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Abstract10

Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction11

histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be12

di�cult or impossible to catch. We are interested in paradigms for fraud detection that are provably13

robust against any adversary, no matter how sophisticated. In other words, the detection strategy14

should rely on signals in the data that are inherent in the goals the adversary is trying to achieve.15

Specifically, we consider a fraud detection game centered on a random walk on a graph. We16

assume this random walk is implemented by having a player at each vertex, who can be honest or17

not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds18

to a uniformly random neighbor at the next timestep. However, when the random walk reaches a19

dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary.20

The game is played between the Adversary and a Referee who sees the trajectory of the random21

walk. At any point during the random walk, if the Referee determines that a specific vertex is22

controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The23

Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes24

such mistakes with small probability of error. The goal of the adversary is to make the cover time25

large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following26

basic question: how much can the omniscient Adversary delay the cover time without getting caught?27

Our main result is a tight upper bound on this delay factor.28

We also discuss possible applications of our results to settings such as Rotor Walks, Leader29

Election, and Sybil Defense.30
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1 Introduction38

Many modern fraud detection e�orts look for statistical features of data that do not fit a known39

probabilistic model, or are intrinsically implausible or internally inconsistent. The Newcomb–40

Benford (“first digit”) Law [29, 30, 26, 28] is a well known filter for detecting fabricated data41

in financial records, which can be applied to detecting fraud in other numerical data, e.g.,42

manipulated images [14, 44]. Recently uncovered frauds in social science research [35, 36, 37]43

can also be seen as distribution testing against known or unknown distributions.44

© Varsha Dani, Thomas P. Hayes, Seth Pettie and Jared Saia;

licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).

Editor: Venkatesan Guruswami; Article No. ??; pp. ??:1–??:22

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:varsha.dani@rit.edu
https://www.rit.edu/directory/vxdvcs-varsha-dani%20
mailto:thayes2@buffalo.edu
mailto:pettie@umich.edu
https://web.eecs.umich.edu/~pettie/%20
mailto:saia@cs.unm.edu
https://www.cs.unm.edu/~saia/%20
https://doi.org/10.4230/LIPIcs.ITCS.2024.??
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


??:2 Fraud Detection for Random Walks

One weakness of this variety of fraud detection is that it preys on relatively unsophisticated45

fraudsters, who could easily evade detection if they were just aware of the statistical tests in46

advance. This critique could also be leveled against most fraud detection e�orts in machine47

learning and information retrieval, which treat it as a pattern-matching problem [9, 13, 40,48

38, 42, 31, 39].49

In this paper we advance a perspective on fraud detection that di�ers sharply from50

all the work cited above. First, rather than begin with an application domain or a single51

empirical instance of fraud, we want to build a more general theory of fraud detection. In52

the most fundamental examples cited above, fraud manifests as corruption of a random53

process. Thus, we focus our study on abstract random processes that can be perturbed by an54

adversary. Furthermore, we adopt the norms of theoretical computer science, cryptography,55

and game theory in our adversarial model. In particular, a fraud detection mechanism56

should be evaluated in a worst case fashion, ideally against a computationally unbounded57

and omniscient adversary. Following Kerckho�s’ principle [23], its success should not depend58

on assuming the adversary is ignorant of the statistical tests it will be subject to.59

1.1 Fraud Detection for Random Walks60

Let G = (V, E) be a connected, undirected graph. A random walk (vi)iØ0 is generated by61

placing a token at some v0 and, in each step, letting vi pass the token to a uniformly random62

neighbor vi+1 œ N(vi). The cover time for this walk is the time until all the vertices have63

been visited by the token.64

Now suppose an adversary corrupts a set B ™ V of up to b vertices, who may pass the65

token as they like. The adversary wishes to delay the cover time as much as possible, without66

being detected.67

It is well known [2] that for any graph, the cover time is O(mn log n) with high probability.68

So if, after this many steps, there are vertices that have not been reached, the existence of69

corruption will be evident. However, we require a stronger form of fraud detection: a specific70

vertex must be accused. We formalize this process as the following game.71

I Definition 1 (The Random Walk Game). Let T be a fixed time horizon and b Æ n72

a fixed number. The game is played between two players, the Referee and the Adversary.73

The Adversary picks a starting vertex v0 œ V and a subset B ™ V of (corrupt) vertices with74

|B| Æ b. A walk (v0, v1, . . . , vT ) is constructed iteratively, with each move from an honest75

vertex being random, and each move from a corrupt vertex being chosen by the Adversary.76

