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ABSTRACT

Graph transformer has been proven as an effective graph learning method for its
adoption of attention mechanism that is capable of capturing expressive represen-
tations from complex topological and feature information of graphs. Graph trans-
former conventionally performs dense attention (or global attention) for every pair
of nodes to learn node representation vectors, resulting in quadratic computational
costs that are unaffordable for large-scale graph data. Therefore, mini-batch train-
ing for graph transformers is a promising direction, but limited samples in each
mini-batch can not support effective dense attention to encode informative repre-
sentations. Facing this bottleneck, (1) we start by assigning each node a token list
that is sampled by personalized PageRank (PPR) and then apply standard multi-
head self-attention only on this list to compute its node representations. This
PPR tokenization method decouples model training from complex graph topolog-
ical information and makes heavy feature engineering offline and independent,
such that mini-batch training of graph transformers is possible by loading each
node’s token list in batches. We further prove this PPR tokenization is viable as
a graph convolution network with a fixed polynomial filter and jumping knowl-
edge. However, only using personalized PageRank may limit information carried
by a token list, which could not support different graph inductive biases for model
training. To this end, (2) we rewire graphs by introducing multiple types of virtual
connections through structure- and content-based super nodes that enable PPR
tokenization to encode local and global contexts, long-range interaction, and het-
erophilous information into each node’s token list, and then formalize our Virtual
Connection Ranking based Graph Transformer (VCR-Graphormer). Overall,
VCR-Graphormer needs O(m+klogk) complexity for graph tokenization as com-
pared to O(n3) of previous works. The code is provided 1.

1 INTRODUCTION

Transformer architectures have achieved outstanding performance in various computer vision and
natural language processing tasks (Khan et al., 2021; Lin et al., 2022). Then, for non-grid graph
data, developing effective graph transformers attracts much research attention, and some nascent
works obtain remarkable performance in graph tasks for encoding complex topological and feature
information into expressive node representations via attention mechanisms, like GT (Dwivedi and
Bresson, 2020), Gophormer (Zhao et al., 2021), Coarformer (Kuang et al., 2021), Graphormer (Ying
et al., 2021), SAN (Kreuzer et al., 2021), ANS-GT (Zhang et al., 2022), GraphGPS (Rampásek et al.,
2022), NAGphormer (Chen et al., 2023), Exphormer (Shirzad et al., 2023) and etc.

Viewing each node as a token, most graph transformers need token-wise dense attention (or global
attention) to extract expressive node embedding vectors (Müller et al., 2023), i.e., most graph trans-
formers typically need to attend every pair of nodes in the input graph (Dwivedi and Bresson, 2020;
Mialon et al., 2021; Ying et al., 2021; Kreuzer et al., 2021; Wu et al., 2021; Chen et al., 2022; Kim
et al., 2022; Rampásek et al., 2022; Bo et al., 2023; Ma et al., 2023). As a consequence, dense atten-
tion induces unaffordable computational resource consumption for large-scale graph data due to this
quadratic complexity, which hinders graph transformers from scaling up their effectiveness. In the
meanwhile, mini-batch training provides a promising direction for graph transformers. Nonetheless,

1https://github.com/DongqiFu/VCR-Graphormer
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a few node (or token) samples in each batch could not fully enable the dense attention mechanism
to capture enough information for each node’s representation vector, given the complex topological
and feature information of the whole large graph data. NAGphormer (Chen et al., 2023) is a very
recent work targeting mini-batch training, which utilizes self-attention only on multiple hop aggre-
gations for a node’s embedding vector and gets good experimental results. On the other side, the
hop aggregation may not deal with global, long-range interactions, and heterophilous information
well; also it relies on the time-consuming eigendecomposition for the positional encoding.

To deal with this bottleneck, first, we assign each target node a token list that is sampled by person-
alized PageRank (PPR). The token list consists of PPR-ranked neighbors with weights and will be
self-attended by the standard transformer (Vaswani et al., 2017) to output the target node represen-
tation vector. This graph tokenization operation, based on PPR, separates the complex topological
data from the model training process, allowing independent offline graph feature engineering for
each node, such that the mini-batch training manner for graph transformers becomes possible by
loading a few node token lists in each batch and leveraging self-attention separately. We demon-
strate the feasibility of utilizing this graph tokenization-based graph transformer as an effective
graph convolutional neural network, leveraging a fixed polynomial filter as described in (Kipf and
Welling, 2017), and incorporating the concept of ’jumping knowledge’ from (Xu et al., 2018). How-
ever, only using personalized PageRank to sample nodes can copy limited topological information
into each token list, which could not support different graph inductive biases for model training.
To this end, we propose to rewire the input graph by establishing multiple virtual connections for
personalized PageRank to transfer local, global, long-range, and heterophilous information of the
entire graph into each token list. Then, self-attention on this comprehensive token list enables a
good approximation of the whole graph data during each batch of training. Wrapping personalized
PageRank based graph tokenization and virtual connection based graph rewiring, we obtain an effec-
tive mini-batch graph transformer, called Virtual Connection Ranking based Graph Transformer
(VCR-Graphormer). Comparing the O(n3) complexity of NAGphormer (Chen et al., 2023) due to
the eigendecomposition, the complexity of VCR-Graphormer is O(m + klogk), where m is the
number of edges in the graph and k can be roughly interpreted as the selected neighbors for each
node that is much smaller than m or n.

2 PRELIMINARIES

Notation. We first summarize some common notations here, and detailed notions will be explained
within context. Given an undirected and attributed graph G = (V,E) with |V | = n nodes and
|E| = m edges, we denote the adjacency matrix as A ∈ Rn×n, the degree matrix as D ∈ Rn×n, the
node feature matrix as X ∈ Rn×d, and the node label matrix as Y ∈ Rn×c. For indexing, we denote
X(v, :) as the row vector and X(:, v) as the column vector, and we use parenthesized superscript for
index X(i) and unparenthesized superscript for power operation Xi.

