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Abstract. We build non-interactive zero-knowledge (NIZK) and ZAP
arguments for all NP where soundness holds for infinitely-many secu-
rity parameters, and against uniform adversaries, assuming the subex-
ponential hardness of the Computational Diffie-Hellman (CDH) assump-
tion. We additionally prove the existence of NIZK arguments with these
same properties assuming the polynomial hardness of both CDH and the
Learning Parity with Noise (LPN) assumption. In both cases, the CDH
assumption does not require a group equipped with a pairing.

Infinitely-often uniform security is a standard byproduct of commonly
used non-black-box techniques that build on disjunction arguments on
the (in)security of some primitive. In the course of proving our results,
we develop a new variant of this non-black-box technique that yields
improved guarantees: we obtain explicit constructions (previous works
generally only obtained existential results) where security holds for a
relatively dense set of security parameters (as opposed to an arbitrary
infinite set of security parameters). We demonstrate that our technique
can have applications beyond our main results.

1 Introduction

Zero-knowledge (ZK) proofs [30] allow a prover to convince a verifier about the
validity of a statement without revealing any other information. They are studied
in two flavors — interactive proofs, where the prover and the verifier exchange
messages in a protocol, and non-interactive proofs, where the prover sends a
single message to the verifier. The latter notion, referred to as non-interactive
zero knowledge (NIZK) [6,19], has been central to the popularity of ZK proofs
due to its wide-ranging applications, including advanced encryption schemes
[21,42], signature schemes [2,5] and anonymous blockchains [4].

NIZKs are a fascinating object in cryptography. Despite a long line of research
starting more than three decades ago [3,6,9-13,17,19,25,29,32,33,35,46,51],
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remarkably, the cryptographic complexity of NIZKs is not well understood. We
do not yet know whether NIZKs are in Minicrypt or Cryptomania.' In fact, we
do not even know how to construct NIZKs from all standard assumptions known
to imply public-key encryption. Significant progress, however, has recently been
made on this front: we now know NIZKs for NP from learning with errors [10,46]
as well as the (sub-exponential) Decisional Diffie Hellman (DDH) assumption
[35], which substantially adds to the prior list of assumptions known to imply
NIZKs.

DDH is the strongest assumption in the discrete-logarithm family of assump-
tions. A weaker assumption — known to imply public-key encryption — is the
Computational Diffie Hellman (CDH) assumption. With the aim of further
enhancing our understanding of the relationship between NIZKs and public-key
encryption, we ask the following question:

Do there exist NIZKs for NP based on CDH?

A positive resolution to this question would also help diminish the gap
between NIZKs and their designated-verifier? counterpart [44]. Indeed, the latter
are already known from CDH [15,36,48] as well as all other assumptions known
to imply NIZKs (see [38] and references therein).

ZAPs. ZAPs [24] are two-round public-coin proof systems in the plain model
that guarantee witness indistinguishability (WT) [26], i.e., a proof for a statement
with two or more witnesses does not reveal which of the witnesses was used in
the computation of the proof.

Dwork and Naor [24] proved that ZAPs are equivalent to NIZK proofs in the
common random string model. Thus, ZAPs are known from the same assump-
tions also known to imply NIZK proofs. Very recently, computationally-sound
ZAPs, aka ZAP arguments were constructed based on quasi-polynomial LWE
[1,31,39], and subexponential DDH (and variants) [16,35]. As in the case of
NIZKs, however, constructing ZAP arguments based on CDH remains an open
problem.

CDH vs DDH. Our work follows a well-established line of research on build-
ing cryptographic primitives from CDH, when feasibility from DDH is already
known. The motivation for this line of work stems from the relative gap between
CDH and DDH and the difficulty of building cryptography from CDH.

CDH is a weaker assumption than DDH, and believed to be strictly weaker
for some choices of groups, e.g. G = Z; or the source group G of a symmetric
pairing e : G x G — G (where, in both cases, DDH is broken). In fact, the hard-
ness of CDH is closely related to that of the discrete logarithm assumption: [41]

! Throughout this work, we focus on NIZKs in the common reference string (CRS)
model. In the Random Oracle model, NIZKs are known to be in Minicrypt.

2 In a designated-verifier NIZK, the verifier receives a private verification key that is
sampled together with the CRS, which can be used to verify many proofs.
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proved that the non-uniform hardness of CDH in any group G of known order ¢
is equivalent to the non-uniform hardness of computing discrete logarithms in G,
and [7] proved that the uniform versions are equivalent in the (large) subexpo-
nential regime, both results assuming a plausible and widely believed conjecture
on the distribution of smooth numbers. In that sense, despite being a public-key
assumption, CDH is morally equivalent to the hardness of computing discrete
logarithms, while there are no such connections for DDH (unless computing
discrete logarithm is easy in all groups where DDH is known not to hold).

Furthermore, CDH seems to be significantly less expressive than DDH in
terms of enabling advanced functionalities. While there has been recent progress
on building CDH counterparts to fundamental primitives known from DDH,
(e.g. trapdoor functions [27], maliciously-secure oblivious transfer [22], or private
information retrieval [8]), there are still many fundamental primitives known
from DDH that have no CDH counterpart (e.g. lossy trapdoor functions [47],
somewhere statistically-binding hash functions [43], or 2-round private informa-
tion retrieval [23], and more generally, most primitives that are built from the
dual mode paradigm).

1.1 Our Main Result

In this work, we make progress towards resolving the above question. We demon-
strate that NIZKs and ZAP arguments for NP with infinitely-often security
against uniform adversaries do exist based on the subexponential CDH assump-
tion, without requiring the existence of a pairing.

Theorem 1 (Informal). Under the subexponential CDH assumption, there
exist:

- a subexponentially-often secure, uniform NIZK argument for all NP in the
common random string model;
- a subexponentially-often secure, uniform ZAP argument for all NP.

More precisely, our assumption in Theorem 1 states that no subexponential-
time adversary can compute random Diffie-Hellman tuples, either over Zj (or
any subgroup, or, even more generally, over any group (family) with exponenti-
ation computable in TCO) or any (family of) elliptic curves (without requiring a
pairing), with better than subexponential probability. Note that similar restric-
tions on cryptographic groups appear in the construction of NIZKs and ZAP
arguments from DDH [35].

Our NIZK satisfies (1) infinitely-often adaptive soundness against uniform
efficient cheating provers, and (2) (standard, computational) adaptive, multi-
theorem zero-knowledge. Our ZAP argument satisfies (1) infinitely-often non-
adaptive soundness against uniform efficient cheating provers, and (2) (stan-
dard, computational) adaptive witness indistinguishability. Moreover, the set of
security parameters where we argue soundness is at least subexponentially dense,
in a sense we specify below.
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1.2 On Infinitely-Often Security

Infinitely-often security refers to a setting where a primitive is secure on
infinitely-many security parameters (as opposed to the traditional notion of
almost everywhere security, where security holds for all large enough param-
eters). It shows up naturally as a consequence of a common non-black-box tech-
nique where the insecurity of a cryptographic primitive is used to argue the
security of another primitive (where the attacker against the insecure primitive
is used either explicitly in the construction, or implicitly in the security anal-
ysis), since (the standard notion of) insecurity of a primitive only guarantees
the existence of an attacker successful on infinitely-many security parameters.
This behavior shows up in many recent works, where it is sometimes explicitly
pointed out, and sometimes disregarded as a minor technical subtlety. Early
examples include the work of [49] (which shows that if there is a reduction
of key-agreement to OWFs, then there exists a mildly-blackbox reduction of
infinitely often key-agreement to OWFs) and the work of [40] (infinitely often
one-way functions from constant-round weak coin-flipping protocol). There are
also many recent examples, such as [34] (infinitely-often key agreement from
nontrivially-correlated 2-party protocols), [20] (either the Feige-Shamir protocol
is concurrent zero-knowledge, or injective one-way functions imply an infinitely
often key agreement), [52] (a post-quantum collision-resistant hash function is
either “collapsing”, or it implies infinitely often quantum lightning schemes), or
the works of [37,50] (which construct (distributional and standard, respectively)
collision-resistant hash functions from multi-collision-resistant hash functions).
A recent work of [45] shows that hard-on-average NP languages imply infinitely-
often hard-on-average promise-true NP search problems. Closer in spirit to our
work, [17] gives a construction of infinitely-often NIZK from an exponentially-
strong KDM-style variant of the discrete logarithm assumption.

In all these works, the existential result is generally non-constructive (when-
ever the construction itself relies on the existence of an adversary against some
primitive) and holds only for infinitely many security parameters, with no guar-
antee on the density of these parameters (i.e. the secure parameters could be
separated by arbitrarily fast-growing gaps).

Our Work. In contrast, a surprising and interesting feature of our work is that
we manage to improve significantly on both these caveats: while we employ a
non-black-box technique similar in spirit to these works, our constructions

— are fully explicit (i.e., our result is constructive)
— are proven secure on a set E of security parameters which can be shown to
be reasonably dense in N.

Concretely, in our main construction of NIZKs and ZAP arguments from the
subexponential hardness of CDH, the set E of secure security parameters for
our NIZKs and ZAPs is at least suberponentially dense: there exists a constant
0 < K < 1 such that, for all A € N, {)\, 2’\K} NE # (). In that sense, we say that

the constructions of Theorem 1 are subexponentially-often secure.
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A caveat of our technique is that soundness only holds against uniform
cheating provers, while usual notions of security allow adversaries to use a non-
efficiently computable advice. This seems an unavoidable consequence of aiming
for uniform NIZK algorithms (so that honest parties do not require non-uniform
advice to run our NIZK). Consequently, our construction can only use the exis-
tence of a uniform attacker against some primitive, which turns into building
soundness on uniform computational assumptions. We refer to the technical
overview for more details.

