
Inferring Data Preconditions from Deep Learning Models for
Trustworthy Prediction in Deployment

Shibbir Ahmed
Dept. of Computer Science

Iowa State University
Ames, IA, USA

shibbir@iastate.edu

Hongyang Gao
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hygao@iastate.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hridesh@iastate.edu

ABSTRACT
Deep learning models are trained with certain assumptions about
the data during the development stage and then used for predic-
tion in the deployment stage. It is important to reason about the
trustworthiness of the model’s predictions with unseen data during
deployment. Existing methods for specifying and verifying tradi-
tional software are insu�cient for this task, as they cannot handle
the complexity of DNN model architecture and expected outcomes.
In this work, we propose a novel technique that uses rules derived
from neural network computations to infer data preconditions for a
DNNmodel to determine the trustworthiness of its predictions. Our
approach, DeepInfer involves introducing a novel abstraction for a
trained DNN model that enables weakest precondition reasoning
using Dijkstra’s Predicate Transformer Semantics. By deriving rules
over the inductive type of neural network abstract representation,
we can overcome the matrix dimensionality issues that arise from
the backward non-linear computation from the output layer to the
input layer. We utilize the weakest precondition computation using
rules of each kind of activation function to compute layer-wise
precondition from the given postcondition on the �nal output of a
deep neural network.We extensively evaluatedDeepInfer on 29 real-
world DNN models using four di�erent datasets collected from �ve
di�erent sources and demonstrated the utility, e�ectiveness, and
performance improvement over closely related work. DeepInfer ef-
�ciently detects correct and incorrect predictions of high-accuracy
models with high recall (0.98) and high F-1 score (0.84) and has
signi�cantly improved over the prior technique, SelfChecker . The
average runtime overhead of DeepInfer is low, 0.22 sec for all the
unseen datasets. We also compared runtime overhead using the
same hardware settings and found that DeepInfer is 3.27 times faster
than SelfChecker , the state-of-the-art in this area.

CCS CONCEPTS
• Software and its engineering! Speci�cation languages; •
Computing methodologies!Machine learning.

KEYWORDS
Deep neural networks, weakest precondition, trustworthiness

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623333

ACM Reference Format:
Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan. 2024. Inferring Data
Preconditions from Deep Learning Models for Trustworthy Prediction in
Deployment. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623333

1 INTRODUCTION
Deep neural networks (DNN) are widely utilized nowadays, in-
cluding in safety-critical systems. A DNN is trained on some data
(training data), tested on possibly separate data (test data), and
deployed in production, where they predict output for unseen data.
A major challenge is: can we trust the output of a trained DNN on
unseen data? Prior work has referred to these circumstances as data
corruption bugs [37, 38] or conformal constraint violation [26, 28].

Prior research on the speci�cation and veri�cation of DNNs has
focused on creating abstract representations for the veri�cation
of properties such as robustness and fairness [11, 14, 29, 35, 42, 43,
49, 60, 62, 65, 69]. However, these works have not addressed the
questions of the trustworthiness of DNN outputs [72] on unseen
data. Recent studies [26, 28] have explored techniques for discov-
ering constraints, but they do not consider the DNN’s structure
in determining these constraints. In particular, the conformance
constraints approach [26] uses the training dataset to establish a
"safety envelope" that characterizes the inputs for which the model
is expected to make trustworthy predictions. However, this work
does not examine whether those conformation constraint violations
of the safety envelope can determine correct or incorrect predic-
tions with unseen data in the deployment stage. Our work �lls this
research gap. While many classi�ers generate a con�dence mea-
sure in addition to their class predictions, these measures are often
unreliable due to inappropriate calibration [40, 48] and may not be
su�cient to indicate trust in the classi�er’s prediction. In particular,
the application of an activation function to raw numeric prediction
values can lead to con�dence measures that are not well-calibrated,
making them di�cult to determine whether the prediction with
unseen data during deployment is correct or incorrect.

Recently, Xiao et al. proposed a technique, SelfChecker [72] that
computes the similarity between layer features of test instances
and the samples in the training set, using kernel density estimation
(KDE) to detect misclassi�cations by the model in deployment. This
technique has limitations, such as being restricted to the capabil-
ity of computing density function from speci�c training and test
data and the selected combination of layers with certain activa-
tion functions. Therefore, SelfChecker incurs a signi�cant runtime
overhead to compute KDEs for di�erent combinations of layers for

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623333&domain=pdf&date_stamp=2024-02-06

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

DNN Model for
Diabetes Prediction

Training Stage

Predicting with unseen data

No Diabetes

Diabetes

Correct?

Incorrect?

Uncertain?

Deployment Stage

Can we trust model's prediction with unseen data?

Training data
6 148 72 35 157.6 33.6 0.627 50.0

Pregnancies Glucose Blood
Pressure

Skin
Thickness

 Insulin BMI Diabetes
Pedigree
Function

Age

Model's
assumption

from seen data

Trained DNN Model (N)

Training DNN model using training dataset Determining trust on prediction with unseen data

1
2

3 4

Figure 1: An example motivating how we can trust a model’s prediction with unseen data in the deployment stage

each class in training and deployment modules for all training and
test datasets. We address these shortcomings of the state-of-the-art
techniques and aim to develop a technique that infers DNN model’s
assumption on training data and utilizes that inferred assumption
during the deployment stage to determine correct or incorrect pre-
diction, therefore implying trust in prediction with unseen data.

In this work, we provide a novel approach DeepInfer for reason-
ing about a DNN’s prediction with unseen data by inferring data
preconditions from the DNN model, i.e., structure of the DNN and
trained parameters. The technical contributions of our approach
include: a novel abstraction of DNN, including conditions, a weak-
est precondition (wp) calculus [34] for DNNs, and an algorithm
that utilizes derived rules from the DNN abstraction and layer-wise
computations to infer data preconditions and determine the model’s
correct or incorrect prediction. Starting with the conditions that
should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that
layer (preconditions). Since the output of one layer (#) is fed to
the input of the next layer (# + 1) in a DNN, our approach then
uses the preconditions of the # + 1 layer as postconditions of the
previous layer # . The precondition of the �rst layer, also called the
input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden
non-linearities due to the architecture of the DNNs.

To evaluate our approach, we utilize 29 real-world models and 4
di�erent datasets collected from prior research [9, 14, 64, 76] and
Kaggle [41] to answer three research questions. We investigated
whether data precondition violations determine incorrect model
prediction. We also measure how e�ective DeepInfer is to imply
trustworthiness in the model’s prediction and compare against
closely related work using their evaluation metrics [72]. We deter-
mine the performance, especially the runtime overhead of DeepInfer
and compared it with the state-of-the-art using unseen data during
deployment. Our key results are: DeepInfer implies that data
precondition violations and incorrect model prediction are
highly correlated (?22 = 0.88), where ?22 denotes Pearson corre-
lation coe�cient. Also, the data precondition satisfaction and
correct model prediction are strongly correlated (?22 = 0.98).
DeepInfer e�ectively implies the correct and incorrect predic-
tion of higher accuracymodels with recall (0.98) and F-1 score
(0.84), compared to prior work SelfChecker with recall (0.59)
and F-1 score (0.52). The average runtime overhead of DeepInfer
is fairly minimal (0.22 sec for the entire test data). Our proposed
approach, DeepInfer is 3.27 times faster during deployment
than SelfChecker, state-of-the-art in this area.

In summary, this work makes the following contributions:

• a novel abstraction for trained DNN that incorporates pre
and postconditions as predicate vectors for each layer;

• a weakest precondition calculus for the DNN abstraction
that overcomes challenges due to non-linearities introduced
by the DNN architecture;

• a novel technique for computing data preconditions from
DNN models after training and utilizing those inferred pre-
conditions for implying trust in the model’s prediction dur-
ing the deployment stage ;

• a detailed evaluation with publicly available datasets and
models to demonstrate the utility, e�ciency, and perfor-
mance of DeepInfer with an open-source implementation [7]
that can be leveraged by future research in explainable soft-
ware engineering for machine learning.

2 MOTIVATION
We are aware that a DNN model’s prediction could be correct or
incorrect, but it is important to know how trustworthy the model’s
prediction is for unseen data during the deployment stage. To moti-
vate our objectives, let us consider a deep neural network model in
Fig. 1. The �rst layer, i.e., the DNN model’s input layer, receives the
input from training data, compiles it and produces the output (1).
Then, the next layers receive the output from the previous ones as
input. The model compiles the input data, evaluates it, predicts the
output, and delivers it to the deployment stage (2). This model
has been trained for the PIMA diabetes dataset with eight features
for whether a patient has diabetes. Although the model’s accuracy
is 77%, when we get the output from the model, we do not really
know how con�dent the model is for that output. In some cases, the
model could be con�dently incorrect. So, this model’s prediction
with an unseen data during the deployment stage might be correct
or incorrect. For instance, during the deployment stage, unseen data
is fed to the trained DNN model (3), which predicts whether the
patient with that particular data point has diabetes or no diabetes
(4). It is necessary to determine whether the model’s prediction is
correct and to trust this prediction or its prediction is incorrect and
not to trust it with such unseen data points during the deployment
stage. The growing prevalence of Deep Neural Networks (DNNs) in
critical domains highlights the importance of ensuring the trustwor-
thiness of their outputs. Despite their high accuracy, DNNs are still
prone to prediction errors, and in applications such as autonomous
vehicles and medical diagnosis, etc. It is reported that Uber’s fatal
self-driving crash was caused by software detecting objects on the

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Abstract representation of
trained model (N) Trained DNN Model Abstraction for trained

DNN model

Postconditions

Compute Weakest
Precondition from N ,

Infer predicate
vector of input
layer for each

features

Data Preconditions

Input features Tuples

Unseen Data
Check data

precondition
violations for
each feature

Data precondition
violation count vectors
for each more important

and less important
features

Imply trust on
model's prediction
with unseen data

Implication on
model's prediction

Correct Prediction
Incorrect Prediction

Not Certain

After Training Phase

Utilizie computed
count vectors of
violation using
decision-tree

Compute mean
violation threshold
using the validation

dataset for all features

1 Predicate vectors for
each layer

Deployment Phase

10

2

7

654

3

8

9

11121314

Figure 2: Overview diagram depicting the technique of data precondition inference from a trained DNNmodel after the training
phase and how those are utilized in the deployment stage for implying trust in the model’s prediction using unseen data

road [1] and AI models for health care that predict disease are not
as accurate as suggested in reports [2]. Therefore, making the DNN
black-box model explainable and determining correct, incorrect, or
uncertain predictions during deployment is crucial.

