the RL literature (Lakshminarayanan & Szepesvéri, 2017; Dalal et al., 2018; Bhandari et al., 2018;
Doan et al., 2019; Liu & Olshevsky, 2021a); thus, we believe that providing an analysis for this setting would
be useful to the reader. Our main result for this setting is as follows.

Theorem 6. There exist universal constants ¢,C > 1, a step-size o < (1 —)/ (cd), and a set of convex
weights {w;}, such that the iterates generated by Algorithm 2 satisfy the following after T iterations:

3] =0 (o0 ()) +0 (G + ™ (129

where Ty = O (820 /(w2 (1 — NT?)), Or = S1_o @:0:, and o> 2 E [||g:(6%)]13].*

E {1V, — Ve

As in Theorem 3 where we analyzed the multi-agent setting under Markovian sampling, the above result
also establishes a linear speedup in sample-complexity w.r.t. the number of agents M. The above result is
somewhat cleaner in the sense that it provides a bound on the performance of the true iterate sequence {6;},
as opposed to the perturbed iterate sequence {ét}. We believe that it should be possible to provide a bound
on the true iterates of the form in Theorem 6 under Markovian sampling as well; we leave this as future work.

To proceed with the analysis, we will require two auxiliary results. The first is taken from Bhandari et al.
(2018).

Lemma 25. Fiz any 0 € RX. The following holds under the i.i.d. sampling model:

E [[lg:(0)]1] < 207 +8[|Vs — Vo- |-

The next result is an “averaging lemma" that has been adapted from Koloskova et al. (2020) and Stich (2020).

Lemma 26. Let {p:}i>0 and {s;}i>0 be sequences of positive numbers satisfying
P41 < (1 — al)p; — Bas; + Ca? + Da?,

for some positive constants A,B >0, C, D > 0, and for constant step-sizes 0 < a < %, where E > 0. Then,
there exists a constant step-size o < % such that

T _ 2
B A 2CInT DIn“T
= <po(E+ A — (T +1 , 129
e ;:ijts_po(+)exp< 7T+)>+A(T+1)+A2(T+1)2 (129)

for wy = (1- ozA)’(Hl), Wop & ZZ:O wy, and
7 = max{exp (1), min{ A%po(T + 12/C, A%0(T + 1)*/D}}.

We start with the following result.

Lemma 27. Suppose the step-size « is chosen such that o < (1 —v)/112. Then, the iterates generated by
Algorithm 2 satisfy the following under the i.i.d. observation model:

~ 1—7) - a(l—7) . N 53 8alo?

E o2 < (1- U= mg, — o2 - LT DR (10, - D 2] + =22y, 4 22
[Het-‘rl 0 ||] = () [Het 0 ”] 4 [”V9f Vo Dl T+ (1—’)’) t—1 1 M

(130)

4We remind the reader here that w is the smallest eigenvalue of the matrix £ = ®T D®.

50

Published in Transactions on Machine Learning Research (04,/2024)

Proof. Starting from equation 106, we have:

2

- - 2 ~ 1
E (1041 — 0**] = E[I6, — 6*[1*] + e (0 — 07, Z 9i.1(01)) | +°E i Z git(Be)| |- (131)
1€[M] i€[M]
T T,

To bound 77 and T3, let us first define by F;_; the sigma-algebra generated by all the agents’ observations
up to time-step ¢ — 1, i.e., the sigma-algebra generated by {X; s }iciar)k=0,1,....t—1- From the dynamics of

Algorithm 2, observe that 6, 0, and {ei,t}icinr are all F;_j-measurable. Using this fact, we bound T; as
follows:

2a 5
T = ME E [(6, — 6", .ez[]\:ﬂ it (0))| Fr—1

@ 90k [(§, — 0, 5(6.))]

= 2aE [(0; — 6%, §(6:))] + 20E [(0; — 0, §(61))]

% — ()((1 — ’7) _ 2 4o 0112

< 2aE[{6: — 0",9(00))] + ——E [|9(60)°] + ik (116 — 6:]1%] (132)
 — a(l - ’)/) _ 2 40&3 = 2

< 2aE[(0: — 07,5(6))] + TE [||9(9t)||] + 4(1 _ ’Y)E [HeHII]

(b) . a(l — ’y) _ 2 403

< 2aE ({6, —6%.9(6)] + = —E [l9@0II] + 7 B

c A A 043

< —alt = E[I%, - V- 13] + T

In the above steps, (a) follows from the fact that the agents’ observations are assumed to have been drawn
ii.d. (over time and across agents) from the stationary distribution 7; for (b), we applied equation 19; and
(c) follows from Lemmas 4 and 5. To bound T3, we first split it into two parts as follows:

T = 15E ||| D2 (9a(6) — 3(6)) + Mg 6)
'_ZE[M]) - (133)
< 28| | 3 (w0 a0 | +20% 00 7]
i€[M]

To simplify the first term in the above inequality further, let us define Y;; = g:.(0;) — g(6:),¥i € [M].
Conditioned on F;_1, observe that (i) Y;, has zero mean for all ¢ € [M]; and (ii) ¥;; and Y}, are independent

for i # j (this follows from the fact that X, and X, are independent by assumption). As a consequence of
the two facts above, we immediately have

]E[<}/i,ta}/j,t>|ft—l] = O,VZ,] € [M} st 7& .]

o1

Published in Transactions on Machine Learning Research (04,/2024)

We thus conclude that
2

E ([Y (9i4(0) —g6))|| | =E|E |l D Yiul?IFia

i€[M] L i€[M]]
=E| > E[IYiel?IFi-1] (134)

| i€[M]]