Looking ahead, we prove Theorem 1 by carefully combining two central ingre-
dients. The first is a NIZK (resp. ZAP argument) which is secure assuming
the subexponential hardness of DDH [35]. The second is a template to build
NIZKs from cryptographic groups, introduced in [15,36,48] (resp. ZAPs, when
combined with [24]). Our main technical tool is the construction of a universal
breaker, which we believe to be of independent interest. In our setting, our uni-
versal breaker allows to somewhat efficiently test, given a security parameter A,
whether DDH is “secure” with respect to A, for a specific definition of security.
We refer to the technical overview and Sect. 5.1 for more precise statements.

On the Generality of Our Approach. While we mostly focus on NIZKs
and ZAP arguments, our approach is modular, and we believe that a similar
technique could be used to refine the results of many of the previous works
that achieved infinitely often security, such as those listed above. In general,
when our approach can be applied, it should lead to explicit constructions with
security on a dense set of security parameters, but with two caveats: it would only
prove security against uniform adversaries, and would rely on superpolynomial
hardness assumptions (because our techniques inherently require some mild use
of complexity leveraging). Though the results stated in Theorem 1 are our main
results, we believe that our new techniques are a conceptual contribution of
independent interest. Below, we further illustrate the generality of our techniques
and obtain some additional results, both within and outside the setting of NIZKs.

1.3 Further Results

NIZKs from CDH-+LPN. First, replacing the NIZK of [35] with the one of
[9], we directly obtain the following:

Theorem 2 (Informal). Under both the superpolynomial CDH and poly-
nomial Learning Parity with Noise (LPN) assumptions, there exists a NIZK
argument for all NP satisfying (1) superpolynomially-often adaptive soundness
against uniform efficient cheating provers, and (2) (standard, computational)
adaptive, multi-theorem zero-knowledge.

We also show, through a different argument, the following existential (non-
constructive) result. We refer to Sect. 6 for more details.
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Theorem 3 (Informal). At least one of the following two statements holds:

— Under the polynomial LPN assumption, there exists a NIZK argument for
all NP satisfying (1) infinitely-often non-adaptive soundness against uniform
efficient cheating provers and (2) statistical zero-knowledge;

— Under the polynomial CDH assumption, there exists a NIZK proof for all NP
satisfying (1) statistical adaptive soundness and (2) (standard, computational)
adaptive, multi-theorem zero-knowledge.

Unlike Theorem 1, neither Theorem 2 nor Theorem 3 suffer from restrictions
over cryptographic groups supported.

Promise-true Hard-on-average Search Problems from Hard-on-
average Languages. Eventually, we revisit in the full version the recent work
of [45], which showed that if there exists a hard-on-average NP language, then
there also exists an (infinitely-often) hard-on-average promise-true distributional
NP search problem — or, using their terminology, proving theorems that are guar-
anteed to be true is no easier than proving theorems in general. Applying our
new technique, we obtain an explicit variant of their main theorem that starts
from a (mildly superpolynomially) hard-on-average NP language, and builds a
promise-true distributional NP search problem which is sound on a superpolyno-
mially dense set of security parameters:

Theorem 4 (Informal). Given any superpolynomially-secure uniformly hard-
on-average NP language, there is an explicit construction of a promise-true dis-
tributional NP search problem which is uniformly superpolynomially-often hard-
on-average.

1.4 Roadmap

We present an overview of our techniques in Sect.2. We introduce notations
and recall useful results from prior work in Sect. 3. In Sect. 4, we present generic
constructions related to DDH breakers and DDH-based NIZKs. In Sect. 5, we
present our main construction along with our main technical tools. In Sect. 6, we
present a purely existential result corresponding to Theorem 3. We refer to the
full version of the paper for a construction of promise-true NP search problem
from a hard-on-average NP language, and how to adapt our main theorem to
the setting of elliptic curves (without requiring pairings).

2 Technical Overview

Designated-Verifier NIZKs from CDH. Our starting point is the construc-
tion of designated-verifier NIZKs for NP from CDH [15,36,48]. In a nutshell,
these works, assuming CDH, reduce building a NIZK for all NP to the task of
building a NIZK for the DDH language: an instance (g,¢%,¢”,¢") belongs to
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the language if v = « - f mod p, where p is the order of the group. Unfortu-
nately, we do not know how to build NIZKs for the DDH language assuming
only the hardness of CDH. Instead, [15,36,48| observe that designated-verifier
NIZKs for the DDH language can be constructed [18], which in turn, yields a
designated-verifier NIZK for NP from CDH.

In fact, this approach can yield publicly-verifiable NIZKs for NP if the verifier
can efficiently check whether group elements form DDH tuples. This observation
already yields a NIZK for NP when the group is equipped with a (symmetric)
bilinear map: the verifier can check whether an input from the source group is a
DDH tuple by comparing the appropriate pairings e(g, g7) and e(g%, g%) [12,48].
Notably, the bilinear map and the target group are only used in the verification
algorithm, and security properties of the NIZK only rely on the hardness of CDH
in the source group.

Alternatively, if DDH were broken over the group (without pairings), then
we could also obtain NIZKs for NP based on CDH via this approach. In this
case, the verifier could perform the required checks using the DDH breaker. For
convenience, we refer to NIZKs obtained in this manner as DDH-based NIZKs.

NIZKs from DDH, and a Disjunction Argument. Recently, [35] provided
a construction of NIZK for all NP from (subexponential) DDH.3,* For conve-
nience, we will refer to this NIZK as a DDH-based NIZK.

This brings us to the following attempt for constructing NIZKs for NP from
CDH. Fix a single (family of) cryptographic groups for which CDH holds. Then,

— either “DDH is secure”, in which case the DDH-based NIZK of [35] is secure,
— or “DDH is broken”, which allows to build a DDH-based NIZK, assuming
CDH!

One could be tempted to conclude that this disjunction approach yields a NIZK
for all of NP from CDH. Unfortunately, this conclusion does not directly hold,
because the statements “DDH is secure” and “DDH is broken”, as (imprecisely)
stated above, are not negations of each other. Nevertheless, this dichotomy serves
as the key starting point behind our result.

A Closer Look. There are several mismatches in the definitions of “secure”
and “broken” above.

1. A first mismatch relates to the success probabilities of breakers. An adver-
sary falsifying the security of DDH is only ensured to work with some small,

3 [35] actually provides two NIZKs. The first one provides statistical zero-knowledge,
but only non-adaptive soundness. The second is adaptively-sound and computa-
tionally zero-knowledge. Because our approach can only yield computational zero-
knowledge, we will use the second version.

4 Technically, [35] imposes mild restrictions on the supported cryptographic groups,
that we also inherit. We will ignore this for the sake of this overview, and refer to
Sect. 3.1 for more details.



738 G. Couteau et al.

non-negligible (or even subexponentially small) probability. In contrast, the
breaker needed to instantiate the DDH-based NIZK from CDH needs to work
with very high probability on worst-case inputs (since the breaker is used by
the verifier).

2. A second mismatch is that hardness assumptions are usually stated as to
handle non-uniform adversaries. Consequently, an adversary falsifying the
security of DDH would only yield a non-uniform DDH breaker, and thus the
resulting verifier for the DDH-based NIZK would be non-uniform.

3. A third mismatch is that, in order to falsify DDH being secure in the usual
sense, it suffices to exhibit an adversary that breaks DDH with sufficiently
good advantage on infinitely many security parameters. In fact, it is not even
clear, given such an adversary, how to efficiently determine on which security
parameters the breaker works, without, say, a bound on its runtime. Such a
bound could be provided as non-uniform advice to the verification algorithm,
but would again result again in a DDH-based NIZK with a non-uniform veri-
fier. Furthermore, such an adversary would only help in constructing a DDH-
based NIZK on only infinitely many security parameters.

The first mismatch can be taken care of using the random self-reducibility of
DDH,® which allows us to amplify the success probability of any “weak” breaker
to a “strong” one. Given that the DDH-based NIZK of [35] relies on the subexpo-
nential hardness of DDH, the resulting amplified breaker runs in subexponential
time. Then, after relying on complexity leveraging for the resulting DDH-based
NIZK in order to make this breaker efficient, soundness follows from the (mildly
stronger) subexponential hardness of CDH.

It is unfortunately less clear how to handle the two other issues. Still, the
approach above already gives a NIZK with non-uniform, non-explicit algorithms,
which is infinitely-often secure based on the subexponential hardness of CDH —
an already interesting result.’

A Universal DDH Breaker. Towards tackling the drawbacks of the previous
construction, our first step is to characterize more precisely subsets of security
parameters such that DDH is secure, and ones such that DDH is broken. Doing
so opens the hope of obtaining a new construction which, for every security
parameter, uses either the DDH-based NIZK if the security parameter is secure,
and the DDH-based NIZK otherwise.