Problem formulation: Given a trained DNN model and an
unseen data instance, our goal is to derive preconditions from a
trained DNN model’s assumptions about the training data after the
training stage, and leverage inferred data preconditions from the
model to precisely determine whether a prediction by the DNN
model with unseen data during deployment is correct or incorrect,
or uncertain. By addressing the challenges posed by non-linear
computation functions in DNNmodel and the variability of weights,
biases, inputs, and outputs, our work aims to provide an e�cient
solution and signi�cantly improved technique over state-of-art
for ensuring trust in the DNN model’s prediction in real-world
applications.

3 DEEPINFER APPROACH
We present an overview diagram in Fig. 2 illustrating our proposed
technique DeepInfer . The top portion of the diagram depicts how
data preconditions are inferred from a trained DNN model after the
training phase. In the bottom portion, we depict how the inferred
data preconditions are utilized for determining the trustworthiness
of the model’s prediction using unseen data during deployment.
At �rst, we utilize a trained DNN model for the novel abstrac-
tion with layers and activation functions incorporating precondi-
tions and postconditions (1). Then, we represent a neural network
with activation function operations inside layers (2). We compute
the weakest preconditions from the abstract representation of the
trained model (#) and postcondition (X) (3). Then, we determine
the predicate vectors for each layer utilizing the computed weakest
preconditions from layer-wise operations (4). From (5), we infer
the input layer’s predicate vector for each feature. Therefore, we
obtain the data preconditions using the trained model once after
the training phase (6). Then, we compute mean data precondition
violations for all features using the entire validation dataset, which
serve as a threshold (7). In the deployment phase, DeepInfer uti-
lizes the trained DNN model and obtained data preconditions for
determining trust in the model’s prediction with an unseen data

point (9). Next, we check the data precondition violations (10)
for each feature using the violation threshold (8) for that data
point (11). Furthermore, we utilize the computed count vectors of
the violation using a decision-tree-based approach (12). To that
extent, we determine the trustworthiness of the model’s prediction
with unseen data (13). Finally, DeepInfer determines whether the
model’s prediction is correct and we can trust it or incorrect and
not certain, and we can not rely on that prediction with unseen
data during the deployment stage (14).

3.1 Abstract representation of a DNN model
We propose a novel abstraction for trained DNNs that incorporates
pre and postconditions as predicate vectors for each layer. Let us
consider the following grammar for representing DNN depicted
in Fig. 3.

::= # :: # | 0(5 (G)) Neural network with activation function
0 ::= ;8=40A | A4;D | B86<>83 | C0=⌘ Common activation functions
5 (G) ::=, .G + 1 Dense operation using weight and bias
X ::= CAD4 | X ^ X | X _ X | f Preconditions and Postconditions
f ::= I ùû = Predicate vector of layer’s input/output (I), = 2 R
ùû ::= � |  | > | < | == | < Binary comparison operators
W (,) ::= (,)

.,)�1 Inverse function (W) of layer’s weight matrix
⇡C4BC ::= ⇡8= :: ⇡>DC Data with input and output features
⇡8= ::= {(58=, E) |58= 2 B, E 2) } Tuple of input features (58=) and data (E)
⇡>DC ::= {(5>DC , E) |5>DC 2 B, E 2) } Tuple of output features (5>DC) and data (E)
) ::= = |B |2 = 2 R, 2 2 [0 � I] | [� � /] |=, B 2 [2]⇤

Figure 3: Grammar representing Neural network, precondi-
tions, and postconditions

Let us consider the Dense layer computation denoting 5 (G). In
the grammar, we denote # as a neural network with activation
function 0(5 (G)) in layers. In this computation, the function is
based on the neuron’s weights, and bias where one weight is as-
signed to each component of the input (G) with corresponding
weight (,) and bias (1) in each layer. We consider some common
activation functions [69] used in deep learning programs such as
linear, ReLU, sigmoid, tanh. We consider each layer’s output
and input vector as I and the predicate as ùû =, where = 2 ' and
ùû represent the logical comparison operators. Here, W denotes an

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

inverse function of a layer’s weight matrix nonlinear computation.
We represent the test dataset (⇡C4BC) as a tuple of features and data.

3.2 Computing weakest preconditions from
abstract representation of a DNN model

To compute the weakest preconditions from the abstract represen-
tation of a DNN model (#), we consider a postcondition X as the
expected DNNmodel’s output. As edges from one layer connect the
neural network to another layer, we denote I as the input/output
vector for the intermediate layers. We consider ~ the output of the
last layer, and = is the prediction interval for a DNN model’s pre-
diction. Here, Ḡ is the input vector to the �rst layer. It is considered
as data precondition. We follow Dijkstra’s predicate transformer
semantics rules in the form of F? (# , X), where # is a program
statement involving a DNN layer computation using activation
functions as represented in the grammar, and X is a postcondition
on the program state. This transformer rule de�nes the weakest
predicate, which holds the model statement before executing #
to guarantee that the postcondition X holds after # terminates.
DeepInfer computes data precondition for a model using the de-
�ned rules in Fig. 4. We compute the data precondition, which is
obtained recursively by following these rules from the last layer
until the �rst layer of a DNN model. Therefore, the computation of
the data precondition from a DNN model is done recursively for
a given representation # from the DNN model and postcondition
X using the rules illustrated in Fig. 4. Here, the rules (��), (��A��
���) represent recursion over inductive type # by the functionF? ,
eventually satisfying base cases of # . These base cases of F? use U
to compute the precondition where U does recursion over the cases
of the inductive type X represented using rules (��A����T���),
(��A����W����), (��A����V��), (��A����S����) illustrated
in Fig. 4. Again, base cases of U use V to compute the F? for the
cases of the activation function (0). For instance, for ReLU activation
function, we compute V using the computation with weight and
bias of a layer as follows,

A4;D (5 (G)) = 5 (A4;D (, .G + 1)) =
(
0, (, .G + 1) < 0
, .G + 1, (, .G + 1) � 0

We solve this non-linear equation of A4;D (, .G+1) for postcondition
(I ùû =) and obtain the precondition as stated in the (B���R���) rule
in Fig. 4. Similary, for other kinds of activation functions, we have
derived V rules e.g., (B���L�����), (B���S������), (B���T���)
rules illustrated in Fig. 4. The derivation details of each kind of
those rules are in the appendix of open-source repository [7].

V (A4;D (, .G+1), I ùû =) ⌘ I ùû ((W .=)�1)^I ùû W .(�1),W = (,)
.,)�1

Next, we describe the challenges towards layer-wise weakest
precondition reasoning using a DNN model.

3.3 Layer-wise weakest precondition reasoning
In order to obtainF? by asserting the model statement using post-
condition from layer to layer, there are some challenges. First, the
layer function computation using the activation function is not al-
ways linear. Di�erent non-linear activation functions operate using
weight and bias along with the input in each layer computation. For
instance, sigmoid activation function computes (f (G) = 1

1+4�G),

tanh activation function computes (C0=⌘(G) = 2
1+4�2G -1), ReLU ac-

tivation function computes (A4;D (G) = G, G � 0|0, G < 0), ELU acti-
vation function computes (4;D (G) = G, G � 0|4G �1, G < 0), softmax
activation function computes (B> 5 C<0G (G8) = 4G8Õ=

9=1 4
G9) [69], etc.

Second, there is a challenge to tackle the variability of the matrix
dimension of weight, bias, input, and output in each layer. For
instance, an example model (in Fig. 5) contains 3 Dense layers
which perform linear, linear, sigmoid activation function
computation using weight and bias vector with input in each layer.
To obtain the layer-wise F? , the dimension of weight and bias
matrices should be taken into account. The dimension of weight
matrices varies from layer to layer in the network. As the weight
vector (,) is multiplied by the input vector (-), the dimension must
be consistent with the bias vector (1) and output (~) in forward
propagation. In terms of backward computation, it is challenging to
get the appropriate matrix dimension on the precondition of input
data in each layer. In Fig. 5, the dimension of weight, bias, input,
and output of last layer is (1⇥ 8), (1⇥ 1), (8⇥ 1), (1⇥ 1) respectively.
In the second layer, the dimension of weight, bias, input, and output
is (8 ⇥ 12), (8 ⇥ 1), (12 ⇥ 1), (8 ⇥ 1), respectively. In the �rst layer,
the dimension of weight, bias, input, and output is (12 ⇥ 8), (12 ⇥ 1),
(8⇥ 1), (12⇥ 1), respectively. If we assert using postcondition with a
single dimension of X , as a data precondition in the �rst layer should
be a dimension of 8⇥ 1 in this scenario. We encounter here that the
weight, bias, input, and output of each layer appear non-linearly in
the equations of the activation function, where there are nonlinear
constraints among the parameters. To address these challenges, we
have adopted the least square solution [39] for nonlinear activation
computation. One of our contributions is to derive F? rules for
each kind of activation function (shown in Fig. 4) for layer-wise
weakest precondition reasoning.