If {v0, v1, . . . , vT } = V , the Referee immediately wins (the vertex set has been covered).77

Otherwise, the Referee must specify one “accused” vertex; the Referee wins if and only if this78

vertex is in B.79

We are interested in the threshold time, T (G, b), which is the minimum time T such that,80

with best play, the Referee wins the T -step Random Walk Game with probability at least81

1 ≠ 1/n5.82

We note that there is nothing particularly special about the exponent 5 in the allowed83

error probability above, and could instead make the error probability 1/nC . However, for our84

lower bounds, we do require that C be large enough to avoid pathological examples where85

the Referee could accuse a random vertex of being in B and be correct just by chance.86

When b = 0, the threshold time T (G, 0) is essentially the expected cover time. More87

precisely, if · is the maximum, over all starting locations, of the expected cover time of G,88
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Figure 1 Comparison of the bounds on R(G, b) from our main results. All the log terms have
been dropped, and n has been set to 100. The blue curve is b, the general upper bound on R from
Theorem 3. We note that, for every b, there is a graph for which this upper bound is tight (up to
log factors). The red curve is 1 + b2/n, which is �(R) in the special case of the path, as stated in
Theorem 6. Note that 1 + b2/n is also the right value of R(b) in the special case of the clique, if the
referee is restricted to purely local strategies that make accusations only a function of the particular
player’s choices. The green curve gives the correct value of R(b) for the clique, when the referee is
allowed to make accusations based on the entire transcript. This result is given in Theorem 13.

then89

·/2 Æ T (G, 0) Æ (10 log n) ·90

with the actual value depending on the specific graph.91

We now introduce our main object of study.92

I Definition 2. We define the price of corruption as the ratio93

R(G, b) = T (G, b)
T (G, 0)94

Informally, this is the factor by which an adversary with up to b corrupt vertices can increase95

the cover time, before the referee will be able to reliably accuse a bad player.96

Our goal in this paper is to understand how much T (G, b), and therefore R(G, b), can97

depend on b. Our main result is that this dependence is at most nearly linear98

I Theorem 3 (Price of Corruption is at most nearly linear). Let G be any graph on n vertices,99

and let 0 Æ b Æ n. Then,100

R(G, b) = O(b log n).101

Moreover, there exists a family of graphs G = G(n, b) for which102

R(G, b) = �(b/ log n).103

The lower bound in Theorem 3 does not apply to all graphs. For instance, we will see104

that the behavior of R(G, b) is more nuanced in the cases when G is a path or a clique; we105

examine these special cases in Sections 2 and 4106

This suggests a related question: for which graphs is the Price of Corruption, R(G, b),107

smallest? Knowing this might be helpful in applications where we have some choice about108

the graph on which the random walk takes place. Small-degree expander graphs seem like109

particularly good candidates for bounds of this type.110

ITCS 2024
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1.2 Related Work111

Biased random walks are a mainstay of introductory courses in random processes. Azar,112

Broder, Karlin, Linial, and Phillips [8] studied the adversarial biasing of random walks to113

maximize the time spent among some target set. In their model the token moves randomly a114

(1 ≠ ‘)-fraction of the time, and is controlled by the adversary an ‘-fraction of the time. Azar115

et al. [8] did not consider the problem of detecting such interventions or evading detection.116

Our problem is inspired by the Byzantine Agreement protocols of King and Saia [24]117

and Huang, Pettie, and Zhu [21, 22], which achieved polynomial latency with f = �(n) and118

optimal f < n/3 resiliency (Byzantine corruptions), respectively. These protocols attempt119

to flip a fair coin via a natural distributed coin-flipping protocol. However, the adversary120

may interfere with the protocol by choosing coin-flip outcomes strategically, and by inducing121

subtle disagreements among the non-corrupt players. If such an adversary continually foils122

attempts to flip a fair coin, an individual Byzantine player can be identified and blacklisted,123

removing its influence over the coin flipping protocol.1124

The notion of fraud detection seems to be “in the air” these days. This year Alon, Gunby,125

He, Shmaya, and Solan [3] also proposed a fraud detection-type game for random walks. In126

their model a walk on Z begins near the origin and is run in perpetuity but never reaches127

the origin, or does not reach it infinitely often. The movement of the walk is controlled by128

two players, Alice and Bob, who alternate (purportedly) flipping fair coins and announcing129

outcomes in {≠1, 1}—but exactly one of them is a fraud. The question is how to detect130

which of Alice or Bob is not behaving correctly. Their fraud detection mechanism is not an131