Our crucial observation is that, for a suitable notion of security, one can some-
what efficiently test whether a security parameter is secure. We do so through the
construction of a universal breaker UnivBreak, which (with overwhelming prob-
ability) breaks DDH on every security parameter such that some good breaker
exists, and fails only when no good enough breaker exists. Our construction

5 Assuming the (family of) group is of prime order.

6 Formalizing such a statement turns out to require quite a bit of care, because of
subtleties specific to the precise soundness statement of [35]. We will not develop
these difficulties further here, as we will directly prove a stronger statement below.
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is inspired by classic constructions of universal cryptographic objects. Namely,
it iterates through all small Turing machines of size say < |log |, and tests
whether they efficiently break DDH. If a good breaker exists, it uses one of
them to break DDH, and otherwise states that the security parameter is secure.
Standard concentration bounds intuitively ensure that if a good breaker exists,
then UnivBreak finds a good breaker (with overwhelming probability), and if no
good breakers exist, then UnivBreak is not fooled into using a bad breaker (with
overwhelming probability). Still, in order to fully define our universal breaker,
we need to define more precisely the set of “small Turing machines” it will con-
sider. Equivalently, we now seek to formally define a set SECURE of security
parameters for which DDH is secure.

We observe that if SECURE relates to the uniform security of DDH, then
breakers on SECURE := N\ SECURE are also uniform. The intuition is then
that, fixing any uniform breaker A on SECURE, UnivBreak will eventually run A
when given as input a large enough security parameter A > 2! allowing us to
use the DDH-based NIZK. Furthermore, we can show that the DDH-based NIZK
is sound on SECURE, albeit only against uniform cheating provers. Ultimately,
this is the reason our constructions are only sound against uniform cheating
provers.

This is unfortunately not yet sufficient. The reason is that UnivBreak is called
on a fixed security parameter \, and that security on any fized security parameter
is an inherently non-uniform notion of security. For instance, there could exist a
family of uniform breakers A; that respectively break DDH on all large enough
parameters in {\ ¢ SECURE | A > \;} but such that \; grows with their size |.A;|
as Turing machines, e.g. \; = |A4;|. In particular, we cannot rule out that, for
all A ¢ SECURE, UnivBreak never runs any 4; on input A > A;. This, in turn,
could imply that for all security parameters, UnivBreak has low advantage, or
even wrongly concludes that some input parameter is secure.

Our solution is to modify the definition of SECURE to bound the “non-
uniformity” of breakers. Namely, whether some fixed security parameter A
belongs to SECURE now only depends on whether there exists an adversary
with small description < |log A\| as a Turing machine that breaks DDH on .

A separate issue is that iterating over polynomial-time adversaries with non-
negligible advantage is not well defined, because the notions of polynomial-time
and negligible advantage are asymptotic. For instance, for any fixed )\, there
will always exist a (uniform) polynomial-time machine breaking DDH on A with
non-negligible advantage. Instead, we define SECURE using (t(\), e()\))-security
(namely, considering adversaries running in time ¢(\) with advantage £(\)) with
fized functions t = t(\) and € = &(\), where ¢ is superpolynomial, and ¢ is
inverse superpolynomial, so that (¢, €)-security (asymptotically) implies standard
polynomial security. Importantly, we can argue that DDH is uniformly hard on
the set SECURE, which will allow us to argue uniform soundness of the DDH-
based NIZK.

Summing up, our universal breaker UnivBreak, on input a security parameter
A, tests all £(A)-time machines of size < |log A], and checks whether their advan-
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tage in breaking DDH is larger than £()\), using &~ 1/£2(\) runs. If some machine
has enough advantage, UnivBreak uses this machine to compute its output; and if
no such machine exists, UnivBreak indicates that ) is secure. Note that UnivBreak
is somewhat efficient in that it runs in superpolynomial time a2 t(\)/e2(\). Intu-
itively, UnivBreak indicates that )\ is secure whenever A € SECURE, and breaks
DDH with advantage ~ e(\) whenever A ¢ SECURE. It turns out this intuition
is slightly inaccurate, but will suffice for the purpose of this overview. We refer
to Sect. 5.1 for more details, and a formal treatment.

A Subexponentially-Often NIZK from Subexponential CDH. We now
use our universal breaker to build a (weak) NIZK from CDH. A proof in our
scheme simply consists of both a DDH-based proof mppn and a DDH-based proof
Topr- Lhe verifier, given the security parameter ), tests the universal breaker
UnivBreak on A. If the universal breaker fails to produce an output bit, the
verifier verifies mppy. Otherwise, it amplifies the advantage of UnivBreak in order
to verify mypg. Note that the construction is fully explicit, and features uniform
algorithms.

Completeness and zero-knowledge follow from correctness of UnivBreak
(which is ensured to produce outputs with good advantage whenever it pro-
duces an output) and the completeness and zero knowledge properties of the
DDH-based NIZK and the DDH-based NIZK.

One could hope that the NIZK above satisfies uniform soundness on all
security parameters, Indeed, the uniform hardness of DDH holds over the set of
parameters SECURE by definition: given any PPT uniform adversary A of size
s, thanks to ¢(\) (resp. e(\)) being superpolynomial (resp. inverse superpoly-
nomial), we have that for all large enough A > 2° such that A € SECURE, the
advantage of A on A is at most £(A\). Conversely, if A ¢ SECURE, then sound-
ness holds thanks to guarantees on UnivBreak and soundness of the DDH-based
NIZK.

Unfortunately, the argument above does not hold, because the (amplified)
DDH breaker given by UnivBreak runs in super-polynomial time = t(\)/e2()\).
In fact, the security of the DDH-NIZK of [35] requires assuming the subexponen-
tial security of DDH, which requires to set € as inverse subexponential. Thus,
the resulting verification algorithm building on UnivBreak actually runs in subex-
ponential time. As a result, we need to rely on complexity leveraging whenever
calling the DDH-based NIZK to make the verification algorithm efficient. Namely,
our NIZK for security parameter A calls the DDH-based NIZK on security param-
eter N == [log/¢(\)] for some constant 0 < ¢ < 1. First, this introduces the
need to assume subexponential hardness of CDH (to argue zero-knowledge of
the DDH-based NIZK). Second, this resulting mismatch of the security parame-
ters used by the DDH-based NIZK and the DDH-based NIZK prevents us from
arguing soundness on all security parameters: it could be that A ¢ SECURE and
A € SECURE, in which case we do not know how to argue soundness of any of
the two NIZKs, whenever running our NIZK on security parameter .
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Still, we obtain a NIZK which is secure on infinitely-many security param-
eters. In fact, we can argue that the set of secure parameters for the NIZK is
subexponentially dense in the following sense. For every security parameter A,
either A € SECURE or A ¢ SECURE. Consequently, either our NIZK is sound on
A (corresponding to A € SECURE), or it is sound on X := 2*° (corresponding to
A ¢ SECURE). This is because, in that latter case, on input A, our NIZK calls
the DDH-based NIZK and UnivBreak on parameter |log'/® ()| = A ¢ SECURE,
and therefore soundness of the DDH-based NIZK applies.” Overall, this ensures
that the relative gap between two consecutive parameters for which our NIZK is
secure is at most subexponential. We refer to Theorem 20 for a formal statement.

Variant: NIZK from CDH and LPN. Our approach is quite modular in the
DDH-based NIZK we start from. In particular, starting with the construction of
[9] which is secure assuming both the polynomial hardness of DDH and LPN,
we obtain a “superpolynomially dense” NIZK where the gap between secure
parameters is only superpolynomial, and where security holds assuming both
the superpolynomial hardness of CDH and the polynomial hardness of LPN.®

Variant: ZAP Arguments from CDH. We observe that, given a DDH
breaker, the DDH-based NIZKs from [15,36,48] use a uniform common ran-
dom string, and are statistically sound. Thus, any efficient DDH breaker implies
a ZAP for all NP based on CDH via [24]. Moreover, [35] builds ZAP argu-
ments for all NP assuming the subexponential hardness of DDH. Thus, we can
apply the same blueprint as for the construction of NIZK. The verifier message
consists of verifier messages for both the DDH-based ZAP argument and the
(complexity-leveraged) DDH-based ZAP, and the prover replies with two proofs.
The verifier then runs UnivBreak, and verifies one of the proofs accordingly. A
similar analysis gives that the resulting ZAP argument is subexponentially often
(non-adaptively) sound against uniform cheating provers,” and witness indistin-
guishable assuming the subexponential hardness of CDH.

3 Preliminaries

Notation. Throughout this paper, A denotes the security parameter. A proba-
bilistic polynomial time algorithm (PPT, also denoted efficient algorithm) runs
in time polynomial in the (implicit) security parameter A. A function f is negli-
gible if for any positive polynomial p there exists a bound B > 0 such that, for

" The actual statement we prove is slightly more technical, due to subtleties in the
proof of soundness of [35]. We refer to Theorem 20 for more details.

8 We only know how to instantiate our universal breaker using a superpolynomial
(resp. inverse superpolynomial) function ¢ (resp. €) so that A € SECURE implies
that DDH is polynomially hard on A against uniform adversaries. We therefore still
need to rely on complexity leveraging, resulting in a superpolynomial gap.

9 This is because the ZAP argument of [35] is only non-adaptively sound.
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any integer k > B, |f(k)| < 1/|p(k)|. Given a finite set S, the notation z < S
means a uniformly random assignment of an element of S to the variable z. For
a positive integer n,m such that n < m, we denote by [n] the set {1,--- ,n}.
We will sometimes explicitly refer to the random coins r used by a probabilistic
algorithm M by writing M (-;r).

