
Meta-Learning with Neural Bandit Scheduler

Yunzhe Qi ∗

University of Illinois at Urbana-Champaign
Champaign, IL

yunzheq2@illinois.edu

Yikun Ban∗

University of Illinois at Urbana-Champaign
Champaign, IL

yikunb2@illinois.edu

Tianxin Wei
University of Illinois at Urbana-Champaign

Champaign, IL
twei10@illinois.edu

Jiaru Zou
University of Illinois at Urbana-Champaign

Champaign, IL
jiaruz2@illinois.edu

Huaxiu Yao
University of North Carolina at Chapel Hill

Chapel Hill, NC
huaxiu@cs.unc.edu

Jingrui He
University of Illinois at Urbana-Champaign

Champaign, IL
jingrui@illinois.edu

Abstract

Meta-learning has been proven an effective learning paradigm for training machine
learning models with good generalization ability. Apart from the common practice
of uniformly sampling the meta-training tasks, existing methods working on task
scheduling strategies are mainly based on pre-defined sampling protocols or the
assumed task-model correlations, and greedily make scheduling decisions, which
can lead to sub-optimal performance bottlenecks of the meta-model. In this paper,
we propose a novel task scheduling framework under Contextual Bandits settings,
named BASS, which directly optimizes the task scheduling strategy based on the
status of the meta-model. By balancing the exploitation and exploration in meta-
learning task scheduling, BASS can help tackle the challenge of limited knowledge
about the task distribution during the early stage of meta-training, while simultane-
ously exploring potential benefits for forthcoming meta-training iterations through
an adaptive exploration strategy. Theoretical analysis and extensive experiments
are presented to show the effectiveness of our proposed framework.

1 Introduction

Meta-learning algorithms [18] have been receiving increased attention due to their strong general-
ization performance across a wide range of tasks [31, 19]. Most existing meta-learning methods
often assume a uniform distribution when drawing meta-training tasks, treating each task as equally
important [18]. However, this assumption can possibly fail in real-world scenarios. For example,
during data collection, candidate training tasks can be subject to noise perturbation, leading to perfor-
mance bottlenecks in the meta-model if noisy and clean tasks are treated on an equal footing [42, 44].
In addition, some tasks can pose greater challenges for the meta-model to adapt to, necessitating a
more flexible allocation of computational resources during the meta-training process. Furthermore,
the task distribution may be skewed, with "tail" tasks receiving inadequate attention under uniform
sampling. As a result, the task scheduling methods [13, 50, 30, 23, 28] have been proposed for a
refined meta-training strategy.

∗Equal Contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Exploitation and exploration in meta-training
iteration k ∈ [K]. E.g., tasks 1, 2, 3 are "frequent"
tasks in a skewed task distribution, and tasks 4, 5, 6
are from task distribution "tail". Exploring the "tail"
tasks can help improve the meta-model generalization
performance (Subsec. 6.2).

Existing scheduling approaches mainly aim to improve
meta-training strategies based on various pre-defined cri-
teria and assumptions, including both non-adaptive and
adaptive methods. Among them, non-adaptive methods
working on the gradient that updates trainable parameters
[30, 12] have proven their superiority over meta-training
methods with uniform sampling. But they are unable to
adjust the task scheduling strategy adaptively based on the
status of the meta-model. On the other hand, adaptive meth-
ods aim to schedule the tasks based on Curriculum Learning
[13, 51, 49] or adaptively sample the tasks based on the
task adaptation difficulty (loss) [50]. However, the existing
approaches are all greedy algorithms, which means that
they tend to make locally optimal decisions based on the
current knowledge (i.e., exploitation only). As the learner
only has limited knowledge regarding the task and data
distribution at the early stage of meta-training, the greedy
strategy can lead to the sub-optimal meta-model due to multiple reasons, such as being misled by the
noisy tasks or affected by the skewness of the task distribution. Here, we use Figure 2 to illustrate an
example where the greedy approach (only exploitation) may be trapped in sub-optimal solutions.

One intuitive solution for the aforementioned problems is tackling the exploitation-exploration
dilemma [4] in meta-training process: balancing the exploitation of current knowledge of selected
tasks, and the exploration of under-explored tasks for potential long-term benefits. Therefore, unlike
existing approaches with greedy strategies, we propose a novel task scheduling framework under
the Contextual Bandits settings [14, 27, 4, 1, 53, 52, 2], named BAndit TaSk Scheduler (BASS).
In each meta-training iteration, we formulate each candidate meta-training task as an arm under
the contextual bandit settings, and the corresponding arm reward will naturally be the meta-model
generalization ability score after including this candidate task (arm) into the meta-training process. To
achieve this objective, BASS directly learns the mapping from the meta-parameters to the meta-model
generalization ability score, instead of depending on the hand-crafted criteria or assumptions. This
design also enables us to update meta-parameters and BASS simultaneously within one round of
meta-optimization. In particular, instead of greedily scheduling the meta-training tasks solely based
on the current knowledge (i.e., exploitation), BASS leverages an additional adaptive exploration
module with two different exploration objectives to explore for unrevealed benefits. Our main
contributions can be summarized as follows:

• [Problem and Proposed Framework] We are the first to formulate the meta-learning task schedul-
ing problem under the Contextual Bandits settings, where we optimize the meta-model w.r.t. chosen
task batches in each meta-training iteration. To tackle this problem, we propose a novel bandit-
based meta-learning task scheduling framework named BASS, which is model-agnostic and can be
applied to various meta-learning frameworks. Different from existing works, BASS directly learns
the relationship between the meta-model parameters and the meta-model generalization ability. In
addition, instead of greedily exploiting the current knowledge as in existing works, BASS utilizes a
novel exploration module to adaptively plan for the future meta-training iterations.

• [Theoretical Analysis] Under the general meta-learning settings as well as standard assumptions
of over-parameterized neural networks and neural bandits, we derive the theoretical performance
guarantee for the proposed BASS framework in terms of regret bound.

• [Experiments] To demonstrate the effectiveness of BASS, we compare our method against seven
strong baselines on three real data sets, with different specifications. In addition, complementary
experiments as well as a case study on Ensemble Inference are also provided to better understand
the property and behavior of BASS.

2 Related Works

In this section, we briefly review the related works of our proposed BASS framework from the aspects
of task scheduling in meta-learning and contextual Bandits.

2

Task Scheduling in Meta-Learning. By considering each meta-training task to be equally important,
many existing works sample the training tasks uniformly from the given task distribution [18, 39].
Then, with fixed sampling strategies, [23, 34] propose to assign the task sampling probability based
on the quantity of task information, and [30] utilizes a probabilistic sampling method based on
class-pairs. Meanwhile, there are also works try to improve task-specific gradients for the randomly
sampled tasks [12, 33]. On the other hand, Curriculum-based approaches [13, 51, 49] schedule the
tasks based on the difficulty of task adaptation, and [50] propose to adaptively schedule the tasks
based on the assumed correlation between the difficulty of meta-training tasks and the meta-model
generalization ability. However, the existing works are all greedy approaches that solely focus on
the instant benefits, which can lead to sub-optimal meta-models due to the potential performance
bottleneck. Compared with existing works, our proposed BASS directly learns the mapping from the
meta-parameters to the generalization loss with no pre-defined criteria. With the adaptive exploration
strategy, our proposed BASS helps tackle the insufficient knowledge regarding the task distribution
by balancing the exploitation and exploration, as well as focusing on the long-term effects.

Contextual Bandits. Contextual bandits algorithms aim to solve the sequential decision making
problem under the online learning settings, such as online recommendation [27, 48, 6]. Assuming
that the mapping from arm contexts to rewards is linear, linear upper confidence bound (UCB)
algorithms [14, 27, 4] are proposed to solve the exploitation-exploration dilemma. After kernel-based
methods [45, 16] being applied to deal with the non-linear setting where the reward mapping is
assumed to be a function in Reproducing Kernel Hilbert Space (RKHS), neural bandit algorithms
[53, 52, 7, 5, 38, 8] are proposed to utilize neural networks for the reward and confidence bound
estimation. In particular, neural bandit algorithms have demonstrated their superior performance
over linear and kernel-based algorithms [53], thanks to the representation power of neural networks.
Moreover, instead of using non-negative UCB, EE-Net [9] achieves adaptive exploration by adopting
an additional neural network to estimate the potential gain of reward estimations. In this paper, we
model the task scheduling problem under the Contextual Bandit settings to balance the exploitation
and exploration dilemma regarding the meta-task scheduling.

3 Problem Definition and Learning Objective

Under the settings of few-shot supervised meta-learning [18], our goal is to train a meta-model
F(·;Θ) with parameters Θ ∈ Rp that can generalize well to meta-testing tasks, where p is the
number of trainable meta-parameters. The meta-model parameters are initialized as Θ(0). Note that
in this work, the trainable parameters are all represented by column vectors, for the simplicity of
notation. Following similar settings in [18, 50], in each training iteration k ∈ [K], we will receive a
pool of candidate training tasks Ω(k)

task = {Tk,i}i∈N where its cardinality |Ω(k)
task| = Ntask and the index

set N = {1, . . . , Ntask}. Given a task distribution P(T), we draw each candidate task Tk,i from
P(T) to form the candidate pool, i.e., Tk,i ∼ P(T). Each task Tk,i is also associated with a support
data set Ds

k,i and a query data set Dq
k,i, where the samples (including their labels) of Ds

k,i, D
q
k,i are

drawn from the corresponding task data distribution DTk,i
of task Tk,i.

Meta-training Process. Then, we need to choose a batch of B tasks Ωk = {Tk,̂i}̂i∈N̂k
⊂ Ω

(k)
task for

each meta-training iteration k ∈ [K], where N̂k ⊂ N refers to the indices of chosen tasks. With
Θ(k−1) being the meta-model parameters after completing the (k − 1)-th meta-training iteration, for
each chosen meta-training task Tk,̂i, î ∈ N̂k, we run Gradient Descent (GD) for J steps on its support

set Ds
k,̂i

to obtain the task-specific parameters Θ(J)

k,̂i
. This refers to the inner-loop optimization. In

this work, we consider a loss function L(·; ·) that maps the meta-model parameters and the input
sample (or sample set) to the loss value, with the range [0, 1] (e.g., the MSE loss on normalized user
ratings [26]). Denoting Θ

(0)

k,̂i
= Θ(k−1) in meta-training iteration k, each GD step is represented as

Θ
(j)

k,̂i
= Θ

(j−1)

k,̂i
− η1 · ∇ΘL(Ds

k,̂i
;Θ

(j−1)

k,̂i
), ∀j ∈ [J] (1)

where η1 ∈ R+ is the learning rate of GD. For the simplicity of notation, we formulate the above
J-iteration inner-loop optimization as an operator I(·, ·) : T ×Θ 7→ Θ, such that

Θ
(J)

k,̂i
= I(Tk,̂i ,Θ

(k−1)). (2)

3

Figure 2: In meta-training iteration k ∈ [K], the BASS framework overview. We only need one
round of the optimization process (LHS of the figure) to update the meta-model and BASS.

Then, we optimize the meta-parameters through the outer-loop optimization with query sets

Θ(k) = Θ(k−1)[Ωk] = Θ(k−1) − η2 · ∇Θ

(1

|Ωk|
∑

Tk,î∈Ωk

L(Dq

k,̂i
;Θ

(J)

k,̂i
)
)

(3)

where η2 ∈ R+ is the learning rate. Here, the trained meta-model parameters Θ(K) is expected to
minimize the generalization loss ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K))

)]
, where we let DT being the

associated data distribution of task T .

Evaluating Task Batch Benefits. Recall that in meta-training iteration k ∈ [K], the meta-model
will be updated based on the chosen batch of B tasks (Eq. 3), and we will need to evaluate the
benefit in terms of the whole task batch. By the task scheduling problem definition, the learner will
select one task batch Ωk ⊂ Ω

(k)
task based on its strategy, and the chosen task batch Ωk will be used for

meta-training in this iteration k. Here, we define the reward of the corresponding task batch Ωk as

h
(
Θ(k−1)[Ωk]

)
= 1− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(k−1)[Ωk])

)]
(4)

where Θ(k−1)[Ωk] refer to the meta-parameters after adapting Θ(k−1) to task batch Ωk based on Eq.
3. For simplicity, we let h : Rp 7→ R be the mapping function conditioned on distribution P(T),
which maps the trained meta-model parameters Θ(k−1)[Ωk] to task batch rewards.

Learning Objective. Up to meta-training iteration k, we have Ω∗(K) = {Ω∗
1, . . . ,Ω

∗
K} be-

ing a series of unknown optimal task batches that minimizes the generalization loss. Each opti-
mal batch is Ω∗

k = {Tk,i∗}i∗∈N∗
k

⊂ Ω
(k)
task, k ∈ [K] including a total of |Ω∗

k| = B tasks, with
the indices N ∗

k ⊂ N . The corresponding optimal meta-parameters are defined as Θ(K),∗ =

arg infΘ∈W

[
ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ)

)]]
, where W ⊂ Rp refers to the reachable param-

eter space, which contains the possible trained meta-parameter values, after observing the available
candidate tasks {Ω(k)

task}, k ∈ [K] and the randomly initialized meta-parameters Θ(0). Meanwhile,
denoting our selection of the meta-training task batches as Ω(K) = {Ω1, . . . ,ΩK}, we will have the
corresponding trained meta-parameters Θ(K). Here, we can define the K-iteration regret as

R(K) = ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K))

)
− L

(
x; I(T ,Θ(K),∗)

)]
(5)

which measures the difference of the generalization ability between the trained meta-parameters
Θ(K) and the optimal meta-parameters Θ(K),∗, after K meta-training iterations.

4 Proposed Framework: BASS

In this section, we introduce our proposed BASS framework, which simultaneously optimizes the
meta-model and the task scheduling strategy on the fly. The pseudo-code is presented in Algo. 1, and
the illustration for each meta-training iteration k ∈ [K] is shown in Figure 2.

4

Algorithm 1 BAndit TaSk Scheduler (BASS)

1: Input: Task distribution P(T). Iterations K. GD steps J . Number of chosen tasks B. Learning
rates for meta-model η1, η2. Learning rates for BASS ηθ1 , η

θ
2 . Exploration coefficient α ∈ (0, 1].

2: Output: Trained meta-parameters Θ(K).
3: Initialization: Randomly initialized meta-model parameters Θ(0), and BASS parameters θ(0).

4: for each meta-training iteration k ∈ [K] do
5: Sample a pool of Ntask candidate meta-training tasks Ω(k)

task from the task distribution P(T).
▷ –––––– Task Scheduling ––––––

6: for For each candidate task Tk,i ∈ Ω
(k)
task do

7: Derive two arm context vectors χs
k,i,χ

q
k,i [Eq. 6].

8: Calculate arm benefit score ŝk,i = α · f1(·; θ(k−1)
1) + f2(·; θ(k−1)

2) with BASS. [Eq. 7]
9: end for

10: From Ω
(k)
task, choose the top-B tasks Ωk ⊂ Ω

(k)
task with the highest scores {ŝk,i}i∈N .

▷ –––––– Parameter Updating ––––––
11: for each chosen training task Tk,̂i ∈ Ωk do
12: Derive the corresponding rewards r̃k,i and exploration score ẽk,i. [Eq. 8-9]
13: end for
14: Update meta-parameters to Θ(k) based on chosen arms (tasks) Tk,̂i ∈ Ωk. [Remark 2, Eq. 3]

15: Update BASS parameters to θ(k) with chosen arms. [Eq. 8-9, Subsec. 4.4]
16: end for

Remark 1 (Task Scheduling with Contextual Bandits). By the problem definition, there are Nbatch =(
Ntask
B

)
candidate task batches in each meta-training iteration, which can be a large number. In this

case, enumerating all possible task batches and estimating their rewards will be time consuming.
Therefore, under the Contextual Bandits settings, BASS alternatively considers each candidate task
Tk,i ∈ Ω

(k)
task as an arm, and directly chooses B arms as the meta-training tasks Ωk ⊂ Ω

(k)
task. As

a result, BASS can (1) reduce the arm space size from O(Nbatch) to O(Ntask), while (2) enjoy the
performance guarantee (Section 5) in terms of regret bound (Eq. 5).

Section Outline. Here, we will first present our definition of the arm contexts (Subsec. 4.1),
whose formulation is challenging, because our settings are different from conventional Contextual
Bandits where arm contexts are readily available from the environment. Then, applying two neural
networks f1, f2 for exploitation and exploration respectively, we formulate the arm benefit score
(Subsec. 4.2), which measures the benefit if we include the corresponding arm (task) into the current
meta-training process. Next, we define the arm rewards and exploration scores as the labels for
training f1, f2 respectively. In particular, to deal with the challenge of achieving exploration in
task scheduling, we incorporate the information and the dynamics w.r.t. meta-optimizations, and
formulate two separate exploration objectives for a refined exploration strategy (Subsec. 4.3). Finally,
we update BASS with GD (Subsec. 4.4), and train the meta-model with chosen tasks.