Next, we describe the weakest precondition computation of a
DNN model to infer data preconditions of the input layer using
the derived rules (in Fig. 4). Our approach is generalized to a DNN
with any number of hidden layers with linear or non-linear activa-
tion functions. For simplicity, we demonstrate theF? computation
process using derived rules with a canonical example DNN model.

3.4 Infer data preconditions of the input layer
For computing the weakest precondition using DNN models, we
take the statements from the model structure consisting of layers
with input dimensions, number of output, activation function, etc.
We consider the prediction interval (=) as the postcondition. The
rationale behind choosing prediction interval as a postcondition to
DNN classi�cation or regression model is that it [46] provides how
good the model prediction is. Also, the prediction interval helps
gauge the weight of evidence available when comparing models.
Prediction intervals facilitate trade-o�s between models favoring
less complex or more interpretable models [17].

To infer data preconditions, starting from the last layer state-
ment, we assert using theF? equation to determine the weakest
precondition. The equation of ⇡4=B4 layer is as follows:

>DC?DC = 02C8E0C8>=(3>C (8=?DC,F486⌘C) + 180B)

So, for given postcondition X : ~  =, the statement (3 can be
written for output of last layer (~3) with corresponding weight (F3)

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(��)
F? (#0,X

0) = X 00 X 0 = F? (#1,X)
F? (#0 .#1,X) = X 00

(��A����)
X 0 = U (X, V (0 (5 (G))))
F? (0 (5 (G)),X) = X 0

(A����T���)

U (CAD4, V (0 (5 (G)))) = CAD4

(A����W����)
U (X0, V (0 (5 (G)))) = X 00 U (X1, V (0 (5 (G)))) = X 01

U (X0 ^ X1, V (0 (5 (G)))) = X 00 ^ X 01

(A����V��)
U (X0, V (0 (5 (G)))) = X 00 U (X1, V (0 (5 (G)))) = X 01

U (X0 _ X1, V (0 (5 (G)))) = X 00 _ X 01

(A����S����)
X 0 = V (0 (5 (G)), I ùû =)

U (I ùû =, V (0 (5 (G)))) = X 0

(B���R���)
X 01 = I ùû (W .=) � 1 X 02 = I ùû W .(�1) W = (,)

.,)�1 .(,))
V (A4;D (, .G + 1), I ùû =) = X 01 ^ X 02

(B���L�����)
X 0 = I ùû (W .=) � 1 W = (,)

.,)�1 .(,))
V (;8=40A (, .G + 1), I ùû =) = X 0

(B���S������)

X 0 = I ùû (W .;= (=

1 � =) � 1) W = (,)
.,)�1 .(,))

V (B86<>83 (, .G + 1), I ùû =) = X 0

(B���T���)

X 0 = I ùû (W . 1
2
;= (= � 1

= + 1
) � 1) W = (,)

.,)�1 .(,))

V (C0=⌘ (, .G + 1), I ùû =) = X 0

Figure 4: Rules for computingF? over inductive type # , U over inductive type X , V over inductive type 0(5 (G))

input output

Linear Linear Sigmoid

Linear Linear

Figure 5: Data precondition (X1) computation from an exam-
ple DNN model (#) with 3 layers and postcondition (X)

and bias (13) as,

~3 = B86<>83 (F)
3 .G3 + 13)

We have Dense layers with linear, linear, sigmoid activa-
tion functions for this example. Now, for given neural network (#)
and postcondition (X),

: ;8=40A (,1 .G1 + 11).;8=40A (,2 .G2 + 12) .B86<>83 (,3 .G3 + 13);
X : ~3 � =1 ^ ~3  =2

Our proposed technique is generalized to DNN models with
multiple layers. For example, a DNN model presented in Fig. 5 has 3
layers and di�erent activation functions. In that model, the output
layer has a single class, i.e., the output value ~ 2 R. The given
postcondition is an instance of (X ^ X) and will be in the range
between [=1,=2]. Now, we utilizeF? rules over # and X using (��),
(��A����) rules to get the precondition for this multiple layer
neural network as follows,

X1 = F? (# , X) = F? (#0 .#1, X) ⌘
F? (;8=40A (,1 .G1 + 11) .;8=40A (,2 .G2 + 12) .B86<>83 (,3 .G3 + 13), X)

X1 = F? (;8=40A (,1 .G1 + 11, X2);
X2 = F? (;8=40A (,2 .G2 + 12) .B86<>83 (,3 .G3 + 13), X);

X2 = F? (;8=40A (,2 .G2 + 12), X3);X3 = F? (B86<>83 (,3 .G3 + 13), X)
Then, we apply (��A����S����), (��A����W����), (B���S���

����) rules consecutively to get the precondition as follows,

X3 = F? (B86<>83 (,3 .G3 + 13), X) ⌘ U (X3, V (B86<>83 (,3 .G3 + 13)))
⌘ V (B86<>83 (,3 .G3+13), X3) ⌘ V (B86<>83 (,3 .G3+13),~3 � =1^~3  =2)
⌘ G3 � ((W3 .;=

=1
1 � =1

) � 13) ^ G3  ((W3 .;=
=2

1 � =2
) � 13)

Here, G3 is an array of input that has been obtained from the
second layer and fed into the third layer, and the predicate of G3

denotes the precondition of the data in layer 3, which is a post-
condition of layer 2. Here, W3 is an inverse function of the layer’s
weight matrix (,3). Then, we obtain X2 similarly using theF? rules
(��A����), (��A����W����), (B���L�����) consecutively,

X2 = F? (;8=40A (,2 .G2 + 12), X3)

⌘ U (X3, V (;8=40A (,2 .G2 + 12))) ⌘ V (;8=40A (,2 .G2 + 12), X3)

⌘ V (;8=40A (,2 .G2 + 12), G3 � ((W3 .;=
=1

1 � =1
) � 13)^

G3  ((W3 .;=
=2

1 � =2
)�13)) ⌘ G2 � ((W2 .((W3 .;=

=1
1 � =1

)�13))�12)^

G2  ((W2 .((W3 .;=
=2

1 � =2
) � 13)) � 12),W2 = (,)

2 .,2)�1 .(,)
2)

In this step, we obtain the precondition which is an array of the
input (G2) that has been obtained from the �rst layer and fed into
the second layer, and the predicate of G2 denotes the precondition
of the input in layer 2, which is a postcondition of layer 1. After
asserting with this postcondition, we obtain X1 similarly using the
F? rules (��A����), (��A����W����), (B���L�����),

X1 = F? (;8=40A (,1 .G1 + 11), X2) ⌘ U (X2, V (;8=40A (,1 .G1 + 11)))

⌘ V (;8=40A (,1 .G1 + 11), X2)

⌘ G1 � ((W1 .((W2 .((W3 .;=
=1

1 � =1
) � 13)) � 12) � 11)^

G1  ((W1 .((W2 .((W3 .;=
=2

1 � =2
) � 13)) � 12) � 11)

Finally, we obtain the precondition, which is an array of the data
(G1) for each feature that has been assumed by this DNN with
multiple layers where W1 = (,)

1 .,1)�1 .(,)
1). In our proposed

technique, the entire process of data precondition inference from a
DNNmodel is automated and generalized for other models which is
performed after the training stage. Next, we discuss how we utilize
inferred data preconditions for determining the trustworthiness of
the model’s prediction using unseen data.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

3.5 Implying trustworthiness on the model’s
prediction using inferred data preconditions

Regarding the design choice, we determine the data preconditions
for the inputs to the �rst layer in a DNN model. These data precon-
ditions for the inputs to a DNN model indicate the trained model’s
assumption about the data. Furthermore, these input data precon-
ditions must hold true for the data before it is fed to the model,
which is important for its prediction. Prior work regarding the
conformance constraints approach [26] uses the training dataset
to establish a "safety envelope" that characterizes the inputs and
demonstrates that conformal constraint violation is related to a
model’s trustworthy predictions. We leverage a similar notion in
our approach that the violation of obtained data preconditions for
the input to a DNN model indicates the trustworthiness of the
model’s prediction.

The overall process has two parts shown in Algorithm 1. The
procedure �������T�������� computes the violation threshold
for input features using the validation set, and �����P���������
uses these computed values to check prediction for unseen data.
Given the neural network representation# and the postcondition X ,
the �rst step is to acquire the data preconditions (line 2), set of input
features, and data points from the validation dataset⇡test (lines 3-5).
The algorithm proceeds by collecting feature-wise violations using
the helper procedure on lines 11–18, which checks precondition
violation for each input in the validation set and accumulates the
precondition violations by features. Finally, we calculate the mean
number of data precondition violations for all features (+), which
serve as a threshold (on line 9). For the unseen data, procedure

MoreImpFeatViolCounter (M)

Correct LessImpFeatViolCounter (L)

UncertainIncorrect Correct

Figure 6: Utilizing computed count vectors of the data pre-
condition violations using decision-tree
�����P��������� computes the violation count for each feature
(line 21). Next, for each feature the procedure checks whether the
number of violations are above (!) or below (") the violation thresh-
old. To be more speci�c regarding the design choice of the decision
tree (in Fig. 6) of data preconditions violation, we have utilized more
feature violations and fewer feature violations as indicative of the
model’s correct and incorrect prediction. The decision tree logic is
in Fig. 6. First leaf (from the left) of this decision tree is immediate,
if there are no more violations compared to the threshold then the
model’s prediction is correct. If ! == + == " , then the procedure
is unsure about the output of the model and therefore we assign
it uncertain (leaf 3). If ! < + < " , then there are more features
for which the precondition violation is below the threshold and
fewer features for which the violation is above. That means the
overall violation is less, leading to correct prediction (leaf 4). Finally,
if " < + < !, there are more precondition violations above the

threshold, and thus the model output is incorrect (leaf 2). To be
more speci�c regarding the design choice of the decision-tree of
data preconditions violation is that we utilized the more feature
violations and less feature violations as indicative of the model’s
correct and incorrect prediction.