3.1 Diffie-Hellman Assumptions

Cryptographic Groups. Let DHGen be a deterministic algorithm which on
input 1* returns a description G = (G,p) where G is a cyclic group of prime
order p. Throughout the paper, we will fix DHGen, and therefore a family of
groups {Gy }aen- Unless specified otherwise, we will assume throughout this work
that the prime-order group G has exponentiation in TCY. This notably includes
(subgroups of) Zy for ¢ € N, which includes its subgroup of quadratic residues.
We consider in the full version a variant for elliptic curves.

As is usually (implicitly) assumed for cryptographic groups, we will sup-
pose that, for all A € N, there exists an efficient oblivious sampling algo-
rithm Sample(1*;7) — ¢ which we denote g <~ G,. Formally, this requires
that there exists an efficient algorithm Equivocate such that the two follow-
ing distributions are within negligible statistical distance: (r, Sample(1*;7)) =~
(Equivocate(g),g < G), where r is uniformly random. Note that this follows
whenever the description of a uniformly random group element is itself a uni-
formly random string. This allows to securely view uniformly random group
elements as uniformly random strings (up to considering the internal random
coins used by Sample).

The computational Diffie-Hellman assumption is defined as follows.

Definition 5 (CDH Assumption). We say that the computational Diffie-
Hellman (CDH) assumption holds relative to DHGen if for all PPT adversaries A
and all large enough security parameters A,

Pr |G = DHGen(1%),g < G, a, § < Z,: g*® i A(l)‘,g,g,ga,gﬁ)} < negl(\).

We also define similarly the decisional Diffie-Hellman assumption:

Definition 6 (DDH Assumption). We say that the decisional Diffie-
Hellman (DDH) assumption holds relative to DHGen if for all PPT adversaries A
and all large enough security parameters A,

G = DHGen(1*),g < G, a, B,y < Zy,b < {0,1}, |

b=1
§—by+(1—b)aB, b < A(1*,G,g,9% 9% ¢°)

1
Pr < 3 + negl(A).

Throughout the paper, whenever there are no ambiguities about DHGen, we will
denote by AdvDDH( N, for any adversary A and security parameter \, the prob-
ability

AV (1Y) = Pr

G = DHGen(1*),g < G, B,7 < Zp,b < {0,1}, | _
§ —by+ (1-b)ap,b < A(1Y,G,9,9%, 9", ¢°)

N =
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Subexponential Security. In the definition of CDH (resp. DDH), if the inequal-
ity is strengthened to hold against all probabilistic 2* -time adversaries A with
advantage at most 272" for some constant 0 < ¢ < 1, we refer to the correspond-
ing assumption as the (2*°-)subexponential CDH (resp. DDH) assumption.

Infinitely-often Security. In the definition of CDH (resp. DDH), if the inequality
is instead required to hold only for (all large enough elements of) an infinite set
of security parameters £ C N, we refer to the corresponding assumption as the
infinitely-often CDH (resp. DDH) assumption with respect to E, and denote it
io-CDH (resp. io-DDH).

Uniform Security. By default, when we quantify over PPT adversaries A, PPT
refers to non-uniform adversaries: families { A} xen of boolean circuits such that
|Ax| = poly(\) for every A € N. In this work, we will in fact mostly consider
a weaker, uniform notion of security, where the adversaries A are modelled as
probabilistic Turing machines. When the CDH (resp. DDH) assumption is only
required to hold against all uniform PPT adversaries, we call uniform CDH
(resp. uniform DDH) the corresponding assumption.

3.2 Non-interactive Zero-Knowledge

A (publicly-verifiable) non-interactive zero-knowledge (NIZK) argument system
for an NP relation R, with associated language Z(R) = {z | Jw, (x,w) € R}
is a 3-tuple of efficient algorithms (Setup, Prove, Verify), where Setup outputs a
common reference string, Prove(crs, z, w), given the crs, a statement z, and a
witness w, outputs a proof 7, and Verify(crs, 2, 7), on input the crs, a word z,
and a proof 7, outputs a bit indicating whether the proof is accepted or not. A
NIZK argument system satisfies the following: completeness, adaptive soundness,
and adaptive multi-theorem zero-knowledge properties:!°

— A non-interactive argument system (Setup, Prove, Verify) for an NP relation
R satisfies completeness if for every (z,w) € R,

Prlcrs <& Setup(1*,111), = — Prove(crs, z,w) : Verify(crs, z, 7) = 1] > 1 — negl(\).

— A non-interactive argument system (Setup, Prove, Verify) for an NP relation R
satisfies adaptive soundness if for any PPT A and any large enough security
parameter A,

crs <= Setup(1*, 1121), (2, 7) < A(crs) -

’ < [(N).
Verify(crs,z,m) =1 Nz ¢ L < negl(d)

10 Tntuitively, multi-theorem zero-knowledge ensures that a simulator can provide many
simulated proofs under a common simulated CRS.
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— A non-interactive argument system (Setup, Prove, Verify) for an NP relation
R satisfies (computational, statistical) adaptive multi-theorem zero-knowledge
if for all (computational, statistical) A, there exists a PPT simulator Sim =
(Simy, Simy) such that if we run crs <> Setup(1*, 1*!) and &7 <= Sim; (1%, 1/#1),
then we have | Pr[A%0(s:)(crs) = 1] — Pr[A% () (crs) = 1]] = negl()),
where Og(crs,z,w) outputs Prove(crs, z,w) if (z,w) € R and L otherwise,
and O (Crs, z, w) outputs Simz(crs, x) if (x,w) € R and L otherwise.

Whenever Setup(1*) outputs a uniformly random string crs, we say that the
NIZK is in the common random string model.

Infinitely-Often, Uniform, Subexponential NIZKs. If we relax the defini-
tion of correctness (resp. adaptive soundness) to hold only for (all large enough
elements of) an infinite set of security parameters E C N, we say that the NIZK
satisfies infinitely-often correctness (resp. infinitely-often adaptive soundness)
with respect to F, and refer to the NIZK as an infinitely-often NIZK. One could
analogously define infinitely-often zero-knowledge, but we will not need it in this
work.

If soundness holds only against uniform PPT adversaries, we say that the
NIZK is a uniform NIZK (similarly, we will not need to consider uniform zero-
knowledge in this work).

Finally, if soundness and zero-knowledge hold against subexponential-time
adversaries (resp. subexponential-time adversaries with subexponential advan-
tage), we say that the NIZK is subexponentially secure (resp. strongly subexpo-
nentially secure).

NIZKs in the Hidden-Bits Model. We use the following result regarding the
existence of NIZKs in the hidden-bits model (HBM). Since the full definition of
NIZK in the HBM will not be required in our work, we refer the readers to [25]
for more details.

Theorem 7 (NIZKs for all of NP in the HBM [25]). Let A denote the secu-
rity parameter and let k = k(X\) be any positive integer-valued function. Then,
unconditionally, there exists NIZK proof systems for any NP language £ in the
HBM that uses hb = k - poly(\, |z|) hidden bits with soundness error e < 27
where \ denotes the security parameter and poly is a function related to the NP
language £, and that are perfectly zero-knowledge.

3.3 Verifiable Pseudorandom Generators

Verifiable pseudorandom generators have been introduced in [24]. Their defini-
tion has been refined in [15,36,48], and slightly relaxed in [17]. Below, we recall
the definition from [17].

Definition 8 (Verifiable Pseudorandom Generator). Let 6(\) and s(X)
be positive valued polynomials. A (6(\), s(\))-verifiable pseudorandom generator
( VPRG) is a four-tuple of efficient algorithms (Setup, Stretch, Prove, Verify) such
that
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~ Setup(1*,m), on input the security parameter (in unary) and a polynomial
bound m(X\) > s(\)'H0X) | outputs a set of public parameters pp (which con-
tains 1*);

— Stretch(pp), on input the public parameters pp, outputs a triple (pvk,z,aux),
where pvk is a public verification key of length s(\), = is an m-bit pseudoran-
dom string, and aux is an auziliary information;

— Prove(pp, aux, i), on input the public parameters pp, auziliary informations
aux, an indezx i € [m], outputs a proof ;

— Verify(pp, pvk, i, b, ), on input the public parameters pp, a public verification
key pvk, an index i € [m], a bit b, and a proof 7, outputs a bit 3;

which is in addition complete, hiding, and binding, as defined below.

Definition 9 (Completeness of a VPRG). For any i € [m], a complete VPRG
scheme (Setup, Stretch, Prove, Verify) satisfies, for all large enough A:

pp < Setup(1*,m),
Pr | (pvk,z,aux) <= Stretch(pp), : Verify(pp, pvk, i, z;,7) = 1| > 1—negl(}).
e Prove(pp, aux, ©),

Definition 10 (Statistical Binding Property of a VPRG). Let (Setup,
Stretch, Prove, Verify) be a VPRG. A VPRG s statistically binding if there exists
a (possibly inefficient) extractor Ext such that for any (potentially unbounded)
A and for all large enough A, it holds that

pp <= Setup(1*,m),
Pr (pvk, i, ) na A(pp), : Verify(pp, pvk,i,1 —z;,m) =1 | < negl()).
z; «— Ext(pp, pvk)

Definition 11 (Hiding Property of a VPRG). A VPRG scheme (Setup,
Stretch, Prove, Verify) is hiding if for any i € [m] and any PPT adversary A
that outputs bits, and for all large enough X, it holds that:

pp <= Setup(1*,m),
Pr | (pvk,z,aux) <= Stretch(pp), : A(pp, pvk, i, (27, 7;) i) = i | < 1/2+ negl()).