4.1 Formulating Arm Contexts

To encode the information from both the task side and the meta-model side, for each candidate
task (i.e., arm) Tk,i ∈ Ω

(k)
task in meta-training iteration k ∈ [K], we formulate its arm contexts as the

meta-parameters after task adaptations, denoted by

χs
k,i := Θ

(J)
k,i = I(Tk,i,Θ(k−1)); χq

k,i := Θ(k−1)[Tk,i] = Θ(k−1) − η2∇ΘL(Dq
k,i;Θ

(J)
k,i) (6)

where Θ
(J)
k,i are the task-specific parameters after adapting meta-parameters Θ(k−1) to task Tk,i with

inner-loop optimization (Eqs. 1-2); while Θ(k−1)[Tk,i] refer to the meta-parameters after adapting
the current Θ(k−1) to task Tk,i, with both inner-loop and outer-loop optimization (as in Eq. 3).
In particular, we assign each arm Tk,i with two different arm contexts to model the dynamics of
meta-parameters w.r.t. inner-loop optimization and outer-loop optimization respectively. For example,
the variance of the corresponding data distribution DTk,i

can be high. In this case, the support set
Ds

k,i and the query set Dq
k,i will be considerably different, which tends to make the corresponding

5

arm contexts χs
k,i, χ

q
k,i divergent. As a result, the gradient vectors ∇θf1(χ

s
k,i), ∇θf1(χ

q
k,i) will

likely be distinct from each other. Alternatively, if the support set Ds
k,i and the query set Dq

k,i are not
significantly distinct (the distance between χs

k,i and χq
k,i is also likely to be relatively small), these

two gradient vectors tend to change dramatically when adapting to Tk,i. The reason is possibly that
the exploitation model f1 is not well adapted to this task Tk,i. For both scenarios above, it can be
beneficial to include more exploration for the task Tk,i, and the target is helping f1 better learn the
reward for this task by actively acquiring the knowledge of it. And the two formulated arm contexts
can provide important reference for our exploration module.
Remark 2 (Recycling Arm Contexts). In order to derive the arm contexts (Eq. 6), the gradients for
the outer-loop optimization ∇ΘL(Dq

k,̂i
;Θ

(J)

k,̂i
), î ∈ N̂k of the chosen arms Tk,̂i ∈ Ωk are calculated.

As a result, these gradients can be recycled to update the meta-model parameters based on Eq. 3
(line 15, Algo. 1), which helps reduce the computational cost when updating the meta-model.

4.2 Estimating Benefit Scores for Tasks

To determine which arms (tasks) should be included to the meta-training iteration k, we formulate
the arm benefit score estimation for each candidate arm Tk,i ∈ Ω

(k)
task. The estimated benefit score

consists of two parts: (1) the estimated arm reward of choosing this task based on existing knowledge
(i.e., exploitation); (2) and the exploration score for the future potential benefit (i.e., exploration).
Inspired by recent advances in neural bandits [9], we introduce two separate neural networks, f1(·; θ1)
and f2(·; θ2), to estimate the arm reward and exploration score respectively. The exploitation network
f1(·; θ1) aims to learn the mapping h(·) from arm contexts (i.e., meta-parameters) to rewards, while
the exploration network f2(·; θ2) aims to learn the uncertainty of reward estimations as the exploration
criterion. Different from conventional bandit models, e.g. [9], that works on static arm contexts given
by the environment, our design alternatively leverages the evolving information from both the task
(arm) side and meta-parameters side, across meta-training iterations. In addition, we consider the
dynamics of meta-optimizations for a more comprehensive modeling of the exploration aspect, and
the details will be introduced later. Here, given a candidate arm Tk,i ∈ Ω

(k)
task, its estimated benefit

score ŝk,i is formulated as

ŝk,i = α · r̂k,i + êk,i = α · f1(χq
k,i;θ

(k−1)
1) + f2

(
[∇θf1(χ

s
k,i); ∇θf1(χ

q
k,i)]; θ

(k−1)
2

)
(7)

where α ∈ (0, 1] is the exploration coefficient to balance exploitation and exploration. Notice
that f2(·; θ2) will take the concatenated gradient of f1(·; θ1) w.r.t. both arm contexts χs

k,i,χ
q
k,i as

the input, represented by [∇θf1(χ
s
k,i);∇θf1(χ

q
k,i)]. And the output will be the exploration score

estimation êk,i. To obtain ∇θf1(χ
q
k,i), we also calculate f1(χ

q
k,i;θ1) and run the back-propagation.

Afterwards, we choose the top-B arms with the highest estimated benefit scores ŝk,i, i ∈ N , as the
chosen task batch Ωk ⊂ Ω

(k)
task (line 10, Algo. 1).

Design Intuition. First, recent advances of neural Contextual Bandits [53, 9, 37] have shown
that the uncertainty of reward estimations is directly related to the gradients of the estimation
model. Therefore, we leverage an exploration module f2(·; θ2) to directly learn this unknown
relationship. Second, since Ds

k,i, D
q
k,i are from the same data distribution DTk,i

, if these two gradients
∇θf1(χ

s
k,i),∇θf1(χ

q
k,i) are distinct, the reason can be: (1) the variance of the data distribution

DTk,i
is high (due to the potentially noisy or difficult task); or (2) the gradients of f1(·; θ1) tend

to change significantly when adapting to task Tk,i. In both cases, it can be harder for f1(·; θ1) to
accurately predict the arm reward rk,i, and the meta-model can fail to properly adapt to the task Tk,i.
In this case, we apply the concatenated gradients w.r.t. both arm contexts as the input of f2(·; θ2), in
order to provide the information for f2(·; θ2) to evaluate exploration scores.

Network Architecture and Parameter Initialization. Here, we consider f1(·; θ1), f2(·; θ2) to be
two L-layer fully-connected (FC) networks with network width m, while θ = {θ1,θ2} refer to
their trainable parameters. For their randomly initialized parameters θ(0) = {θ(0)

1 ,θ
(0)
2 }, the weight

matrix entries for the first L− 1 layers are drawn from the Gaussian distribution N(0, 2/m), while
the entries of the last layer (L-th layer) are sampled from N(0, 1/m).
Remark 3 (Reducing Input Complexity). The input of f1(·; θ1) is the arm context χq

k,i, whose
dimensionality is the number of meta-parameters p. A similar situation also exists for the exploration

6

network f2(·; θ2). Inspired by the idea of learning dense low-dimensional representations with
Convolutional Neural Networks (CNNs) (e.g., [43]), we apply the average pooling approach to
approximate original inputs for reducing the running time and space complexity in practice. To show
its effectiveness, we will apply this approach on BASS for all the experiments in Section 6.

4.3 Formulating Arm Rewards and Exploration Scores

Different from the conventional neural bandit algorithms [52, 53, 9] where the reward is provided by
the environment oracle, we need to carefully design the arm rewards to reflect the arm benefit in terms
of the meta-model’s generalization ability. Analogous to task batch rewards (Eq. 4), we formulate the
single arm reward rk,i = h(Θ(k−1)[Tk,i]) = 1− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(k−1)[Tk,i])

)]
for

arm Tk,i. Since it is impractical to calculate the arm reward by enumerating over P(T), we sample a
batch of validation tasks Ωvalid

k to derive the unbiased reward approximation, denoted by

r̃k,i = 1− 1

|Ωvalid
k |

∑
T valid∈Ωvalid

k

L
(
Dq

T valid ; I(T valid,Θ(k−1)[Tk,i])
)
. (8)

Here, we adopt the single-step inner-loop optimization [18, 39] to derive I(Tk,̂i,Θ
(k−1)[Tk,i]) in Eq.

8, in order to save the computational cost in practice. Under the few-shot settings, the computation
of arm rewards is efficient, since the support set is generally small for inner-loop optimization. The
approximation error here can be bounded by the concentration inequality, as the validation tasks
Ωvalid

k are sampled from P(T).

On the other hand, to formulate the exploration score ek,i (i.e., the label for f2(·; θ2)), we consider
two separate exploration objectives: (1) the prediction uncertainty for the exploitation module
f1(·; θ1), which is rk,i − f1(χ

q
k,i;θ1); (2) the validation loss of the meta-model, which represents

the difficulty of adapting to Tk,i, inspired by the "task difficulty measurer" in Curriculum Learning
[51, 49]. As a result, with Lk,i = L(Dq

k,i;Θ
(J)
k,i) being the validation loss of arm Tk,i, we formulate

the exploration score as ek,i = α ·
(
rk,i − f1(χ

q
k,i;θ

(k−1)
1)

)
+ (1− α) · Lk,i. Analogously, with the

approximated reward r̃k,i (Eq. 8), we calculate the exploration score approximation by

ẽk,i = α ·
(
r̃k,i − f1(χ

q
k,i;θ

(k−1)
1)

)
+ (1− α) · Lk,i. (9)

Here, the exploration coefficient α ∈ (0, 1] (in Eq. 7) is also used to balance our two exploration
objectives, which are (1) prediction uncertainty rk,i − f1(·; θ1): if the exploitation model f1(·; θ1)
is under-estimating the arm reward, leading to the positive residual rk,i − f1(·; θ1), we will have a
high exploration score to enhance the exploration for this arm; otherwise, when rk,i − f1(·; θ1) is
negative, it indicates an excessively high estimation, which will alternatively lower the exploration
score to compensate for the over-estimation. With a higher α value, our exploration strategy will
focus more on the behavior of the exploitation model f1(·); (2) the difficulty of task adaptation (i.e.,
validation loss) Lk,i: if the current meta-model does not generalize well to arm Tk,i, the validation
loss Lk,i will be high, which will also lead to a high exploration score. In this way, our formulation
considers two different exploration objectives as well as the dynamics of meta-optimizations (base on
concatenated network gradients), for a refined exploration strategy.

4.4 Updating Bandit Scheduler Parameters

After updating the meta-parameters (Line 14, Algo. 1, Remark 2) with tasks Ωk = {Tk,̂i}̂i∈N̂k
, we

proceed to update the parameters of BASS (Line 15, Algo. 1). Recall that f1(·; θ1) tries to learn the
reward mapping function h(·), and f2(·; θ2) aims to learn the exploration score. Given the selected
arms Ωk, with ηθ1 , η

θ
2 ∈ R+ being the learning rates, we apply the GD and quadratic loss to update the

parameters of BASS, denoted by θ
(k)
1 = θ

(k−1)
1 −ηθ1 ·∇θ1

(
1
B

∑
Tk,î∈Ωk

∣∣f1(χq

k,̂i
;θ

(k−1)
1)− r̃k,̂i

∣∣2),
θ
(k)
2 = θ

(k−1)
2 −ηθ2 ·∇θ2

(
1
B

∑
Tk,î∈Ωk

∣∣f2([∇θf1(χ
s
k,̂i

); ∇θf1(χ
q

k,̂i
)]; θ

(k−1)
2

)
− ẽk,̂i

∣∣2). We refer
to Eqs. 8-9 for calculating the approximated arm reward r̃k,̂i and exploration score ẽk,̂i.

5 Theoretical Analysis

Recall that in each iteration k ∈ [K], we receive candidate arms (tasks) Ω(k)
task = {Tk,i}i∈N , and each

arm Tk,i is associated with two context vectors χs
k,i,χ

q
k,i. For the sake of analysis, we normalize these

7

two contexts such that ∥χs
k,i∥2 = ∥χq

k,i∥2 = 1, and set the exploration coefficient α = 1. Following
the existing work [46, 47], we let the meta-model F(·;Θ) be a LF -layer FC network with Gaussian
Initialization, with the network width mF . Note that our results can also be generalized to other
network architectures, such as CNN and ResNet [21], based on the analysis of over-parameterized
neural networks [10, 47, 3]. For the theoretical analysis, we adopt Sigmoid activation for f1 and ReLU
for f2, in order to make f1 Lipschitz smooth under over-parameterization settings. Then, we draw

trained parameters of BASS with {θ(k)
1 ,θ

(k)
2 } ∼ {θ̃

(τ)

1 , θ̃
(τ)

2 }τ∈[k]. Here, starting from the randomly

initialized parameters {θ(0)
1 ,θ

(0)
2 }, each parameter pair {θ̃

(τ)

1 , θ̃
(τ)

2 }, τ ∈ [k] is separately trained
on past arm rewards {rτ ′ ,̂i}τ ′∈[τ],̂i∈N̂τ′

and exploration scores {eτ ′ ,̂i}τ ′∈[τ],̂i∈N̂τ′
with Jθ-iteration

GD. Next, similar to existing neural bandit works (e.g., [53, 9, 52]) and the works on meta-model
convergence analysis (e.g., [46, 47]), we have the following separateness assumption.

Assumption 5.1 (ρ-Separateness). After K meta-training iterations, for every pair of arm contexts
χq

k,i,χ
q
k′,i′ with k, k′ ∈ [K] such that the corresponding arms Tk,i ∈ Ωk ∧ Tk′,i′ ∈ Ωk′ , if (k, i) ̸=

(k′, i′), we have ∥χq
k,i − χq

k′,i′∥2 ≥ ρ where 0 < ρ ≤ O(1
L).

The assumption above is mild because of two main reasons: (1) since L is manually chosen (e.g.,
L = 2), we can easily satisfy the condition 0 < ρ ≤ O(1

L) as long as no two arm contexts are
identical; (2) since the meta-parameters Θ(k), k ∈ [K] are constantly changing, the corresponding
arm contexts will also be distinct across different meta-training iterations. Additional discussions
on this assumption are in Appendix Section B. With standard settings of over-parameterized neural
networks [46, 3, 10] and the definition of regret R(K) in Eq. 5, we have the following Theorem 5.2.

Theorem 5.2. Define δ ∈ (0, 1), 0 < ξ1, ξ2 ≤ O(1/K), ξf = max{ξ1, ξ2},
0 < ρ ≤ O(1/L), cξ > 0, ξL = (cξ)

L. Suppose the network width m ≥
Ω
(
Poly(K,L,Ntask, ρ

−1) log(1/δ)
)
;mF ≥ Ω

(
Poly(K,LF , Ntask)·log(1/δ)

)
. Then, let the learning

rates be η1, η2 = Θ
(m−1

F
Poly(K,Ntask,LF)

)
; η1θ, η

2
θ = Θ

(
ρ·m−1

Poly(K,Ntask,L)

)
. Jθ = Θ

(Poly(K,Ntask,L)
ρ·δ2 · log(1

ξ1
)
)
.

Following Algo. 1, with probability at least 1− δ, the K-round R(K) of BASS could be bounded by

R(K) ≤ O
(

1√
K

(
√

2ξf +
3L√
2
+ (1 + 2γ1)

√
2 log(K/δ))

)
+O(

ξ2LKJB
√
LF√

mF
) + γm (10)

where γm = O(1
m1/cγ

), cγ > 1, and γ1 = O(1) with sufficient network width m of BASS.

The proof is presented in Appendix Section D. Here, the first term on the RHS is scaled by the 1/
√
K

term, which means the regret bound will shrink along with more iterations K. The second term on the
RHS is scaled by 1/

√
mF , which makes it a diminutive term under the over-parameterization settings.

Since the network depth L of BASS is a small integer (we apply L = 2 for experiments in Section
6), ξL will also be a relatively small constant. Meanwhile, γm will also decrease significantly with
increasingly large network width m of BASS. In contrast, with a convex loss function (e.g., L2 loss or
cross-entropy loss) and the same over-parameterization settings, the regret upper bound of the uniform
sampling strategy [18, 39] can possibly scale up to 1 for the worst-case scenario, and the upper bound
will not decrease with more iterations K (Appendix Lemma D.13). Alternatively, BASS works
under the bandit settings, by directly measuring the meta-model performance difference w.r.t. the
chosen task batch and the optimal one. With more iterations K, BASS tends to make more accurate
scheduling decisions, which makes our regret bound possible. For the existing works, [50] prove
that they can improve the optimization landscape with the assumed correlation of task difficulties
and meta-model generalization ability. [12] show that their self-paced strategy can improve the
model robustness when facing noisy training tasks. Different from previous works, we provide the
performance guarantee for the proposed BASS under the neural bandit framework.