“algorithm” per se, as it requires evaluating functions of infinitely long walks. Although our132

setup and the setup of [3] have some syntactic similarities, the mathematical structure of the133

two problems are di�erent and lead, in some ways, to opposite conclusions.2134

1.2.1 Random Walks and Dynamic Networks135

Several recent results make use of random walks to solve classic problems in distributed136

computing over dynamically changing networks in the presence of Byzantine nodes. Problems137

addressed include Byzantine agreement [5]; information dissemination [34]; and leader138

election [6]. See also [7] for a survey of results.139

The type of random walk problem considered in these results is more general than ours140

in that the network topology may change from step-to-step. The problem is more specific141

than ours in that the network is assumed to always be a regular expander; and the number142

of Byzantine nodes is always O(
Ô

n/ logk n) for some constant k.143

Central to these results is a technical lemma showing that if good nodes generate random144

walk tokens at a certain rate, then there is a large set of nodes that have access to many145

well-mixed random-walk tokens. The random-walk algorithms are simple: no attempt is146

made to detect or identify Byzantine behavior, and the algorithms are fully distributed and147

scalable in terms of latency and message cost.148

1This application illustrates why it is important to distinguish between global detection — something

has gone wrong — and specific detection, namely, a specific player is corrupt w.h.p.
2Specifically, to make the cover time infinite in our model, the corrupt vertices must have some

measurable bias, and the question is how long it takes to detect that bias. In the infinite Alice & Bob
game [3], any biases are trivially detected (in the limit); the detector must also pay attention to negative
correlations between Alice and Bob’s moves.



V. Dani, T. P. Hayes, S. Pettie and J. Saia ??:5

1.3 Organization149

In Section 1.4 we review Bernstein’s and Freedman’s concentration inequalities. In Section 2150

we analyze the random walk game on the simplest topology, an n-path Pn, and obtain nearly151

sharp bounds on T (Pn, b). In Section 3 we generalize the detection method to work on an152

arbitrary graph G, and bound the price of corruption by R(G, b) = O(b log n). In Section 4153

we design a fraud detection method specific to the n-clique Kn, and give nearly tight upper154

and lower bounds on T (Kn, b). In Section 5 we discuss some possible applications of our155

results. We conclude with some open problems in Section 6.156

1.4 Concentration Inequalities157

The Referee’s task is to observe the random walk, and identify vertices that are not behaving158

as they should. In order to do this, we need a fairly accurate idea of what the local behavior159

of such a random walk should look like. To get a handle on this, we will make use of the160

following concentration inequalities.161

The following version of Bernstein’s inequality (see [16]) will be useful in analyzing the162

random walk games on the path (Section 2) and the clique (Section 4).163

I Theorem 4. (Bernstein’s Inequality) Let X1, . . . Xn be independent random variables

with |Xi ≠ E(Xi)| Æ b for each i œ [n], and each with variance ‡2

i . Let X =
q

i Xi, and

‡2 =
q

i ‡2

i be the variance of X. Then for all t > 0,

Pr(X Æ E(X) ≠ t)) Æ exp
3

≠ t2

2‡2 + (2/3)bt)

4

When dealing with general graphs (Section 3) we will instead need the following extension164

of Freedman’s inequality for martingales.165

I Theorem 5. ([10, Lem. 2]) Suppose X1, . . . , XT is a martingale di�erence sequence with166

|Xt| Æ fl. Let Vart Xt = Var(Xt | X1, . . . , Xt≠1). Let V =
qT

t=1
Vart Xt be the sum of167

conditional variances and ‡̄ =
Ô

V . Then for any ” < 1/e and T Ø 4,168

P
A-----

Tÿ

t=1

Xt

----- Æ 2


ln(1/”) max{2‡̄, fl


ln(1/”)}
B

Ø 1 ≠ ” log T.169

2 The Path170

Consider the path graph G = (V, E) with vertices numbered 1 through n. Without loss of171

generality we can assume the token is initially at vertex 1 and never reaches vertex n. How172

long must a corrupted random walk be until we may accuse a corrupt vertex?173

Theorem 6 gives nearly sharp bounds for this class of graphs and illustrates two qualitative174

features of this fraud detection model. First, although one corrupt vertex can make the175

cover time infinite it cannot do so without detection, and in fact any coalition of b = O(
Ô

n)176

corrupt vertices is powerless to increase the cover time by more than a constant factor,177

without detection. Second, there is a significant gap between the moment we detect likely178

corruption (�(n2 log n) time) and the moment we can confidently level an accusation at one179

vertex (�̃(n3) time when b = �(n)).180

I Theorem 6. Let G be the path of length n. Suppose the Random Walk Game on G is181

played for T timesteps and the adversary is allowed to corrupt up to b vertices. Then182