Self-Attention Mechanism. According to Vaswani et al. (2017), the standard self-attention mecha-
nism is a deep learning module that can be expressed as follows.

H′ = Attention(Q,K,V) = softmax(
QK⊤
√
d′

)V ∈ Rd′
(2.1)

where queries Q = HWQ, keys K = HWK and values V = HWV . H ∈ Rn×d is the input
feature matrix. WQ,WK ,WV ∈ Rd×d′

are three learnable weight matrices. H′ ∈ Rn×d′
is the

output feature matrix.

Personalized PageRank. Targeting a node of interest, the personalized PageRank vector stores the
relative importance of the other existing nodes by exploring the graph structure through sufficient
random walk steps. The typical personalized PageRank formula can be expressed as below.

r = αPr+ (1− α)q (2.2)

where P ∈ Rn×n is the transition matrix, which can be computed as AD−1 (column normal-
ized (Yoon et al., 2018a)) or D− 1

2AD− 1
2 (symmetrically normalized (Klicpera et al., 2019)). q

is a one-hot stochastic vector (or personalized vector), and the element corresponding to the target
node equals 1 while others are 0. r is the stationary distribution of random walks, i.e., personalized
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PageRank vector, and α is the damping constant factor, which is usually set as 0.85 for personal-
ized PageRank and 1 for PageRank. One typical way of solving a personalized PageRank vector is
power iteration, i.e., multiplying the PageRank vector with the transition matrix by sufficient times
r(t+1) ←− αPr(t) + (1− α)q until convergence or reaching the error tolerance.

3 EFFECTIVE MINI-BATCH TRAINING AND VCR-GRAPHORMER

In this section, we first propose a promising mini-batch way for graph transformer training and
give theoretical analysis of its effectiveness. Then, we discuss its limitation and formalize an ad-
vanced version, Virtual Connection Ranking based Graph Transformer (VCR-Graphormer). De-
tailed proof of the proposed theory can be found in the appendix.

3.1 PPR TOKENIZATION FOR MINI-BATCH TRAINING

To project non-Euclidean topological information into expressive embedding vectors, most graph
transformers need to use dense attention on every pair of nodes in the input graph. Set the O(n2)
attention complexity aside, these graph transformers need to pay attention to every existing node
that jeopardizes the mini-batch training for large-scale input graphs, because only a few samples in
each batch are hard to allow dense attention to capture enough topological and feature information.

To achieve mini-batch training, graph topological and feature information should be effectively
wrapped into each individual batch, and then the graph learning model can start to learn on each
batch. Thus, an inevitable way is to first disentangle the message passing along the topology before
the model training and place the disentanglement properly in each batch. Motivated by this goal, we
propose a mini-batch training paradigm based on personalized PageRank (PPR) tokenization. The
logic of this paradigm is easy to follow, which tokenizes the input graph by assigning each target
node u with a token list Tu. This list Tu consists of tokens (nodes) that are related to the target node
u. Here, we use personalized PageRank (PPR) to generate the token list. Set node u as the target,
based on Eq. 2.2, we can get the personalized PageRank vector, denoted as ru. Then, we sample the
top k nodes in ru, denoted as Rk

u. Basically, nodes in Rk
u together form the token list Tu. Yet, the

list Tu will feed to the transformer (Vaswani et al., 2017), then the positional encoding is necessary.
Otherwise, two target nodes that share the same PPR-based neighbors but differ in ranking orders
will result in the identical representation vector by self-attention. Actually, PPR ranking scores (i.e.,
the probability mass stored in the PPR vector ru) can provide good positional encoding information.
Moreover, the PPR ranking scores are personalized, which means two token lists that share exactly
the same entries can be discriminated by different PPR ranking scores from different target nodes.
Mathematically, our general Tu is more expressed as aggregated form T Agg

u and discrete form T Dis
u

as follows.
T Agg
u = {(PlX)(u, :)}, s.t. for l ∈ {1, . . . , L} (3.1)

where X ∈ Rn×d is the feature matrix, and PlX is the l-th step random walk. At the l-th step, if we
decompose the summarization, the discrete form is expressed as follows.

T Dis
u = {X(i, :) · ru(i)}, s.t. for i ∈ Rk

u (3.2)

where ru is the (personalized) PageRank vector at the l-th step starting from node u, and Rk
u is the

set containing the top k entries from ru.

Based on Eq. 3.1 (or Eq. 3.2), we can reorganize the set Tu into a matrix Tu ∈ Rl×d in the aggre-
gated form (or Tu ∈ Rlk×d in the discrete form) by stacking entries. Then, we can input Tu into
the standard self-attention mechanism stated in Eq. 2.1 and a pooling function (e.g., mean or sum)
to get the representation vector hu for node u. This kind of graph tokenization with the standard
self-attention mechanism is viable for approximating a graph convolution neural network as stated
in Theorem 3.1.

Theorem 3.1 Sampling token lists through (personalized) PageRank and using token-wise self-
attention on each token list, this operation is equivalent to a fixed polynomial filter graph convolution
operation (Kipf and Welling, 2017) with jumping knowledge Xu et al. (2018).

As stated in Theorem 3.1, the graph tokenization operation in Eq. 3.1 is viable for approximating
GCN (Kipf and Welling, 2017), but it is prone to have the latent incapabilities of GCN, such like
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Table 1: Four Metrics from Inductive Bias and Efficiency for Graph Tokenization Methods

A Good Graph Tokenization Could Hop2Token
(Chen et al., 2023) Personalized PageRank VCR-Graphormer

1. Reflect the input graph topology
(local and global)

2. Support long-range interaction
3. Handle heterophily property
4. Be efficiently realized

shallow network or low-pass filter can only preserve local and homophilous information (Bo et al.,
2021) but the deeper network can suffer from over-squashing problem (Topping et al., 2022). Hence,
the next direction is how to warp good input graph information into the token list to alleviate the
aforementioned problems.