6 Experiments

In this section, we compare BASS against seven strong baselines, including: (1) Uniform Sampling;
non-adaptive self-paced methods and task schedulers (2) SPL [25], (3) Focal-Loss (FOCAL) [29],
(4) DAML [28], (5) GCP [30], (6) PAML [23]; and the adaptive task scheduler (7) ATS [50]. Since
GCP is not originally compatible with our problem settings and can only work with classification

8

problems, we properly adapt it by choosing the tasks with the highest probabilities, and apply it on
the classification data sets. ANIL [39] is adopted as the backbone meta-learning framework. Due
to page limit, we include the complementary experiments (e.g., parameter study for α, effects of
different levels of task skewness), and the configurations to Appendix Section A.

6.1 Real Data Sets with Noisy Meta-Training Tasks

We adopt Drug [35], Mini-ImageNet (M-ImageNet) [41] and CIFAR-100 (CIFAR) [24] data sets
under the few-shot learning scenario. Similar to [50], we apply classification accuracy as the
evaluation criterion for the Mini-ImageNet and CIFAR-100 data sets, and consider the squared
Pearson coefficient for the Drug data set. For each meta-learning iteration k ∈ [K], the learner is
given a candidate pool of 10 tasks (i.e., |Ω(k)

task| = Ntask = 10), and it will need to choose a batch
of B = 2 tasks as the training tasks Ωk for this iteration. For the Mini-ImageNet and CIFAR-100
data sets, we consider half of the meta-training tasks are perturbed by the label flipping noise [20],
where the chance of a label being flipped is ϵ ∈ [0, 1]. As the Drug data set stands for a regression
problem, we draw the label noise from the Gaussian distribution N(0, ϵ2). The experimental settings
are under 1-shot or 5-shot, 5-Way (for classification data sets) learning scenario with the noise level
ϵ = 0.5. The experiment results are shown in Table 1 and Figure 3. For the average ranking column,
we exclude results from the M-ImageNet (1) setting, since BASS and the baselines tend to train a
meta-model performing "random guessing". More discussions are in the next paragraph.

Table 1: Results on real data sets [data set (shot); results ± standard deviation]. For 1-shot M-
ImageNet, all the methods end up with an invalid meta-model performing "random guessing".

Algo. \ Data Drug (1) Drug (5) M-ImageNet (1) M-ImageNet (5) CIFAR (1) CIFAR (5) Avg. Rank
Uniform 0.210±0.013 0.220±0.001 0.201±0.002 0.301±0.025 0.234±0.029 0.526±0.011 4.4

SPL 0.244±0.008 0.236±0.004 0.203±0.002 0.240±0.018 0.200±0.002 0.367±0.039 5.0
FOCAL 0.222±0.024 0.223±0.003 0.200±0.000 0.316±0.029 0.231±0.024 0.485±0.006 4.4
DAML 0.146±0.009 0.177±0.003 0.201±0.001 0.310±0.016 0.247±0.003 0.414±0.025 5.4
GCP N/A N/A 0.201±0.001 0.282±0.016 0.243±0.007 0.508±0.009 6.0

PAML 0.192±0.020 0.205±0.009 0.199±0.001 0.218±0.013 0.199±0.004 0.316±0.022 7.2
ATS 0.230±0.002 0.237±0.014 0.201±0.001 0.334±0.053 0.257±0.048 0.515±0.015 2.4

BASS 0.242±0.012 0.245±0.006 0.198±0.004 0.351±0.012 0.272±0.025 0.553±0.008 1.2

0 5000 10000 15000 20000
Iterations

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Ac
c.

 /
Pe

ar
so

n
Co

ef
.

M-ImageNet (5-shot, : 0.5)

0 5000 10000 15000 20000
Iterations

0.25

0.30

0.35

0.40

0.45

0.50

0.55
CIFAR (5-shot, : 0.5)

Uniform
SPL
FOCAL LOSS

DAML
GCP
PAML

ATS
BASS

Figure 3: Accuracy results (5-shot, ϵ = 0.5). BASS can achieve
a good performance at early meta-training stage.

Here, BASS can generally outperform the baselines
by directly learning the mapping from the meta-
parameters to the arm rewards, as well as balancing
the exploitation and exploration. ATS also achieves
good performance as it adaptively learns the correla-
tion between the task adaptation difficulty and task
scheduling, which proves that it is necessary to apply
the adaptive scheduling strategy instead of staying
with a fixed protocol. Meanwhile, BASS can gener-
ally train the meta-model more efficiently (Figure 3),
leading to good performances at the early stage of
meta-training. In particular, for the Mini-ImageNet data set under the 1-shot, 5-way settings, all the
algorithms fail to train an effective meta-model. Here, under the 5-way classification scenario, all the
methods will likely generate a meta-model performing "random guessing" (around 20% accuracy).
In this case, utilizing Ensemble Inference techniques [11, 15] can help alleviate this problem, and we
include further discussion in the case study (Subsec. 6.3).

6.2 Effects of the Skewed Task Distribution

Table 2: CIFAR-100 with skewed task distribution (5-shot, 5-way / 10-way).

Data \ Algo. Uniform SPL ATS BASS
5-way 0.375±0.009 0.279±0.002 0.382±0.007 0.408±0.008
10-way 0.264±0.047 0.165±0.007 0.283±0.039 0.320±0.021

The skewed task distribution P(T)
commonly exists in real-word cases.
For instance, consider an animal im-
age classification data set where each
class (i.e., task) corresponds to one
kind of animals. In this case, felid classes can be considered as "frequent" tasks in the task distri-
bution due to their large quantity and strong mutual correlations, compared with "tail" tasks like
kangaroo classes. In this case, paying insufficient attention to the "tail" classes can impair the

9

generalization performance of the trained meta-model. Thus, to investigate the effects of when the
task distribution P(T) is skewed, we randomly choose some tasks from P(T), and assign them with
higher sampling probabilities (weights). This corresponds to the situation when P(T) is skewed, so
that sampling from P(T) will likely lead to similar tasks. Here, with the CIFAR-100 data set, we
sample 10 tasks and assign them with higher sampling probabilities (weights) (5 tasks with 10%, 5
tasks with 5%), while the rest of the tasks equally share the remaining 25% probability.

Figure 4: Average weights of chosen meta-training tasks. The
testing accuracy vs. iterations needed. BASS can actively explor-
ing for "tail" tasks, and requires much fewer iterations for the
same performance (as few as ∼ 1/3 of baselines’ iterations).

From Table 2, our proposed BASS maintains the best
performance due to its adaptive scheduling strategy
and the ability of balancing exploitation and explo-
ration. On the other hand, the baselines are unable
to adjust their meta-training strategies towards explo-
ration, when the meta-model has already well adapted
to the "frequent" tasks. This can possibly lead to the
sub-optimal performance of the meta-model. In par-
ticular, based on Figure 4, when facing a skewed task
distribution, BASS can actively explore the "tail"
tasks, after sufficiently exploring the "frequent" tasks.
BASS is also able to achieve good performances with
fewer meta-training iterations.

6.3 Case Study: BASS-aided Ensemble Inference

From Figure 3, we notice that BASS can train a meta-model that achieves good generalization
performance at the early stage of meta-training. One application of this property is using BASS
to assist meta-learning models under the Ensemble Inference settings, where separate models are
combined to enhance the generalization ability. One renowned ensemble approach is the model-
parameter ensemble [40, 32]. With a collection of NE individual models {F(·;Θi)}i∈[NE] of the
same architecture, the ensemble model will be FE(·;ΘE), and its parameters ΘE = 1

NE

∑
i∈[NE] Θi

are the averaged parameters across individual models. Then, the ensemble model FE(·;ΘE) will
be applied as the inference model for downstream problems. Here, one natural way of obtaining
the individual models F(·;Θi), i ∈ [NE] is deeming the models from different training iterations
as the individual models for ensemble [11, 15]. Here, we conduct experiments using the ensemble
techniques with individual models F(·;Θi) trained by baselines and BASS. We choose the top
NE = 10 models with the smallest validation loss across different meta-training iterations as the
individual models {F(·;Θi)}i∈[NE] for ensemble. The results are shown in Table 3. We label the
ensemble version of BASS as "BASS-E", and the non-ensemble version as "BASS-S".

Table 3: Ensemble case study [dataset (shot); results ± standard deviation].

Algo. \ Data M-ImageNet (1) M-ImageNet (5) CIFAR (1) CIFAR (5)
Uniform 0.231±0.014 0.313±0.027 0.270±0.014 0.534±0.012

SPL 0.218±0.006 0.298±0.004 0.219±0.005 0.363±0.038
FOCAL 0.204±0.005 0.347±0.030 0.235±0.015 0.499±0.003
DAML 0.222±0.011 0.326±0.031 0.261±0.008 0.432±0.019
GCP 0.226±0.006 0.297±0.011 0.268±0.019 0.512±0.015

PAML 0.213±0.024 0.232±0.009 0.223±0.009 0.336±0.029
ATS 0.202±0.002 0.334±0.052 0.313±0.081 0.517±0.017

BASS-S 0.198±0.004 0.351±0.012 0.272±0.025 0.553±0.008
BASS-E 0.242±0.004 0.366±0.003 0.327±0.010 0.551±0.004

Compared with the non-ensemble settings
(Table 1), we see that the BASS-aided en-
semble model can generally perform bet-
ter. In particular, the ensemble model can
improve the meta-model inference perfor-
mance in significantly difficult cases, such
as the Mini-ImageNet under the 1-shot set-
ting (Subsec. 6.1). As a result, BASS can
help generate high-quality ensemble model

with the meta-models trained in different iterations. While the ensemble inference technique can also
benefit the other baselines, BASS still maintains decent performances.

7 Conclusion

In this paper, we formulate the task scheduling problem in meta-learning under the Contextual
Bandits settings, and propose a novel bandit-based task scheduling framework named BASS. It
directly optimizes the task sampling strategy based on the status of the meta-model rather than
applying fixed task scheduling protocols. Instead of greedily making decisions, BASS can help deal
with the insufficient knowledge problem at the early stage of meta-training, as well as plan for the
future meta-training iterations with the adaptive exploration strategy. We include both theoretical
analyses and a comprehensive set of experiments to demonstrate the effectiveness of our proposed
framework as well as its key properties.

10

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902,
IIS-2137468, IIS-2002540, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-
67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agricul-
ture. The views and conclusions are those of the authors and should not be interpreted as representing
the official policies of the funding agencies or the government.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

[2] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In ICML, pages 127–135. PMLR, 2013.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252.
PMLR, 2019.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[5] Yikun Ban and Jingrui He. Convolutional neural bandit: Provable algorithm for visual-aware
advertising. arXiv preprint arXiv:2107.07438, 2021.

[6] Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings
of the Web Conference 2021, pages 2335–2346, 2021.

[7] Yikun Ban, Jingrui He, and Curtiss B Cook. Multi-facet contextual bandits: A neural network
perspective. arXiv preprint arXiv:2106.03039, 2021.

[8] Yikun Ban, Yunzhe Qi, Tianxin Wei, and Jingrui He. Neural collaborative filtering bandits via
meta learning. arXiv preprint arXiv:2201.13395, 2022.

[9] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration
neural networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in Neural Information Processing Systems, 32:10836–10846,
2019.

[11] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

[12] Dong Chen, Lingfei Wu, Siliang Tang, Xiao Yun, Bo Long, and Yueting Zhuang. Robust meta-
learning with sampling noise and label noise via eigen-reptile. arXiv preprint arXiv:2206.01944,
2022.

[13] Yudong Chen, Xin Wang, Miao Fan, Jizhou Huang, Shengwen Yang, and Wenwu Zhu. Curricu-
lum meta-learning for next poi recommendation. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 2692–2702, 2021.

[14] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In AISTATS, pages 208–214, 2011.

[15] Xu Chu, Yujie Jin, Wenwu Zhu, Yasha Wang, Xin Wang, Shanghang Zhang, and Hong Mei.
Dna: Domain generalization with diversified neural averaging. In International Conference on
Machine Learning, pages 4010–4034. PMLR, 2022.

[16] Aniket Anand Deshmukh, Urun Dogan, and Clay Scott. Multi-task learning for contextual
bandits. In NeurIPS, pages 4848–4856, 2017.

11

[17] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685. PMLR, 2019.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[19] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[20] B Han, Q Yao, X Yu, G Niu, M Xu, W Hu, I Tsang, and M Sugiyama. Robust training of deep
neural networks with extremely noisy labels. In Thirty-fourth Conference on Neural Information
Processing Systems (NeurIPS), volume 2, page 4, 2020.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[23] Jean Kaddour, Steindór Sæmundsson, et al. Probabilistic active meta-learning. Advances in
Neural Information Processing Systems, 33:20813–20822, 2020.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[25] M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, 23, 2010.

[26] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. Melu: Meta-learned
user preference estimator for cold-start recommendation. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1073–1082,
2019.

[27] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In WWW, pages 661–670, 2010.

[28] Xiaomeng Li, Lequan Yu, Yueming Jin, Chi-Wing Fu, Lei Xing, and Pheng-Ann Heng.
Difficulty-aware meta-learning for rare disease diagnosis. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 357–366. Springer,
2020.

[29] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[30] Chenghao Liu, Zhihao Wang, Doyen Sahoo, Yuan Fang, Kun Zhang, and Steven CH Hoi.
Adaptive task sampling for meta-learning. In European Conference on Computer Vision, pages
752–769. Springer, 2020.

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[32] Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu,
Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling
with no overhead for either training or testing: The all-round blessings of dynamic sparsity.
arXiv preprint arXiv:2106.14568, 2021.

[33] Zhuoqun Liu, Yuankun Jiang, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong.
Adaptive task sampling and variance reduction for gradient-based meta-learning. 2022.

12

[34] Ricardo Luna Gutierrez and Matteo Leonetti. Information-theoretic task selection for meta-
reinforcement learning. Advances in Neural Information Processing Systems, 33:20532–20542,
2020.

[35] Eric J Martin, Valery R Polyakov, Xiang-Wei Zhu, Li Tian, Prasenjit Mukherjee, and Xin Liu.
All-assay-max2 pqsar: activity predictions as accurate as four-concentration ic50s for 8558
novartis assays. Journal of chemical information and modeling, 59(10):4450–4459, 2019.

[36] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1406–1415, 2019.

[37] Yunzhe Qi, Yikun Ban, and Jingrui He. Neural bandit with arm group graph. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
1379–1389, 2022.

[38] Yunzhe Qi, Yikun Ban, and Jingrui He. Graph neural bandits. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1920–1931, 2023.

[39] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on
Learning Representations, 2019.

[40] Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Galli-
nari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv
preprint arXiv:2205.09739, 2022.

[41] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[42] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In International conference on machine learning, pages 4334–4343.
PMLR, 2018.

[43] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic
representations using convolutional neural networks for web search. In Proceedings of the 23rd
international conference on world wide web, pages 373–374, 2014.

[44] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. Advances in neural information
processing systems, 32, 2019.

[45] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[46] Haoxiang Wang, Ruoyu Sun, and Bo Li. Global convergence and generalization bound of
gradient-based meta-learning with deep neural nets. arXiv preprint arXiv:2006.14606, 2020.

[47] Haoxiang Wang, Yite Wang, Ruoyu Sun, and Bo Li. Global convergence of maml and theory-
inspired neural architecture search for few-shot learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 9797–9808, June 2022.

[48] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a
collaborative environment. In SIGIR, pages 529–538, 2016.

[49] Tongtong Wu, Xuekai Li, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Yujin Zhu, and
Guoqiang Xu. Curriculum-meta learning for order-robust continual relation extraction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10363–10369,
2021.

[50] Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu Lian, and Chelsea Finn.
Meta-learning with an adaptive task scheduler. Advances in Neural Information Processing
Systems, 34:7497–7509, 2021.

[51] Ji Zhang, Jingkuan Song, Yazhou Yao, and Lianli Gao. Curriculum-based meta-learning. In
Proceedings of the 29th ACM International Conference on Multimedia, pages 1838–1846, 2021.

13

[52] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling.
arXiv preprint arXiv:2010.00827, 2020.

[53] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

14

A Appendix: Experiments (Continue)

A.1 Further Details for the Experiment Settings

For the data partitioning, we have the Mini-ImageNet and CIFAR-100 data sets divided into the
partitions 64 : 16 : 20, which correspond to the training set, validation set and the testing set
respectively. Each class is corresponding to a task. Then, for the Drug data set, we partition the tasks
into 4100 : 76 : 100 representing the training set, validation set and the testing set.