ITCS 2024
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1. If T = �((n2 + nb2) log n), then there is a strategy that enables the Referee to win with183

probability at least 1 ≠ 1

n5 . In other words,184

R(G, b) = O

3
1 + b2

n

4
185

2. If T < n2 + nb2
, there is an adversarial strategy such that one vertex is never visited, and186

no detection mechanism can identify any corrupt vertex with high probability. In other187

words,188

R(G, b) = �
33

1 + b2

n

4
/ log(n)

4
189

The remainder of this section constitutes a proof of Theorem 6.190

Part 1 of Theorem 6. Suppose we pass the token for T time steps. For each vertex j, let191

Xj denote the number of times that vertex j passes the token, and Yj the number of times192

j passes the token to the left. We will accuse vertex j if the number of left passes, Yj193

substantially exceeds the number of right passes, Xj ≠ Yj , or more specifically, if194

�j
def= 2Yj ≠ Xj Ø


CXj log n .195

A standard application of Cherno�’s bound ensures that this criterion almost certainly does196

not falsely accuse any good vertex. In other words after T timesteps, for each good player j,197

�j <


CXj log n (1)198

holds with high probability 1 ≠ n≠�(C). We may assume that (1) also holds for all bad199

players as well, since otherwise the algorithm will make a correct accusation.200

Let vú = arg maxv Xv be the mode vertex. Since the token is passed around for T201

timesteps, by the pigeonhole principle, Xvú Ø T/n. Each time vú receives the the token, it202

passes it to a neighbor and the token makes a round-trip excursion back to vú. We may203

assume that at least 1

3
Xvú of these round-trip excursions are to the right of vú, for otherwise204

�vú would already be large enough to justify accusing vú. Define G and B to be the sets of205

good and bad vertices among {vú + 1, vú + 2, . . . , n ≠ 1}. Since vertex n is never reached,206

every round-trip excursion from vú to the right entails G fi B passing the token one more207

time to the left than the right.208

Let �G and �B be the sum of this left-excess associated with G and B, respectively.209

Then we know �G + �B Ø 1

3
Xvú . Let XG and XB denote the total number of times the210

token is passed by vertices in G and B, respectively.211

Applying Cherno�’s bound to the good vertices as a group, since T Æ nXvú , we have,212

with high probability 1 ≠ n≠�(C),213

�G Æ


CXG log n Æ


CT log n Æ


CnXvú log n . (2)214

To estimate �B =
q

iœB �i, note that each bad vertex satisfies Eqn. (1) to avoid detection.215

�B Æ
ÿ

iœB


CXi log n Æ |B|


CXvú log n Æ b


CXvú log n. (3)216

217

where the second inequality follows from the choice of vú as the mode. Combining Eqns.(2,3),218

we have219

1

3
Xvú Æ �G + �B Æ


CXvú log n(

Ô
n + b).220
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Figure 2 A biased random walk on the line graph.

Squaring and rearranging terms,221

Xvú Æ 9C log n(
Ô

n + b)2.222

Finally, since (
Ô

n + b)2 Æ 2(n + b2), we have223

T Æ nXvú Æ 18Cn(n + b2) log n,224

which completes the proof of the upper bound. J225

Part 2 of Theorem 6. For this part it is more convenient to number the vertices in reverse226

order: vertex 0 is the rightmost vertex and the token begins at vertex n ≠ 1 and never reaches227

0. See Figure 2.228

In adversarial strategy S, the adversary corrupts vertices in [b] = {1, . . . , b} and gives229

vertex j a left-bias of 1/j. Specifically, vertex j passes left with probability pj , where230

pj =
I

1

2

1
1 + 1

j

2
if j œ [b]