@ M (E [E[IY:e?1Feer]])
=M (E[|Yil])

where (a) follows from the fact that conditioned on F;_q, Y;+ and Y;; are identically distributed for all
i,j € [M] with ¢ # j. Plugging the result in equation 134 back in equation 133, we obtain

7, < 28 [(91.00) — 560 IP] +20E [13(00) 7]

M
407 2 9 2 _ 2
< . il
< 28 lgc00l] +207 (1+ 2) [lg@0l?] (135)
N N 8a?o?
< 5602 — V|2
< 560%E [[|Vo, — Vo lI}] + =7

where in the last step, we used Lemmas 5 and 25. Now that we have bounds on each of the terms T} and T5,
we plug them back in equation 131 to obtain

~ . = 560 L 40
E |:H9t+1 -0 ||2] S E |:||0t -0 ||2] — a(l — ’y) (1 — (1_’)/)> E [”VGt - Vb* 2D + mEtfl
8a?c? (136)
M
~ 1—7) N N 403 8a?c?
< P G St) 2

where in the last step, we used the fact that o < (1 — «)/112. By splitting the second term in the above
inequality into two equal parts, using Lemma 3, and the fact that

N A 1 A A
~E {1V, ~ V- 15| < ~5E |I1V5, = V-] + 0* e,

we further obtain that

~ . aw(l —7) ~ . 5a3 8a2g?
E (16 -0 < (1- 2020) B (16 - 1)

2
— F. -
D]+(1—7) R T

which is the desired conclusion. O

a(l—7) N .
- U= [y, - 7.

We now complete the proof of Theorem 6 as follows.

Proof. (Proof of Theorem 3) Our goal is to establish a recursion of the form in Lemma 26. To that end,
we need to first control the aggregate effect of the memory variables of all agents, as captured by the term FE;.
This is easily done by first using the same analysis as in Lemma 17, and then appealing to Lemma 25, to
conclude

E [|les

%} + 4602, Vi € [M].

1 N A
)< (1= 55) B llesscalP’) + 165 17, ~ -

Averaging the above inequality over all agents, and using the definition of F; yields:
1

E, < (1 25) E,_1 + 160E [H%t . 179*||§3} + 4602,

52

Published in Transactions on Machine Learning Research (04,/2024)

Using the above bound along with Lemma 27, we obtain:

508 8a’o?
2

—F,_
D}_F(l—'y) Vi

b)

+ CQSEt

— aw(l - ~ N a(l — . .
2o < (1- 2020 1 - 0P - 2 10, - e

< (1 - W“S_”)) E [||6: — 07]%] - (“”4‘7) - 16Ca36> E [||f/9t Ve

8a’c?
M

5

_ s 4 3 2_
26+C’(17’y) +4Ca’00

+Ca? (1) Ey 1+
(137)
Based on the above inequality, our goal is to now choose a and C' in a way such that we can establish a

contraction (up to higher order noise terms). Accordingly, let us pick these parameters o and C' as follows:

200 (1—7)

= <
C=T=9) ¥

With some simple algebra, it is then easy to verify that:

- aw(l — ~ " a(l — N N
2o < (1- 20D w16 - 077) - 2R 1%, - Vo

8a’o? n 80036202
M (1—=7)
aw(l — ~ a(l — N N
< (1- 282D @16 - 0°1P) + i) - 208 (150, - 013 (138)
8a’o? L 80036202
M (1=7)
B aw(l—9)\ o al—9) N Ao 8a20? 80a3§%0?
(1 3 >\—4t 3]E[HVG,, VI9*||D}+ Vi + TR

, 1
QD} +Ca? <1 - 45> Ei1

We have thus succeeded in establishing a recursion of the form in Lemma 26. To spell things out explicitly in
the language of Lemma 26, we have
w(l—7) B (1-7) 802 _ 806%c?

— '7:7'D
8 k) 8 7C M? (1_’}/)7

pi=Eiis =E ||V, — Va-ll})] 14 =

and « < (1 —v)/(1129) suffices for the recursion in equation 138 to hold. Thus, for us, E = (111_2,‘3). Applying

Lemma 26 along with some simplifications then yields:

T * |12 2 2
w8 (105, V] < 0 (M= 018 (o (=0 2T o
;wt]E {HV(%, Vo ”D} <0 ((1—7)2 exp o) +0 w(l —v)2MT

139
] 252 (139)
+0 (=)
where w; £ w;/Wr, and C’ is a suitably large constant. The result follows by noting that
T
E (15, - Vo I3] < 3w [IVa, — VeI
t=0
where 9_T = ZtT:O ﬂztﬁt. O

53

	Introduction
	Our Contributions
	Related Work

	Model and Problem Setup
	Error-Feedback meets TD Learning
	Analysis of EF-TD under Markovian Sampling
	Compressed Nonlinear Stochastic Approximation with Error-Feedback
	Communication-Efficient Multi-Agent Reinforcement Learning (MARL)
	Technical Challenges in Analysis and Overview of our Proof Techniques
	Simulations
	Conclusion and Future Work
	Preliminary Results and Facts
	Building Intuition: Analysis of Mean-Path EF-TD
	Can Compressed TD Methods Without Error-Feedback Still Converge?

	Warm-Up: Analysis of EF-TD with a Projection Step
	Analysis of EF-TD without Projection: Proof of Theorem 1 and Theorem 2
	Bounding the Drift and Bias Terms

	Analysis of Multi-Agent EF-TD: Proof of Theorem 3
	Analysis of Multi-Agent EF-TD under an I.I.D. Sampling Assumption