For our BASS, we apply two 2-layer FC networks for f1(·; θ1), f2(·; θ2) respectively, and set network
width m = 200. For deriving approximated arm rewards, we let |Ωvalid

k | = 5. Recall that we apply
the approximation approach mentioned in Remark 3 to reduce the space complexity and time
complexity in practice for the experiments. Here, we tune the pooling step such that the inputs
of f1(·; θ1), f1(·; θ1) are approximately 50 and 20 respectively. For the learning rate, we find the
learning rate for BASS with grid search from {0.01, 0.001, 0.0001}, and choose the learning rates for
the meta-model η1 = 0.01, η2 = 0.001. The meta-model architecture as well as its learning rates will
stay the same for all the baselines and our proposed BASS. For the CIFAR-100 and Mini-ImageNet
data sets, we use the the meta-model with four convolutional blocks where the network width of
each block is 32, followed by an FC layer as the output layer. For the Drug data set, we apply a
meta-model with two FC layers, where the network width is 500. All the experiments are performed
on a Linux machine with Intel Xeon CPU, 128GB RAM, and Tesla V100 GPU. Code will be made
available at https://github.com/yunzhe0306/Bandit_Task_Scheduler.

A.2 Effect of the Task Noise Magnitude

We conduct the experiments to show the effects of the noise magnitude factor ϵ on the Drug and
CIFAR-100 data sets. The experiment results are shown in Table 4.

Table 4: Comparison with baselines with different noise magnitude [data set (noise magnitude ϵ) ;
final results ± standard deviation].

Algo. \ Data Drug (0.3) Drug (0.5) CIFAR100 (0.3) CIFAR100 (0.5)
Uniform 0.218±0.007 0.220±0.001 0.655±0.009 0.526±0.011

SPL 0.243±0.008 0.236±0.004 0.625±0.017 0.367±0.039
FOCAL 0.224±0.019 0.223±0.003 0.638±0.010 0.485±0.006
DAML 0.182±0.025 0.177±0.003 0.543±0.017 0.414±0.025
GCP N/A N/A 0.653±0.005 0.508±0.009

PAML 0.186±0.006 0.205±0.009 0.537±0.009 0.316±0.022
ATS 0.239±0.011 0.237±0.014 0.651±0.001 0.505±0.015

BASS (Ours) 0.258±0.003 0.245±0.006 0.657±0.005 0.553±0.008

With increasing noise magnitude ϵ, the performances of the meta-model trained by baselines and our
BASS tend to drop, which is intuitive. In particular, for the CIFAR-100 data set, when we increase ϵ,
the performance difference between BASS and the other baselines tends to increase. This can be the
reason that the greedy baselines with no exploration strategies can be more susceptible to the task
noise perturbation, which can lead to the sub-optimal performances of the meta-model.

Table 5: Experiment results of noise-free settings on three real data sets (5-way, 5-shot).

Data \ Algo. Uniform SPL FOCAL-LOSS DAML GCP PAML ATS BASS
Drug 0.206±0.012 0.234±0.006 0.240±0.003 0.190±0.002 N/A 0.220±0.010 0.233±0.001 0.256±0.003

M-ImageNet 0.576±0.016 0.554±0.004 0.582±0.005 0.437±0.015 0.564±0.002 0.467±0.007 0.561±0.004 0.586±0.008
CIFAR 0.681±0.010 0.681±0.008 0.692±0.023 0.662±0.027 0.681±0.016 0.640±0.011 0.695±0.035 0.697±0.029

From the Table 5, we can see that when there is no noise, the overall performance does not differ
significantly across different methods. The reason could be that since the meta-learning backbone
remains the same for all the methods, the meta-model performance upper bound can be similar
for different scheduling algorithms, without the presence of other confounding factors (e.g., noise,
task distribution skewness). In the practical application scenarios with noisy data, BASS-guided
meta-models tend to perform well in presence of task noise and skewness compared with baselines,
as presented by our experiments in the main body.

15

A.3 Parameter Study for Exploration Coefficient

As in Eq. 7 and Eq. 9, BASS involves an exploration coefficient α to balance the exploitation-
exploration and the two exploration objectives. Here, we conduct the parameter study for the
exploration coefficient α, and include the results with no exploration (i.e., removing f2).

Table 6: Comparison among different α values [dataset (shot) ; final results ± standard deviation].

Algo. \ Data Drug (1) Drug (5) CIFAR100 (1) CIFAR100 (5)
No Exploration 0.234±0.003 0.239±0.012 0.256±0.027 0.537±0.012

α = 0.1 0.231±0.005 0.233±0.013 0.264±0.051 0.522±0.024
α = 0.3 0.228±0.013 0.231±0.008 0.268±0.047 0.528±0.014
α = 0.5 0.236±0.004 0.245±0.006 0.272±0.025 0.553±0.008
α = 0.7 0.242±0.012 0.227±0.006 0.241±0.005 0.543±0.021
α = 1.0 0.236±0.002 0.235±0.013 0.266±0.006 0.537±0.005

From the results in Table 6, we see that the exploration module can indeed improve the performance
of BASS compared with the performance with no exploration. This also fits our initial argument
that the greedy algorithm alone can lead to sub-optimal performances of meta-model. By properly
choosing the α value, we will be able to achieve a good balance between exploitation and exploration,
as well as between the two exploration objectives. Here, setting α ∈ [0.5, 0.7] will be good enough
to achieve satisfactory performances. Meanwhile, we also note that even with no exploration, our
BASS still achieves good performances by directly learning the correlation between the adapted
meta-parameter and the generalization score, and refining the scheduling strategy based on the status
of the meta-model.

A.4 Running Time Comparison

In Figure 5, we include the running time comparison with baselines. We can see that BASS can
achieve significant improvement in terms of the running time, and can take as little as 50% of ATS’s
running time. The intuition is that our proposed BASS only needs one round of the optimization
process to update the meta-model and BASS. On the other hand, from Algorithm 1 of the ATS paper
[50], we see that ATS requires two optimization rounds for each meta-training iteration to (1) update
the scheduler with the temporal meta-model, and (2) update the actual meta-model respectively.
Based on the figure on the RHS, we also see that BASS can achieve a relatively good balance between
computational cost and performance.

D (5-shot) D (1-shot) M (5-shot) M (1-shot) C (5-shot) C (1-shot)
0

2000

4000

6000

8000

10000

12000

14000

16000

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Running time comparison with ATS
BASS
ATS

Figure 5: Running time results (including training both the scheduler and the meta-model). "D", "M"
and "C" refer to the "Drug", "Mini-ImageNet", "CIFAR-100" data sets respectively. BASS can take
as little as approximately 50% of ATS’s running time. On the RHS, we have the scatter plot in terms
of running time vs. performance on the Mini-ImageNet dataset.

A.5 Performances with Different Task Skewness Settings

In Table 7, we include the experiments with different levels of skewness. Here, we see that with less
skewness levels (the skewness level reduces from Setting 1 to Setting 3), the accuracy of BASS as
well as the baselines will continue to improve, while BASS still maintains decent performances.

16

Skewness Setting \ Algo. Uniform ATS BASS
Skewness Setting 1 0.375±0.009 0.382±0.007 0.408±0.008
Skewness Setting 2 0.429±0.012 0.448±0.006 0.460±0.013
Skewness Setting 3 0.497±0.008 0.502±0.010 0.539±0.009

Table 7: Results for different skewness levels on CIFAR-100 data set (5-shot). (1) Setting 1 is
the original setting in paper Subsec. 5.2. (2) For Setting 2, we assign 5 tasks with 8% sampling
probability, 5 tasks with 3%, and the rest of the tasks equally share the 45% probability. (3) For
Setting 3, we assign 5 tasks with 5%, 5 tasks with 2%, while the rest of the tasks equally share the
65% probability.

A.6 Performances with Different Batch Size

With Table 8, we include additional experiments with different batch sizes B, in comparison with the
ATS and the uniform sampling approach. Here, we see that with larger B values, the accuracy of
BASS as well as the baselines will generally improve.

B (batch size) \ Algo. Uniform ATS BASS
1 0.459±0.009 0.449±0.010 0.472±0.012
2 0.526±0.011 0.515±0.015 0.553±0.008
3 0.570±0.012 0.563±0.007 0.588±0.010
5 0.581±0.005 0.571±0.007 0.586±0.009

Table 8: Results for different B values (batch sizes) on CIFAR-100 data set (5-shot).

A.7 Performances with Different Embedding Approaches of Arm Contexts

In Table 9, we include additional experiments with different levels of average pooling, such that
after the average pooling, the dimensionality of the pooled vector representation will fall into
{20, 100, 500}. We see that overly small dimensionality of the average-pooled vector representation
(e.g., 20) can lead to sub-optimal performance of the BASS framework. In addition, we see that
setting the dimensionality to 50 can generally lead to good enough performance.

Dimensionality 20 50 100 500
Accuracy 0.541±0.008 0.553±0.008 0.558±0.006 0.555±0.010

Table 9: With CIFAR-100 (5-shot), different dimensionality of the average-pooled vector representa-
tion (Remark 3) of the meta-parameters.

Here, we also include additional experimental results using MLP to map the original context into
the lower dimensional space instead of using our proposed average pooling (Remark 3). Results
are shown in Table 10. Here, we use the one-layer MLP with the ReLU activation to embed the
original meta-parameters to the low-dimensional vector representations. We can see that the MLP-
based method can indeed lead to some performance improvement. But in general, the performance
difference between MLP-based embedding and the average-pooling vector representation is subtle.
We also note that the MLP-based mapping approach is more time consuming compared with the
average pooling approach, since we also need to train the additional embedding layer, which has a
considerable number of trainable parameters.

Dimensionality Original avg-pooled (50) 50 100 200
Accuracy 0.553±0.008 0.558±0.013 0.560±0.012 0.553±0.015

Table 10: With CIFAR-100 (5-shot), different dimensionality of the one-layer MLP(with ReLU)-
embedded vector representation of the meta-parameters. "original avg-pooled (50)" refers to the
average-pooled vector representation (Remark 3) with dimensionality of 50.

17

A.8 Additional Experiments on the "DomainNet" data set

In Table 11, we include additional experiments on the new "DomainNet" data set [36]. Within the
"real" domain, we filter 100 classes that have at least 600 images. In this way, with each class being a
task with 600 images, we will have a total of 100 tasks. Compared with image data sets in our paper
(Mini-ImageNet and CIFAR-100), we increase the image resolution of "DomainNet" by resizing
its images to 128×128 pixels. Following the settings in our paper, we divide tasks into 64 : 16 :
20 portions that correspond to the training set, validation set and the test set respectively. For the
few-shot settings, we formulate the problem to be 5-shot, 5-way / 7-way with uniform sampling
and ATS as baselines. With a higher image resolution of the "DomainNet" data set, BASS can still
maintain the good performance compared with the baselines.

Setting \ Algo. Uniform ATS BASS
5-way 0.475±0.002 0.483±0.006 0.511±0.012
7-way 0.411±0.005 0.372±0.009 0.435±0.008

Table 11: Results for the "DomainNet" data set (noise level 0.5, 5-shot settings).

B Appendix: Additional Discussion on the Necessity of Assumption 5.1

We would like to mention that in order to finish the convergence and generalization analysis for the
neural Contextual Bandit works (e.g., [53, 2, 9]), the separateness assumption of the arm context is
the minimum requirement of the data set. This is because the training data needs to be non-degenerate
(i.e., every pairs of samples are distinct) to ensure that the neural network can consistently converge,
as indicated by Assumption 2.1 in [3]. Therefore, our Assumption 5.1 regarding the arm separateness
aims to ensure that the BASS is able to adequately learn the underlying reward mapping function
with sufficient information. Comparing with the existing works, in the convergence analysis works
on meta-learning [46, 47], they measure the arm separateness in terms of the minimum eigenvalue
λ0 (with λ0 > 0) of the Neural Tangent Kernel (NTK) [22] matrix, which is comparable with our
Euclidean separateness ρ. For existing neural bandit works, Assumption 5.1 in [9] is similar to our
separateness assumption. Meanwhile, Assumption 4.2 in [53] and Assumption 3.4 from [52] also
imply that no two arms are the same in terms of the minimum NTK matrix eigenvalue λ0 > 0.

C Appendix: Limitation

One potential limitation of BASS is that its improvement over baselines may not be significant
when dealing with noise-free settings and non-skewed task distributions (Table 5). Meanwhile, the
non-adaptive FOCAL-LOSS [29] tends to achieve a similar performance comparing with the adaptive
method ATS [50], while enjoying an advantage in terms of the computational cost. In practical terms,
although BASS can generally achieve the decent performance and enjoys a smaller computational
cost than ATS, the practitioner still needs to consider whether their task distribution is noisy or skewed
in order to strike a good balance between the computational resource needed and the meta-model
performance, as BASS can achieve a more significant advantage over baselines given the noisy or
skewed task distribution.

D Appendix: Theoretical Analysis

In this section, we present the proof for Theorem 5.2. Here, instead of directly going for the batch
setting where we adopt training task batch Ωk for each iteration k ∈ [K] (|Ωk| = |Ω∗

k| = B), we first
introduce the results of the single-task setting (Subsec. D.1), i.e., |Ωk| = |Ω∗

k| = 1. Then, the results
will be extended to the batch settings as in Subsec. D.2. Recall that for the meta-model, we first
consider it to be a LF -layer fully-connected (FC) network (of width mF for the theoretical analysis
(lines 237-239). In particular, we follow the settings in [3] for the Gaussian initialization of weight
matrices. For the weight matrix elements in meta-model’s first (LF − 1) layers, we draw each of
them from the Gaussian distribution N (0, 2/mF). Then, for the weight matrix elements of the last
layer (LF -th layer), we draw each of them from the Gaussian distribution N (0, 1).

18

D.1 Single-task settings

For the brevity of notation, we denote the scheduler output f(Θ(K−1)[Tk,i];θ(k−1)) =

f1(χ
q
k,i;θ

(k−1)
1) + f2

(
[∇θf1(χ

s
k,i);∇θf1(χ

q
k,i)]; θ

(k−1)
2

)
, which corresponds to the definition in

Eq. 7. In this case, T (K) = {T1, . . . , TK} refer to the chosen tasks and T ∗(K) = {T ∗
1 , . . . , T ∗

K}
are the optimal ones. Based on the problem definition, we will have

Rsingle(K) = ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K))

)]
− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K),∗)

)]
= ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K−1)[TK])

)]
− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K−1),∗[T ∗

K])
)]

= h(Θ(K−1),∗[T ∗
K])− h(Θ(K−1)[TK])

= h(Θ(K−1),∗[T ∗
K])− f(χ∗

K ; θ̃
(K−1)

) + f(χ∗
K ; θ̃

(K−1)
)− f(χK ;θ(K−1))

+ f(χK ;θ(K−1))− h(Θ(K−1)[TK])

≤ h(Θ(K−1),∗[T ∗
K])− f(χ∗

K ; θ̃
(K−1)

) + f(χ∗
K ; θ̃

(K−1)
)− f(Θ(K−1)[T ∗

K];θ(K−1))

+ f(χK ;θ(K−1))− h(Θ(K−1)[TK])

= h(Θ(K−1),∗[T ∗
K])− f(Θ(K−1),∗[T ∗

K]; θ̃
(K−1)

) + f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1)[T ∗

K];θ(K−1))

+ f(Θ(K−1)[TK];θ(K−1))− h(Θ(K−1)[TK])

≤ |h(Θ(K−1),∗[T ∗
K])− f(Θ(K−1),∗[T ∗

K]; θ̃
(K−1)

)|+ |f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1)[T ∗

K];θ(K−1))|︸ ︷︷ ︸
I0

+ |f(Θ(K−1)[TK];θ(K−1))− h(Θ(K−1)[TK])|

where the first inequality is due to the arm pulling mechanism, i.e., f(Θ(K−1)[T ∗
K];θ(K−1)) ≤

f(Θ(K−1)[TK];θ(K−1)). Here, f(·; θ̃
(K−1)

) is defined as the "shadow" bandit model that are
trained on optimal tasks {T ∗

1 , T ∗
2 , . . . , T ∗

K−1} and the corresponding meta-model parameters. Here,
denote χK = Θ(K−1)[TK] ∈ Rp as the arm context given the arm TK and the meta-model parameter
Θ(K−1); similarly, we have χ∗

K = Θ(K−1),∗[T ∗
K] ∈ Rp being the arm context given the arm T ∗

K and
the meta-model parameter Θ(K−1),∗. Thus, for the term I0 on the RHS, we have

I0 = |f(χ∗; θ̃
(K−1)

)− f(Θ(K−1)[T ∗
K];θ(K−1))|

= |f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1),∗[T ∗

K];θ(K−1))

+ f(Θ(K−1),∗[T ∗
K];θ(K−1))− f(Θ(K−1)[T ∗

K];θ(K−1))|

≤ |f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1),∗[T ∗

K];θ(K−1))|
+ |f(Θ(K−1),∗[T ∗

K];θ(K−1))− f(Θ(K−1)[T ∗
K];θ(K−1))|.