Algorithm 1 Data Precondition Violation Procedure
1: procedure �������T��������(# , ⇡C4BC ,X)
2: X 0 F? (# ,X) ù Obtain data precondition given # and postcondition X
3: 5 dom(⇡8=) ù Set of input features, ⇡8= 2 ⇡C4BC
4: 3 range(⇡8=) ù Set of data points, E 2 ⇡8=
5: F?E⇡82C ú
6: E �������F������W���V���������(3, 5 ,X 0)
7: for each 8 2 | 5 | do
8: F?E⇡82C F?E⇡82C [{ h8, E [8] i}
9: + 1

=

Õ==|5 |
==1 (EF?) |EF? 2 F?E⇡82C ù Mean violation threshold

10: return+ ,X 0, 5
11: procedure �������F������W���V���������(3 , 5 , X 0)
12: E 0 ù Violation count array indexed by features
13: for each C n 3 do
14: EF? X 0 (C) ù Check precondition violation for input
15: for each 8 2 | 5 | do ù Collect precondition violation for each feature
16: if EF? [8] then
17: E (8) E (8) + 1
18: return E
19: procedure �����P��������� (3 ,+ , X 0, 5)
20: ",! 0, F?F0A= ú
21: E �������F������W���V���������(3, 5 ,X 0)
22: for each 8 2 | 5 | do
23: if (E [8]  +) then ù Compare violation count with threshold
24: " " + 1
25: else
26: ! ! + 1
27: F?F0A= 3428B8>=)A44 (",+ ,!) ù Correct/incorrect/uncertain?
28: return F?F0A=

Time Complexity. The procedure �����P��������� doesn’t
compute over the DNN. It uses preconditions computed by the
procedure �������T�������� that runs once per DNN after train-
ing. The time complexity of the procedure �������T��������
is dominated by theF? function, whose complexity is akin to the
back-propagation algorithm of a FCNN. The time complexity is
primarily determined by matrix multiplications, that has the com-
plexity $ (=;>627) for Strassen’s method [18]. The time complexity
of F? is$ (|# | +=;>627) where, |# | is the length of layers of model
and = is the dimension of the weight matrix. The time complexity of
�����P��������� is $ (|3 |.|5 |) where |3 | is the size of unseen data
and |5 | is the number of features. So, our approach for inferring
data precondition from a large DNN model with many layers is
scalable because of quadratic time complexity.

4 EVALUATION
This section describes the evaluation of DeepInfer . First, we discuss
the experimental setup in §4.1. Next, we describe research questions
and present the results and discussion in §4.2.

4.1 Experiment
4.1.1 Benchmark. We have gathered four canonical real-world
datasets from Kaggle competitions [41]. The train and test datasets
are converted to numerical values if those are in any other data
types during the data preprocessing stage.We have gatheredmodels

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

intended for classi�cation problems from the Kaggle and used by
prior work [9, 14, 64, 76]. In table 1, we present the total number of
features in a dataset, number of neurons, and layers of the models.

Table 1: DNN Benchmark for inferring data preconditions

Dataset # Features Model Source # Layers # Neurons
PD1 Kaggle 3 221
PD2 Kaggle 3 221
PD3 Kaggle 3 221Pima Diabetes [61] 8

PD4 Kaggle 4 293
HP1 Kaggle 3 273
HP2 Kaggle 3 273
HP3 Kaggle 3 273House Price [6] 10

HP4 Kaggle 4 383
BM1 [14] 4 97
BM2 [14] 4 65
BM3 [9] 3 117
BM4 [14] 5 318
BM5 [14] 4 49
BM6 [14] 4 35
BM7 [14] 4 145
BM8 [76] 7 141
BM9 Kaggle 3 627
BM10 Kaggle 3 627
BM11 Kaggle 3 627

BankCustomer [4] 28

BM12 Kaggle 4 1439
GC1 [14] 3 64
GC2 [64] 3 114
GC3 [14] 3 23
GC4 [14] 4 24
GC5 [76] 7 138
GC6 Kaggle 3 2397
GC7 Kaggle 3 2397
GC8 Kaggle 3 2397

GermanCredit [5] 22

GC9 Kaggle 4 2949

4.1.2 Prediction interval. We have adopted high-quality prediction
intervals for deep learning models for classi�cation and regression
models from prior work [55]. Therefore, for the experimental evalu-
ation, we selected a prediction interval (� 0.95) as the postcondition
for determining the data precondition from a deep learning model.

4.1.3 Experimental Setup. To perform our experiments and evalu-
ation, we implemented our techniques using Python and Keras. We
have used mathematical packages (numpy, pandas) to compute the
data precondition from a Keras model and to evaluate the implied
trustworthiness of model’s prediction using inferred data precondi-
tions. We have conducted all the experiments on a machine with a
2 GHz Quad-Core Intel Core i7 and 32 GB 1867 MHz DDR3 RAM
running the macOS 11.14.

4.1.4 Evaluation Metrics. : To determine the e�ciency DeepIn-
fer , we measure the Pearson Correlation Coe�cient (?22) follow-
ing prior work [26]. We de�ne true positive (TP), false positive
(FP), false negative (FN), and true negative (TN) following prior
work [72]. We also measure precision, recall, TPR, FPR, F-1 score
following prior work [72] from TP, FP, and FN to determine the
e�ciency of our approach in predicting the correct prediction of a
DNN model.

4.2 Results
4.2.1 Research�estions. To evaluate the utility, e�ciency, and
performance, we answer the following research questions:

RQ1(Utility): Do data precondition violations imply incorrect
model prediction, and data precondition satisfaction implies correct
model prediction, i.e., to trust the model?

We �rst obtain the preconditions on data for each feature using
the respective model and dataset to measure the utility of data
for implying the model’s prediction. Then using Algorithm 1, we
imply "Correct" or "Incorrect" or "Uncertain" prediction for unseen
data based on data precondition violation and satisfaction for each
feature. For RQ1, the model has been trained with the seen i.e.,
training data, and validated with the second portion of training data.
Following the experimental procedure [72], we have used all the
test datasets as unseen data. For evaluation purposes, we determine
the ground truth from the actual label and the model’s predicted
label and we consider "Uncertain" prediction as "Incorrect".

RQ2 (E�ectiveness): How e�ective DeepInfer is to imply trust-
worthiness in the model’s prediction compared to the prior approach?

To determine the e�ectiveness of our proposed approach Deep-
Infer , we measure true positive, false positive, false negative, and
true negative as discussed in §4.1.4 . We reported the false positive
and true positive ground truth where "ActTP" denotes if the actual
label and predicted label by a model are not equal and "ActFP"
denotes if the actual label and predicted label by a model are equal.
This suggests whether the model is properly trained or not and
also explains how DeepInfer performs compared to the "ActFP" and
"ActTP". We compare our approach with SelfChecker [72] using
same 29 models and 4 datasets. We have compared our approach
against SelfChecker [72] in terms of how e�ective each approach
is in predicting DNN misclassi�cations in deployment. We have
used the open-source implementation of SelfChecker and utilized
the same hardware setup. We communicated with the authors to
ensure their tool is applicable to these models and datasets.

RQ3 (E�ciency): What is the performance of DeepInfer with
respect to time, and what is the runtime overhead using unseen data
during deployment compared to prior work?

To compute the e�ciency of our proposed technique, we com-
pute the training time of all themodels.We computed the runtime of
DeepInfer and SelfChecker for all the models and all unseen datasets.
We consider the runtime measure important for determining trust
on the model’s prediction with unseen data in the deployment stage
for safety-critical issues. Considering resource constraints such as
processing data and generating prediction timely and limited com-
puting power or memory, it is crucial to ensure that models are
suitable for deployment in safety-critical scenarios to prevent acci-
dents or mitigate risks. For instance, a self-driving Uber car struck
and killed a woman in March 2018 as an investigation [3] revealed
that the model couldn’t correctly predict her path and it needed to
brake just 1.3 seconds before it struck her. Therefore, it is important
to measure the runtime of such techniques.

4.2.2 Results and Analysis. In this section, we discuss the results
and analysis for each of the research questions utilizing 4 di�erent
real-world tabular datasets with 29 di�erent Keras real-world mod-
els (discussed in §4.1.1) targeting binary classi�cation problems.

RQ1 (Utility): For RQ1, we present the results of all 29 real-
world models for four di�erent datasets in Table 2. We report the
model’s accuracy and the number of test instances. Then, we re-
ported the total number of "Correct" and "Incorrect" labels for all
the test datasets as the ground truth of the model’s prediction and
actual label. Next, we report the total number of data precondition

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

Table 2: DeepInfer implying correct and incorrect model prediction for unseen data

Ground Truth DeepInferDataset Model Accuracy # Features # Unseen data # Correct # Incorrect # Violation # Satisfaction # Correct # Incorrect #Uncertain Time (sec)

PD1 77.98% 119 34 192 1032 108 43 2 0.67
PD2 65.10% 99 54 0 1224 153 0 0 0.66
PD3 65.49% 98 55 129 1095 74 79 0 0.65Pima Diabetes

PD4 77.47%

8 153

111 42 132 1092 37 116 0 0.65
HP1 85.22% 147 145 341 2579 188 98 6 0.86
HP2 89.77% 147 145 341 2579 188 98 6 0.83
HP3 45.45% 145 147 0 2920 292 0 0 0.97House Price