1/2 if j > b.
231

This process corresponds to a reversible Markov chain on the states {n ≠ 1, . . . , 1} where, for232

j œ [b], the edge between j + 1 and j has weight
!j+1

2

"
and all the edges to the left of b have233

weight
!b+1

2

"
. Note that the cover time is infinite as vertex 0 is unreachable.234

It follows that, for j œ [b], vertex j has stationary probability proportional to j2, while235

the vertices in {n ≠ 2, . . . , b + 1} to the left of b all have probability proportional to b(b + 1).236

The leftmost vertex n ≠ 1 has stationary probability proportional to b(b + 1)/2, and vertex 0237

is unreachable. See Figure 2. Summing these terms, we obtain the normalization factor N238

to be239

N = b
(b + 1)

2 + b(b + 1)(n ≠ b ≠ 2) +
bÿ

j=1

j2 = b(b + 1)
!
n ≠ b ≠ 3

2
+ 2b+1

6

"
= �(nb2).240

241

Thus, for j œ [b], the stationary probability of vertex j is j2/N = �(nj2/b2).242

Define S≠j to be identical to strategy S except that vertex j is not corrupt, i.e., it passes243

left and right with probability 1/2. We want to argue that if a corrupted random walk is too244

short, the false positive rate of any detection strategy will be intolerably large. Lemma 7245

lower bounds this error.246

I Lemma 7. Assume the adversary picks a strategy from {S, S≠1, . . . , S≠b} uniformly at

random. Abusing notation, let S≠i also refer to the event that strategy S≠i is chosen.

Let W be the resulting corrupted random walk. Define q = miniœ[b] min (fli, 1 ≠ fli), where

fli = Pr(S≠i | (S≠i fi S), W ). Then,

’i œ [b], Pr(S≠i | W ) Ø q2/b.

Proof. Note that for all i œ [b]:247

Pr(S≠i | W ) = Pr(S≠i | (S≠i fi S), W ) · (Pr(S≠i | W ) + Pr(S | W )) .248
249

ITCS 2024
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Letting fli = Pr(S≠i | (S≠i fi S), W ), and solving for Pr(S≠i | W ) in the above, we get250

Pr(S≠i | W ) = fli

1 ≠ fli
· Pr(S | W ).251

252

Note that q Æ fli

1≠fli
Æ 1/q. Letting iú = arg miniœ[b]

Pr(S≠i | W ), we have:253

Pr(S≠iú | W ) Ø q Pr(S | W ),254
255

and for all i œ [b]\{iú},256

Pr(S≠i | W ) Æ (1/q) Pr(S | W ).257
258

Hence,259

1 = Pr(S≠iú | W ) + Pr(S | W ) +
ÿ

iœ[b],i ”=iú

Pr(S≠i | W )260

Æ Pr(S≠iú | W ) + (1/q) Pr(S≠iú | W ) + ((b ≠ 1)/q2) Pr(S≠iú | W )261

Æ b

q2
Pr(S≠i | W ),262

263

where the last inequality follows since 1 + 1/q Æ 1/q2. J264

Lemma 7 says that we can assume the detector accuses the vertex j œ [b] that minimizes265

Pr(S≠j | (S≠j fi S), W ). In order to make the false positive rate small, we need the likelihood266

ratio267

Pr(W | S≠j)
Pr(W | S) = (1/2)Xj

p
Yj

j (1 ≠ pj)Xj≠Yj

=
3

1 ≠ 1
j

4Yj
3

1 + 1
j ≠ 1

4Xj≠Yj

268

< exp
1

≠ Yj

j + Xj≠Yj

j≠1

2
= exp

1
≠ �j

j≠1
+ Yj

j(j≠1)

2
269
270

to be n≠�(C). By Cherno� bounds, the likelihood ratio never gets this small until Yj Ø271

Cj2 log n, so we may use this as a proxy prerequisite for accusing vertex j.272

Once j is visited for the first time, the expected return time is �(nb2/j2), so in expectation,273

the criterion Yj Ø Cj2 log n is satisfied after another �(nb2 log n) steps. However, these274

return times have large variances so it is not clear that this random variable is su�ciently275

concentrated around its mean.3276

We may assume without loss of generality that b œ [�(
Ô

n), n/2]. Let Wj be the length of277

a random walk that begins and ends at vertex j, conditioned on moving left initially and let278

Ej = E(Wj) and Vj = E(W 2

j ).4 Such a walk moves to j + 1, makes zero or more roundtrips279

from j + 1, and then returns to j. The number of roundtrips from j + 1 is distributed280

geometrically, so by linearity of expectation,281

Ej = 2 +
3

1
1 ≠ pj+1

≠ 1
4

Ej+1 =

Y
]

[

2 + j+2

j Ej+1 if j + 1 Æ b,

2 + Ej+1 if j + 1 > b.
282

3(Lemma 8 implies that in any graph, the visitation rate of a vertex is, with high probability, at most
twice its stationary probability after a su�ciently long (corrupted) random walk, which on the line would
be �̃(bn2) steps. Since we are looking for a tight bound of �̃(n2 + nb2) we require a more careful analysis.)