Then, inserting the inequality will lead to

R(K) ≤ |h(Θ(K−1)[TK])− f(χK ;θ(K−1))|︸ ︷︷ ︸
I1

+ |f(χ∗
K ; θ̃

(K−1)
)− h(Θ(K−1),∗[T ∗

K])|︸ ︷︷ ︸
I2

+ |f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1),∗[T ∗

K];θ(K−1))|︸ ︷︷ ︸
I3

+ |f(Θ(K−1),∗[T ∗
K];θ(K−1))− f(Θ(K−1)[T ∗

K];θ(K−1))|︸ ︷︷ ︸
I4

.

Here, the terms I1, I2 refer to the approximation error for the two bandit models (our possessed

model f(·; θ(K−1)) and the pseudo model f(·; θ̃
(K−1)

)). Then, the third term I3 bounds the output
difference when given the same input Θ(K−1),∗[TK] to two separate bandit models, and the final

19

term I4 refers to the difference of the meta-model parameters when adapted to the same task with two
individual sets of parameters. Here, the terms I1, I2 can be bounded by Lemma D.1, Corollary D.2.
Then, the point is to bound the difference term I4 when given different inputs to the bandit model.

D.1.1 Bounding error terms and assembling the regret bound

[Bounding term I3] For error term I3, it focuses on bounding the output difference between two

bandit models f(·; θ̃
(K−1)

), f(·; θ(K−1)) given the same input Θ(K−1),∗[T ∗
K], and we have

I3 = |f(Θ(K−1),∗[T ∗
K]; θ̃

(K−1)
)− f(Θ(K−1),∗[T ∗

K];θ(K−1))| = |f(χ∗
K ; θ̃

(K−1)
)− f(χ∗

K ;θ(K−1))|

≤ |f1(χ∗
K ; θ̃

(K−1)

1)− f1(χ
∗
K ;θ

(K−1)
1)|︸ ︷︷ ︸

I3.1

+ |f2
(
[∇θ̃f1(χ

s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ̃

(K−1)

2

)
− f2

(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)
|︸ ︷︷ ︸

I3.2

.

With the defined ξL, applying Lemma D.11 as well as Corollary D.12, we will have

I3.1 ≤
(
1 +O(

KL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

K3L

ρ
√
m

log(m)) +O
(
K4L2 log11/6(m)

ρ4/3m1/6

)
Then, for term I3.2, we have

I3.2 = |f2
(
[∇θ̃f1(χ

s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ̃

(K−1)

2

)
− f2

(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)
|

≤ |f2
(
[∇θ̃f1(χ

s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ̃

(K−1)

2

)
− f2

(
[∇θ̃f1(χ

s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ

(K−1)
2

)
|

+ |f2
(
[∇θ̃f1(χ

s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ

(K−1)
2

)
− f2

(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)
|.

Here, for the first term on the RHS, we apply Lemma D.11 as well as Corollary D.12 to bound.

Then, for the second term, with Gaussian initialization of weight matrices, for the over-parameterized
FC network f with Lipschitz-smooth activation functions (e.g., Sigmoid), we can have |f(x) −
f(x′)|, ∥∇f(x) − ∇f(x′)∥ ≤ ξ · ∥x − x′∥ due to its Lipschitz continuity / smoothness property
[46, 17]. Meanwhile, we also have the Lipschitz continuity property for over-parameterized FC
network f ′ with ReLU activation [3], such that |f ′(x)− f ′(x′)| ≤ ξ′ · ∥x− x′∥. By the Gaussian
initialization of BASS’s weight matrices and the properties of over-parameterized neural networks
[3, 46, 17], we have ξL = max{ξ, ξ′} ≤ O(cLξ) being the Lipschitz constant for our f1, f2, where
cξ > 1 is a small constant. Applying the conclusion above, we will have

∣∣f2([∇θ̃f1(χ
s,∗
K); ∇θ̃f1(χ

q,∗
K)]; θ

(K−1)
2

)
− f2

(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)∣∣
≤ ξL ·

∥∥[∇θ̃f1(χ
s,∗
K); ∇θ̃f1(χ

q,∗
K)]− ξL · [∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]

∥∥
≤ ξL ·

∥∥∇θ̃f1(χ
s,∗
K)−∇θf1(χ

s,∗
K)

∥∥+ ξL ·
∥∥∇θf1(χ

q,∗
K)−∇θ̃f1(χ

q,∗
K)

∥∥
≤ ξL · KL4 log5/6(m)

ρ1/3m1/6

where the last inequality is by Theorem 5 in [3] and the proof of Lemma D.11. With the above
results, it will give us

I3 ≤
(
1 +O(

KL3 log5/6(m)

ρ1/3m1/6
)

)
O(

K3L

ρ
√
m

log(m)) +O
(
K4L2 log11/6(m)

ρ4/3m1/6

)
+

ξLKL4 log5/6(m)

ρ1/3m1/6

20

[Bounding term I4] On the other hand, applying the analogous procedure for term I4, denoting
χ∗

K = Θ(K−1),∗[T ∗
K] and χ̄∗

K = Θ(K−1)[T ∗
K] for the brevity of notation, we can have

I4 = |f(Θ(K−1),∗[T ∗
K];θ(K−1))− f(Θ(K−1)[T ∗

K];θ(K−1))|
≤ ξL · ∥Θ(K−1),∗[T ∗

K]−Θ(K−1)[T ∗
K]∥2︸ ︷︷ ︸

I4.1

+ |f2
(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)
− f2

(
[∇θf1(χ̄

s,∗
K); ∇θf1(χ̄

q,∗
K)]; θ

(K−1)
2

)
|︸ ︷︷ ︸

I4.2

.

where χs,∗
K ,χq,∗

K respectively represents the support set and query set for task T ∗
K and the meta-

parameters Θ(K−1),∗. Similar notation also applies to χ̄∗
K = Θ(K−1)[T ∗

K]. And the inequality is
due to the fact that ReLU networks are naturally Lipschitz continuous w.r.t. some coefficient ξL when
they are wide enough [3], as we have discussed above.

[Bounding term I4.1] Based on the meta-optimization procedure (inner-loop optimization + outer-
loop optimization), we have

I4.1 = ξL · ∥Θ(K−1),∗[T ∗
K]−Θ(K−1)[T ∗

K]∥2

= ξL · ∥
(
Θ(K−1),∗ − η2 · ∇ΘL(Dq,∗

K ;Θ
(J),∗
K)

)
−

(
Θ(K−1) − η2 · ∇ΘL(Dq,∗

K ;Θ
(J)
K)

)
∥2

where Θ
(J),∗
K is the task-specific parameter of T ∗

K after adapting on Θ(K−1),∗ with inner-loop
optimization, and the Θ

(J)
K is the similar parameter after adapting on Θ(K−1). Here, we simplify

the formula by representing the gradient derivation (inner-loop + outer-loop) with the mapping
H : T ×Θ 7→ Rp, which leads to

∥Θ(K−1),∗[T ∗
K]−Θ(K−1)[T ∗

K]∥2

= ∥
(
Θ(K−1),∗ − η2 · ∇ΘL(Dq;Θ

(J),∗
K)

)
−
(
Θ(K−1) − η2 · ∇ΘL(Dq;Θ

(J)
K)

)
∥2

= ∥(Θ(K−1),∗ −Θ(K−1))− η2 ·
(
H(T ∗

K ,Θ(K−1),∗)−H(T ∗
K ,Θ(K−1))

)
∥2

= ∥(Θ(K−2),∗ −Θ(K−2))− η2 ·
(
H(T ∗

K ,Θ(K−1),∗)−H(T ∗
K ,Θ(K−1))

)
− η2 ·

(
H(T ∗

K−1,Θ
(K−2),∗)−H(T ∗

K−1,Θ
(K−2))

)
∥2

≤
∑

k∈[K]

η2 ·
∥∥H(T ∗

k ,Θ(k−1),∗)−H(T ∗
k ,Θ(k−1))

∥∥
2

Recall that the past arms, including the actual chosen arms {T1, T2, . . . , TK} as well as the opti-
mal ones {T ∗

1 , T ∗
2 , . . . , T ∗

K} are all from the candidate pool where each candidate arm is drawn
i.i.d. from the task distribution P(T). Therefore, denoting the bound as ∥H(T ∗

K ,Θ(K−1),∗) −
H(T ∗

K ,Θ(K−1))∥2 ≤ S1(K), we can have the upper bound as I4.1 ≤ η2 · ξLK · S1(K).

Then, for the term S1(K), by definition we have ∥H(T ∗
K ,Θ(K−1),∗)−H(T ∗

K ,Θ(K−1))∥ ≤ S1(K),
applying mean-reduction for the sample loss will further leads to

∥H(T ∗
K ,Θ(K−1),∗)−H(T ∗

K ,Θ(K−1))∥ = ∥∇ΘL(Dq,∗
K ;Θ

(J),∗
K)−∇ΘL(Dq,∗

K ;Θ
(J)
K)∥2

= ∥ 1

|Dq,∗
K |

∑
x∈Dq,∗

K

∇ΘL(x;Θ(J),∗
K)− 1

|Dq,∗
K |

∑
x∈Dq,∗

K

∇ΘL(x;Θ(J)
K)∥2

≤ 1

|Dq,∗
K |

∑
x∈Dq,∗

K

∥∇ΘL(x;Θ(J),∗
K)−∇ΘL(x;Θ(J)

K)∥2.

This inequality essentially bound the gradient difference when given the same input task T ∗
K w.r.t.

different sets of model parameters. Based on the conclusion from Lemma 9 of [46] and Lemma

21

B.3 of [10], we have ∥∇Θl
f(x;ΘK)∥F , ∥∇Θl

L(x;ΘK)∥F ≤ O(
√
mF), ∀l ∈ [LF] for any set of

parameters within the sphere ΘK ∈ B(Θ0, ω) where Θ0 is the center and ω is the corresponding
radius (which is a small value). With a total of LF layers for the meta-model and each layer of mF

hidden units, this will give us ∥∇ΘL(x;Θ(J),∗
K)∥2, ∥∇ΘL(x;Θ(J)

K)∥2 ≤ O(
√
mFLF) (Lemma

D.15). And this makes S1(K) ≤ O(
√
mFLF). Since we have η1, η2 ≤ O(1

mF
), summarizing the

results above, the upper bound can then be derived.

[Bounding term I4.2] Next, we proceed to bound I4.2, which will be

I4.2 = |f2
(
[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]; θ

(K−1)
2

)
− f2

(
[∇θf1(χ̄

s,∗
K); ∇θf1(χ̄

q,∗
K)]; θ

(K−1)
2

)
|

≤ ξL ·
∥∥[∇θf1(χ

s,∗
K); ∇θf1(χ

q,∗
K)]− [∇θf1(χ̄

s,∗
K); ∇θf1(χ̄

q,∗
K)]

∥∥
2

≤ ξL ·
∥∥∇θf1(χ

s,∗
K)−∇θf1(χ̄

s,∗
K)

∥∥
2
+ ξL ·

∥∥∇θf1(χ
q,∗
K)−∇θf1(χ̄

q,∗
K)

∥∥
2

≤ ξ2L ·
∥∥χs,∗

K − χ̄s,∗
K

∥∥
2
+ ξ2L ·

∥∥χq,∗
K − χ̄q,∗

K

∥∥
2

where the inequalities are due to the Lipschitz continuity / smoothness properties of over-
parameterized FC networks as we discussed above. Here, we notice that the second term on the RHS
can be bounded by directly applying the proving procedure of term I4.1. Then, for the first term on
the RHS, we can following a similar procedure as for I4.1, by∥∥χs,∗

K − χ̄s,∗
K

∥∥
2
=

∥∥I(T ∗
k , Θ(k−1),∗)− I(T ∗

k , Θ(k−1))
∥∥
2

= ∥
(
Θ(K−1),∗ − η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K ;Θ

(j),∗
K)

)
−

(
Θ(K−1) − η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K ;Θ

(j)
K)

)
∥2

= ∥
(
Θ(K−2),∗ −Θ(K−2))

)
−
(
η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K−1;Θ

(j)
K−1)− η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K−1;Θ

(j),∗
K−1

)
−
(
η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K ;Θ

(j)
K)− η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
K ;Θ

(j),∗
K

)
∥2

≤ η1 ·
∑

k∈[K]

∥
∑
j∈[J]

∇ΘL(Ds,∗
k ;Θ

(j)
k)− η1 ·

∑
j∈[J]

∇ΘL(Ds,∗
k ;Θ

(j),∗
k)∥2

≤ O(η1 ·KJ
√
mFLF)

where the last inequality is due to Lemma D.15 and by iterating through K meta-training iterations.
Summing up the results above, we will have I4.2 ≤ O(η2ξ

2
L ·K

√
mFLF)+O(η1ξ

2
L ·KJ

√
mFLF).

[Summing up the results] Then, combining all the results, we would have

Rsingle(K) ≤ O(
1√
K

) ·
(√

2ξ1 +
3L√
2
+ (1 + 2γ1)

√
2 log(

K

δ
)

)
+O(

ξ2LKJ
√
LF√

mF
) + γm

where

γ1 = 2 +O
(
K3L

ρ
√
m

logm

)
+O

(
L2K4

ρ4/3m1/6
log11/6(m)

)
γm =

(
1 +O(

KL3 log5/6(m)

ρ1/3m1/6
)

)
O(

K3L

ρ
√
m

log(m)) +O
(
K4L2 log11/6(m)

ρ4/3m1/6

)
+

ξLKL4 log5/6(m)

ρ1/3m1/6

Note that the majority of the terms above can be cancelled to O(1) with proper networks width m
indicated in Theorem 5.2. With increasingly large network width m, these terms will also become
diminutive enough to achieve our regret bound in the main body.

D.2 Extending the result to the batch settings (Proof of Theorem 5.2)

With the results and conclusions from Subsection D.1, we proceed to provide the proof of Theo-
rem 5.2 under the batch settings. Recall that in our original problem formulation and Algorithm 1, we
are expected to select a batch of B arms in each meta-training iteration, denoted by {Ωk}k∈[K]. Note
that each of the candidate arms from Ω

(k)
task are drawn i.i.d. from the task distribution P(T). Meantime,

22

we will have the corresponding optimal arm batches, denoted by {Ω∗
k}k∈[K], which minimizes the

loss objective in Eq. 5. Recall that we update the meta-model parameters with

Θ(k) = Θ(k−1) − η2 · ∇Θ

(
1

|Ωk|
∑

Tk,i∈Ωk

L(Dq
k,i;Θ

(J)
k,i)

)
= Θ(k−1) − η2

|Ωk|
∑

Tk,i∈Ωk

∇Θ

(
L(Dq

k,i;Θ
(J)
k,i)

)
where Θ

(J)
k,i is the task-specific parameter for Tk,i after the inner-loop optimization for J steps.

Analogously, for the notation brevity and the sake of analysis, we denote f(Θ(K−1)[ΩK];θ(k−1)) =

f1(χ
q
k;θ

(k−1)
1) + f2

(
[∇θf1(χ

s
k);∇θf1(χ

q
k)]; θ

(k−1)
2

)
where we have χq

k := Θ(K−1)[ΩK] being

the meta-parameters adapted to batch of tasks ΩK , and the batch-specific parameter is defined as
χs

k := 1
|ΩK |

∑
Tk,î∈ΩK

[Θ
(J)

k,̂i
]. Then, the regret under the batch setting can be denoted by

R(K) = Rbatch(K) = ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K))

)]
− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K),∗)

)]
= ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K−1)[ΩK])

)]
− ET ∼P(T),x∼DT

[
L
(
x; I(T ,Θ(K−1),∗[Ω∗

K])
)]

= h(Θ(K−1),∗[Ω∗
K])− h(Θ(K−1)[ΩK])

= h(Θ(K−1),∗[Ω∗
K])− f(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

) + f(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f(Θ(K−1)[ΩK];θ(K−1))

+ f(Θ(K−1)[ΩK];θ(K−1))− h(Θ(K−1)[ΩK]),

and after applying properties of the arm pulling mechanism, it is equivalent to

R(K) ≤ h(Θ(K−1),∗[Ω∗
K])− f(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)

+ f(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)

+ f̂(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1)[Ω∗

K];θ(K−1))

+ f̂(Θ(K−1)[ΩK];θ(K−1))− f(Θ(K−1)[ΩK];θ(K−1)) + f(Θ(K−1)[ΩK];θ(K−1))− h(Θ(K−1)[ΩK])

≤ |h(Θ(K−1),∗[Ω∗
K])− f(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)|︸ ︷︷ ︸
I5

+ |f(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)|︸ ︷︷ ︸
I6

+ |f̂(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1)[Ω∗

K];θ(K−1))|︸ ︷︷ ︸
I7

+ |f̂(Θ(K−1)[ΩK];θ(K−1))− f(Θ(K−1)[ΩK];θ(K−1))|︸ ︷︷ ︸
I8

+ |f(Θ(K−1)[ΩK];θ(K−1))− h(Θ(K−1)[ΩK])|︸ ︷︷ ︸
I9

where the average value of estimated benefit scores for individual tasks TK,i ∈ ΩK is represented
as f̂(Θ(K−1)[ΩK]) = 1

|ΩK | ·
∑

TK,i∈ΩK
f(Θ(K−1)[TK,i]) = 1

|ΩK | ·
∑

TK,i∈ΩK
f
(
Θ(k−1) − η2 ·

∇ΘL(Dq
K,i;Θ

(J)
K,i); θ

(K−1)
)
, and the inequality is due to the pulling mechanism of BASS. Here,

I5, I9 individually correspond to I1, I2 in the single-task setting and can be bounded by Lemma D.3,
Corollary D.4. Term I7 can be upper bounded by I3 + I4 from the single-task setting above. Then,
for the rest terms I6, I8, we proceed to bound them separately.