3.2 PRINCIPLES OF A “GOOD” TOKENIZATION

To solve the problems mentioned in the above subsection, in general, a good token list should contain
enough information that can be generalizable to different graph inductive biases, whereas graph
inductive bias refers to the assumptions or preconceptions that a machine learning model makes
about the underlying distribution of graph data. Because we have compressed the entire graph
topology and features (that are easily accessible for each node in the dense or global attention graph
transformers (Dwivedi and Bresson, 2020; Mialon et al., 2021; Ying et al., 2021; Kreuzer et al.,
2021; Wu et al., 2021; Chen et al., 2022; Kim et al., 2022; Rampásek et al., 2022; Bo et al., 2023; Ma
et al., 2023)) into the token list for the mini-batch training, we need to enable a good approximation
of the whole graph data in each sampled token list. By attending to this good approximation, the
self-attention mechanism can produce representative node embeddings. To define the goodness of
the sampled token list, we propose at least four principles that need to be satisfied.

First, the token list of each node should reflect the local and global topological information of the
input graph. For instance, starting from a target node, personalized PageRank can sample the top
neighbor nodes, whose ranking can be regarded as local topology (Andersen et al., 2006). Also,
if we eigendecompose the graph Laplacian matrix, the eigenvalues and eigenvectors can preserve
the global topological information (Spielman, 2007). Second, the information in the token list
should preserve long-range interactions of the input graph. The long-range interaction problem
refers to the expressive node representation sometimes relying on a relatively long-distance message
passing path in GNNs (Alon and Yahav, 2021; Dwivedi et al., 2022; Yan et al., 2023b), and just
stacking more layers in GNNs is found not solving the long-range interaction need but inducing
over-squashing problem due to the compressed receptive field for each node (Alon and Yahav, 2021;
Topping et al., 2022; Karhadkar et al., 2023). Third, the information in the token list should have
the ability to contain possible heterophilous information of the graph. The heterophily property of
graphs can be interpreted as the close neighbors (e.g., connected nodes) not sharing similar content
(e.g., node labels) (Bo et al., 2021; Platonov et al., 2023; Yan et al., 2023a), such that structure-
based message passing in GNNs alone may not fully meet downstream tasks when the topological
distribution and feature distribution do not conform. Fourth, the token list should be efficiently
obtained. For example, although eigendecomposition preserves graph topology, it needs O(n3)
computational complexity (Shi and Malik, 1997). In general, the design of graph tokenization for
graph transformers should avoid the problems discovered previously in GNNs. To be more specific,
the list should be efficiently obtained but contain comprehensive information to provide sufficient
graph inductive biases for model training.

The four metrics are listed in Table 1, where we then analyze if the related works satisfy the require-
ments. The nascent graph transformer NAGphormer (Chen et al., 2023) proposes the Hop2Token
method, which first performs eigendecomposition of the Laplacian matrix of the input graph and at-
taches the eigenvector to each node input feature vector. Then, for a target node, the summarization
of the 1-hop neighbors’ feature vectors serves as the first entry in the target node’s token list. Finally,
NAGphormer uses self-attention on the k-length token list to output the representation vector for the
target node. Due to the k-hop aggregation and eigendecomposition, Hop2Token could preserve the
local and global topological information of the input graph. But for the long-range interaction aware-
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Figure 1: (a) Structure-Aware and (b) Content-Aware Virtual Connections on the Same Input Graph.

ness, hop-based aggregation may diminish node-level uniqueness, and computing the polynomial of
the adjacency matrix is costly when k needs to be considerably large. Moreover, Hop2Token pays
attention to structurally close neighbors and ignores possible heterophily properties of graphs. Also,
additional eigendecomposition costs cubic complexity to obtain higher performance. Personalized
PageRank (as discussed in Sec.3.1) samples local neighbors for a target node and overlooks global
contexts, also it can not support long-range interaction when necessary. Although it ignores the
heterophily, the personalized ranking list can be obtained in a constant time complexity (Andersen
et al., 2006). Our proposed VCR-Graphormer can satisfy these four metrics in its sampled token
list. Next, we introduce it with theoretical analysis.

3.3 VCR-GRAPHORMER

Here, we first introduce how the token list of each node in VCR-Graphormer gets formed, and then
we give the theoretical analysis. In general, the token list of VCR-Graphormer consists of four
components. For a target node u, the token list Tu is expressed as follows.

Tu = {X(u, :)||1, (PlX)(u, :)||L− l + 1∑L
l=1 l

, X(i, :)||̄ru(i), X(j, :)||̂ru(j)},

s.t. for l ∈ {1, . . . , L}, i ∈ R̄k̄
u, j ∈ R̂k̂

u

(3.3)

where these four components have different views of the input graph, and each component has
an initial scalar weight, i.e., 1. Also, |Tu| = 1 + L + k̄ + k̂. We then introduce details of the
four components. {} operator means a list. The concatenation operator applies to both scalars and
vectors, i.e., the scalar will be converted to a single-element vector before concatenation.

The first component, X(u, :)||1 ∈ Rd+1 is straightforward, which is the input feature of the tar-
get node u associated with the weight 1. The second component is designed to capture the local
topological information around the target node u, based on the aggregated form of PPR sampling
as expressed in Eq 3.1. Matrix PlX is the l-th step of random walks, since one more random walk
step accesses 1-hop away neighbors (Klicpera et al., 2019), those neighbors’ features are aggregated
based on random walk probability distribution to encode the local topological information for node
u. Moreover, the given weight 1 for PlX is distributed among walk steps by L−l+1∑L

l=1 l
, which means

the closer neighbors’ aggregation occupies more weights.