(m; & Prove(pp, aux, j));

Infinitely-Often, Subexponential VPRGs. If we relax the definition of com-
pleteness (resp. binding) to hold only for (all large enough elements of ) an infinite
set of security parameters F C N, we say that the VPRG satisfies infinitely-often
completeness (resp. infinitely-often binding) with respect to E, and refer to the
VPRG as an infinitely-often. VPRG. We note that one can analogously define
infinitely-often hiding, but we will not need it in this work. We furthermore say
that a VPRG is a subexponential VPRG, if (1) completeness error (resp. bind-
ing error, distinguishing advantage against hiding) are all inverse subexponential,
and (2) if hiding holds against subexponential-time adversaries A.
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From VPRGs to NIZKs for NP. The following shows that VPRG are suffi-
cient to construct NIZKs for all of NP.

Theorem 12 ((4,s)-VPRGs = NIZKs for all of NP). Fiz an NIZK proof
system for any NP language £ in the HBM that uses hb = hb(\, |z|) hidden bits
with soundness error ¢ < 27 where hb > X w.l.o.g. Suppose that a (§(N\), s(A))-
verifiable pseudorandom generator where s(\) > max{\, (hb®/\)/* N} exists.
Then, there ewist statistically adaptively sound with soundness error 2= and
adaptively multi-theorem zero-knowledge NIZK proofs for the NP relation £ .

If instead the (6(X),s(N\))-VPRG satisfies infinitely-often completeness and
infinitely-often binding with respect to some infinite subset E C N, then there
exists an infinitely-often NIZK which is statistically, adaptively sound with
soundness error 27> with respect to E, and adaptively multi-theorem zero-
knowledge.

Furthermore, if the public parameters of the verifiable pseudorandom gener-
ator are uniformly random, then the resulting NIZK is in the common random
string model.

Proof. The proof follows readily from [15,24,25]. It can be checked from Theo-
rem 16 of [15] that we can combine the NIZK in the HBM for the NP relation .#
with any VPRG that satisfies s'*% > (1 4 s/A)hb + hb®/\ in order to construct
a statistically sound, adaptive single-theorem non-interactive witness indistin-
guishable (NIWI) proof for the NP relation .Z. Working out the equation and
taking into account that s needs to be at least A-bits, the condition on s in
our statement is sufficient. Then, by using [25], we can convert an adaptive
single-theorem NIWI proof into an adaptive multi-theorem NIZK proof assuming
the existence of pseudorandom generators (which are by definition implied by
VPRGs). To obtain a NIZK with soundness error 27, we use a A-wise parallel
repetition, using that the construction above is statistically sound.

The proof extends directly to VPRGs that are correct and binding on any
infinite subset £ C N, giving an infinitely-often NIZK with respect to E.

Since the existence of an NIZK in the HBM for any NP language £ is implied
by Theorem 7, the above shows that VPRGs with some mild condition on ()
and s(A) implies existence of NIZKs for any NP language ..

Remark 18 (NIZKs for Large Statements). Theorem 12 can be readily extended
to the setting of NIZKs with statements of size subexponential in the security
parameter, namely |z| = 22° for some constant ¢ satisfying 0 < ¢ < 1, assum-
ing an appropriately strong VPRG. More precisely, assume the existence of a
subexponen/tial VPRG with quantitatively stronger completeness, binding, and
hiding 2=, where ¢ < ¢ < 1 is a constant. Then there exists a NIZK with
honest algorithms running in time poly()\, |z|), with completeness error (resp.
zero-knowledge distinguishing advantage) 9-00") — negl(A, |z]), and statistical
soundness error 2-*. Moreover, if hiding of the VPRG hiding holds against 2”\C,—
time adversaries, then the resulting NIZK is zero-knowledge against adversaries

running in time 20\,
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The statement above is directly obtained by adapting the proof of Theorem
12, starting instead with a VPRG with subexponential-length output s'*® >
(14 s/A)hb(\, |z]) + hb*(\, [z])/A, where we recall that hb is a polynomial in
A |z

3.4 NIZKs and ZAP Arguments from DDH

We recall here the result of [35], which we adapt to our setting. Recall that
we assume our cryptographic groups to have exponentiation in TC® (Sect. 3.1).
We refer to the full version for elliptic curve counterparts (without requiring a

pairing).

Theorem 14 (NIZK from DDH [35]). There exists a constant L > 0 such
that the following holds. For any constant 0 < ¢ < 1, and for all X € N, define
the set TOWER) = TOWER) (¢, L) :== {A\} U {/\(C/Q)l/rz}iem. For any infinite set
E CN, define:
Erower = | J TOWER,.
AeE

Suppose that, for any (uniform) PPT adversary A, there exists \* such that
for all Atower € Etower satisfying Atower > A*:

AdVEtDH(l)\TOWER) < 9—(Atower)®
Then:

— there exists a NIZK for all NP satisfying perfect completeness, infinitely-often
adaptive soundness w.r.t. E (against uniform cheating provers),*' and com-
putational zero-knowledge against non-uniform verifiers;

— there exists a ZAP argument for all NP satisfying perfect completeness,
infinitely-often non-adaptive soundness w.r.t. E, and statistical adaptive wit-
ness indistinguishability.

In other words, [35] builds, given a (uniform) cheating prover on security
parameter A, a (uniform) DDH breaker for at least one security parameter in
TOWERy. Then, the theorem above captures the resulting security statement
associated to infinitely-often soundness.

4 DDH Breakers and VPRGs

In this section, we introduce building blocks that we use in our constructions.
Throughout this section, we only assume that our cryptographic groups are of
prime order, and we do not assume that exponentiation can be computed in TCY.
We mainly prove the following result, which intuitively states that algorithms
breaking DDH can be turned into an appropriate NIZK:

11 See the paragraph on infinitely-often security in Sect. 3.2 for a definition of soundness
w.r.t. an infinite set F.
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Lemma 15. Let t = t(\) be any positive integer-valued function, and 0 < ¢ =
e(N) < 1/2 be any function such that, for all \, t(\)/e2(\) < 2*° for some
constant 0 < ¢ < 1.

Assume A is a Turing machine running in time t(X), such that there exists
an infinite set E C N such that for all A € E:

AdVEPH (1Y) > e(N).

Let B' = {2\ }xcp, and let ¢/ be any constant such that ¢ < ¢’ < 1.

Then, assuming the 2)‘C, -subexponential hardness of CDH (Sect. 3.1), there
exists a NIZK in the common random string model, which is infinitely-often
correct and statistically adaptively sound with respect to E', and satisfying com-
putational, adaptively, multi-theorem zero-knowledge.

Furthermore, if for all \, t(\)/e%()\) = poly(\), then assuming the polynomial
hardness of CDH, there exists a NIZK in the common random string model,
which is infinitely-often correct and statistically adaptively sound with respect to
E, and computationally adaptively, multi-theorem zero-knowledge.

Remark 16 (Large Statement Sizes). Similar to Remark 13, the resulting NIZK,
when ran over input statements of size up to |z| = 22" remains correct, statisti-
cally sound, and subexponentially zero-knowledge, and where the running time
of the honest algorithms is poly(}, |z]). Looking ahead, this is done by combining
the subexponential VPRG of Lemma 18 with the proof of Theorem 12.

In Sect.4.1, we show how to amplify the success probability of weak DDH
breakers. In Sect. 4.2, we show to build a VPRG from strong DDH breakers.

4.1 Amplification of DDH Breakers

First, we prove a generic result on amplifying the success probability of (weak)
DDH breakers.

Given a group description G = (G, p) = DHGen(1*) and a security parameter
A, let Spr(A) be the set of DDH four-tuples: Spn(A) = {(g, 9%, ¢°%,97) : v = aB}.
Let T(\) = poly()\) be such that |G| < 270N,

Lemma 17 (Amplification of DDH Breakers). Lett = t()\) be any positive
integer-valued function, and € = () be any function such that 0 < e(X) < 1/2
for all X.

Assume A is a Turing machine running in time t()\), such that there exists
an infinite set £ C N such that for all A € E:

AdvEPH (1) > e(N).

Then there exists a Turing machine A = A(t,e€) running in time t(X)/e?(\) -
poly(A) such that, for all large enough security parameters A € E and all DDH
tuples (g,9%,9",97) € Son(N):

S AN G, g,9% 9%, g75r) s b= 1} > 1 — negl(\) - 27470,
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Furthermore, for all large enough security parameters A € E, and all non-DDH
tuples (97 ga’ gﬂa g’Y) € G4 \ SDH(A)7

Prib < A(1Y,G,9,9%,9°,97;7) : b= 0} > 1 —negl(\) - 2747,

We call any machine satisfying these properties a strong DDH breaker with
respect to E.

Brief Overview. The proof is slightly more involved than the standard DDH
amplification approach. We start from the default strategy: we run the weak
DDH breaker A on many rerandomized versions of the input to A (using an
appropriate rerandomization such that a DDH tuple becomes a fresh DDH tuple,
and a non-DDH tuple becomes a fresh random tuple). However, the inputs to
A are now either all random, or all DDH tuples. So we further randomize the
inputs, by randomly switching them to a freshly uniform tuple, with probability
1/2, and check whether A correctly guesses whether the input was switched. We
then check whether these guesses deviate significantly from the distribution of
uniform bits using concentration bounds: they should not deviate when starting
with a random DDH tuple, as the output to A is then independent of the switch,
and should deviate significantly otherwise by assumption on A. We refer to the
full version of the paper for a formal proof.
Next, we make a simple observation:

Claim. For all sufficiently large security parameter A\, denoting G = (G, p) «—
DHGen(1*), and under the same assumption on A as in Lemma 17:

Pr[3(g,9%,9".9") € Son + A(1*,G,g9.9%.9%,97;7)] = 0] < negl(}), and

Pr[3(g,9% 9%.97) € G*\ Spn : A(1*,G,9,9%.9% 9757)] = 1] < negl(N).