D.2.1 Bounding error terms and assembling the regret bound

We begin with the term I8, and then proceed to I6. For the chosen batch of tasks ΩK in the round K,
we will have f1(Θ(K−1)[ΩK]) = f1

(
Θ(K−1)−η2·∇Θ

(
1

|ΩK |
∑

TK,i∈ΩK
L(Dq

K,i;Θ
(J)
K,i)

)
;θ

(K−1)
1

)
,

In this case, the average value of estimation sampling probabilities for tasks TK,i ∈ ΩK is

f̂(Θ(K−1)[ΩK]) = f̂1(Θ
(K−1)[ΩK]) + f̂2(Θ

(K−1)[ΩK])

=
1

|ΩK |
∑

TK,i∈ΩK

[
f1(Θ

(K−1)[TK,i];θ
(K−1)
1) + f2

(
[∇θf1(χ

s
K,i); ∇θf1(χ

q
K,i)]; θ

(K−1)
2

)]

23

[Bounding the f1 output difference] Next, let us first proceed to bound the output difference with
respect to the exploitation module f1, where we can transform this term into

f1(Θ
(K−1)[ΩK])− f̂1(Θ

(K−1)[ΩK])

= f1

(
Θ

(k−1)
1 − η2 · ∇Θ

(1

|ΩK |
∑

TK,i∈ΩK

L(Dq
K,i;Θ

(J)
K,i)

)
;θ

(K−1)
1

)

− 1

|ΩK |
·

∑
TK,j∈ΩK

f1

(
Θ(k−1) − η2 · ∇ΘL(Dq

K,j ;Θ
(J)
K,j); θ

(K−1)
1

)

=
1

|ΩK |
·

∑
TK,j∈ΩK

(
f1
(
Θ(k−1) − η2 · ∇Θ

(1

|ΩK |
∑

TK,i∈ΩK

L(Dq
K,i;Θ

(J)
K,i)

)
;θ

(K−1)
1

)
− f1

(
Θ(k−1) − η2 · ∇ΘL(Dq

K,j ;Θ
(J)
K,j);θ

(K−1)
1

))
.

Then, applying the Lipschitz continuity property will lead to

f1(Θ
(K−1)[ΩK])− f̂1(Θ

(K−1)[ΩK])

≤ η2 · ξL
|ΩK |

·
∑

TK,i∈ΩK

∥∇Θ

(1

|ΩK |
∑

TK,j∈ΩK

L(Dq
K,j ;Θ

(J)
K,j)

)
−∇ΘL(Dq

K,i;Θ
(J)
K,i)∥2.

Here, by the definition of the outer-loop optimization of first-order meta-learning, we will have an
alternative form the inequality, denoted by

f1(Θ
(K−1)[ΩK])− f̂1(Θ

(K−1)[ΩK]) ≤
η2 · ξL
|ΩK |

·
(∑

TK,i∈ΩK

∥ 1

|ΩK |
∑

TK,j∈ΩK

∇Θ

(
L(Dq

K,j ;Θ
(J)
K,j)

)
−∇ΘL(Dq

K,i;Θ
(J)
K,i)∥2

)
.

For the term in the parentheses on the RHS, substituting the backward operation with the H(·, ·)
mapping function, we have∑
TK,i∈ΩK

∥ 1

|ΩK |
∑

TK,j∈ΩK

∇Θ

(
L(Dq

K,j ;Θ
(J)
K,j)

)
−∇ΘL(Dq

K,i;Θ
(J)
K,i)∥2

=
∑

TK,i∈ΩK

∥ 1

|ΩK |
∑

TK,j∈ΩK

∇Θ

(
L(Dq

K,j ;Θ
(J)
K,j)

)
− 1

|ΩK |
∑

TK,j∈ΩK

∇ΘL(Dq
K,i;Θ

(J)
K,i)∥2

≤ 1

|ΩK |
∑

TK,i∈ΩK

∑
TK,j∈ΩK

∥∇ΘL(Dq
K,j ;Θ

(J)
K,j)−∇ΘL(Dq

K,i;Θ
(J)
K,i)∥2

=
1

|ΩK |
∑

TK,i∈ΩK

∑
TK,j∈ΩK

∥H(TK,i,Θ
(K−1))−H(TK,j ,Θ

(K−1))∥2

≤ |ΩK | · S1(K).

with |ΩK | = B. Therefore, the f1 part of error term I8 could be bounded by f1(Θ
(K−1)[ΩK]) −

f̂1(Θ
(K−1)[ΩK]) ≤ η2 · ξL · B · S1(K). where the upper bound S1(K) ≤ O(

√
mFLF) can be

found in the procedure bounding term I4.1.

[Bounding the f2 output difference] Then, with χK = Θ(K−1)[ΩK], we proceed to bound the
output difference with respect to the exploration module, which is represented by

f2(Θ
(K−1)[ΩK])− f̂2(Θ

(K−1)[ΩK])

= f2
(
[∇θf1(χ

s
K); ∇θf1(χ

q
K)]; θ

(K−1)
2

)
− 1

|ΩK |
·

∑
TK,j∈ΩK

f2
(
[∇θf1(χ

s
K,j); ∇θf1(χ

q
K,j)]; θ

(K−1)
2

)
=

1

|ΩK |
·

∑
TK,j∈ΩK

(
f2
(
[∇θf1(χ

s
K); ∇θf1(χ

q
K)]; θ

(K−1)
2

)
− f2

(
[∇θf1(χ

s
K,j); ∇θf1(χ

q
K,j)]; θ

(K−1)
2

))

24

By adopting the Lipschitz continuity property of f2, we will have

f2(Θ
(K−1)[ΩK])− f̂2(Θ

(K−1)[ΩK])

≤ ξL
|ΩK |

·
∑

TK,j∈ΩK

∥∥[∇θf1(χ
s
K); ∇θf1(χ

q
K)]− [∇θf1(χ

s
K,j); ∇θf1(χ

q
K,j)]

∥∥
2

≤ ξL
|ΩK |

·
∑

TK,j∈ΩK

∥∥∇θf1(χ
s
K)−∇θf1(χ

s
K,j)

∥∥
2
+

∥∥∇θf1(χ
q
K)−∇θf1(χ

q
K,j)

∥∥
2

≤ ξ2L
|ΩK |

·
∑

TK,j∈ΩK

∥∥χs
K − χs

K,j

∥∥
2
+
∥∥χq

K − χq
K,j

∥∥
2

=
ξ2L · η2
|ΩK |

·
∑

TK,j∈ΩK

∥∇Θ

(1

|ΩK |
∑

TK,i∈ΩK

L(Dq
K,i;Θ

(J)
K,i)

)
−∇ΘL(Dq

K,j ;Θ
(J)
K,j)∥2

+
ξ2L

|ΩK |
·

∑
TK,j∈ΩK

∥∥χs
K − χs

K,j

∥∥
2

≤ η2 · ξ2LB · S1(K) +
ξ2L · η1
|ΩK |

·
∑

TK,j∈ΩK

∥ 1

|ΩK |
∑

TK,i∈ΩK

Θ
(J)
K,i −

1

|ΩK |
∑

TK,i∈ΩK

Θ
(J)
K,j∥2

where the last inequality is by applying the conclusion when bounding the output difference w.r.t. the
exploitation module f1. Then, for the second term on the RHS,∑
TK,j∈ΩK

∥ 1

|ΩK |
∑

TK,i∈ΩK

Θ
(J)
K,i −

1

|ΩK |
∑

TK,i∈ΩK

Θ
(J)
K,j∥2 ≤ 1

|ΩK |
∑

TK,j∈ΩK

∑
TK,i∈ΩK

∥Θ(J)
K,i −Θ

(J)
K,j∥2

≤ 1

|ΩK |
∑

TK,j∈ΩK

∑
TK,i∈ΩK

∥
(
ΘK−1 −

∑
τ∈[τ]

∇ΘL(Ds
K,i;Θ

(τ)
K,i)

)
−

(
ΘK−1 −

∑
τ∈[J]

∇ΘL(Ds
K,j ;Θ

(τ)
K,j)

)
∥2

=
1

|ΩK |
∑

TK,j∈ΩK

∑
TK,i∈ΩK

∥
∑
τ∈[J]

∇ΘL(Ds
K,i;Θ

(τ)
K,i)−

∑
τ∈[J]

∇ΘL(Ds
K,j ;Θ

(τ)
K,j)∥2

≤ |ΩK |J · O(
√
mFLF)

where the last inequality is due to Lemma D.15. Summing up all the results above will give us
the upper bound for f2 output difference f2(Θ

(K−1)[ΩK]) − f̂2(Θ
(K−1)[ΩK]) ≤ O(η2 · ξ2LB ·√

mFLF + η1 ·BJ ·
√
mFLF).

[Similar procedure for term I6] Analogously, we can apply the same derivation for the error term
I6, which leads to

I6 = f(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)

= f1

(
Θ(k−1),∗ − η2∇Θ

(1

|Ω∗
K |

∑
Ti∗∈Ω∗

K

L(Dq
i∗ ;Θ

(J)
i∗)

)
; θ̃

(K−1)

1

)

− 1

|Ω∗
K |

·
∑

Ti∗∈Ω∗
K

f1

(
Θ(k−1),∗ − η2∇ΘL(Dq

i∗ ;Θ
(J)
i∗); θ̃

(K−1)

1

)
.

Following a similar procedure as that of term I8 will give us a similar bound as

I6 = f(Θ(K−1),∗[Ω∗
K]; θ̃

(K−1)
)− f̂(Θ(K−1),∗[Ω∗

K]; θ̃
(K−1)

)

≤ O(η2 · ξ2LB ·
√
mFLF +BJ ·

√
mFLFη1).

where the learning rate η1, η2 ≤ O(1
mF

) is a small value. Then, the upper bounds for error terms
I6, I8 are given as desired.

[Assembling the results] Then, combining all the results, we would have

R(K) ≤ O(
1√
K

) ·
(√

2ξ1 +
3L√
2
+ (1 + 2γ1)

√
2 log(

K

δ
)

)
+O(

ξ2LKBJ
√
LF√

mF
) + γm

25

where

γ1 = 2 +O
(
K3L

ρ
√
m

logm

)
+O

(
L2K4

ρ4/3m1/6
log11/6(m)

)
γm =

(
1 +O(

KL3 log5/6(m)

ρ1/3m1/6
)

)
O(

K3L

ρ
√
m

log(m)) +O
(
K4L2 log11/6(m)

ρ4/3m1/6

)
+

ξLKL4 log5/6(m)

ρ1/3m1/6

Similarly, with proper networks width m as in Theorem 5.2, the majority of the terms above can
be cancelled to O(1). With increasingly large network width m under the over-parameterization
settings, γ1, γm will also become diminutive.

D.3 Performance Guarantee for the Exploitation and Exploration Modules

In this subsection, we would like to give the performance guarantee for the proposed BASS framework,
and the corresponding performance bound can be applied to derive an upper bound for the error terms
I1, I2 for the single-task settings and I5, I9 under the batch settings. Up to meta-training iteration
k ∈ [K] (before updating the meta-parameters and BASS), we denote all the past records received as
Pk−1. Before presenting the main lemmas, we first introduce the following operator. Inspired by [3],
with two arbitrary vectors χ̃,χ such that ∥χ̃∥2 ≤ 1, ∥χ∥2 = 1, we have the following operator

ϕ(χ̃,χ) = (
χ̃√
2
,
χ

2
, c) (11)

as the concatenation of the two vectors χ̃√
2
, χ
2 and one constant c, where c =

√
3
4 − (∥χ̃∥2√

2
)2 ≥ 1

2 .
And this operator transforms the transformed vector into unit norm, ∥ϕ(χ̃,χ)∥2 = 1. The idea of
this operator is to make the gradients ∇θf1(·; θ1) of the exploitation model, which is the input of
the exploration model f2(·; θ2), comply with the normalization requirement and the separateness
assumption (Assumption 5.1). For the sake of analysis, we will adopt this operation in the following
proof. Note that this operator is just one possible solution, and our results could be easily generalized
to other forms of input gradients under the unit-length and separateness assumption. Similar ideas
are also applied in previous works [9]. We begin to bound the single-task settings with the following
lemma.
Lemma D.1. For the constants c′g > 0, 0 < ρ ≤ O(1

L) and ξ1 ∈ (0, 1), given the past records
Pk−1, we suppose m, η1, η2 satisfy the conditions in Theorem 5.2, and randomly draw the parameter

{θ(k)
1 ,θ

(k)
2 } ∼ {θ̃

(τ)

1 , θ̃
(τ)

2 }τ∈[k]. Consider the past records Pk−1 up to round k are generated by

a fixed policy when witness the candidate arms {Ω(τ)
task}τ∈[k]. Then, with probability at least 1− δ

given an arm-reward pair (Tk,̂i, rk,̂i), we have

ETk,i∼P(T)

[
|f2

(
ϕ(

[∇θf1(χ
s
k,̂i

); ∇θf1(χ
q

k,̂i
)]

c′gL
,χq

k,̂i
);θ

(k−1)
2

)
−

(
rτ − f1(χ

q

k,̂i
;θ

(k−1)
1)

)
|
∣∣Ω(k)

task,Pk−1

]
≤ 1√

k
·
(√

2ξ1 +
3L√
2
+ (1 + 2γ1)

√
2 log(

k

δ
)

)
where

γ1 = 2 +O
(

k3L

ρ
√
m

logm

)
+O

(
L2k4

ρ4/3m1/6
log11/6(m)

)
.

Proof. The proof of this lemma is inspired by Lemma C.1 from [9]. First, we can derive the output
upper bound∣∣∣∣f2(ϕ([∇θf1(χ

s
k,̂i

); ∇θf1(χ
q

k,̂i
)]

c′gL
,χq

k,̂i
); θ

(k−1)
2

)
−
(
rk − f1(χ

q

k,̂i
;θ

(k−1)
1)

)∣∣∣∣
≤

∣∣∣∣f2(ϕ([∇θf1(χ
s
k,̂i

); ∇θf1(χ
q

k,̂i
)]

c′gL
,χq

k,̂i
);θ

(k−1)
2

)∣∣∣∣+ ∣∣∣∣f1(χq

k,̂i
;θ

(k−1)
1)

∣∣∣∣+ 1

≤ 1 + 2γ1

26

by triangle inequality and applying the generalization result of FC networks (Lemma D.5) on
f1(·; θ1), f2(·; θ2).