So far, the first two components are proposed to meet the half part of the first metric in Table 1,
i.e., the local graph topology gets preserved in the token list. After that, the third component is
responsible for recording long-range interactions and partial global information (i.e., from the node
connections perspective), and the fourth component is designed to record the heterophily informa-
tion and partial global information (i.e., from the node content perspective).

The third component is motivated by graph rewiring, but our goal is to let the token list preserve
structure-based global information and extend the narrow receptive field of over-squashing (Alon
and Yahav, 2021) in an efficient manner. To be specific, we break the original structure by inserting
several virtual super nodes into the graph adjacency matrix. To differentiate from the inserted super
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nodes, the originally existing nodes are named ordinary nodes. To do this, the input graph G
is first partitioned into s̄ clusters (e.g., using METIS partitioning algorithm (Karypis and Kumar,
1998)). For each cluster, we assign a super node that connects every member in this cluster, where
the new edges are called structure-aware virtual connections, as shown in Figure 1(a). After that,
the original adjacency matrix is transferred from A ∈ Rn×n to Ā ∈ R(n+s̄)×(n+s̄). Note that, in
Ā, the inter-cluster edges are retained. Correspondingly, the transition matrix for PPR is denoted
as P̄. Then, based on P̄, we can get the personalized PageRank vector r̄u through Eq. 2.2. Again,
we sample top k̄ items in r̄u to form the set R̄k̄

u. Finally, we can obtain the complete vector of the
third component, i.e., X(i, :)||r̄u(i) ∈ Rd+1, for each node i ∈ R̄k̄

u. Compared with the second
component, we adapt the discrete form as stated in Eq. 3.2 for the third component for the following
two reasons. (1) We assume the long-range interaction between nodes is represented in the form
of paths other than broadcasts. Then, still concatenating all nodes from far-away hops can induce
noise, but personalized PageRank is more suitable for sampling paths with corresponding weights.
(2) Multiplying matrices PX as the second component will at least cost O(m) time complexity,
which is linear to the number of edges. On the contrary, personalized PageRank can be completed
in a constant time, which is independent of the input graph size (Andersen et al., 2006). The above
two reasons also apply to the design of the following fourth component.

The fourth component is designed to capture the content-based global information and encode the
heterophily information into the token list. The content here refers to the labels of nodes or pseudo-
labels like feature clustering and prototypes (Snell et al., 2017) when labels are not available. The
realization of the fourth component is quite similar to the third component. The difference is that a
super node here is assigned to one kind of label in the input graphs, and then it connects every node
that shares this label. Those new edges are called content-aware virtual connections, as shown in
Figure 1(b). Note that, when the input training set has labels, the number of content-aware super
nodes ŝ equals the number of node labels c, otherwise it is a hyperparameter, e.g., feature-based
clusters in K-means. Also, adding content-aware super nodes is based on the original adjacency
matrix, i.e., A ∈ Rn×n to Â ∈ R(n+ŝ)×(n+ŝ). Then, given P̂, the procedure of getting r̂u, R̂k̄

u, and
X(j, :)||r̂u(j) ∈ Rd+1 for j ∈ R̂k̂

u, is identical to the third component.

After stacking elements in the set Tu, we get the matrix Tu ∈ R(1+L+k̄+k̂)×(d+1) as the input of the
standard transformer, i.e., for node u, the initial input Z(0)

u = Tu. Then, for the t-th layer,

Z(t)
u = FFN(LN(Z̃(t)

u )) + Z̃(t)
u , Z̃(t)

u = MHA(LN(Z(t−1)
u )) + Z(t−1)

u (3.4)

where LN stands for layer norm, FFN is feedforward neural network, and MHA denotes multi-head
self-attention. To get the representation vector for node u, a readout function (e.g., mean, sum,
attention) will be applied on Z

(t)
u . We give the analysis of our proposed techniques in Appendix.

4 EXPERIMENTS

4.1 SETUP

Datasets. Totally, we have 13 publicly available graph datasets included in this paper. First, as
shown in Table 2, 9 graph datasets are common benchmarks for node classification accuracy per-
formance, 6 of them are relatively small, and 3 of them are large-scale datasets. Small datasets like
PubMed, CoraFull, Computer, Photo, CS, and Physics can be accessed from the DGL library 2.
Reddit, Aminer, and Amazon2M are from (Feng et al., 2022) can be accessed by this link 3. Second,

Table 2: Graph Datasets and Statistics

PubMed CoraFull Computer Photo CS Physics Reddit Aminer Amazon2M
Nodes 19,717 19,793 13,752 7,650 18,333 34,493 232,965 593,486 2,449,029
Edges 88,651 126,842 491,722 238,163 163,788 495,924 11,606,919 6,217,004 61,859,140

Features 500 8,710 767 745 6,805 8,415 602 100 100
Labels 3 70 10 8 15 15 41 18 47

we also have 3 small heterophilous graph datasets, Squirrel, Actor, and Texas, where the connected
2https://docs.dgl.ai/api/python/dgl.data.html
3https://github.com/THUDM/GRAND-plus
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neighbors mostly do not share the same label (i.e., measured by node heterophily in (Zhang et al.,
2023)). They can also be accessed from the DGL library. For small-scale datasets and heterophilous
datasets, we apply 60%/20%/20% train/val/test random splits. For large-scale datasets, we follow
the random splits from (Feng et al., 2022; Chen et al., 2023). Third, we also include the large-scale
heterophious graph dataset, arXiv-Year, from the benchmark (Lim et al., 2021).