Proof. This follows immediately from a straightforward union bound over all
elements of Spy and of G*\ Spy, using the fact that |Spy| < |G*\ Spu| < 247N
since |G| < 2T™), O

4.2 VPRGs from Strong DDH Breakers

Next, we show that the existence of the strong DDH breaker A, with the specifi-
cations of Lemma 17, suffices to construct a verifiable pseudorandom generator
under the CDH assumption.

Lemma 18 (a VPRG from subexponential CDH). Let 0 < ¢ < 1 be a
constant. Assume A is a Turing machine running in time 2*° - poly(\), and an
E C N is an infinite set such that A is a strong DDH breaker with respect to E
(Lemma 17), and let B’ = {2* }xcE.

Then, assuming the subezponential 2*° -hardness of CDH for any constant
¢ < ¢ < 1, there exists a subexponential, infinitely-often statistically binding
VPRG with respect to E'.
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Furthermore, if A runs in polynomial time, then assuming the polynomial
hardness of CDH, there exists an infinitely-often statistically binding VPRG with
respect to E.

Let B : G* — {0,1} be a predicate satisfying the following property:
given (g%, g%, ¢¢), computing B(g?, g**, 9°¢) should be as hard (up to polynomial
factors) as computing (g2, g%?, g%¢). Note that this implies that distinguishing
B(g®, g, g°¢) from a random bit given a random triple (g%, g, g¢) is as hard as
solving CDH. There are standard method to build this predicate using e.g. the
Goldreich-Levin construction [28], see e.g. [14] for an illustration in the specific
case of CDH. Our construction proceeds as follows.

Let A’ = X if A runs in polynomial time, and X' = [log!/¢(\)] if A runs in
time 2*° for some constant 0 < ¢ < 1.

— Setup(1*,m) : Sample G = Gy = DHGen(1") and g <~ G. For i = 1 to
m, pick a; < Z, and set h; «— g%. Pick a random tape R for A. Set pp =
(1)\7 gv 9, (hi)i§m7 R)

— Stretch(pp) : pick r S Zy, set pvk «— g", and for i < m, set z; & B(pvk, k7).
Output (pvk, z,aux =r).

— Prove(pp, aux, i) : output 7 « hl.

— Verify(pp, pvk, 7, 4,0, 7) : output 1 iff (B(pvk,7) =0) =1 and
(AN, G, g, pvk, I'; R) = 1).

Theorem 19. If the subexponential CDH assumption holds relative to DHGen,
then the above construction is a computationally, subexponentially hiding and
statistically binding VPRG.

Proof. Observe that A € E’ implies A’ € E. Completeness on E’ and efficiency
poly(\,m) follows easily by inspection, noting that A, on input A/, runs in time
poly(\) by assumption. Furthermore, the VPRG can have arbitrary polynomial
stretch m(X), independently of the length of pvk (the latter is a single element
of G).

We now show that the construction is infinitely-often statistically binding
with respect to E’. Let A € E’. Let B be an adversary against the binding
property: on input pp, B outputs a triple (pvk, 7, 7). We must exhibit an extractor
Ext that finds bit x; such that Verify(pp, pvk,i,1 — z;, 7) = 0 with overwhelming
probability. Ext extracts z; as follows: it parses pp as (1*,G, g, (hi)i<m ), computes
r « dlog,(pvk) and sets x; < B(pvk, 7). To make Verify accept, B must find a
triple (pvk, h;, m) such that A(1*,G, g, pvk, h;, 5 R) = 1, yet B(pvk,7) =1 — x;.
The latter implies in particular that (g, pvk, hi, 7) ¢ Spy. But with overwhelming
probability over the choice of R, there cannot exist an element of G*\ Spy where
A outputs 1, which concludes the proof.

We now discuss the hiding property. We show that a 2)°-time adversary
B against the hiding property with advantage greater than 2~ of the above
scheme contradicts the subexponential CDH assumption. Let A € E’. Given a
position ¢, the reduction receives a CDH challenge on security parameter \’, of
the form (lx,g,g,g"‘,gﬁ) and attempts to guess the predicate z = B(g%, g*%).
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It defines h; «— ¢? and samples the rest of pp honestly, picking a; nl Z,, and
setting h; < g% for j # i. Then, it sets pvk «+— g%, and computes 7; as (go‘)? and
x; as B(pvk, ;) for every j # i. Observe that the input (pp, pvk, (z;,7;);+) to
B is distributed exactly as in the hiding game. The reduction outputs whatever
B outputs. Observe that z; = B(g%, g*?) by construction, hence the advantage
of the reduction in this game is exactly the advantage of B against the hiding
property of the VPRG. Since the reduction runs in time poly(\) = poly(2)‘lc) <

22 for any ¢ < ¢ < 1 for all large enough \ and recovers the hardcore predicate
of the CDH challenge with subexponential advantage 2~*°, this contradicts the

22" _subexponential CDH assumption. The argument extends directly to the
setting where N’ = X assuming only the polynomial hardness of CDH. O

Combining Lemma 17 and Lemma 18 with Theorem 12 concludes the proof
of Lemma 15, where the resulting CRS is a uniformly random string thanks to
the oblivious samplability of the group. We note that the construction above is
not new: the works of [12,48] constructed a NIZK by compiling a NIZK in the
HBM under the CDH assumption over pairing-friendly groups. Our construction
can be viewed as abstracting out their compiler as a VPRG, and replacing the
pairing (which is used solely to check a DDH relation in their construction) by
the efficient DDH breaker A.

5 A Subexponentially-Often NIZK from Subexponential
CDH

In this section we prove our main theorem:

Theorem 20. Assume the subexponential hardness of CDH. Then for any NP
language £, there exists a non-interactive zero-knowledge proof for £ which is
infinitely-often secure in the following sense:

— Subexponentially-often uniform soundness: There exists a constant 0 < K <
1, and an infinite set E C N, such that the following properties hold:

o (Relative density of E): For all A € N, [/\, 2’\K] NE#§.

o (Infinitely-often uniform soundness w.r.t. E): For all uniform PPT adver-
sary A and all \; € E:

crs <& Setup(1M), (z, 7) < Alcrs) :

< negl()\;).
Verify(crs,z, 1) = 1Az ¢ L } < negl(\,)

— Standard adaptive, multi-theorem zero-knowledge against non-uniform veri-

fiers.

In particular, defining E = {\;}ien as an increasing sequence (namely \; < A,
whenever i < j), we have that for all i € N: \;;; < oAD"
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Remark 21 (Restriction on cryptographic groups). We recall that we consider
here cryptographic groups with exponentiation in TCO, typically including Zj or
its subgroup of quadratic residues (see also Sect. 3.1). This is a similar restriction
to the one made in [35]. We refer to the full version for a sketch of how to extend
Theorem 20 to families of elliptic curves (without requiring a pairing).

Remark 22 (Subexponential security). The proof of Theorem 20 can be directly
modified to achieve various forms of subexponential soundness and zero-
knowledge. Soundness with subexponential advantage follows from [35], by rely-
ing on an appropriately stronger subexponential hardness of DDH (which in
turns requires a stronger CDH assumption). Zero-knowledge against subexpo-
nential time verifiers follows from relying on an appropriately stronger subex-
ponential hardness of CDH. The constant K will increase with the strength of
the subexponential soundness claim, and the exact subexponential hardness of
CDH needed will both grow with K and the strength of the subexponential
zero-knowledge claim.

In Sect. 5.1, we build a universal DDH breaker. We then present our NIZK
construction in Sect. 5.2. We discuss additional results in Sect. 5.3.

5.1 A Universal DDH Breaker

In order to prove Theorem 20, our main building block is a universal DDH
breaker. Very imprecisely, the universal breaker (1) efficiently breaks DDH on
all security parameters such that some efficient breaker exists, and such that (2)
DDH holds otherwise. For technical reasons (briefly discussed in Remark 26), we
split the construction of a universal breaker into two procedures: a tester which
tests whether some input security parameter is secure or broken (Lemma 24),
and a universal DDH breaker which breaks DDH with large probability whenever
any weak breaker exists (Lemma 25).

Notation. Throughout the section, ¢t = t()\), ¢ = £(\) will denote functions
such that ¢(\) is positive-integer-valued, and 0 < £(A) < 1/2. Define the two
following machines:

— M): on input (1%, z), run M (1*,z) for up to () steps. If M terminates and
outputs a bit, define that bit as the output of M(t)(l’\, x); otherwise output
a random bit b < {0, 1}. Note that by definition, M runs in time at most
t(A).

— My = M (t,e/6) is the machine defined in Lemma 17 starting with My,
with functions ¢ and ¢/6. In particular, if Adv%}?i > ¢/6, then AdvRRH >

My —
1 — negl()\) - 2747V,

Next, we define our sets of secure and broken security parameters.
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Definition 23 (Secure and Broken DDH parameters). Lett =1t()\), e =
g(A) be functions such that t(X) is positive-integer-valued, and 0 < e(A) < 1/2.
We define SECURE = SECURE(t,e) C N as the set of security parameters A
such that, for all uniform Turing machines A of size at most |log A| running in
time at most t(\):
AdVEPH (1Y) < e(N),

where AdvOP™ (11 is defined in Definition 6.
We define BROKEN = BROKEN(t,e) C N as the set of security parameters
A, such that there exists a uniform machine A* of size at most |log A| such that:
DDH 1 A e(A)
* > —=
AdVA(t) (1 ) =5 s
where Az‘t) is defined above.