For the brevity of notation, we use ∇f1(Tk,̂i) to denote ϕ(
[∇θf1(χ

s
k,î

); ∇θf1(χ
q

k,î
)]

c′gL
,χq

k,̂i
) and apply

(χk, rk) as (χq

k,̂i
, rk,̂i) for the following proof. Define the difference sequence as

V (1)
τ = E

[∣∣∣∣f2(∇f1(Tτ,̂i);θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]
−
∣∣∣∣f2(∇f1(Tτ,̂i);θ

(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣.
Since the past rewards and the received arm-reward pairs (χτ , rτ) are generated by the same reward
mapping function, we have the expectation

E[V (1)
τ

∣∣Fτ] =E
[∣∣∣∣f2(∇f1(Tτ,̂i); θ

(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]
− E

[∣∣∣∣f2(∇f1(Tτ,̂i);θ
(τ−1)
2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣∣∣Fτ

]
= 0.

where Fτ denotes the filtration given the past records Pτ , up to round τ ∈ [k]. This also gives the
fact that V (1)

τ is a martingale difference sequence. Then, after applying the martingale difference
sequence over [k], we have

1

k

∑
τ∈[k]

V (1)
τ =

1

k

∑
τ∈[k]

E
[∣∣∣∣f2(∇f1(Tτ,̂i);θ

(τ−1)
2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]

− 1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,̂i);θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣.
Then, by applying the Azuma-Hoeffding inequality, it leads to

P
[
1

k

∑
τ∈[k]

V (1)
τ − 1

k

∑
τ∈[k]

E[V (1)
τ] ≥ (1 + 2γ1)

√
2 log(1/δ)

k

]
≤ δ

Since the expectation of V
(1)
τ is zero, with the probability at least 1 − δ and an existing set of

parameters θ2 s.t. ∥θ2 − θ
(0)
2 ∥ ≤ O

(
k3

ρ
√
m
logm

)
, the above inequality implies

1

k

∑
τ∈[k]

V (1)
τ ≤ (1 + 2γ1)

√
2 log(1/δ)

k
=⇒

ETk,i∼P(T)E{θ(k−1)
1 ,θ

(k−1)
2 }

[∣∣∣∣f2(∇f1(Tτ,̂i); θ
(k−1)
2

)
−
(
rτ − f1(χτ ;θ

(k−1)
1)

)∣∣∣∣]
=

1

k

∑
τ∈[k]

E
[∣∣∣∣f2(∇f1(Tτ,̂i);θ

(τ−1)
2

)
−

(
rk − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]

≤ 1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,̂i);θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣+ (1 + 2γ1)

√
2 log(1/δ)

k

≤
(i)

1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,̂i);θ2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣+ 3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k

≤ 1√
k

√√√√∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,̂i);θ2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣2 + 3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k

≤
(ii)

√
2ξ1
k

+
3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k
.

27

where the first equality is due to the sampling of candidate tasks and the model parameters. Here,
the upper bound (i) is derived by applying the conclusions of Lemma D.6 and Lemma D.10,
and the inequality (ii) is derived by adopting Lemma D.6 while defining the empirical loss to be

1
2

∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,̂i);θ2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣2 ≤ ξ1. Finally, applying the union bound

would give the aforementioned results.

Here, analogous to the trained parameters, we consider the shadow parameters as {θ(k),∗
1 ,θ

(k),∗
2 } ∼

{θ̃
(τ),∗
1 , θ̃

(τ),∗
2 }τ∈[k]. Similarly, each pair {θ̃

(τ),∗
1 , θ̃

(τ),∗
2 } is separately trained on past received

rewards of the optimal arm(s) {rτ ′,i∗}τ ′∈[τ],Tτ′,i∗∈Ω∗
k

and past exploration scores of the optimal arm(s)

{eτ ′,i∗}τ ′∈[τ],Tτ′,i∗∈Ω∗
k

with Jθ-iteration GD, starting from the random initialization {θ(0)
1 ,θ

(0)
2 }.

Corollary D.2. For the constants 0 < ρ ≤ O(1/L) and ξ1 ∈ (0, 1), given the past records Pk−1,
we suppose m, η1, J satisfy the conditions in Theorem 5.2, and randomly draw the parameters

{θ(k),∗
1 ,θ

(k),∗
2 } ∼ {θ̃

(τ),∗
1 , θ̃

(τ),∗
2 }τ∈[k]. For the optimal arm Tk,i∗ ∈ Ωk

task, consider its union set
with the the collection of past optimal arms P∗

k−1 ∪ {Tk,i∗ , rk,i∗} are generated by a fixed policy

when witness the candidate arms {Ω(τ)
task}τ∈[k], with P∗

k−1 being the collection chosen by this policy.
Then, with probability at least 1− δ, we have

ETk,i∼P(T)

[
|f2

(
ϕ(

[∇θf1(χ
s,∗
k); ∇θf1(χ

q,∗
k)]

c′gL
,χq,∗

k); θ
(k−1),∗
2

)
−
(
rτ − f1(χ

q,∗
k ;θ

(k−1),∗
1)

)
|
∣∣Ω(k)

task,P
∗
k−1

]
≤ 1√

k
·
(√

2ξ1 +
3L√
2
+ (1 + γ1)

√
2 log(

k

δ
)

)
+ Γk

where rτ,i∗ is the corresponding reward generated by the mapping function given an arm χτ,i∗ , and

Γk =

(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

k4L

ρ
√
m

log(m)) +O
(
k5L2 log11/6(m)

ρ4/3m1/6

)
.

Proof. This corollary is the direct application of Lemma D.1 by following a similar proof procedure.
First, suppose the shadow models f1(·; θ2), f2(·; θ2) are trained on the alternative trajectory P∗

k−1.
Analogous to the proof of Lemma D.1, we can define the following martingale difference sequence
with regard to the previous records P∗

k−1 up to round τ ∈ [t] as

V (1),∗
τ = E

[∣∣∣∣f2(∇f1(Tτ,i∗); θ(τ−1),∗
2

)
−

(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣]
−
∣∣∣∣f2(∇f1(Tτ,i∗); θ(τ−1),∗

2

)
−

(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣.
Since the records in set P∗

k−1 are sharing the same reward mapping function, we have the expectation

E[V (1),∗
τ

∣∣F ∗
τ] =E

[∣∣∣∣f2(∇f1(Tτ,i∗);θ(τ−1),∗
2

)
−
(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣]
− E

[∣∣∣∣f2(∇f1(Tτ,i∗); θ(τ−1),∗
2

)
−

(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣∣∣F ∗
τ

]
= 0.

where F ∗
τ denotes the filtration given the past records P∗

k−1. The mean value of V (1),∗
τ across different

time steps will be

1

k

∑
τ∈[k]

V (1),∗
τ =

1

k

∑
τ∈[k]

E
[∣∣∣∣f2(∇f1(Tτ,i∗); θ(τ−1),∗

2

)
−

(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣]

− 1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Tτ,i∗);θ(τ−1),∗
2

)
−
(
r∗τ − f1(χ

∗
τ ;θ

(τ−1),∗
1)

)∣∣∣∣.
28

with the expectation of zero. Afterwards, applying the Azuma-Hoeffding inequality, with a constant
δ ∈ (0, 1), it leads to

P
[
1

k

∑
τ∈[k]

V (1),∗
τ − 1

k

∑
τ∈[k]

E[V (1),∗
τ] ≥ (1 + 2γ1)

√
2 log(1/δ)

k

]
≤ δ

To bound the output difference between the shadow model f1(·; θ(k−1),∗
1), f2(·; θ(k−1),∗

2) and the
model we trained based on received records f1(·; θ(k−1)

1), f2(·; θ(k−1)
2), we apply the conclusion

from Lemma D.11, which leads to that given arbitrary input vectors x,x′, we have

|f1(x; θ(k−1),∗
1)− f1(x; θ

(k−1)
1)|, |f2(x′;θ

(k−1),∗
2)− f2(x

′;θ
(k−1)
2)| ≤(

1 +O(
kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

k3L

ρ
√
m

log(m)) +O
(
k4L2 log11/6(m)

ρ4/3m1/6

)
.

Finally, combining all the results will finish the proof.

We will also be able to have the performance guarantee under the batch settings. Recall that given
a batch of chosen tasks Ωk ⊂ Ω

(k)
task, k ∈ [K], we have the meta-parameters adapted to this batch of

tasks being Θ(K−1)[ΩK], which we consider as the input for the f1(·; θ1) model, where the tasks
within each collection are sampled from the task distribution. Thus, chosen task batches from different
iterations are also independent from each other. Intuitively, we can also define the corresponding
reward for arm batch Ωk as rk = h(Θ(k−1)[Ωk]). Then, we bound the batch settings with the
following lemma and corollary.
Lemma D.3. For the constants c′g > 0, ρ ∈ (0,O(1

L)) and ξ1 ∈ (0, 1), given the past records
Pk−1, we suppose m, η1, η2 satisfy the conditions in Theorem 5.2, and randomly draw the parameter

{θ(k)
1 ,θ

(k)
2 } ∼ {θ̃

(τ)

1 , θ̃
(τ)

2 }τ∈[k]. Consider the past records Pk−1 up to round k are generated by

a fixed policy when witness the candidate arms {Ω(τ)
task}τ∈[k]. Then, with probability at least 1− δ

given the pair of chosen arm batch and the reward (Ωk, rk) in round k, we have

ETk,i∼P(T)

[
|f2

(
ϕ(

[∇θf1(χ
s
k); ∇θf1(χ

q
k)]

c′gL
,χq

k);θ
(k−1)
2

)
−
(
rτ − f1(χ

q
k;θ

(k−1)
1)

)
|
∣∣Ω(k)

task,Pk−1

]
≤ 1√

k
·
(√

2ξ1 +
3L√
2
+ (1 + 2γ1)

√
2 log(

k

δ
)

)
where

γ1 = 2 +O
(

k3L

ρ
√
m

logm

)
+O

(
L2k4

ρ4/3m1/6
log11/6(m)

)
.

Proof. The proof of this lemma is analogous to the proof of Lemma D.1. First, we can derive the
output upper bound∣∣∣∣f2(ϕ([∇θf1(χ

s
k); ∇θf1(χ

q
k)]

c′gL
,χq

k);θ
(k−1)
2

)
−

(
rk − f1(χ

q
k;θ

(k−1)
1)

)∣∣∣∣
≤

∣∣∣∣f2(ϕ([∇θf1(χ
s
k); ∇θf1(χ

q
k)]

c′gL
,χq

k);θ
(k−1)
2

)∣∣∣∣+ ∣∣∣∣f1(χq
k;θ

(k−1)
1)

∣∣∣∣+ 1

≤ 1 + 2γ1

by triangle inequality and applying the generalization result of FC networks (Lemma D.5) on
f1(·; θ1), f2(·; θ2), where c′g > 0 is a positive number to scale the concatenated gradient vector.

For the brevity of notation, we use ∇f1(Ωk) to denote ϕ([∇θf1(χ
s
k); ∇θf1(χ

q
k)]

c′gL
,χq

k) and apply (χk, rk)

as (χq
k, rk) for the following proof. Define the difference sequence as

V (2)
τ = E

[∣∣∣∣f2(∇f1(Ωτ); θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]
−
∣∣∣∣f2(∇f1(Ωτ);θ

(τ−1)
2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣.
29

Since the past rewards and the received arm batch-reward pairs (χτ , rτ) are generated by the same
reward mapping function, we have the expectation

E[V (2)
τ

∣∣Fτ] =E
[∣∣∣∣f2(∇f1(Ωτ);θ

(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]
− E

[∣∣∣∣f2(∇f1(Ωτ);θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣∣∣Fτ

]
= 0.

where Fτ denotes the filtration given the past records Pτ , up to round τ ∈ [k]. This also gives the
fact that V (2)

τ is a martingale difference sequence. Then, after applying the martingale difference
sequence over [k], we have

1

k

∑
τ∈[k]

V (2)
τ =

1

k

∑
τ∈[k]

E
[∣∣∣∣f2(∇f1(Ωτ);θ

(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]

− 1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Ωτ);θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣.
By the Azuma-Hoeffding inequality, it leads to P

[
1
k

∑
τ∈[k] V

(2)
τ − 1

k

∑
τ∈[k] E[V

(2)
τ] ≥ (1 +

2γ1)
√

2 log(1/δ)
k

]
≤ δ. As we have discussed, the tasks within each collection are sampled from the

task distribution, which makes chosen task batches from different iterations Ωk, k ∈ [K] are also
independent from each other. Since the expectation of V (2)

τ is zero, with the probability at least
1− δ and an existing set of parameters θ2 s.t. ∥θ2 − θ

(0)
2 ∥ ≤ O

(
k3

ρ
√
m
logm

)
, the above inequality

implies

1

k

∑
τ∈[k]

V (1)
τ ≤ (1 + 2γ1)

√
2 log(1/δ)

k
=⇒

ETk,i∼P(T)E{θ(k−1)
1 ,θ

(k−1)
2 }

[∣∣∣∣f2(∇f1(Ω); θ
(k−1)
2

)
−
(
r − f1(χ; θ

(k−1)
1)

)∣∣∣∣]
=

1

k

∑
τ∈[k]

E
[∣∣∣∣f2(∇f1(Ωτ);θ

(τ−1)
2

)
−

(
rk − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣]

≤ 1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Ωτ); θ
(τ−1)
2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣+ (1 + 2γ1)

√
2 log(1/δ)

k

≤
(i)

1

k

∑
τ∈[k]

∣∣∣∣f2(∇f1(Ωτ);θ2

)
−

(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣+ 3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k

≤ 1√
k

√√√√∑
τ∈[k]

∣∣∣∣f2(∇f1(Ωτ); θ2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣2 + 3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k

≤
(ii)

√
2ξ2
k

+
3L√
2k

+ (1 + 2γ1)

√
2 log(1/δ)

k
.

where the first equality is due to the sampling of candidate tasks and the model parameters. Here,
the upper bound (i) is derived by applying the conclusions of Lemma D.6 and Lemma D.10,
and the inequality (ii) is derived by adopting Lemma D.6 while defining the empirical loss to be

1
2

∑
τ∈[k]

∣∣∣∣f2(∇f1(Ωτ);θ2

)
−
(
rτ − f1(χτ ;θ

(τ−1)
1)

)∣∣∣∣2 ≤ ξ2. Finally, applying the union bound

would give the aforementioned results.

30

Analogously, we consider the shadow parameters as {θ(k),∗
1 ,θ

(k),∗
2 } ∼ {θ̃

(τ),∗
1 , θ̃

(τ),∗
2 }τ∈[k] where

each pair {θ̃
(τ),∗
1 , θ̃

(τ),∗
2 } is separately trained on past received rewards of the optimal arm(s)

{rτ ′,i∗}τ ′∈[τ],Tτ′,i∗∈Ω∗
k

and past exploration scores of the optimal arm(s) {eτ ′,i∗}τ ′∈[τ],Tτ′,i∗∈Ω∗
k

with Jθ-iteration GD starting from the random initialization {θ(0)
1 ,θ

(0)
2 }.

Corollary D.4. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given the past records Pk−1,

we suppose m, η1, J satisfy the conditions in Theorem 5.2, and randomly draw the parameters

{θ(k),∗
1 ,θ

(k),∗
2 } ∼ {θ̃

(τ),∗
1 , θ̃

(τ),∗
2 }τ∈[k]. For the optimal arm batch Ω∗

k ⊂ Ωk
task, consider its union

set with the the collection of past optimal arms P∗
k−1 ∪{Ω∗

k, r
∗
k} are generated by a fixed policy when

witness the candidate arms {Ω(τ)
task}τ∈[k], with P∗

k−1 being the collection chosen by this policy. Then,
with probability at least 1− δ, we have

ETk,i∼P(T)

[
|f2

(
ϕ(

[∇θf1(χ
s,∗
k); ∇θf1(χ

q,∗
k)]

c′gL
,χq,∗

k); θ
(k−1),∗
2

)
−
(
rτ − f1(χ

q,∗
k ;θ

(k−1),∗
1)

)
|
∣∣Ω(k)

task,P
∗
k−1

]
≤ 1√

k
·
(√

2ξ2 +
3L√
2
+ (1 + γ1)

√
2 log(

k

δ
)

)
+ Γk

where rτ,i∗ is the corresponding reward generated by the mapping function given an arm χτ,i∗ , and

Γk =

(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

k4L

ρ
√
m

log(m)) +O
(
k5L2 log11/6(m)

ρ4/3m1/6

)
.

This corollary is a directly application of Lemma D.3 and can be obtained with a similar proof as in
Corollary D.2.

D.4 Ancillary Lemmas

Applying Pk−1 as the training data, we have the following properties for the over-parameterized FC
network f(·; θ) after GD.
Lemma D.5. For the constants ρ ∈ (0,O(1

L)) and ξ1 ∈ (0, 1), given the past records Pk−1 up to
time step k, we suppose m, η1, J1 satisfy the conditions in Theorem 5.2. Then, with probability at
least 1− δ, given a sample-label pair (x, r), we have

|f(x;θ(k))| ≤ γ1 = 2 +O
(

k3L

ρ
√
m

logm

)
+O

(
L2k4

ρ4/3m1/6
log11/6(m)

)
.

Proof. The LHS of the inequality could be written as

|f(x; θ)| ≤|f(x; θ)− f(x; θ(0))− ⟨∇θ(0)f(x; θ(0)), θ − θ(0)⟩|
+ |f(x;θ(0)) + ⟨∇θ(0)f(x; θ(0)),θ − θ(0)⟩|.