4The condition that b Æ n/2 implies that starting at a corrupt vertex, a roundtrip to the left is longer
in expectation than a roundtrip in general.
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Thus Eb = 2(n ≠ b ≠ 1) and writing Ej , j < b, in terms of Eb we have a telescoping283

product, Ej = �(nb2/j2).284

To bound the second moment Vj , suppose that a leftward roundtrip from j makes k285

(leftward) roundtrips from j + 1 before returning to j, i.e., it has length 2 + W (1)

j+1
+ · · · W (k)

j+1
,286

where the W (·)
j+1

are independent copies of Wj+1. This would contribute kVj+1 + (k2 ≠287

k)E2

j+1
+ 2kEj+1 + 4 to Vj . Thus, we can express Vj recursively as288

Vj = (1 ≠ pj+1)
ÿ

kØ0

pk
j+1

!
kVj+1 + (k2 ≠ k)E2

j+1
+ 2kEj+1 + 4

"
289

= (1 ≠ pj+1) pj+1

(1 ≠ pj+1)2
· Vj+1 + �(E2

j+1
)290

=

Y
]

[

j+2

j · Vj+1 + �(E2

j+1
) if j + 1 Æ b,

Vj+1 + �(E2

j+1
) if j + 1 > b.

291

292

Then Vb = �(n3), and expressing Vj , j < b, in terms of Vb we have another telescoping293

product with Vj = �(n3b2/j2).294

We claim that it is not possible to reliably accuse any vertex j in less than M = n2 + nb2295

steps. In particular, once j is first visited, the length of the next Yj = K = Cj2 log n leftward296

roundtrips is not less than M . Let W (i)
j be the length of the ith leftward roundtrip. In297

expectation W (1)

j + · · · + W (K)

j is K · Ej = �(Cnb2 log n) = µ.298

We may assume each |W (i)
j | Æ M , for otherwise there’s nothing to prove. Thus, by299

Bernstein’s inequality,300

Pr
A

Kÿ

i=1

W (i)
j < M

B
< exp

A
≠ (µ ≠ M)2

2
qK

i=1
E((W (i)

j )2) + (2/3)M(µ ≠ M)

B
301

= exp
3

≠ (1 ≠ o(1))(KEj)2

2KVj + (2/3)(1 + o(1))KEj · M

4
302

= exp
3

≠ �(Cnb2 log n)2

�(Cn3b2 log n) + �(Cnb2 log n · (n2 + nb2))

4
303
304

and since b = �(
Ô

n), n2b4 = �(n3b2),305

= exp (≠�(C log n)) = n≠�(C). J306
307

Theorem 6 gives a nearly tight characterization for the fraud detection time on paths.308

Qualitatively speaking, Theorem 6 shows that tracking individual deviations su�ces to309

achieve near-optimal fraud detection, i.e., a vertex v is judged solely on the distribution of310

token passes to N(v). Section 3 extends this type of analysis to general graphs, and obtains311

strong bounds for all graphs.312

However, tracking individual deviations alone is, on some graph topologies, insu�cient313

for optimal fraud detection. The clique is one such topology, which we analyze in detail in314

Section 4.315

3 Fraud Detection on General Graphs316

In this section we consider the random walk game played on an arbitrary connected graph G317

on n vertices. The Adversary can corrupt any set B µ V consisting of up to b of the vertices.318

As in the case of the path, the Referee will watch the individual vertices and track their319
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apparent deviation from uniformly random behaviour. We will prove the upper bound in320

Theorem 3, by showing that there is a Referee strategy that guarantees that if the Adversary321

tries to delay the cover time by more than an O(b log n) factor, the Referee has a 1 ≠ 1/n5322

chance to win. To prove the lower bound we will demonstrate a family of graphs and an323