Table 3: Heterophilous Graph Datasets and Statistics

Squirrel Actor Texas
Nodes 5,201 7,600 183
Edges 216,933 33,544 295

Features 2,089 931 1,703
Labels 5 5 5

Node Heterophily 0.78 0.76 0.89

Baselines. Our baseline algorithms
consist of 4 categories. For GNNs,
we have GCN (Kipf and Welling,
2017), GAT (Velickovic et al., 2018),
APPNP (Klicpera et al., 2019), and GPR-
GNN (Chien et al., 2021). For scalable
GNNs, we include GraphSAINT (Zeng
et al., 2020), PPRGo (Bojchevski et al.,
2020), and GRAND+ (Feng et al.,
2022). For graph transformers, we
have GT (Dwivedi and Bresson, 2020), Graphormer (Ying et al., 2021), SAN (Kreuzer et al.,
2021), and GraphGPS (Rampásek et al., 2022). As for scalable graph transformers, we have
NAGPhormer (Chen et al., 2023) discussed above, and Exphormer (Shirzad et al., 2023) is a new
scalable graph transformer, which also needs relative dense attention. Additionally, we also include
various baselines from (Lim et al., 2021) as shown in Appendix.

4.2 PERFORMANCE ON DIFFERENT SCALE DATASETS

The node classification accuracy on small-scale graph datasets and large-scale datasets among vari-
ous baseline algorithms is reported in Table 4 and Table 5 respectively. Containing more structure-
aware neighbors (i.e., larger k̄) and more content-aware neighbors (i.e., larger k̂) in the token list has
the potential to increase the node classification performance. For attention efficiency, we constrain
k̄ and k̂ to be less than 20 in VCR-Graphormer, even for large-scale datasets.

Table 4: Node Classification Accuracy on Small-Scale Datasets

PubMed CoraFull Computer Photo CS Physics
GCN 86.54 ± 0.12 61.76 ± 0.14 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07
GAT 86.32 ± 0.16 64.47 ± 0.18 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08

APPNP 88.43 ± 0.15 65.16 ± 0.28 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07GNN

GPR-GNN 89.34 ± 0.25 67.12 ± 0.31 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08
GraphSAINT 88.96 ± 0.16 67.85 ± 0.21 90.22 ± 0.15 91.72 ± 0.13 94.41 ± 0.09 96.43 ± 0.05

PPRGo 87.38 ± 0.11 63.54 ± 0.25 88.69 ± 0.21 93.61 ± 0.12 92.52 ± 0.15 95.51 ± 0.08Scalable
GNN GRAND+ 88.64 ± 0.09 71.37 ± 0.11 88.74 ± 0.11 94.75 ± 0.12 93.92 ± 0.08 96.47 ± 0.04

GT 88.79 ± 0.12 61.05 ± 0.38 91.18 ± 0.17 94.74 ± 0.13 94.64 ± 0.13 97.05 ± 0.05
Graphormer OOM OOM OOM 92.74 ± 0.14 94.64 ± 0.13 OOM

SAN 88.22 ± 0.15 59.01 ± 0.34 89.93 ± 0.16 94.86 ± 0.10 94.51 ± 0.15 OOM
Graph

Transformer
GraphGPS 88.94 ± 0.16 55.76 ± 0.23 OOM 95.06 ± 0.13 93.93 ± 0.15 OOM

NAGphormer 89.70 ± 0.19 71.51 ± 0.13 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03
Exphormer 89.52 ± 0.54 69.09 ± 0.72 91.59 ± 0.31 95.27 ± 0.42 95.77 ± 0.15 97.16 ± 0.13Scalable Graph

Transformer VCR-Graphormer 89.77 ± 0.15 71.67 ± 0.10 91.75 ± 0.15 95.53 ± 0.14 95.37 ± 0.04 97.34 ± 0.04

From Table 4, our VCR-Graphormer shows the competitive performance among all baseline meth-
ods. Moreover, VCR-Graphormer does not need the time-consuming eigendecomposition as another
scalable graph transformer NAGPhormer Chen et al. (2023), and the corresponding structure-aware
neighbors and content-aware neighbors via virtual connections can help preserve the global infor-
mation. For Table 5, VCR-Graphormer also achieves very competitive performance with limited
token length, which also demonstrates that several sampled global neighbors may not bridge the
effectiveness of eigendecomposition.

4.3 PERFORMANCE ON HETEROPHILOUS DATASETS

Since heterophilous datasets are small, we only allow VCR-Graphormer to take less than 10 global
neighbors for Squirrel and Actor datasets, and less than 5 for Texas dataset. In Figure 2, the x-axis
denotes how many hops’ information can be aggregated and leveraged for the baseline algorithm.
The performance in Figure 2 demonstrates the analysis in Table 1, that hop-aggregation and eigen-
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Table 5: Node Classification Accuracy on Large-Scale Datasets

Reddit Aminer Amazon2M

Scalable
GNN

PPRGo 90.38 ± 0.11 49.47 ± 0.19 66.12 ± 0.59
GraphSAINT 92.35 ± 0.08 51.86 ± 0.21 75.21 ± 0.15

GRAND+ 92.81 ± 0.03 54.67 ± 0.25 75.49 ± 0.11

Scalable Graph
Transformer

NAGphormer 93.58 ± 0.05 54.04 ± 0.16 77.43 ± 0.11
Exphormer OOM NA4HETERO OOM

VCR-Graphormer 93.69 ± 0.08 53.59 ± 0.10 76.09 ± 0.16

decomposition could not preserve the latent heterophily information very well, and content-aware
neighbors though virtual connections can alleviate this problem.

Figure 2: Node Classification Accuracy on Heterophilous Datasets

4.4 ABLATION STUDY AND PARAMETER ANALYSIS

After showing the performance above, we would verify the following research questions. RQ1:
Does structure-aware neighbors and content-aware neighbors contribute to the performance? RQ2:
Are the meaning and function of structure-aware neighbors and content-aware neighbors different
and complementary? RQ3: What is the relationship among the number of structure-aware super
nodes, the number of hops, and the number of structure- and content-aware neighbors?