HP4 87.50%

10 292

147 145 188 2732 107 184 1 0.87
BM1 81.10% 1072 1044 18814 40434 616 1500 0 3.42
BM2 82.11% 1066 1050 14855 44393 1492 624 0 3.48
BM3 80.19% 1054 1062 7370 51878 734 1382 0 3.78
BM4 79.10% 1067 1049 17486 41762 1061 1055 0 3.78
BM5 82.10% 1052 1064 7703 51545 807 1306 3 3.39
BM6 82.00% 1059 1057 17868 41380 1099 1017 0 3.48
BM7 81.00% 1074 1042 12762 46486 1375 741 0 3.40
BM8 82.00% 1075 1041 15213 44035 1089 1027 0 3.90
BM9 81.30% 1058 1058 21395 37853 1392 724 0 3.32
BM10 81.90% 1092 1024 9931 49317 820 1296 0 3.21
BM11 83.60% 1092 1024 27241 32007 945 1171 0 3.10

BankCustomer

BM12 80.70%

22 2116

1075 1041 20051 39197 1164 952 0 3.23
GC1 99.00% 198 2 1044 3356 200 0 0 1.94
GC2 99.00% 198 2 959 3441 188 12 0 2.18
GC3 99.00% 198 2 1569 2831 73 127 0 2.03
GC4 99.00% 198 2 2401 1999 200 0 0 2.01
GC5 99.00% 198 2 1193 3207 195 5 0 1.93
GC6 99.00% 198 2 1627 2773 67 133 0 1.99
GC7 99.00% 198 2 1074 3326 195 5 0 1.96
GC8 99.00% 198 2 1360 3040 143 57 0 2.07

GermanCredit

GC9 99.00%

28 200

198 2 1667 2733 144 56 0 1.93

violations and satisfaction. Then, we report "Correct" and "Incor-
rect" implications in "#Correct" and "#Incorrect", "#Unseen" columns
using our proposed technique DeepInfer . We also measure the total
runtime and report in the "Time" column in Table 2. From the results,
we observe that for the model with high accuracy, the total number
of "Correct" and "Incorrect" implied using DeepInfer is comparable
to the ground truth. For example, for the German Credit dataset
and GC1 and GC4 model with accuracy 99.00%, DeepInfer obtained
200 "#Correct" and 0 "#Incorrect" where Ground Truth contains in
total 198 "#Correct" and 2 "#Incorrect" labels. The reason behind
incorrectly implying a number of incorrect and correct predictions
in models like BM11 is that the model itself was not trained well,
as low accuracy suggests. Based on our �ndings, we conclude that
the model with high accuracy implies a better comparable number
of "Correct" and "Incorrect" predictions for all the unseen datasets.
Despite several models exhibiting high accuracy, we observed a lack
of correlation between the number of violations and the accuracy
of these models. This �nding suggests the presence of underlying
issues that warrant further investigation. We investigated further
to determine the correlation between the number of violations
in data preconditions and the frequency of "Correct" and "Incor-
rect" predictions based on the ground truth. Using the Pearson
Correlation Coe�cient (pcc) following prior work [26], we found a
positive correlation of 0.88 between data precondition violations
and incorrect model predictions, indicating that as the number of
violations increases, the likelihood of incorrect predictions by the
model also rises. This highlights the importance of data precondi-
tions in determining the trustworthiness of the model’s predictions.
Additionally, we saw a strong correlation of 0.98 between precondi-
tion satisfaction and correct model predictions, indicating that the
model tends to make accurate predictions when data preconditions
are satis�ed. To assess the statistical signi�cance of these correla-
tions, we conducted a t-test to compute p-values following prior

work [26], yielding p-values of 0.0001 for the correlation between
data precondition violation and incorrect prediction and 0.0003 for
the correlation between data precondition satisfaction and correct
prediction. Based on the commonly used signi�cance level of 0.05,
these p-values indicate that the correlations are statistically signi�-
cant [57]. A p-value below 0.05 suggests strong evidence against the
null hypothesis, supporting the presence of a signi�cant correlation
between the variables.

In summary, DeepInfer implies that data precondition violations
and Incorrect model prediction are highly correlated (0.88) between
prediction ground truth and violation. Also, the precondition satisfac-
tion and correct model prediction are strongly correlated (0.98).

RQ2 (E�ectiveness): In Table 3, we highlighted the best values
with high model accuracy from each set of the dataset. We also
observe how close the values are obtained from DeepInfer com-
pared to the ground truth FP and TP. Some of the models, e.g.,
BM6, BM7, BM9, BM10, BM11 in the Bank Customer dataset throw
numpy.linalg.LinAlgError:Singular matrix error during KDE gen-
eration steps using SelfChecker tool. We communicated with the
authors of SelfChecker , and they explained that the models they
used for evaluation contained only relu,softmax having more
than 8 layers for image datasets. Furthermore, we obtain 0 FP and
0 TP and the same number of FN and TN for many models un-
der experiments e.g., PD2, PD3, HP2, Hp3, BM4, BM5, BM8, GC5,
GC6, GC7, GC8, and GC9 etc. We have investigated further and
found that SelfChecker approach does not handle a model if the last
layer contains sigmoid, relu, tanh activation functions with
single output and the threshold of KDE values performs well for
softmax activation functions with multiple outputs to determine
true misbehavior of the model.

Next, we compute the precision, recall, and accuracy for all the
models and present the results in Table 3. We computed average
precision, recall, and accuracy for each dataset and obtained that

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: E�ciency of DeepInfer for implying model’s prediction

Ground Truth SelfChecker DeepInferDataset Model Test Acc. ActFP ActTP FP TP FN TN Precision Recall Accuracy TPR FPR F-1 FP TP FN TN Precision Recall Accuracy TPR FPR F-1
PD1 77.98% 34 119 46 90 5 12 0.66 0.95 0.67 0.95 0.79 0.78 33 118 1 1 0.78 0.99 0.78 0.99 0.97 0.87
PD2 65.10% 54 99 0 0 59 94 - 0.00 0.61 0.00 0.00 0.00 54 99 0 0 0.65 1.00 0.65 1.00 1.00 0.79
PD3 65.49% 55 98 0 0 59 94 - 0.00 0.61 0.00 0.00 0.00 55 98 0 0 0.64 1.00 0.64 1.00 1.00 0.78Pima Diabetes

PD4 77.47% 42 111 60 77 7 9 0.56 0.92 0.56 0.92 0.87 0.70 42 111 0 0 0.73 1.00 0.73 1.00 1.00 0.84
HP1 85.22% 145 147 59 114 13 105 0.66 0.90 0.75 0.90 0.36 0.76 138 146 1 7 0.51 0.99 0.52 0.99 0.95 0.68
HP2 89.77% 145 147 0 0 139 153 - 0.00 0.52 0.00 0.00 0.00 127 145 2 18 0.53 0.99 0.56 0.99 0.88 0.69
HP3 45.45% 147 145 0 0 139 153 - 0.00 0.52 0.00 0.00 0.00 147 145 0 0 0.50 1.00 0.50 1.00 1.00 0.66House Price

HP4 87.50% 145 147 51 168 15 57 0.77 0.92 0.77 0.92 0.47 0.84 143 146 1 2 0.51 0.99 0.51 0.99 0.99 0.67
BM1 81.10% 1044 1072 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 984 987 85 60 0.50 0.92 0.49 0.92 0.94 0.65
BM2 82.11% 1050 1056 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 869 866 200 181 0.50 0.81 0.49 0.81 0.83 0.62
BM3 80.19% 1062 1054 387 798 332 599 0.67 0.71 0.66 0.71 0.39 0.69 474 559 533 550 0.54 0.51 0.52 0.51 0.46 0.53
BM4 79.10% 1049 1067 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 916 906 161 133 0.50 0.85 0.49 0.85 0.87 0.63
BM5 82.10% 1064 1052 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 1001 970 82 63 0.49 0.92 0.49 0.92 0.94 0.64
BM6 82.00% 1057 1059 - - - - - - - - - - 1004 977 82 53 0.49 0.92 0.49 0.92 0.95 0.64
BM7 81.00% 1042 1074 - - - - - - - - - - 987 984 90 55 0.50 0.92 0.49 0.92 0.95 0.65
BM8 82.00% 1041 1075 0 0 1024 1092 - - - - - - 985 986 89 56 0.50 0.92 0.49 0.92 0.95 0.65
BM9 81.30% 1058 1058 - - - - - - - - - - 923 888 170 135 0.49 0.84 0.48 0.84 0.87 0.62
BM10 81.90% 1024 1092 - - - - - - - - - - 982 989 103 42 0.50 0.91 0.49 0.91 0.96 0.65
BM11 83.60% 1024 1092 - - - - - - - - - - 1062 1054 0 0 0.50 1.00 0.50 1.00 1.00 0.66

BankCustomer

BM12 80.70% 1041 1075 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 860 866 209 181 0.50 0.81 0.49 0.81 0.83 0.62
GC1 99.00% 2 198 37 91 1 71 0.71 0.99 0.81 0.99 0.34 0.83 2 198 0 0 0.99 1.00 0.99 1.00 1.00 0.99
GC2 99.00% 2 198 0 74 18 108 1.00 0.80 0.91 0.80 0.00 0.89 2 186 12 0 0.99 0.94 0.93 0.94 1.00 0.96
GC3 99.00% 2 198 42 96 1 61 0.70 0.99 0.79 0.99 0.41 0.82 1 72 126 1 0.99 0.36 0.37 0.36 0.50 0.53
GC4 99.00% 2 198 0 2 0 198 1.00 1.00 1.00 1.00 0.00 1.00 2 198 0 0 0.99 1.00 0.99 1.00 1.00 0.99
GC5 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 2 193 5 0 0.99 0.97 0.97 0.97 1.00 0.98
GC6 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 66 132 1 0.99 0.33 0.34 0.33 0.50 0.50
GC7 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 2 193 5 0 0.99 0.97 0.97 0.97 1.00 0.98
GC8 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 142 56 1 0.99 0.72 0.72 0.72 0.50 0.83

GermanCredit

GC9 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 143 55 1 0.99 0.72 0.72 0.72 0.50 0.84

* Here, ‘-’ in "FP", "TP", "FN", "TN" column indicates where SelfChecker does not provide any output, therefore we can not get any values. For those cases, we get divided by zero
error in the "Precision", "Recall", "Accuracy", "TPR", "FPR", "F-1" columns.