Adversarial strategy for which a O(b/ log n) factor is achieved.324

Although we eventually want to bound how much the adversary can delay the cover time,325

it will be convenient analyze the Random Walk Game in terms of hitting times. In the next326

subsection we discuss some concepts and terminology relating to random walks and hitting327

times.328

3.1 Notation329

G is an undirected connected graph on n vertices. For a random walk on G, given vertices330

v and y, the hitting time from v to y is the (random) first time at which the walk, having331

started at v, arrives at y. The expected hitting times between all the pairs of vertices in G332

will be of particular interest in designing our Referee strategy..333

The following quantities are solely a function of the structure graph G, not strategic334

considerations of the random walk game.335

fi is the stationary distribution, i.e., fi(v) = deg(v)/2m.336

H(v, y) is the expected hitting time to y starting from v. Let Hmax(y) = maxv H(v, y)337

and Hmax = maxy Hmax(y) be the maximum hitting times when only y is fixed, and338

when neither is fixed.339

For w œ N(v), define hy(v, w) to be340

hy(v, w) = H(w, y) ≠ H(v, y) + 1 ≠ 1 (v = y)
fi(y) .341

Here 1 (E) is the indicator variable for event E . For v ”= w, this definition ensures that342

hy(v, w) ≠ 1 equals the change in the expected hitting time to y that results from moving343

across the edge {v, w}. The definition ensures that, when w is a randomly chosen neighbor344

of v, the quantity hy(v, w) ≠ 1 has an expected value of ≠1, corresponding to the elapsing345

of the first time step in a random walk from v to y. The extra term, 1(v=y)

fi(y)
, which, when346

v = y, equals the expected excursion time from y, ensures that the expected value of347

hy(v, w) is zero for all v œ V .348

Let fly(v) = maxwœN(v) |hy(v, w)|, fly = maxv fly(v) and fl = maxy fly.349

Let ‡2

y(v) = 1

deg(v)

q
wœN(v)

hy(v, w)2 be the conditional variance of H(w, y), conditioned350

on v, where as before we assume that w is a randomly chosen neighbor of v.351

Let Vy
fi = Efi ‡2

y(v) =
q

v ‡2

y(v)fi(v) be the average conditional variance when v is chosen352

from the stationary distribution. Let Vfi = maxy Vy
fi be the maximum of this average over353

all target vertices y.354

Now consider the Random Walk Game. Let G be the set of good vertices and B be the355

set of bad vertices, with |B| Æ b. Let T be the number of time steps for which the random356

walk game will be played, and for t œ [0, T ] let vt denote the vertex holding the token at357

time t. Then for each t, vt+1 is a neighbor of vt, and it is a uniformly random neighbor if vt358

is a good vertex (i.e. vt œ G).359

For each v œ V , let Sv denote the set of times when the token is at v, and let SG denote360

the times when the token is with a good vertex in G and SB denote the times when the token361
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is with a bad vertex in B. Also, let Tv, TG and TB denote the sizes of the corresponding sets362

of times. That is363

Sv = {t | vt = v}, Tv = |Sv|,364

SG = {t | vt is a good vertex}, TG = |SG |,365

SB = {t | vt is a bad vertex}, and TB = |SB|.366
367

For a target vertex y œ V , we want to track the evolution of the values H(vt, y). Let368

�t = H(vt+1, y) ≠ H(vt, y)369

be the change in expected hitting time at step t. Observe that E (�t | vt ”= y, vt œ G) = ≠1370

and E (�t | vt = y, vt œ G) = 1/fi(y) ≠ 1. This motivates the definition of the sequence Dy
t :371

Dy
t = �t + 1 ≠ 1 (vt = y)

fi(y) = hy(vt, vt+1)372

It follows that if v œ G is any fixed good vertex and y œ V any target, that E (Dy
t | vt = v) = 0373

and moreover,374

The subsequence (Dy
t : vt = v) is a martingale di�erence sequence with step sizes bounded375

by fly(v),376

The subsequence (Dy
t : vt œ G) is a martingale di�erence sequence with step sizes bounded377

by fly.378

The above sequences are martingale di�erence sequences because, at timesteps when the379

token is controlled by good players, the next player is chosen fairly, and cannot be predicted380

in advance by the Adversary. The specific martingale di�erence sequence depends on the381

Adversary’s strategy for the bad players’ moves.382

3.2 Referee Strategy383

The referee’s strategy will be based on Theorem 5 ([10, Lemma 2]), which is a version of384

Freedman’s inequality for martingales.385

Since (Dy
t : vt = v) is a martingale di�erence sequence with step sizes bounded by fly(v)386

whenever v is a good vertex, applying Freedman’s inequality with ” = 1/nC , we know that387

for each good vertex v and target y,388

Pr
A-----

ÿ

tœSv

Dy
t

----- Ø max
Ó

4
Ò

C‡2
y(v)Tv ln n, 2Cfly(v) ln n

ÔB
Æ log Tv

nC
. (4)389

With this in mind, we will accuse vertex v if
--q

tœSv
Dy

t

-- is suspiciously large. Specifically,390

we will accuse v if391

÷y œ V.