Figure 3: Ablation Study on Squirrel and Actor

Figure 4: Parameter Analysis on Reddit

For RQ1 and RQ2, we need to investigate the role
of structure- and content-aware neighbors. The het-
erophilous datasets are a good fit. For example, we can
see from Figure 3, not sampling structure- and content-
aware neighbors (i.e., (0, 0)) or only sampling structure-
aware neighbors (i.e., (10, 0)) could not achieve the per-
formance as having both (i.e., (10, 10)). For RQ3, we se-
lect the large-scale dataset, Reddit. From Figure 4, if we
decrease l, we lose the local information and performance
reduces from 93.36 to 93.02. To mitigate this local infor-
mation, we need to shrink the scope of a structure-aware
super node (i.e., increasing s̄) and sample more neigh-
bors, the performance increases from 93.02 to 93.16.
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5 RELATED WORK

Graph data and representation learning techniques have a wide scope of applications like recom-
mendation (Qi et al., 2023; Ban et al., 2022; Wei et al., 2021), query answering (Li et al., 2023; Liu
et al., 2021; Yan et al., 2021), misinformation detection (Fu et al., 2022a), time series analysis (Jing
et al., 2021), protein classification and generation (Fu et al., 2022b; Zhou et al., 2022), etc. Recently,
graph transformers emerged as one kind of effective graph representation learning model (Müller
et al., 2023), which adapts the self-attention mechanism from transformers (Vaswani et al., 2017)
to graph data representation learning. For example, GT (Dwivedi and Bresson, 2020) views each
node in the input graph as a token and uses the self-attention mechanism to attend every pair of
nodes to get the representation vectors. Then, various graph transformers are proposed following
the dense attention mechanism with different positional encodings for node tokens (Mialon et al.,
2021; Ying et al., 2021; Kreuzer et al., 2021; Wu et al., 2021; Chen et al., 2022; Kim et al., 2022;
Rampásek et al., 2022; Bo et al., 2023; Ma et al., 2023), such that the standard transformer can learn
topological information during the model training. For example, in TokenGT (Kim et al., 2022),
each node token is assigned augmented features from orthogonal random features and Laplacian
eigenvectors, such that the edge existence can be identified by the dot product of two token vec-
tors. Also, GraphTrans (Wu et al., 2021) connects a GNN module with the standard transformer and
utilizes the GNN to provide topology-preserving features to the self-attention mechanism. To re-
duce the quadratic attention complexity of dense attention (or global attention), some recent works
propose approximation methods (Rampásek et al., 2022; Shirzad et al., 2023; Kong et al., 2023).
In GraphGPS (Rampásek et al., 2022), the linear attention layer of Performer (Choromanski et al.,
2021) is proposed to replace the standard transformer layer in graph transformers but the perfor-
mance gain is marginal, where the authors hypothesized that the long-range interaction is generally
important and cannot be easily captured in the linear attention mechanism. Exphormer (Shirzad
et al., 2023) proposes using sparse attention in graph transformers, which intentionally selects sev-
eral edges (e.g., by establishing expander graphs) to execute the node-wise attention. To address the
quadratic complexity, GOAT (Kong et al., 2023) follows the dense attention but targets to reduce
the feature dimension by finding a proper projection matrix, in order to save the efficiency. Among
the above, if not all, most graph transformers are designed for graph-level tasks like graph classi-
fication and graph regression (Hu et al., 2020). Targeting node-level tasks like node classification,
some works are deliberately proposed (Wu et al., 2022; Chen et al., 2023). For example, NAG-
phormer Chen et al. (2023) is proposed to assign each node a token list, and then the self-attention
mechanism is only needed for this list to get the node embedding instead of handling all existing
node pairs. This paradigm promises scalability for mini-batch training of graph transformers. Based
on that, in this paper, we first show why this paradigm can work well, propose the criteria of a good
token list for carrying various graph inductive biases, and propose the efficient and effective graph
transformer, VCR-Graphormer.

6 CONCLUSION

In this paper, we propose the PageRank based node token list can support graph transformers with
mini-batch training and give the theoretical analysis that the token list based graph transformer is
equivalent to a GCN with fixed polynomial filter and jumping knowledge. Then, we propose criteria
for constructing a good token list to encode enough graph inductive biases for model training. Based
on the criteria, we propose the corresponding techniques like virtual connections to form a good
token list. Finally, the proposed techniques are wrapped into an end-to-end graph transformer model,
VCR-Graphormer, which can achieve outstanding effectiveness in an efficient and scalable manner.
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APPENDIX

6.1 PROOF OF THEOREM 3.1

According to (Kipf and Welling, 2017), given an undirected graph G with n nodes, the correspond-
ing graph convolution operation on a signal matrix X ∈ Rn×d is defined as

Ugθ(Λ)U⊤X ≈ U(

K∑
k=0

θkΛ
k)U⊤X (6.1)

where L = I − D− 1
2AD− 1

2 ∈ Rn×n is the normalized Laplacian matrix, A ∈ Rn×n is the
adjacency matrix, and D ∈ Rn×n is the diagonal degree matrix. Then, U ∈ Rn×n is the matrix
containing eigenvectors of Laplacian matrix L and Λ ∈ Rn×n is the diagonal matrix storing the
corresponding eigenvalues.

