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ABSTRACT

Accurate confidence estimates are crucial for safe graph neural
network (GNN) deployment, yet link prediction (LP) cali-
bration is understudied. We provide novel insights into LP
calibration by highlighting the importance of meaningful node-
level uncertainties. In response, we propose E-AUQ, an
architecture-agnostic framework leveraging stochastic cen-
tering to incorporate epistemic uncertainty into GNNs. Our
work provides principles and three E-AUQ variants to improve
trust in LP models, while introducing minimal overhead. Key
results demonstrate properly handling node-level uncertainty
improves edge calibration. We evaluate E-AUQ variants on
citation networks and find that intermediate stochastic layers
outperform alternatives by producing better node uncertainties.
E-AUQ reduces calibration error by 15-50% and maintains
comparable prediction fidelity.

Index Terms— Graph Neural Networks, uncertainty, link
prediction, auxiliary tasks

1. INTRODUCTION

Graph neural networks (GNNs) are becoming highly prevalent
in high-impact link prediction (LP) [1, 2] tasks ranging from
product recommendation [3] to biological network completion
(e.g., gene-gene interaction or drug-drug interactions) [4, 5].
Most often, the predicted links are used to invoke expensive
actions or time-consuming experiments. Consequently, in ad-
dition to obtaining accurate predictions, it is important that
practitioners are able to trust a model’s confidence in its pre-
dictions [6]. This has led to the emergence of a large class of
calibration techniques [7, 8, 9, 10]. Calibration is the process
of adjusting output probabilities or confidence scores produced
by a model to ensure that they accurately reflect the true like-
lihood associated with a specific prediction [11, 8]. While
most existing studies on GNN calibration have extensively
focused on node [12, 13, 14] or graph classification [15], the
calibration behavior of LP models remains considerably less
studied.

At a high level, link prediction architectures contain an en-
coder, which produces node-level features, and a light-weight
decoder, which aggregates two node representations (vj, vj) to
predict whether a given edge (e(;,;)) is plausible. Indeed, it
is challenging to directly extend state-of-the-art approaches

for improving calibration from node or graph classification
literature to LP settings. Though one can systematically es-
timate uncertainties from the encoder module, the lack of
any node-level task makes it challenging to ensure that those
uncertainties are well calibrated. Furthermore, it is highly
non-trivial to model the interaction between node uncertainties
for different LP decoder choices (e.g., node feature concatena-
tion, scalar dot product). For example, it is unclear if an edge
(vi, vj) between two nodes with high (node-level) uncertainties
in their features is always guaranteed to have higher (edge-
level) uncertainty compared to another edge (v], v]) with only
one node with high uncertainty.

Recently, [16] proposed a Bayesian approach for link
prediction, which places an explicit prior over node features
(in each layer) and uses a hierarchical Gaussian process (GP)
to combine node-level priors to obtain edge-level predictions.
While such an approach allows for closed-form aggregation of
node-level uncertainties, it has a number of challenges. First,
it requires a specific link-predictor structure (hierarchical edge-
GP), which may not be compatible with the different decoder
choices used in practice. Second, given the high computational
costs associated with GP inferencing, this can be especially
problematic when scaling to larger, production-scale datasets.
Third, it is not straightforward to integrate any additional (or
auxiliary) node-level tasks that can help better calibrate the
node features [17].

To circumvent these challenges, we propose a non-
parametric, architecture-agnostic, LP uncertainty estimator
based on the recently proposed stochastic centering framework
[18, 19]. We choose this framework for its flexibility to be
adopted to any architecture, as well as, its strong generaliza-
tion behavior under challenging distribution shifts [15].

Extending stochastic centering to edge-level uncertainty
(Sec. 3): We first extend stochastic centering to link prediction
networks by considering the node features to be deterministic
and enabling uncertainty estimation only in the decoder mod-
ule. This variant (E-AUQ (v1)) directly models the epistemic
uncertainties arising from the sampling of edges in different
parts of the (node) feature space.