Let us make a few comments on this definition. First, SECURE U BROKEN = N.
This is because if A ¢ SECURE, then any machine A4* contradicting A € SECURE
is a “witness” for A € BROKEN. However, SECURE and BROKEN are not neces-
sarily complementary sets. This is because (1) the advantage requirements are
potentially compatible, and (2) BROKEN quantifies over a slightly larger set of
Turing machines, as A7, can have description size (slightly) larger than |log A].

The following gives an algorithm which, on input a security parameter, effi-
ciently determines whether DDH is secure or not, in the sense of Definition 23.

Lemma 24 (Security Parameter Tester). Let ¢t = t(\), € = (\) be func-
tions such that t(X\) is positive-integer-valued, and 0 < e(X) < 1/2.

Then there exists an algorithm Test = Test(t, &) which takes as input 1* where
A €N, runs in time t(\)/e2()\) - poly()), and satisfying the following properties:

- For any A € N:
Pr [\ ¢ SECURE A Test(1*) = 1] <277,

over the randomness of Test;
— For any A € N:

Pr [\ ¢ BROKEN A Test(1*) = 0] < A-27%,
over the randomness of Test.

Intuitively, the algorithm Test can ensure, with overwhelming probability,
that some input security parameter is secure (corresponding to output 1) or
broken (corresponding to output 0) with respect to Definition 23. Note that
Test can potentially produce both outcomes with large probability whenever
A € SECURE N BROKEN.
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Proof. We define Test as follows. On input (1*):
— For M € {0,1}l°eA parse M as the description of a Turing Machine. Let
() = [100 Em)j
e For i = 1 to C(\), sample oy, 5,7 «— Zp, and b; {0 1}. Set §; =
by + (1 — b)a; ;. Compute b}, «— M(t)((l G,9,9%,9%, g%). Let
c)
=) labab
i=1
be the number of indices i such that b; = b}.
Ifepr > (% + #) - C(\), then output 0.

Otherwise continue to the next M € {0, 1}LgA].
— If no output has been produced so far, output 1.

Note that Test runs in time ¢()\)/e2(\) - poly()).
We first prove that, for any A € N:

Pr [\ ¢ SECURE A Test(1*) = 1] <277,

over the randomness of Test.
Suppose A ¢ SECURE. Then there exists a uniform adversary A* with size
at most |log A| running in time #(\) such that:

AdvEPH (1Y) > e(N).

Because A* runs in time #(\), note that Az‘t) = A*. In order to output L, Test has
to loop through M = A*. When M = A*, all the b; and b} for all 1 <1 < C())

are independent from each other, and Pr[b; = b}] > 1 + £(\) by assumption on
A*, so that E[ea] > (3 +e(N)) - C’(/\). A standard Chernoff bound gives:

s (2 i e () <

so with probability at least 1 — exp(—\/64), Test outputs 0 when looping on A*
(or some other machine, if it produces an output bit before reaching .A*).
Next, we prove that for all A € N:

Pr [\ ¢ BROKEN A Test(1*) = 0] < A-27*

over the randomness of Test.
Suppose A ¢ BROKEN, that is, for all Turing machines M of size at most

[log AJ:
0]

2
Then E[cps] < (% + E(QA)) [ oy —‘ A standard Chernoff bound gives:

prlenz (3070 Lt || =0 () =2

Using a union bound, the probability that Test outputs 1 on any machine M of
size at most [log A| is at most A - 272, O

AdVERH (1) <
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Next, we build a universal breaker that breaks DDH on any A € BROKEN:

Lemma 25 (Universal DDH Breaker). Lett=t()\) and € = ¢(\) be posi-
tive functions defined in the beginning of the section.

Then there exists an algorithm UnivBreak = UnivBreak(t,e) which runs in
time t(X)/e2(X) - poly(X), such that for all A € BROKEN:

G = DHGen(1*),g << G, a, 8,7 < Zy,
Pr b {0,1},0 < by + (1 — b)ag, b=V >1—negl()) - 9—4T(X)
¥ < UnivBreak(1*,G, g, 9%, ¢°, ¢%)

Proof. We define UnivBreak as follows. On input (1*,G, g, 9%, ¢°,¢°)):

— For M € {0, 1}“0g M parse M as the description of a Turing Machine. Let

C'(\) = [400 qat

e For i = 1 to C()l, sample «;, B;,7; — Zp, and b; — {0,1}. Set ¢; =
byi + (1 — b)ay B;. Compute b}, «— M(t)((lk, G,9,9%,9%, ¢%). Let

o)
cy = Z 19b; @b,
i=1
be the number of indices ¢ such that b; = b}.
If cpr > (% + 8(;\)) : C()\)a then output M(t)(l)\vgvgvgamgﬁagé)'

Otherwise continue to the next M € {0, 1}L108 ],
— If no output has been produced so far, output a random bit b — {0, 1}.

Note that UnivBreak runs in time ¢(\)/e2()) - poly()).
Let A € BROKEN, and let M* be a machine of size at most |log A| such that:

e(N\)
5

We first argue that the probability that UnivBreak outputs a random bit
(because of skipping all Turing machines of size at most [logA|) is at most
2-2.274T(N)_ This only occurs whenever UnivBreak ignores M*, which happens
with probability at most 2= - 2747(N) by a standard Chernoff bound similar to
Lemma 24.

Next, we claim that the probability that UnivBreak produces an output using
a machine M such that Adv][\)zg < g/6is at most A-27*-274T(N) again using a

AdvRPH (1%) >

standard Chernoff bound similar to Lemma 24. Finally, by definition of M) =
M) (t,€/6) (defined at the beginning of Sect. 5.1 and Lemma 17), we obtain:

G = DHGen(1*),g < G, o, 8,7 < Z,,
$ Y Y Y —4T ()
Pr b<{0,1},6 —by+ (1 —b)aB, :b=0b >1—(27" 4+ X277 +negl(A)) - 2 .
p S UnivBreak(1*, G, g, 9%, ¢°, ¢°)

>1— negl(A) - 24T



756 G. Couteau et al.

Remark 26 (Splitting tester and universal breaker). We introduced separate con-
structions of testers and breakers, even though the algorithms are very similar:
this is done so that they can use different thresholds. Then, the behavior of
UnivBreak becomes fully characterized by whether its input security parameter
belongs to BROKEN. Using the same threshold for the tester and the breaker
would instead result in a universal breaker which, on input some security param-
eters in SECURE N BROKEN, could potentially “fail” with high (say constant)
probability and use some good enough breaker with also high constant proba-
bility.

5.2 A Subexponentially-Often NIZK

We now prove Theorem 20. We first provide an outline of our construction.
We use both a DDH-based NIZK, and a VPRG-based NIZK based on the uni-
versal breaker of Sect.5.1. Given a fixed security parameter A\, a proof consists
of both proofs (which does not hurt zero-knowledge, as both constructions are
zero-knowledge almost-everywhere), where we use complexity leveraging on the
VPRG-based one (namely, we run it on a smaller security parameter \'). In order
to verify a proof, we use our “universal tester” from Sect.5.1 to check whether
(the complexity leveraged version of) DDH is broken; if it is, then the VPRG-
based NIZK, using the universal breaker of Sect. 5.1, ensures completeness and
(statistical) soundness. Note that the testing step, and the verification algorithm
of the VPRG-based NIZK, are made efficient thanks to complexity leveraging.
Otherwise, we do not know how to directly argue that the DDH-based NIZK
provides soundness; instead, we argue that there exists a “relatively close” secu-
rity parameter A for which the DDH-based NIZK allows to argue soundness. The
formal construction and proof follow.

Let ¢ = (A) = 272" be an inverse subexponential function, where 0 < ¢ <
1 is a constant and ¢t = #(\) be any superpolynomial, positive-integer-valued
function such that #(\) < 2*°.12

We use the following building blocks:

— A DDH-based NIZK (DDH.Setup, DDH.Prove, DDH.Verify) given by Theorem
14 using the constant c.

— A VPRG-based NIZK (VPRG.Setup, VPRG.Prove, VPRG.Verify) from Lemma
15, instantiated with the universal breaker UnivBreak from Lemma 25.!3

— A DDH tester Test given by Lemma 24.

12 Taking any other subexponential upper-bound for ¢ would suffice for us, but would
result in additional unnecessary notation.

13 The universal breaker from Lemma 25 is already a strong breaker, so the proof
of Lemma 15 can directly argued combining Lemma 18 with Theorem 12, with-
out explicitly using Lemma 17. This is because we internally amplified the success
probability of UnivBreak in Lemma 25 (using Lemma 17).
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Construction. Define the following NIZK (Setup, Prove, Verify):

— Setup(1*,11#) : Define X = Llogl/c(/\)J. Compute crsppy «— DDH.Setup

(1>‘,1|‘”‘), CISVPRG VPRG.Setup(l)‘l,1|$|),14 and output crs = (crsppH,

CI’SVPRG)~
— Prove(crs, z,w) : Compute mppy < DDH.Prove(crsppn, z, w) and myprg —

VPRG.Prove(crsyprg, z, w). Output m = (Tppm, TvPRG)-

— Verify(crs, z,7): Compute b « Test(lx). If b = 0, output VPRG.Verify
(crsvprG, , Tvprg) using UnivBreak. If b = 1, output DDH.Verify(crsppu,
IMTDDH)-

We first tie the definitions of Definition 23 with security properties of the
NIZKs above. Recall that for any A € N, we defined in Theorem 14 the set
TOWER) = TOWER) (¢, L) = {A} U {)‘(0/2)1/2}%@]7 where L > 0 is a constant
given by Theorem 14.