Based on (UΛU⊤)k = UΛkU⊤, extending the above equation can get

Ugθ(Λ)U⊤X ≈ (
K∑

k=0

θkL
k)X (6.2)

Then, Kipf and Welling (2017) approximately take K = 1, θ0 = 2θ, and θ1 = −θ, obtain

Ugθ(Λ)U⊤X ≈ θ(I+D− 1
2AD− 1

2 )X (6.3)

Finally, replacing I +D− 1
2AD− 1

2 above by P = (D + I)−
1
2 (A + I)(D + I)−

1
2 , the final format

of graph convolution operation is

H(t+1) = σ(PH(t)Θ(t)) (6.4)

where t is the index of the graph convolution layer, H0 = X, and σ is a non-linear activation
function.
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Removing the non-linear activation function at each intermediate layer (Wu et al., 2019), the final
representation output Z of a T -layer graph convolution neural network can be rewritten as

Z = σ(PTXΘ(1), . . . ,Θ(T )) = σ(PTXΘ) (6.5)

which shows the above-approximated equation is a GCN with a fixed polynomial filter, which is
also the second component of our Eq. 3.3. The only difference is that, the second component of
Eq. 3.3 keeps multiple t ∈ {1, . . . , T}, i.e., [P1X,P2X, . . . ,PTX], which are corresponding to
Jumping Knowledge (Xu et al., 2018) to learn representations of different orders for different graph
substructures through the attention pooling.

Moreover, for personalized PageRank, PtX can be replaced as α(I − (1 − α)(A + I))−1X, if t
is sufficiently large for convergence; otherwise, it can be obtained iteratively by H(t+1) = (1 −
α)PH(t) + αX, where H(0) = X, which is

(1− α)tPtX+ (1− α)t−1Pt−1X+ . . .+ (1− α)1P1X+ αX (6.6)

6.2 THEORITICAL ANALYSIS OF VCR-GRAPHORMER

Remark 6.1 After inserting (structure- or content-aware) super nodes, towards a target ordinary
node, the remaining ordinary nodes can be classified into two categories. The first category consists
of the nodes whose shortest path to the target node gets decreased. The second category consists of
the nodes whose shortest path to the target node remains. We name the first category as brightened
ordinary nodes and the second category as faded ordinary nodes. Faded ordinary nodes denote the
local neighbors of the target node, because they are originally two-hop accessible nodes. Brightened
ordinary nodes consist of the remaining ordinary nodes in the graph.

Theorem 6.1 After inserting (structure- or content-aware) super nodes and changing the original
transition matrix P into new P̃, the probability mass of personalized (e.g., starting from node u)
PageRank transforming from faded ordinary nodes to brightened ordinary nodes is the summation
of all negative entries in the vector c = α

∑∞
i αiP̃i(P̃ − P)r, where r is the PageRank vector on

the original graph P. Correspondingly, all the positive entries are received mass for brightened
ordinary nodes. Vector c will converge to a constant vector and the sum of vector c is 0.

The general insights from Theorem 6.1 show the probability mass transfer from faded ordinary
nodes to brightened ordinary nodes, which further illustrates that previous hardly-reachable nodes
are obtaining more weight to extend the narrow receptive field.

6.2.1 PROOF OF THEOREM 6.1

We first introduce a solution for exactly solving personalized PageRank vector, called cumulative
power iteration (Yoon et al., 2018b), which is expressed as follows.

r =
∞∑
i=0

c(i), c(i) = (αP)i(1− α)q (6.7)

where P = AD−1 is the column normalized transition matrix, q is the one-hot stochastic vector,
and r is the personalized PageRank vector. The exactness proof of the above solution can be referred
to (Yoon et al., 2018b).

Now, suppose we have an original graph whose transition matrix is denoted as P. After inserting
some super nodes, we have the new graph whose transition matrix is denoted as P̃. For dimension
consistency, we view the added super nodes as dangling nodes in the original graph, which has no
connecting edges.

For the original transition matrix P, we can have the personalized PageRank vector denoted as r.
Also, for the new transition matrix P̃, we can have the personalized PageRank vector denoted as r̃.
Next, given our vector c = α

∑∞
i αiP̃i(P̃−P)r, we need to prove that r̃ = c+ r. Since vectors r̃

and r are non-negative personalized PageRank vector, i.e., ∥r̃∥1 = ∥r∥1 = 1, then the sum of vector
c is 0.
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Motivated by Theorem 3.2 in Yoon et al. (2018a), we next expand vector c = α
∑∞

i αiP̃i(P̃−P)r:

c =
∞∑
i

αiP̃iα(P̃−P)r

=
∞∑
i=0

(
(αP̃)i+1

∞∑
j=0

(αP)j(1− α)q

)
−
(
(αP̃)i

∞∑
j=0

(αP)j+1(1− α)q

)
=

∞∑
i=0

(
(αP̃)i+1

∞∑
j=0

(αP)j(1− α)q

)
−
(
(αP̃)i

∞∑
j=0

(αP)j(1− α)q

)
+

(
(αP̃)i(1− α)q

)
=

∞∑
i=0

(αP̃)i+1
∞∑
j=0

(αP)j(1− α)q−
∞∑
i=0

(αP̃)i
∞∑
j=0

(αP)j(1− α)q+
∞∑
i=0

(αP̃)i(1− α)q

=
∞∑
i=0

(αP̃)i
∞∑
j=0

(αP)j(1− α)q−
∞∑
j=0

(αP)j(1− α)q−
∞∑
i=0

(αP̃)i
∞∑
j=0

(αP)j(1− α)q+
∞∑
i=0

(αP̃)i(1− α)q

=−
∞∑
j=0

(αP)j(1− α)q+

∞∑
i=0

(αP̃)i(1− α)q

(6.8)

Then, based on Eq. 6.7, it can be observed that c + r = r̃. Moreover, since ∥P∥ = ∥P̃∥ = 1, then c
converge to a constant.

Theorem 6.2 The efficiency of getting the token list in VCR-Graphormer is O(m + klogk), where
m is the number of edges in the input graph G, and k = max(NNZ(r̄u),NNZ(r̂u)), where NNZ(·)
denotes the number of non-zero entries in a vector. The complexity of self-attention in VCR-
Graphormer is O((1 + L+ k̄ + k̂)2) based on Eq. 3.3.

The general insights from Theorem 6.2 state the computational complexity of the proposed graph
transformer, which is less than the quadratic attention complexity of most graph transformers.