Creating Meaningful Node-level uncertainties (Sec. 3): De-
spite the simplicity of the previous variant and its performance
in practice, incorporating the node-level uncertainties can lead
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Fig. 1: Overview of E-AUQ. We propose three different stochastic centering variants that induce varying levels of stochasticity
in the underlying GNN. Variant (E-AUQ (v1)) directly models the epistemic uncertainties arising from the sampling of edges in
different parts of the (node) feature space. Variant (E-AUQ (v2)) performs stochastic centering in the encoder network itself
and implicitly leverage those uncertainties to produce calibrated edge probabilities. E-AUQ (v3)) uses the auxiliary attribute
masking task to first calibrate the node-level uncertainties and subsequently estimate the edge-level uncertainties similar to
E-AUQ (v2). We show the attribute masking task above and use shuffled node features as the anchoring distribution.

to richer LP models. Hence, we propose to invoke stochastic
centering in the encoder network itself (E-AUQ (v2)) and
implicitly leverage those uncertainties to produce calibrated
edge probabilities. Finally, we consider a sophisticated variant
(E-AUQ (v3)) where we leverage an auxiliary task to first cal-
ibrate the node-level uncertainties and subsequently estimate
the edge-level uncertainties similar to E-AUQ (v2).

Experimental Evaluation (Sec. 4): Using a suite of cita-
tion network datasets, we systematically evaluate the three
proposed uncertainty estimation techniques and demonstrate
their behavior in terms of both fidelity of the predicted links
and calibration error metrics. This work, for the first time,
delves into the important problem of appropriately handling
node-level uncertainties in LP architectures.

2. PRELIMINARIES AND RELATED WORK

In this section, we briefly discuss the notations and related
work relevant to problem setting and approach.

Notations. Let G = (X, A) be a graph with node features
X € RN*de and adjacency matrix A € RV*N where
N,m,dy, denotes the number of nodes, number of edges,
and feature dimension. We wish to predict unobserved edges
that are missing from A given the observed, training graph
and nodes. Thus, we can define a LP GNN consisting of a
node Encoder with ¢ message passing layers (MPNN), and
Decoder which predicts whether an edge e(4, j) exists be-
tween two nodes, given their representations (X;, X;):

Encoder (XZ,A) ,
Decoder (XerlX;Jrl) ,

(1
2
3)

where X‘*! is the intermediate node representations. Pop-
ular decoder architectures include taking the dot product or
concatenating representations and then passing the resulting
representation through some linear layers. Models are trained
by treating LP as a binary classification task, where true edges
in A are considered positive class samples and non-edges in
A are considered negative class samples.

Calibration and Stochastic Centering. While several strate-
gies have been proposed to improve calibration [7, 8, 9, 10] of
vision models and GNN-based node classification calibration
[12, 13, 14, 15], these methods are not suited for link predic-
tion calibration because they cannot ensure reliable node-level
calibration without node-level supervision (see Sec. 1) and
often struggle to outperform the simple, but prohibitively ex-
pensive deep ensemble (DEns) [7] baseline. Unfortunately,
DEns, which takes the mean prediction over a set of indepen-
dently trained models, requires training and storing multiple
models. Recently, however, [18] proposed a state-of-the-art,
single model uncertainty estimation method, A-UQ, based on
the principle of anchoring, which is capable of simulating the
behavior of an ensemble through only a single model.

Conceptually, anchoring is the process of creating a rela-
tive representation for an input sample z in terms of a random
anchor ¢ (which is used to perform the stochastic centering),
[x — ¢, c]. By choosing different anchors randomly in each
training iteration, A-UQ emulates the process of sampling
different solutions from the hypothesis space (akin to an en-
semble). During inference, A-UQ aggregates multiple pre-
dictions obtained via different random anchors and produces
uncertainty estimates.

Formally, given a trained stochastically centered model,
fo: [X=C,C] = Y, let C := Xy,.qin, be the anchor dis-



tribution, x € Xy, be a test sample, and anchor ¢ € C be
anchor. Then, the mean target class prediction, u(y|x), and
corresponding variance, o (y|x) over K random anchors are
computed as:

1 K
p(ylx) = ?Zfe([x—cmck]) “4)
k=1

1 K
o(ylx) = ﬁZ(f@([X_CkaCk])_H)Q ®)
k=1

Since the variance over K anchors captures epistemic un-
certainty by sampling different hypotheses, these estimates
can be used to modulate the predictions: g, = p(l — o).
The resulting calibrated predictions and uncertainty estimates
have led to state-of-the-art performance on vision [18, 19]
and graph classification tasks [15], while still only requiring
a single model. Given its impressive performance and flexi-
bility, we focus on adapting stochastic centering to our link
prediction calibration setting. Namely, we discuss in detail
design considerations that arise from aggregating node-level
uncertainties into edge-level confidence estimates.