DNN Models

R
un

tim
e

(s
ec

)

0

2

4

6

8

10

PD
1

PD
2

PD
3

PD
4

H
P1

H
P2

H
P3

H
P4

B
M

1
B

M
2

B
M

3
B

M
4

B
M

5
B

M
6

B
M

7
B

M
8

B
M

9
B

M
10

B
M

11
B

M
12

G
C

1
G

C
2

G
C

3
G

C
4

G
C

5
G

C
6

G
C

7
G

C
8

G
C

9

SelfChecker DeepInfer

Figure 7: Runtime comparison of DeepInfer and SelfChecker
for all models across di�erent datasets

for the high-accuracy models, the average precision, recall, and
accuracy are 0.76, 0.98, and 0.76, respectively. Higher precision
means that DeepInfer implies accurate results than inaccurate ones,
and high recall means that DeepInfer returns most of the accurate
results. The average precision and accuracy are low for models
with performance-related underlying issues, which calls for further
research. Furthermore, we also compared against the SelfChecker
and found that SelfChecker produced identical results in terms of TP,
FP, FN, and TN for certain models on a speci�c dataset. However,
the assumption of using density functions and selected layers in
the training module might not work properly. Also, measuring
density function using training and representative test datasets
might not be independent of model architectures, and it might not
work well on di�erent model structures which learned the training
data di�erently.

In summary, DeepInfer e�ectively implies the correct and incorrect
prediction of higher accuracy models with recall (0.98) and F-1 score
(0.84), compared to SelfChecker with recall (0.59) and F-1 score (0.52).

RQ3 (E�ciency): We computed the runtime overhead of Deep-
Infer and SelfChecker with respect to original training time for all

Dataset

R
un

tim
e

O
ve

rh
ea

d

0.00

0.20

0.40

0.60

0.80

Pima Diabetes
(#features =8)

House Price
(#features =10)

BankCustomer
(#features =22)

GermanCredit
(#features =28)

SelfChecker DeepInfer

Figure 8: Runtime overhead comparison of DeepInfer and
SelfChecker for all unseen data

models in each kind of dataset which are unseen and plotted in
Fig. 7. From the results, we observed that the average runtime of
DeepInfer is 0.66 sec, 0.88 sec, 3.46 sec, 2.00 sec compared to av-
erage training time of 8.88 sec, 10.15 sec, 15.67 sec, and 5.74 sec
in Pima Diabetes, House Price, Bank Customer, German Credit
dataset respectively. On the other hand, the average runtime of
SelfChecker is 3.65, 3.66, 5.73, and 3.61 sec using all the models of
Pima Diabetes, House Price, Bank Customer, and German Credit
dataset, respectively. We observe that the runtime is proportional
to the number of features, which is consistent with our theoretical
complexity results. Furthermore, we computed the runtime over-
head of DeepInfer and SelfChecker for all unseen datasets over the
training time for all models in each kind of dataset and plotted it
in Fig. 8. We have observed that, the average runtime overhead
of SelfChecker and DeepInfer is 0.41 and 0.07, 0.36 and 0.09, 0.37
and 0.22, 0.62 and 0.35 respectively, for Pima Diabetes, House Price,
Bank Customer, German Credit dataset. During the deployment
phase, we found that DeepInfer outperforms SelfChecker in terms
of speed, being approximately 3.27 times faster. Additionally, we
calculated the average runtime overhead for all unseen datasets and

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

models, which is 0.22 seconds. This runtime overhead is relatively
minimal when compared to the original training time. An advan-
tage of our proposed approach is that we eliminate the need to
repeatedly retrain the model for overhead computation. In contrast,
SelfChecker requires extensive computations for all training and
test datasets, along with di�erent layer combinations, in order to
calculate statistical measures like KDE values. Consequently, this
process incurs a substantial runtime overhead.

In summary, the average runtime overhead of DeepInfer is fairly
minimal (0.22 sec for all the unseen data). The runtime overhead of
DeepInfer is 3.27 times faster than SelfChecker during deployment.

4.2.3 Limitation. In this study, we conducted experiments to eval-
uate our proposed technique for inferring preconditions from real-
valued features. We focused on these features because they are
easier for humans to understand, and our datasets only included
numerical values. While our current algorithms and derived F?
rules are speci�c to certain layer computations and activation func-
tions of fully connected layers, we believe that the fundamental idea
of inferring data preconditions from deep neural network (DNN)
models after training and using them for trustworthy prediction in
deployment can be applied to other types of DNNs. For example,
in popular models that utilize convolution and attention layers,
we can extend the concept of computing data preconditions by
extracting features from raw input data, such as images or text, and
inferring preconditions from the classi�er similarly.

4.2.4 Discussion on the state-of-the-art (SOTA) metrics and ap-
proaches. Some classi�ers produce a con�dence measure, such as
con�dence score and class prediction, typically by applying a soft-
max function to the raw numeric prediction values. However, such
con�dence measures need to be better-calibrated [40]; therefore,
they cannot be reliably used as a measure of trust in prediction [26].
Surprise coverage relies on the concept of surprise adequacy [45, 70],
which measures the dissimilarity between a test and the training
data set. Surprise adequacy has a high computational cost. Surprise
adequacy aims to quantitatively measure how surprising each new
test input is when compared to the training data. It is used to de-
tect out-of-bound with respect to the distribution of the training
data, and the input is also more likely to cause unexpected model
behavior. However, given an input, it captures the activation trace,
the collection of neuron outputs produced by the model under test,
which is expensive even for a simple model. Moreover, it does not
indicate whether a particular prediction of the model is correct or
incorrect with an unseen data point. DeepGini score [27] mainly
provides a way to calculate a test prioritization to improve the
quality of DNN. It determines a score by using only on the test
input activations of the DNN’s softmax output layer, limiting the ap-
proach’s applicability to only classi�cation problems with softmax
activation function in the last layer. Moreover, it does not provide a
mechanism to imply whether a particular prediction of the model
is correct or incorrect during deployment. Some classi�ers provide
a level of con�dence [55] or certainty when making predictions
about which class something belongs to. They usually calculate this
con�dence using the softmax function. However, these con�dence
scores are often not very accurate and can’t be trusted to tell us how
con�dent the classi�er is about its prediction and imply whether
it is correct or incorrect prediction. None of these SOTA metrics

learns input constraints from the trained model and utilizes that
during the deployment to imply trust in the model’s prediction
using unseen data. For the evaluation with publicly available fully
connected DNNs and datasets with numerical values, the SOTA
techniques SELFORACLE [63], DISSECTOR [68], Con�dNet [20] are
not applicable (details in §5).

5 RELATEDWORK
We are inspired by the vast body of seminal work on weakest
precondition calculus [16, 21, 23, 24, 33, 34, 56, 75].

Trusted Machine Learning. The closest idea related to trusted
machine learning in the database and machine learning community
is Conformance Constraint Discovery (CCSynth) [26] to quantify
the degree of non-conformance in a dataset, allowing for the e�ec-
tive characterization of whether or not inference over a given tuple
is reliable. They demonstrated the application for detecting unsafe
tuples in trustworthy machine learning. However, their approach
is model-independent and will result in the same constraints for
di�erent models with the same dataset. Our approach resolves this
issue and works as a model-speci�c approach to identify how to
imply trust in di�erent DL models’ predictions using a dataset with
unseen data during deployment. In the software engineering com-
munity, SELFORACLE [63] has proposed an approach that monitors
the performance of the DNN at runtime to predict unsupported
driving scenarios by computing a con�dence estimation. In contrast,
our approach produces preconditions from the model using o�ine
computation. SELFORACLE also focuses on image-based models
and temporally ordered inputs, such as video frames, and does not
apply to data with numerical attributes. Another technique, Self-
Checker [72], assesses model consistency during deployment and
assumes that the density functions and layers chosen by the train-
ing module can be applicable to new test instances. However, this
assumption is contingent upon whether the training and validation
datasets accurately represent the characteristics of test instances.
SelfChecker operates through a layer-based approach, which neces-
sitates white-box access and may have limited capabilities in detect-
ing issues in shallow DNNs with a few layers. SelfChecker++ [71]
has been designed to target both unintended abnormal test data and
intended adversarial samples. InputRe�ector [73], introduced a run-
time approach to identify and �x failure-inducing inputs in DL sys-
tems inspired by traditional input-debugging techniques.Wang et al.
introduced DISSECTOR [68] to identify inputs that deviate from the
norm, by training several sub-models on top of a pre-trained deep
learning model. However, generating these sub-models is manual
and time-consuming [72]. Further, DISSECTOR is only applicable to
image-based models such as ImageNet [8]. Researchers in the deep
learning community have developed learning-based models to mea-
sure a model’s con�dence during deployment [20, 22, 40, 47, 48, 54].
However, these models can be untrustworthy and su�er from over-
�tting. Corbière et al. [20] proposed Con�dNet, a model built on
top of pre-trained models that uses true class probability for failure
prediction. However, over�tting can occur due to being trained on
a small number of incorrect predictions in training dataset. Con�d-
Net technique has ConvNet architecture in its implementation and
it would not be applicable for DNNs with only dense layers and
datasets with numerical values. In contrast, our approach infers the

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

model’s assumption of the data after training and utilizes that to
imply the trustworthiness of model’s prediction.

Neural Network Abstraction. There are a number of research
ideas that focuses on abstracting neural network as DNN veri�-
cation is NP-hard due to the number of nodes in DNN slowing
the algorithms exponentially [62]. Singh et al. [60] proposes an
abstract domain based on �oating-point polyhedra and intervals
along with abstract transformers for neural network functions for
certifying deep neural networks. Gehr et al. [29] introduces the
idea of abstract transformers that capture the behavior of com-
mon neural network layers to certify convolutional and large fully
connected networks. There are other abstractions of neural net-
works, e.g., interval universal approximation [69], neural interval
abstraction, neural zonotope abstraction, and neural polyhedron
abstraction [11] None of these abstractions of the neural network
works for F? reasoning with neural network functions as code
statements and expected output as a postcondition which DeepInfer
demonstrates.