6.2.2 PROOF OF THEOREM 6.2

For getting the token list as stated in Eq. 3.3, computing the second component i.e., PX costs O(m),
where m is the number of edges in the input graph. Then, for computing the third and the fourth
components, the analysis is similar. Taking the third component computation as an example, we
have below analysis. First, using Metis (Karypis and Kumar, 1998) to partition the input graph into
arbitrary clusters costs O(m), suppose the number of nodes n is smaller than the number of edges
m, and the number of partitions s is way smaller than the number of edges m 4.

Second, approximately solving the personalized PageRank with Push Operations costs constant time
complexity (Lemma 2 in (Andersen et al., 2006) and Proposition 2 in (Ohsaka et al., 2015)), which
constant is only related to error tolerance ϵ and dumping factor α but not the size of the input graph.
We denote the constant as c in the following. Since Push Operation (Andersen et al., 2006) is a
local operation, most entries in the PageRank vector ru are zero (or near zero and can be omitted).
Denote the number of non-zero entries in ru as k, then sorting them costs O(klogk). For each
node u ∈ {1, . . . , n}, we totally need O(n · c · klogk). Since each node’s personalized PageRank
computation is independent, we can parallelize the computation (Fu and He, 2021). Denote we have
w parallel workers, the final complexity is O( nw · c · klogk). When number of workers is sufficient,
we can have O(klogk).

6.3 HETEROPHILOUS EXPERIMENTS ON LARGE-SCALE DATASETS

The heterophilous arxiv-year data is from the benchmark (Lim et al., 2021), the performance is based
on the given split of the benchmark. In addition to the baselines provided by the benchmark like

4http://glaros.dtc.umn.edu/gkhome/node/419
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MixHop (Abu-El-Haija et al., 2019), GCNII (Chen et al., 2020), GPR-GNN (Chien et al., 2021), we
include other heterophilous graph deep learning methods WRGAT (Suresh et al., 2021), GGCN (Yan
et al., 2022), ACM-GCN (Luan et al., 2021), GloGNN (Li et al., 2022) and GloGNN++ (Li et al.,
2022).

Table 6: Node Classification Accuracy on Large-
Scale Heterophilous Graph Dataset (Without
Minibatching)

arXiv-year
Edge Homophily 0.22

#Nodes 169,343
#Edges 1,166,243

#Features 128
#Classes 5

MLP 36.70 ± 0.21
L Prop 1-hop 43.42 ± 0.17
L Prop 2-hop 46.07 ± 0.15

LINK 53.97 ± 0.18
SGC 1-hop 32.83 ± 0.13
SGC 2-hop 32.27 ± 0.06
C&S 1-hop 44.51 ± 0.16
C&S 2-hop 49.78 ± 0.26

GCN 46.02 ± 0.26
GAT 46.05 ± 0.51

GCNJK 46.28 ± 0.29
GATJK 45.80 ± 0.72
APPNP 38.15 ± 0.26
H2GCN 49.09 ± 0.10
MixHop 51.81 ± 0.17

GPR-GNN 45.07 ± 0.21
GCNII 47.21 ± 0.28

WRGAT OOM
GGCN OOM

ACM-GCN 47.37 ± 0.59
LINKX (Minibatch) 53.74 ± 0.27

GloGNN 54.68 ± 0.34
GloGNN++ 54.79 ± 0.25

VCR-Graphormer 54.15 ± 0.09

Table 7: Node Classification Accuracy on Large-
Scale Heterophilous Graph Dataset (With Mini-
batching)

arXiv-year
Edge Homophily 0.22

#Nodes 169,343
#Edges 1,166,243

#Features 128
#Classes 5

MLP Minibatch 36.89 ± 0.11
LINK Minibatch 53.76 ± 0.28
GCNJK-Cluster 44.05 ± 0.11

GCNJK-SAINT-Node 44.30 ± 0.22
GCNJK-SAINT-RW 47.40 ± 0.17

MixHop-Cluster 48.41 ± 0.31
MixHop-SAINT-Node 44.84 ± 0.18
MixHop-SAINT-RW 50.55 ± 0.20
LINKX Minibatch 53.74 ± 0.27
VCR-Graphormer 54.15 ± 0.09

6.4 EFFICIENCY COMPARISON

On the largest dataset Amazon2M, we did the efficiency comparison. The eigendesompostion is
based on DGL library. DGL itself is a Python library, but its underlying computations may involve
languages like C and C++, and high-performance linear algebra libraries like SciPy and Fortran
to ensure efficient numerical computations. Even without strong support, our PageRank sampling
realized by Python (with parallel computing as theoretically designed in the paper) is slightly faster.
Moreover, the reason why the content-based virtual node sampling is faster (i.e., ∼620 v.s. ∼409)
is that the number of content-based virtual super nodes depends on the number of labels, which is
usually less than the number of structure-based virtual super nodes. Hence, its PPR convergence is
faster. The below time consumption contains the METIS partitioning time realized by DGL.

Table 8: Time Consumption on Amazon2M Dataset

Method Time (s)
Eigendecomposition (by DGL library) ∼682

Virtual Structure Node based Parallel PageRank Sampling for Each Node (by Python) ∼620
Virtual Content Node based Parallel PageRank Sampling for Each Node (by Python) ∼409
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6.5 IMPLEMENTATION DETAILS

For the second component in Eq. 3.3, we used the symmetrically normalized transition matrix P =

D− 1
2AD− 1

2 . For the thrid and fourth component in Eq. 3.3, we used row normalized transition
matrix P = D−1A. Also, for connecting content-based super nodes, we only use the label of the
training set. The experiments are performed on a Linux machine with a single NVIDIA Tesla V100
32GB GPU.

Reddit dataset is a previously existing dataset extracted and obtained by a third party that contains
preprocessed comments posted on the social network Reddit and hosted by Pushshift.io.
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