3. PROPOSED APPROACH

In this section, we introduce our proposed approach, and dis-
cuss the three variants, for improving GNN-based link predic-
tion calibration using stochastic centering (see Fig. 1). Fur-
thermore, we will demonstrate the importance of creating and
aggregating meaningful node-level uncertainties. Indeed, as
discussed in Sec. 1, on the one hand, LP calibration is difficult
since node-level uncertainties must be correctly aggregated in
order to produce consistent edge-level uncertainties. On the
other hand, due to the lack of suitable node-level tasks, the un-
certainties associated with the node features can themselves be
poorly calibrated. Consequently, even a sophisticated aggrega-
tion strategy in LP decoders can lead to sub-par calibration of
edge probabilities. Below, we introduce three different variants
of our proposed method, where each variant gradually seeks to
improve the characterization of node-level uncertainties, and
subsequently leverages the stochastic centering framework to
produce edge uncertainties.

E-AUQ (v1) — Deterministic node features: While stochas-
tic centering can be performed at any layer of the GNN, in
this variant, stochastic centering is only performed prior to
decoder. In other words, the node representations are assumed
to be deterministic and that the epistemic uncertainties arise
from the non-uniform samples of edges in different parts of
the feature space. While, this assumption indicates that we
expect the least amount of change on the reliability of node-
level features, we perform stochastic feature aggregation over
pairs of nodes by utilizing the anchoring framework. Given
that the LP decoder paramterizes an edge based on a chosen

aggregation function on the given pair of nodes, through an-
choring, we sample different possible aggregation hypotheses
before marginalizing over anchors according to (7). In other
words, given the features x; and x; for a node pair, we perform
stochastic centering using a randomly chosen anchor ¢ (from
a pre-specified anchor distribution). Formally, we define this
operation for dot-product and concatenation-style LP decoder
modules as follows:

Decodergy : [(x; — ¢) * (x; — ¢), ] 6)

Decodereoncat © [(Xi — ¢||x; — ¢), C] @)

Similar to standard anchored model training, this tuple is taken
as input by the LP decoder and trained using the standard cross
entropy loss. Note, in each iteration of training, a different
anchor c is randomly chosen.

E-AUQ (v2) - Partially stochastic encoder: As discussed
earlier, it is reasonable to expect the node-level uncertainties
can be utilized to improve the calibration of the edge proba-
bilities obtained using LP. This is motivated by the fact that,
the encoder architecture (implemented using GNNs) can be
susceptible to epistemic uncertainties arising from the distri-
bution of node attributes and hence, they can singificantly
influence the subsequent predictions on pairs of nodes. Hence,
in this variant, we invoke anchoring in the intermediate layers
of the encoder architecture itself, and obtain stochastic node
representations. Formally,

X" = Encoder'"(X, A)
X! = Encoder™ ! (X" — C, C|, A)
E(i’j) = Decoder (Xf'H, X§+1)

However, it is important to note that this approach results in
partially stochastic encoder model (i.e., first few layers of the
encoder are deterministic) and the anchoring process leverages
the structural information (through the message passing in
GNN layers). By introducing anchoring in the encoder and
performing end-to-end training of the LP model, we are able to
effectively sample the hypothesis space for joint node feature
learning and LP decoding. We expect this increased diversity
to help improve the quality of our link-level predictions.

E-AUQ (v3) — Partially stochastic encoders + Node-level
pretraining. While the aforementioned variants use stochastic
centering to implicitly improve the aggregation of uncertainty
over pairs of nodes, they do not explicitly improve the quality
of node-level uncertainties. Indeed, this is difficult as node-
level calibration supervision cannot be assumed on LP tasks.
Therefore, we combine E-AUQ (v2) with an unsupervised
node-level pretraining task to prime the encoder’s node-level
uncertainties before LP training. In particular, we pretrain the
encoder with an auxillary node feature attribute masking task,
and then train both the encoder and decoder with the standard
link-prediction loss. Formally, assuming M € [0, 1]V <9 de-
notes a random binary mask, we use that to mask portions



of the input node feature matrix and define a self-supervised
objective as follows:

X" = Encoder™ (X ®M,, A)
X! = Encoder™ ! (X" — C,CJ,A)

> IXA =Xy M)
(i,j)EM

EAttr =

Here, ||.||2 denotes the ¢5 norm and the reconstruction loss is
measures only using the masked parts of the feature matrix.
After completing the attribute masking-based pretraining, the
encoder is equipped to produce node-level uncertainties. Sub-
sequently, both the encoder and decoder modules of the LP
architecture are trained end-to-end, following E-AUQ (v2).
While other pretraining tasks can be considered, we use at-
tribute masking for effectiveness and ease of implementation.