Neural Network Speci�cation and Veri�cation. The related
ideas in the speci�cation of DNNs [32, 58, 66]. [58] discusses formal-
izing and reasoning about properties of DNN; however, [58] does
not propose any precondition inference using model architecture
and post condition. [32] proposed a technique to compute input and
layer properties from a feed-forward network and utilize formal
contracts for the network. The application of inferred properties
has been demonstrated to explain predictions, guarantee robust-
ness, simplify proofs, and network distillation. [66] introduced a
constraint-based technique for repairing neural network classi�ers
by inferring correctness speci�cations. [25] proposes a technique
to apply formal methods to ML components e.g., perception sys-
tems, and analyze system behavior in an uncertain environment.
However, [25, 32, 66] did not consider abstracting neural networks
and introduce a technique for computing data preconditions from
trained DNN models and utilizing those inferred preconditions for
implying trust in the model’s prediction during the deployment
stage. There is a recent study [59] on reducing DNN properties
to enable falsi�cation with adversarial attacks using a correctness
problem comprised of a DNN and robustness problems property.
In a recent study [19], a rule induction-based technique has been
proposed to facilitate the debugging process of trained statistical
models only that generates an interpretable characterization of the
data on which the predictive machine learning model performs
poorly. In another study [30], a bias-guided misprediction expla-
nation technique has been proposed that generates explanation
rules with higher misprediction explanation and also improves the
machine learning model’s robustness utilizing a mispredicted area
upweight sampling algorithm. Recently, an empirical study [44]
characterizes di�erent kinds of ML contracts, which may help ML
API developers to write contracts. Another research study [10] pro-
posed a technique for checking contracts for deep learning libraries
by specifying DL APIs with preconditions and postconditions. None
of these recent papers along with the work [67, 74] related to neu-
ral network speci�cation and veri�cation utilizes a DNN model’s
model architecture and expected output to infer assumptions on
data that our approach emphasizes. We demonstrate the utility of in-
ferred data preconditions to imply the trustworthiness in predicting
unseen data during deployment.

6 THREATS TO VALIDITY
In the context of inferring preconditions from a deep learningmodel,
internal threats to validity include an incorrect model structure
where the DNN model may not fully capture the underlying sys-
tem’s complexity or dynamics, leading to inaccurate precondition
inference. External threats to validity include lack of representative-
ness in the unseen data where the data used to evaluate the model
may not accurately re�ect the real-world scenario, leading to the
inaccurate implication of the model’s prediction by our approach.
To mitigate these threats, we have collected a large and diverse
dataset that accurately represents the real-world scenario. This can
help ensure the model is exposed to various variations and can
generalize well to unseen data. Also, we have used more complex
models with more Dense layers, which have the ability to learn
complex patterns and features in the real-world dataset.

7 CONCLUSION AND FUTUREWORK
We propose a novel technique, DeepInfer , for inferring data precon-
ditions from a DNN. DeepInfer uses an abstract representation of
the DNN model and derived F? rules for di�erent types of DNN
functions, by solving challenges of non-linear computation with
di�erent dimensions of matrices, to infer preconditions for the
model. A DNN can be deployed with these preconditions, and their
violation can imply trust in the model’s predictions during deploy-
ment. We have evaluated DeepInfer on 29 models using 4 real-world
datasets and found substantial results compared to prior work re-
garding e�ectiveness and e�ciency. We �nd that data precondition
violations and incorrect model prediction are highly correlated.
DeepInfer e�ectively implies the correct and incorrect prediction of
higher accuracy models with recall (0.98) and F-1 score (0.84), which
is a signi�cant improvement compared to prior work. DeepInfer is
3.29 times faster than the state-of-the-art technique. In future, our
approach can be extended to automatically validate the temporal
properties of DNN models. We can also explore the use of predicate
abstraction and symbolic reasoning for DNN models to further
explain the black-box DNN models. Recent studies on decomposing
DNN into modules [36, 52, 53], we intend to infer input precondi-
tions of each DNN module for its expected and reliable behavior.
We want to extend our data precondition inference technique to
mitigate model’s unfairness [12, 13, 31] in di�erent stages of the
ML pipeline [15]. We can enhance techniques [50, 51] by inferring
preconditions from mined models, considering improved accuracy
for trustworthy prediction.

8 DATA AVAILABILITY
The replication packages and results are available in this reposi-
tory [7] that can be leveraged by software engineering for machine
learning research in the future.

ACKNOWLEDGMENTS
We acknowledge the reviewers for their insightful comments. This
material is based upon work supported by the National Science
Foundation under Grant CCF-15-18897, CNS-15-13263, CNS-21-
20448, CCF-19-34884, and CCF-22-23812. All opinions are of the
authors and do not re�ect the view of sponsors.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

REFERENCES
[1] 2018. Uber’s fatal self-driving crash reportedly caused by software. https:

//www.cnet.com/roadshow/news/uber-reportedly-�nds-false-positive-self-
driving-car-accident/. [Online; accessed Mar-2023].

[2] 2019. AI in Medicine Is Overhyped. https://www.scientificamerican.com/article
/ai-in-medicine-is-overhyped/. [Online; accessed Mar-2023].

[3] 2019. Self-driving Uber car that hit and killed woman did not recognize that
pedestrians jaywalk. https://www.nbcnews.com/tech/tech-news/self-driving-
uber-car-hit-killed-woman-did-not-recognize-n1079281. [Online; accessed
Mar-2023].

[4] 2022. Bank Customer dataset. https://www.kaggle.com/datasets/kidoen/bank-
customers-data. [Online; accessed Aug-2022].

[5] 2022. German Credit Risk Classi�cation dataset. https://www.kaggle.com/c
ode/twunderbar/german-credit-risk-classi�cation-with-keras/data. [Online;
accessed Aug-2022].

[6] 2022. House Price Prediction dataset. here. [Online; accessed Aug-2022].
[7] 2023. Repository of DeepInfer. https://github.com/shibbirtanvin/DeepInfer.

[Online; accessed September-2023].
[8] 2023. Repository of DISSECTOR. https://github.com/ParagonLight/dissector.

[Online; accessed July-2023].
[9] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2019. Black Box Fairness Testing of Machine Learning Models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
625–635. https://doi.org/10.1145/3338906.3338937

[10] Shibbir Ahmed, Sayem Mohammad Imtiaz, Samantha Syeda Khairunnesa,
Breno Dantas Cruz, and Hridesh Rajan. 2023. Design by Contract for Deep
Learning APIs. In ESEC/FSE’2023: The 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(San Francisco, California). https://doi.org/10.1145/3611643.3616247

[11] Aws Albarghouthi. 2021. Introduction to Neural Network Veri�cation. Found.
Trends Program. Lang. 7, 1–2 (dec 2021), 1–157. https://doi.org/10.1561/250000
0051

[12] Sumon Biswas and Hridesh Rajan. 2020. Do the Machine Learning Models on a
Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 642–653. https://doi.org/10.1145/3368089.3409704

[13] Sumon Biswas and Hridesh Rajan. 2021. Fair Preprocessing: Towards Understand-
ing Compositional Fairness of Data Transformers in Machine Learning Pipeline.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 981–993. https://doi.org/10.1145/3468264.3468536

[14] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness Veri�cation of Neu-
ral Networks. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1546–1558.
https://doi.org/10.1109/ICSE48619.2023.00134

[15] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and
Practice of Data Science Pipelines: A Comprehensive Study of Data Science
Pipelines in Theory, in-the-Small, and in-the-Large. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2091–2103.
https://doi.org/10.1145/3510003.3510057

[16] Marcello M Bonsangue and Joost N Kok. 1994. The weakest precondition calculus:
Recursion and duality. Formal Aspects of Computing 6, 1 (1994), 788–800.

[17] Leo Breiman. 2001. Statistical modeling: The two cultures (with comments and a
rejoinder by the author). Statistical science 16, 3 (2001), 199–231.

[18] Murat Cenk and MAnwar Hasan. 2017. On the arithmetic complexity of Strassen-
like matrix multiplications. Journal of Symbolic Computation 80 (2017), 484–501.

[19] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chan-
dra. 2021. Explaining Mispredictions of Machine Learning Models Using Rule
Induction. In Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 716–727. https://doi.org/10.1145/3468264.3468614

[20] Charles Corbière, Nicolas THOME, Avner Bar-Hen, Matthieu Cord, and Patrick
Pérez. 2019. Addressing Failure Prediction by Learning Model Con�dence. In
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/�le/757f
843a169cc678064d9530d12a1881-Paper.pdf

[21] Frank S de Boer. 1999. A wp-calculus for OO. In International Conference on
Foundations of Software Science and Computation Structure. Springer, 135–140.

[22] Terrance DeVries and Graham W Taylor. 2018. Learning con�dence for out-
of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865

(2018).
[23] Ellie D’hondt and Prakash Panangaden. 2006. Quantum weakest preconditions.

Mathematical Structures in Computer Science 16, 3 (2006), 429–451.
[24] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs. Commun. ACM 18, 8 (aug 1975), 453–457. https:
//doi.org/10.1145/360933.360975

[25] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-
vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia. 2019. Verifai: A
toolkit for the formal design and analysis of arti�cial intelligence-based systems.
In International Conference on Computer Aided Veri�cation. Springer, 432–442.