Here, we could bound the first term on the RHS with Lemma D.7. Applying Lemma D.8 on the
second term, and recalling ∥θ − θ(0)∥2 ≤ ω, would give

|f(x; θ)| ≤ 2 + ∥∇θ(0)f(x; θ(0))∥2∥θ − θ(0)∥2+

O(ω1/3L2
√

m log(m)) · ∥θ − θ(0)∥2
≤ 2 +O(L) · ∥θ − θ(0)∥2 +O(L2

√
m log(m))(∥θ − θ(0)∥2)

4
3 .

Then, applying the conclusion of Lemma D.6 would lead to

|f(x; θ)| ≤ 2 +O(L) · O
(

k3

ρ
√
m

logm

)
+O(L2

√
m log(m))

(
O(

k3

ρ
√
m

logm)

) 4
3

= 2 +O
(

k3L

ρ
√
m

logm

)
+O

(
L2k4

ρ4/3m1/6
log11/6(m)

)
= γ1.

31

Lemma D.6 (Theorem 1 from [3]). For any 0 < ξ1 ≤ 1, 0 < ρ ≤ O(1
L). Given the past records

Pk−1, suppose m, η1, J satisfy the conditions in Theorem 5.2, then with probability at least 1− δ,
we could have

1. L(θ) ≤ ξ1 after J iterations of GD.

2. For any j ∈ [J], ∥θ(j) − θ(0)∥ ≤ O
(

k3

ρ
√
m
logm

)
.

In particular, Lemma D.6 above provides the convergence guarantee for f(·; θ) after certain rounds
of GD training on the past records Pk−1.
Lemma D.7 (Lemma 4.1 in [10]). Assume a constant ω such that
O(m−3/2L−3/2[log(TnL2/δ)]3/2) ≤ ω ≤ O(L−6[logm]−3/2) and n training samples.
With randomly initialized θ(0), for parameters θ,θ′ satisfying ∥θ − θ(0)∥, ∥θ − θ(0)∥ ≤ ω, we have

|f(x; θ)− f(x; θ′)− ⟨∇θ′f(x; θ′), θ − θ′⟩| ≤ O(ω1/3L2
√
m log(m))∥θ − θ′∥

with the probability at least 1− δ.

Lemma D.8. Assume m, η1, J satisfy the conditions in Theorem 5.2 and θ(0) is randomly initialized.
Then, with probability at least 1− δ and given an arm ∥x∥2 = 1, we have

1. |f(x; θ(0))| ≤ 2,

2. ∥∇θ(0)f(x; θ(0))∥2 ≤ O(L).

Proof. The conclusion (1) is a direct application of Lemma 7.1 in [3]. Suppose the parameters of the
L-layer FC network are θ = {θ1, . . . , θL}. For conclusion (2), applying Lemma 7.3 in [3], for each
layer θl ∈ {θ1, . . . , θL}, we have

∥∇θl
f(x; θ(0))∥2 = ∥(θLDL−1 · · ·Dl+1θl+1) · (Dl+1θl+1 · · ·D1θ1) · x⊺∥2 = O(

√
L).

where D is the diagonal matrix corresponding to the activation function. Then, we could have the
conclusion that

∥∇θ(0)f(x; θ(0))∥2 =

√∑
l∈[L]

∥∇θl
f(x; θ(0))∥22 = O(L).

Lemma D.9 (Theorem 5 in [3]). Assume m, η1, J satisfy the conditions in Theorem 5.2 and θ(0)

being randomly initialized. Then, with probability at least 1− δ, and for all parameter θ such that
∥θ − θ(0)∥2 ≤ ω, we have

∥∇θf(x; θ)−∇θ(0)f(x; θ(0))∥2 ≤ O(ω1/3L3
√

log(m))

Lemma D.10. Assume m, η1 satisfy the condition in Theorem 5.2. For notation brevity, suppose the
training sample-label pairs are {xτ , rτ}τ∈[k]. With the probability at least 1− δ, we have

∑
τ∈[k]

|f(xτ ;θ
(τ))− rτ | ≤

∑
τ∈[k]

|f(xτ ;θ
(k))− rτ |+

3L
√
2k

2

Proof. With the notation from Lemma 4.3 in [10], set R = k3 log(m)
δ , ν = R2, and ϵ = LR√

2νk
. Then,

considering the loss function to be L(θ) :=
∑

τ∈[k]|f(xτ ;θ)− rτ | would complete the proof.

Lemma D.11. Consider a randomly initialized L-layer ReLU fully-connected network f(·; θ0). For
any 0 < ξ2 ≤ 1, 0 < ρ ≤ O(1

L). Let there be two sets of training samples Pk,P ′
k with the unit-length

and the ρ-separateness assumption, and let θ be the trained parameter on Pk while θ′ is the trained
parameter on P ′

k. Suppose the conditions in Theorem 5.2 are satisfied. Then, with probability at
least 1− δ, we have

|f(x; θ)−f(x; θ′)| ≤
(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

k3L

ρ
√
m

log(m)) +O
(
k4L2 log11/6(m)

ρ4/3m1/6

)
when given a new sample x ∈ Rd.

32

Proof. First, based on the conclusion from Theorem 1 from [3] and regarding the t samples, the
trained the parameters satisfy ∥θ − θ0∥2, ∥θ′ − θ0∥2 ≤ O(k3

ρ
√
m
log(m)) = ω where θ0 is the

randomly initialized parameter. Then, we could have

∥∇θf(x; θ)∥2 ≤ ∥∇θ0
f(x;θ0)∥2 + ∥∇θf(x; θ)−∇θ0

f(x;θ0)∥2

≤
(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(L)

w.r.t. the conclusion from Theorem 1 and Theorem 5 of [3]. Then, regarding the Lemma 4.1 from
[10], we would have

|f(x; θ)− f(x; θ′)− ⟨∇θ′f(x; θ′), θ − θ′⟩| ≤ O(ω1/3L2
√
m log(m)) · ∥θ − θ′∥2.

Therefore, the our target could be reformed as

|f(x; θ)− f(x; θ′)| ≤ ∥∇θ′f(x;θ′)∥2∥θ − θ′∥2 +O(ω1/3L2
√
m log(m)) · ∥θ − θ′∥2

≤
(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(L) · ω +O(ω4/3L2

√
m log(m))

Substituting the ω with its value would complete the proof.

Corollary D.12. Following a similar settings as in Lemma D.11, consider a randomly initialized
L-layer fully-connected network f(·; θ0) with Sigmoid activation. For any 0 < ξ2 ≤ 1, 0 < ρ ≤
O(1

L). Let there be two sets of training samples Pk,P ′
k with the unit-length and the ρ-separateness

assumption, and let θ be the trained parameter on Pk while θ′ is the trained parameter on P ′
k.

Suppose the conditions in Theorem 5.2 are satisfied. Then, with probability at least 1− δ, we have

|f(x; θ)−f(x; θ′)| ≤
(
1 +O(

kL3 log5/6(m)

ρ1/3m1/6
)

)
· O(

k3L

ρ
√
m

log(m)) +O
(
k4L2 log11/6(m)

ρ4/3m1/6

)
when given a new sample x ∈ Rd.

Proof. This corollary is an intuitive extension of Lemma D.11. Since the result from Theorem 1
of [3] also applies to Lipschitz-smooth (i.e., Sigmoid) activation functions, combining the proof of
Lemma D.11 and the result from Lemma 7 in [46] will give the conclusion.

D.5 Regret Bound for Uniform Sampling

Lemma D.13 (Regret Bound for the Uniform Sampling Approach). When applying the uniform
sampling as in most meta-learning frameworks, we denote the corresponding sampled task series as

Ωu(K). We will have Ru(K) = ET ∼P(T),x∼DT

[
L(x; I(T ,Θ(K)

u))−L(x; I(T ,Θ(K),∗))

]
. where

Θ(K)
u refer to the meta-parameters trained with uniform sampling. With ∥Θ(K)

u −Θ(K),∗∥2 ≤ ω,
we have the regret bound for the uniform sampling as

Ru(K) = ET ∼P(T),x∼DT

[
L(x; I(T ,Θ(K)

u))− L(x; I(T ,Θ(K),∗))

]
≤

√
mFLF · ω +O(ω4/3L3

F
√
mF log(mF)) +O(

√
LF

mF
)

≤ min

{
O
(
KLF +

K4/3L
11/3
F

√
log(mF)

m
1/6
F

+

√
LF

mF

)
, 1

}

Proof. Here, for the simplicity of notation, we denote Θ = I(T ,Θ), and neglect the expectation
terms. Note that the difference between adapted meta-parameters and the original meta-parameters is

33

small enough and can be well-bounded. We will then have

Ru(K) = ET ∼P(T),x∼DT

[
L(x; I(T ,Θ(K)

u))− L(x; I(T ,Θ(K),∗))

]
= L̃(Θ̃

(K)

u)− L̃(Θ̃
(K),∗

)

where the two sets of meta-parameters are trained with uniformly sampled tasks and the optimal tasks,
and Θ̃ is used to denote the adapted meta-parameters I(T ,Θ) for simplicity. With any convex loss
function (e.g., L2 loss or cross-entropy loss) under the over-parameterization settings, we will have
the generalization loss being almost convex w.r.t. the meta-parameters as in Lemma D.14, which
leads to

L̃(Θ̃
(K)

u)− L̃(Θ̃
(K),∗

) ≤ ⟨∇Θ̃L̃(Θ̃
(K)

u), Θ̃
(K)

u − Θ̃
(K),∗

⟩+ ϵ

≤ ∥∇Θ̃L̃(Θ̃
(K)

u)∥2∥Θ̃
(K)

u − Θ̃
(K),∗

∥2 + ϵ

≤ ∥∇Θ̃L̃(Θ̃
(K)

u)∥2∥Θ(K)
u −Θ(K),∗∥2 + η1 · O(

√
mFLF) + ϵ

(i)
≤

√
mFLF · ω +O(ω4/3L3

F
√

mF log(mF)) +O(

√
LF

mF
)

(ii)
≤ O

(
KLF +

K4/3L
11/3
F

√
log(mF)

m
1/6
F

+

√
LF

mF

)
(iii)
=⇒ L̃(Θ̃

(K)

u)− L̃(Θ̃
(K),∗

) ≤ min

{
O
(
KLF +

K4/3L
11/3
F

√
log(mF)

m
1/6
F

+

√
LF

mF

)
, 1

}

where ϵ = O(ω4/3L3
F
√
mF log(mF)) > 0, and ∥Θ(K),∗

u − Θ(K)
u ∥2 ≤ ω. Here, the first in-

equality is due to Lemma D.14 and the convexity of the loss function. The third inequality is
due to the upper bound for meta-model gradients (Lemma D.15). The (i) is due to Lemma
D.16 and sufficiently small learning rate η1 ≤ O(1

mF
). Based on Lemma D.15, we will have

∥∇ΘL(x;Θ(J),∗
K)∥2, ∥∇ΘL(x;Θ(J)

K)∥2 ≤ O(
√
mFLF). Since we have η1, η2 ≤ O(1

m), start-
ing from randomly initialized Θ(0), the parameter shift caused by GD can be upper bounded by

∥Θ(K),∗
u −Θ(K)

u ∥2 ≤ ω = O(K ·
√

LF
mF

). The implication (iii) is because the loss function L(·; ·)
has the value range [0, 1].

Here, we notice that the RHS of the regret bound in Lemma D.13 has two terms. Although the second
term can be reduced to O(1) with sufficiently large meta-model width mF > O(Poly(K,L, ρ−1)),
the first term tends to grow along with more iterations K and the larger meta-model width mF . The
reason is that the radius for the parameter shift during meta-training ω can be as large as O(1√

mF
),

which means that it cannot cancel out the effects of gradient norms, which have the order of O(
√
mF).

In this case, we will not able to include a mF term to the denominator to scale down the regret with
mF , and make the upper bound narrower than 1.

Lemma D.14. Given an arbitrary sample x and its label, let L̃(Θ) = L(x;Θ). Suppose mF , η1, η2
satisfy the conditions in Theorem 5.2. With probability at least 1−O(KL2

F) · exp[−Ω(mFω
2/3LF)]

over randomness of Θ(0), for all k ∈ [K], and Θ,Θ′ satisfying ∥Θ − Θ(0)∥2 ≤ ω and ∥Θ′ −
Θ(0)∥2 ≤ ω with ω ≤ O(L−6

F [logmF]
−3/2), it holds uniformly that

L̃(Θ)− L̃(Θ′) ≤ ⟨∇ΘL̃(Θ),Θ−Θ′⟩+ ϵ.

with ϵ = O(ω4/3L3
F
√
logmF)) being a small constant.

proof. This proof follows an analogous approach as the proof of Lemma 4.2 in [10]. Let ∇F L̃(Θ′)

be the derivative of L̃ with respective to F(x;Θ). Then, it holds that |∇F L̃(Θ′)| ≤ O(1) based on

34

Lemma D.15. Then, by convexity of L̃, we have

L̃(Θ′)−L̃(Θ)

(i)
≥ ∇F L̃(Θ) · (F(x;Θ′)−F(x;Θ))

(ii)
≥ ∇F L̃(Θ′) · ⟨∇ΘF(x;Θ),Θ′ −Θ⟩

− |∇F L̃(Θ′)| · |F(x;Θ′)−F(x;Θ)− ⟨∇F(x;Θ),Θ′ −Θ⟩|
≥ ⟨∇ΘL̃(Θ),Θ′ −Θ⟩ − |∇F L̃(Θ′)| · |F(x;Θ′)−F(x;Θ)− ⟨∇F(x;Θ),Θ′ −Θ⟩|
(iii)
≥ ⟨∇ΘL̃(Θ),Θ′ −Θ⟩ − O(ω4/3L3

F
√
mF log(mF))

≥ ⟨∇ΘL̃(Θ),Θ′ −Θ⟩ − ϵ

where (i) is due to the convexity of the loss function L, (ii) is an application of triangle inequality,
and (iii) is the application of and Lemma D.16. Finally, denoting ϵ = O(ω4/3L3

F
√
mF logmF) will

complete the proof.

Lemma D.15. Suppose mF , η1, η2 satisfy the conditions in Theorem 5.2. With probability at least
1−O(KLF)·exp(−Ω(mFω

2/3LF)) over the random initialization, Θ satisfying ∥Θ−Θ(0)∥2 ≤ ω

with ω ≤ O(L
−9/2
F [logmF]

−3), it holds uniformly that

∥∇ΘF(x;Θ)∥2 ≤ O(
√

mFLF),

∥∇ΘL(x;Θ)∥2 ≤ O(
√

mFLF).

Proof. This lemma is a direct application of Lemma 9 of [46] and Lemma B.2, B.3 of [10].

Lemma D.16. Suppose mF , η1, η2 satisfy the conditions in Theorem 5.2. With probability at
least 1 − O(KLF) · exp(−Ω(mFω

2/3LF)), for all t ∈ [T], i ∈ [k], Θ,Θ′ (or Θ,Θ′) satisfying
∥Θ−Θ(0)∥2, ∥Θ′ −Θ(0)∥2 ≤ ω with ω ≤ O(L

−9/2
F [logmF]

−3), it holds uniformly that

|F(x;Θ)−F(x;Θ′)− ⟨▽Θ′F(x;Θ′),Θ−Θ′⟩| ≤ O(w1/3L2
F
√
mF log(mF))∥Θ−Θ′∥2.

Proof. The proof for this lemma directly follows the proof of Lemma 4.1 in [10] and Lemma 7 in
[46].

35

	Introduction
	Related Works
	Problem Definition and Learning Objective
	Proposed Framework: BASS
	Formulating Arm Contexts
	 Estimating Benefit Scores for Tasks
	Formulating Arm Rewards and Exploration Scores
	Updating Bandit Scheduler Parameters

	Theoretical Analysis
	Experiments
	Real Data Sets with Noisy Meta-Training Tasks
	Effects of the Skewed Task Distribution
	Case Study: BASS-aided Ensemble Inference

	Conclusion
	Appendix: Experiments (Continue)
	Further Details for the Experiment Settings
	Effect of the Task Noise Magnitude
	Parameter Study for Exploration Coefficient
	Running Time Comparison
	Performances with Different Task Skewness Settings
	Performances with Different Batch Size
	Performances with Different Embedding Approaches of Arm Contexts
	Additional Experiments on the "DomainNet" data set

	Appendix: Additional Discussion on the Necessity of Assumption 5.1
	Appendix: Limitation
	Appendix: Theoretical Analysis
	Single-task settings
	Bounding error terms and assembling the regret bound

	Extending the result to the batch settings (Proof of Theorem 5.2)
	Bounding error terms and assembling the regret bound

	Performance Guarantee for the Exploitation and Exploration Modules
	Ancillary Lemmas
	Regret Bound for Uniform Sampling