4. EXPERIMENTS

In this section, we experimentally validate the effectiveness of
our three LP calibration variants. Experimental Set-up: We
consider three different datasets (Cora, Citeseer, Pubmed) and
use the publicly available train-test splits for evaluation. A
3-layer GraphSAGE [20] backbone is used for the encoder,
with either a dot-product decoder (Cora) or a concatenation
decoder (Citeseer, Pubmed) (Table 4). Ten anchors are used
for all E-AUQvariants. Hyper-parameters are shared between
vanilla and E-AUQmodels.! The AUPRC and expected cali-
bration error are reported over 10 seeds. We report results for
the best intermediate anchoring layer according to validation
AUPRC. We make the following observations from Table 4.

Observation 1: Stochastic centering variants improves the
calibration on all datasets over the vanilla model. Indeed,
the improvement is particularly large on Cora, where ECE is
decreased by 50%, and Citeseer, where ECE is decreased by
16%. While we do not see as large gains on Pubmed, we do
note that no E-AUQ variants increases the calibration error.
This clearly suggests that our stochastic centering approach is
effective.

Observation 2: Stochastic centering variants perform compa-
rably on AUPR, with E-AUQ variants performing the best on
2/3 datasets. Generally, we see that E-AUQ variants improve
AUPR 4/9, though we suspect that E-AUQ performance
could be further improved if we tuned method-specific hyper-
parameters.

Observation 3: Amongst E-AUQ variants, E-AUQ (v3) ob-
tains the best calibration on 2/3 datasets. This suggests there
is value to our pretraining method, which seeks to improve

ICode will be released.

node-level calibration. We suspect that E-AUQ (v3)’s perfor-
mance could be further improved with better auxiliary tasks,
but we leave the design of such tasks to future work.

Observation 4: E-AUQ (v2) induced better calibration than E-
AUQ (v1) on 3/3 datasets, and has better AUPR on 2/3 datasets.
This supports our argument better node-level calibration is
critical for also improving LP calibration.

Table 1: Dataset Statistics.

Name #nodes  #edges  #features
Cora 2,708 10,556 1,433
CiteSeer 3,327 9,104 3,703
PubMed 19,717 88,648 500

5. CONCLUSION

In this work, we proposed and evaluated three variants of
stochastic centering for improving the calibration of graph
neural networks for link prediction. Our key finding is that
properly accounting for node-level uncertainty is critical for
obtaining well-calibrated edge-level confidence estimates. Our
experiments on three citation networks demonstrated that our
proposed E-AUQ methods can substantially reduce the ex-
pected calibration error compared to vanilla models. Overall,
this work provides novel insights into the importance of node-
level uncertainty modeling for link prediction calibration and
our proposed stochastic centering framework offers a flexible
way to incorporate epistemic uncertainty into existing GNN
architectures in a principled manner. An interesting direction
for future work is exploring additional auxiliary pretraining
objectives to further improve the meaningfulness of node un-
certainties.

Table 2: Link Prediction Calibration.

Dataset Method AUPR (1) ECE ()
E-AUQ (v3) 0.8409 +£0.0115  0.2591 +0.0178
Citeseer E-AUQ (v2) 0.8548 +0.0076  0.2833 +0.0075
E-AUQ (vl) 0.8070 +0.0218  0.3056 +0.0109
Vanilla 0.8236 +0.0115  0.3002 +0.0062
E-AUQ (v3) 0.8886 +0.0042 0.1554 +0.0060
Cora E-AUQ (v2) 0.8888 +0.0062  0.1731 +0.0181
E-AUQ (vl)  0.8598 +0.0207  0.2640 +0.0125
Vanilla 0.8936 +0.0066  0.3503 +0.0146
E-AUQ (v3)  0.877540.0098  0.1818 +0.0048
Pubmed E-AUQ (v2) 0.8701 +0.0016  0.1538 +0.0059
E-AUQ (vl) 0.9069 +0.0063 0.1801 +0.0117
Vanilla 0.8897 +£0.0091  0.1980 +0.0035
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