[26] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra
Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in Data-
Driven Systems. In Proceedings of the 2021 International Conference on Manage-
ment of Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMa-
chinery, New York, NY, USA, 499–512. https://doi.org/10.1145/3448016.3452795

[27] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu
Chen. 2020. Deepgini: prioritizing massive tests to enhance the robustness of
deep neural networks. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 177–188.

[28] Sainyam Galhotra, Anna Fariha, Raoni Lourenço, Juliana Freire, Alexandra Me-
liou, and Divesh Srivastava. 2022. DataPrism: Exposing Disconnect between Data
and Systems. In Proceedings of the 2022 International Conference on Management
of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Ma-
chinery, New York, NY, USA, 217–231. https://doi.org/10.1145/3514221.3517864

[29] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. AI2: Safety and Robustness Certi�cation
of Neural Networks with Abstract Interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2018.00058

[30] Jiri Gesi, Xinyun Shen, Yunfan Geng, Qihong Chen, and Iftekhar Ahmed. 2023.
Leveraging Feature Bias for Scalable Misprediction Explanation of Machine
Learning Models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 1559–1570. https://doi.org/10.1109/ICSE48619.2023.00135

[31] Usman Gohar, Sumon Biswas, and Hridesh Rajan. 2023. Towards Understanding
Fairness and Its Composition in Ensemble Machine Learning. In Proceedings of
the 45th International Conference on Software Engineering (Melbourne, Victoria,
Australia) (ICSE ’23). IEEE Press, 1533–1545. https://doi.org/10.1109/ICSE48619.
2023.00133

[32] Divya Gopinath, Hayes Converse, Corina Pasareanu, and Ankur Taly. 2019.
Property Inference for Deep Neural Networks. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 797–809. https:
//doi.org/10.1109/ASE.2019.00079

[33] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer program-
ming. Commun. ACM 12, 10 (1969), 576–580.

[34] Charles Antony Richard Hoare and Jifeng He. 1987. The weakest prespeci�cation.
Inform. Process. Lett. 24, 2 (1987), 127–132.

[35] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety veri�-
cation of deep neural networks. In Computer Aided Veri�cation: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30. Springer, 3–29.

[36] Sayem Mohammad Imtiaz, Fraol Batole, Astha Singh, Rangeet Pan, Breno Dantas
Cruz, and Hridesh Rajan. 2023. Decomposing a Recurrent Neural Network
into Modules for Enabling Reusability and Replacement. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). 1020–1032. https:
//doi.org/10.1109/ICSE48619.2023.00093

[37] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520. https://doi.org/10.1145/3338906.3338955

[38] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing Deep Neural Networks: Fix Patterns and Challenges. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
1135–1146. https://doi.org/10.1145/3377811.3380378

[39] William H Je�erys. 1980. On the method of least-squares. The Astronomical
Journal 85 (1980), 177.

[40] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya Gupta. 2018. To Trust
or Not to Trust a Classi�er. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems (Montréal, Canada) (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 5546–5557.

[41] Kaggle. 2010. The world’s largest data science community with powerful tools
and resources to help you achieve your data science goals. www.kaggle.com.

[42] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An e�cient SMT solver for verifying deep neural networks. In
Computer Aided Veri�cation: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97–117.

Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[43] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al.
2019. The marabou framework for veri�cation and analysis of deep neural
networks. In Computer Aided Veri�cation: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer, 443–452.

[44] Samantha Syeda Khairunnesa, Shibbir Ahmed, Sayem Mohammad Imtiaz,
Hridesh Rajan, and Gary T. Leavens. 2023. What Kinds of Contracts Do ML
APIs Need? Empirical Software Engineering 1, 1 (March 2023).

[45] Jinhan Kim, Robert Feldt, and Shin Yoo. 2023. Evaluating Surprise Adequacy for
Deep Learning System Testing. ACM Trans. Softw. Eng. Methodol. 32, 2, Article
42 (mar 2023), 29 pages. https://doi.org/10.1145/3546947

[46] Max Kuhn, Kjell Johnson, et al. 2013. Applied predictive modeling. Vol. 26.
Springer.

[47] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red
Hook, NY, USA, 6405–6416.

[48] Yan Luo, Yongkang Wong, Mohan S Kankanhalli, and Qi Zhao. 2021. Learning to
Predict Trustworthiness with Steep Slope Loss. In Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 21533–21544. https:
//proceedings.neurips.cc/paper_files/paper/2021/�le/b432f34c5a997c8e7c806a
895ecc5e25-Paper.pdf

[49] DenisMazzucato and Caterina Urban. 2021. Reduced products of abstract domains
for fairness certi�cation of neural networks. In Static Analysis: 28th International
Symposium, SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings 28.
Springer, 308–322.

[50] Giang Nguyen, Sumon Biswas, and Hridesh Rajan. 2023. Fix Fairness, Don’t Ruin
Accuracy: Performance Aware Fairness Repair using AutoML. In ESEC/FSE’2023:
The 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (San Francisco, California).

[51] Giang Nguyen, Md Johirul Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas:
Mining Software Repositories to Assist AutoML. In Proceedings of the 44th In-
ternational Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1368–1380.
https://doi.org/10.1145/3510003.3510052

[52] Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural Network
into Modules. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 889–900. https://doi.org/10.1145/3368089.3409668

[53] Rangeet Pan and Hridesh Rajan. 2022. Decomposing Convolutional Neural
Networks into Reusable and Replaceable Modules. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 524–535. https:
//doi.org/10.1145/3510003.3510051

[54] Nicolas Papernot and Patrick McDaniel. 2018. Deep k-nearest neighbors: Towards
con�dent, interpretable and robust deep learning. arXiv preprint arXiv:1803.04765
(2018).

[55] Tim Pearce, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. 2018. High-
Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled
Approach. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings ofMachine Learning Research), Jennifer Dy andAndreas Krause (Eds.),
Vol. 80. PMLR, 4075–4084. https://proceedings.mlr.press/v80/pearce18a.html

[56] Christopher M Poskitt and Detlef Plump. 2010. A Hoare calculus for graph
programs. In International Conference on Graph Transformation. Springer, 139–
154.

[57] William R Rice. 1989. Analyzing tables of statistical tests. Evolution 43, 1 (1989),
223–225.

[58] Sanjit A Seshia, Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona
Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xi-
angyu Yue. 2018. Formal speci�cation for deep neural networks. In International
Symposium on Automated Technology for Veri�cation and Analysis. Springer, 20–
34.

[59] David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. 2021. Reducing DNN
Properties to Enable Falsi�cation with Adversarial Attacks. In Proceedings of the

43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21).
IEEE Press, 275–287. https://doi.org/10.1109/ICSE43902.2021.00036

[60] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3,
POPL, Article 41 (jan 2019), 30 pages. https://doi.org/10.1145/3290354

[61] Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and
Robert Scott Johannes. 1988. Using the ADAP learning algorithm to forecast the
onset of diabetes mellitus. In Proceedings of the annual symposium on computer
application in medical care. American Medical Informatics Association, 261.

[62] Matthew Sotoudeh and Aditya V Thakur. 2020. Abstract neural networks. In
International Static Analysis Symposium. Springer, 65–88.

[63] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-
behaviour Prediction for Autonomous Driving Systems. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
359–371. https://doi.org/10.1145/3377811.3380353

[64] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
Directed Fairness Testing. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE ’18).
Association for Computing Machinery, New York, NY, USA, 98–108. https:
//doi.org/10.1145/3238147.3238165

[65] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020.
Perfectly parallel fairness certi�cation of neural networks. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[66] Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, and Co-
rina S. Păsăreanu. 2021. NNrepair: Constraint-based Repair of Neural Network
Classi�ers. In Computer Aided Veri�cation: 33rd International Conference, CAV
2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Springer-Verlag, Berlin,
Heidelberg, 3–25. https://doi.org/10.1007/978-3-030-81685-8_1

[67] ChengpengWang, Gang Fan, Peisen Yao, Fuxiong Pan, , and Charles Zhang. ICSE
2023. Verifying Data Constraint Equivalence in FinTech Systems. (ICSE 2023).

[68] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector:
Input Validation for Deep Learning Applications by Crossing-Layer Dissection.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery,
New York, NY, USA, 727–738. https://doi.org/10.1145/3377811.3380379

[69] Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. 2022. Inter-
val universal approximation for neural networks. Proceedings of the ACM on
Programming Languages 6, POPL (2022), 1–29.

[70] Michael Weiss and Paolo Tonella. 2022. Simple techniques work surprisingly well
for neural network test prioritization and active learning (replicability study).
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 139–150.

[71] Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S.
Rosenblum, and Jin Song Dong. 2022. Self-Checking Deep Neural Networks for
Anomalies and Adversaries in Deployment. IEEE Transactions on Dependable and
Secure Computing (2022), 1–18. https://doi.org/10.1109/TDSC.2022.3200421

[72] Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian
Elbaum, Yun Lin, and Jin Song Dong. 2021. Self-Checking Deep Neural Networks
in Deployment. In Proceedings of the 43rd International Conference on Software
Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 372–384. https://doi.org/10.1
109/ICSE43902.2021.00044

[73] Yan Xiao, Yun Lin, Ivan Beschastnikh, Changsheng Sun, David Rosenblum,
and Jin Song Dong. 2023. Repairing Failure-Inducing Inputs with Input Re-
�ection. In Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering (Rochester, MI, USA) (ASE ’22). Association for
Computing Machinery, New York, NY, USA, Article 85, 13 pages. https:
//doi.org/10.1145/3551349.3556932

[74] Chenyang Yang, Rachel A Brower-Sinning, Grace A Lewis, and Christian Kästner.
2022. Data leakage in notebooks: Static detection and better processes. (2022).

[75] Mingsheng Ying. 2012. Floyd–hoare logic for quantum programs. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 33, 6 (2012), 1–49.

[76] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-Box Fairness Testing through Adversar-
ial Sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 949–960. https://doi.org/10.1145/3377811.3380331