Lemma 27 (Security of the DDH-based NIZK). Define the set

Eppr = | J{\| TOWER, C SECURE},
AeN
where SECURE = SECURE(t, ) is defined in Definition 23. Then (DDH.Setup,
DDH.Prove, DDH.Verify) satisfies perfect completeness, infinitely-often soundness
w.r.t. EppH (against uniform cheating provers), and statistical zero-knowledge
against non-uniform verifiers.

Proof. First, observe that the construction of Fppy implies:

U TOWER,, C SECURE.
A€ EppH

In particular, for any A € Eppy and any \; € TOWER), \; € SECURE.
Therefore, by Theorem 14, it suffices to check that, for any uniform PPT
adversary A, there exists A* such that for all A € SECURE such that A > \*:

AdvOPH (1Y) < 27, (1)

Let A be a uniform adversary, and let ¢(A) = poly(\) denote its runtime, and s its
size as a Turing machine. By construction of SECURE (Definition 23), Equation
(1) holds for all A € SECURE such that t(A) > ¢(A) and A > 2°, which in turn
hold for all large enough A € SECURE as ¢ is a super-polynomial function. O

Lemma 28 (Security of the VPRG-based NIZK). Define, for all A € N,
VPRG.Setup(1*) := VPRG.Setup(1" ), where \' = Pogl/c(/\)J. Define the set

Bypre = {/\ ‘ Pogl/c(/\)J € BROKEN }

!4 We use the VPRG-based NIZK to prove statements of size |z| = poly(\) which
are subexponential in its internal security parameter \’. The VPRG-based NIZK of
Lemma 15 remains subexponentially secure in that setting; see Remarks 13 and 16.
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Let ¢ be any constant such that ¢ < ¢ < 1. Assuming the 92" -subexponential
hardness of CDH (Sect.3.1), (VPRG.Setup, VPRG.Prove, VPRG.Verify) s
infinitely often correct and statistically adaptively sound with respect to F\prg'®,
and computationally adaptively, multi-theorem zero-knowledge.

Proof. By definition of \', and by assumption on the functions ¢, e, UnivBreak on
input (1", z) for any 2 runs in time t(\’)/e2(\')-poly(X') = poly(\), and therefore
the algorithms (VPRG.Setup, VPRG.Prove, VPRG.Verify) run in polynomial time.

The rest follows by instantiating Lemma 15 starting with A = UnivBreak,
which runs on security parameter A’ € BROKEN by definition of Eyprg, and
using that Advoors (1Y) > 1 — negl(V) - 2747(\) thanks to Lemma 25. O

Next, we tie Lemma 27 and Lemma 28 together thanks to the properties of
our tester Test. Let A € N. We distinguish several cases:

Case 1: If A ¢ FEppy, there exists some \; € TOWER, such that A\; ¢
SECURE, so that A; € BROKEN and X := 2 € Eypgrg by definition. Fur-
thermore, because \; ¢ SECURE, Test(1*) outputs 0 except with prob-
ability 2% by Lemma 24, and therefore (Setup,Prove, Verify) on secu-
rity parameter X = 2 will call VPRG.Verify with overwhelming probabil-
ity. Soundness on \ then follows by soundness of the VPRG-based NIZK
(VPRG.Setup, VPRG.Prove, VPRG.Verify) on Eypre (Lemma 28).

Case 2: If A € Eppn, namely if TOWER), C SECURE, we distinguish two
subcases:

Case 2.1: M ¢ BROKEN then Test(lx) outputs 1 except with probabil-
ity at most A -2~* by Lemma 24, and therefore (Setup, Prove, Verify) on
security parameter \ will call DDH.Verify with overwhelming probabil-
ity. Soundness on A then follows by soundness of the DDH-based NIZK
(DDH.Setup, DDH.Prove, DDH.Verify) on Eppy (Lemma 27).

Case 2.2: Last, if N’ € BROKEN, then A\ € Eppn N Evprg, and therefore
(Setup, Prove, Verify) is sound regardless of the outcome of Test(1') by
soundness of both NIZKs (VPRG.Setup, VPRG.Prove, VPRG.Verify) and
(DDH.Setup, DDH.Prove, DDH.Verify).

Summing up, define a set £ C N as follows. For all A\ € N, define A € F if
either Case 2.1 or Case 2.2 occurs, and define A = 2 € F if Case 1 or Case
2.2 occurs, for all \; € TOWER) such that A\; € BROKEN. We obtain that
(Setup, Prove, Verify) is infinitely-often adaptively sound with respect to E, and
satisfies adaptive, multi-theorem zero-knowledge against non-uniform verifiers.
Finally, by construction of E, for all A € N, E N ({A\}U QTOWER*C) # ), and
therefore, by construction of TOWERy, F N [\, 2*] # 0. Setting K = ¢, we
obtain the relative density of E as stated in Theorem 20. This concludes the
proof. O

15 See the paragraph on infinitely-often security in Sect. 3.2 for a definition of soudness
w.r.t. an infinite set F.
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5.3 Additional Results
Modifying specific building blocks directly yields the following theorems.

Theorem 29 (NIZKs from CDH and LPN). Assume the superpolynomial
hardness of CDH and the polynomial hardness of LPN. Then for any NP lan-
gquage £, there exists a superpolynomially-often uniform mon-interactive zero-
knowledge proof for L.

Note that the construction above can be instantiated in any (candidate) prime-
order groups (that is, without restrictions similar to [35]).

Proof (Sketch). This follows from the same construction as in Sect.5.2, but
instantiating the DDH-based NIZK with the construction of [9] which is secure
under the polynomial hardness of both DDH and LPN. We then set ¢ (resp. ) as
any superpolynomial (resp. inverse superpolynomial) function. The only notable
differences in the proof are (1) the complexity leveraging is consequently milder,

and we therefore only need to rely on the superpolynomial hardness of CDH,
and (2) EDDH = SECURE.

Theorem 30 (ZAP Arguments from Subexponential CDH). Assume
the subexponential hardness of CDH. Then for any NP language £, there exists a
ZAP argument for £ satisfying (1) subexponentially-often, non-adaptive sound-
ness against uniform efficient cheating provers and (2) (standard) adaptive wit-
ness indistinguishability.

Proof (Sketch). We start with the existence of DDH-based ZAPs which is secure
assuming DDH (Theorem 14; note that it only satisfies non-adaptive soundness),
and VPRG-ZAPs built on any DDH breaker, which are secure assuming CDH
(this follows noting that Lemma 15 gives a statistically sound NIZK with a
common random string, which yields a ZAP by [24]). The construction simply
defines the first (resp. second) message of the ZAP as the concatenation of the
first (resp. second) messages two ZAPs. Verification proceeds as in Sect. 5.2. The
analysis is identical to the one in Sect. 5.2.

6 An Infinitely-Often NIZK from CDH-+LPN

In this section, we prove the following theorem:

Theorem 31 (io-NIZK from CDH+LPN). Assume that CDH and (uni-
form) LPN both hold. Then for any NP language £, there exists an infinitely-
often uniform non-interactive zero-knowledge proof for L.

Compared to Theorem 29, Theorem 31 only requires the polynomial hardness of
CDH and LPN. This is, however, at the cost of having a non-constructive result,
and losing superpolynomial-oftenness. In fact, we prove the following statement:
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Theorem 32. At least one of the following statements is necessarily true:

— the (uniform) LPN assumption implies the existence of an infinitely-often
non-interactive zero-knowledge argument system for NP with uniform adap-
tive soundness and standard zero-knowledge, or

— the CDH assumption implies the existence of a non-interactive zero-knowledge
proof for NP with statistical adaptive soundness, and adaptive multi-theorem
zero-knowledge.

In order to prove Theorems 31 and 32, consider the following hypothesis H:

For all uniform PPT adversary A, all polynomials ¢, and for infinitely many
security parameters A € N,

AdVEPH (1Y) < 1/¢(N).

Theorems 31 and 32 follow directly from the combination of Lemma 33 and
Lemma 34 below, which show the existence of NIZKs when H holds and when
= H holds, respectively.

Lemma 33. If H holds, then assuming the (uniform) hardness of LPN, there
exists an infinitely-often non-interactive zero-knowledge argument system with
uniform non-adaptive soundness and statistical zero-knowledge.

Proof. This is directly implied by the NIZK of [9] which is statistically zero-
knowledge, and (uniformly, non-adaptively) sound assuming the polynomial
(uniform) hardness of LPN and DDH; their claim extends directly to the
infinitely-often, uniform setting.

Lemma 34. If H does not hold, then assuming the hardness of CDH, there
exists a non-interactive zero-knowledge proof with statistical adaptive soundness,
and adaptive multi-theorem zero-knowledge.

Proof. Assuming —H , there exists a uniform PPT A, along with a polynomial ¢,
such that for all A € N, AdviP"(1*) > 1/¢()\). The lemma then follows directly
from Lemma 15.
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