-----
ÿ

tœSv

Dy
t

----- Ø max
Ó

4
Ò

C‡2
y(v)Tv ln n, 2Cfly(v) ln n

Ô
392

By a union bound over all v, y, the probability any good vertex is mistakenly accused is at393

most n≠C+2 log T .394
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3.3 Analysis395

Suppose the token passing game is played for T time steps and no player is accused by the396

referee of Section 3.2. Let vú be the “stationary mode,” i.e., the vertex that is visited most397

frequently relative to its stationary probability. In particular, for all v,398

Tv

fi(v) Æ Tvú

fi(vú) .399

We will denote by – the ratio between the number of times vú is visited and the number of400

times it expects to be visited at stationarity. That is401

– = Tvú

Tfi(vú) .402

Since vú has been chosen to maximize the right hand side, and some vertex must be visited403

at least as often as expected, it follows that – Ø 1. Also, we have for all v,404

Tv Æ –Tfi(v) (5)405

Note that both vú and – depend on the actual run of the game, so that they depend on406

T , the good players’ randomness and the adversarial strategy. Nevertheless, we can show407

that when T is su�ciently large, the adversary has only a limited ability to skew who gets408

the token. Recall that b is the number of bad players.409

I Lemma 8. If T Ø max{6Hmax, 144CVfi(1 + b) ln n, 12Cfl(1 + b) ln n} then – Æ 2. That

is, for every vertex y,

Ty Æ 2Tfi(y).

Proof. Since the bad vertices want to avoid getting accused, based on the referee’s strategy,410

we may assume that:411

’v, y œ V.

-----
ÿ

tœSv

Dy
t

----- Æ max
Ó

4
Ò

C‡2
y(v)Tv ln n, 2Cfly(v) ln n

Ô
. (6)412

Consider the sum
qT ≠1

t=0
Dy

t . As
qT ≠1

t=0
�t telescopes to H(vT , y) ≠ H(v0, y) we have413

T ≠1ÿ

t=0

Dy
t =

T ≠1ÿ

t=0

3
�t + 1 ≠ 1 (vt = y)

fi(y)

4
= H(vT , y) ≠ H(v0, y) + T ≠ Ty

fi(y)414

so that415

T ≠ Ty

fi(y) Æ H(v0, y) ≠ H(vT , y) +
T ≠1ÿ

t=0

Dy
t . (7)416

On the other hand, we can write417

-----

T ≠1ÿ

t=0

Dy
t

----- Æ

------

ÿ

tœSG

Dy
t

------
+

-----
ÿ

vœB

ÿ

tœSv

Dy
t

----- .418

Of the two sums on the right, we can deal with the first one by directly applying Freedman’s419

inequality, since the subsequence (Dy
t : vt œ G) is actually a martingale di�erence sequence420
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with step sizes bounded by fly = maxv fly(v). Thus, by Theorem 5, with error probability421

(log T )/nC , we have:422

-----
ÿ

tœSG

Dy
t

----- Æ max
Ó

4
Ò

CVy
G ln n, 2Cfly ln n

Ô
(8)423

Æ 4
Ò

CVy
G ln n + 2Cfly ln n, (9)424

425

where Vy
G is the sum of the conditional variances of the steps of the martingale. It is bounded426

by427

Vy
G =

ÿ

tœSG

Vart Dy
t =

ÿ

vœG

ÿ

tœSv

Var(Dy
t |vt = v)428

=
ÿ

vœG

ÿ

tœSv

‡2

y(v)429

=
ÿ

vœG
‡2

y(v)Tv Æ –T
ÿ

vœG
‡2

y(v)fi(v),430

431

where the last line follows from equation (5). Plugging this back into (9), we get432

------

ÿ

tœSG

Dy
t

------
Æ 4

Û
2–T ln n

ÿ

vœG
‡2

y(v)fi(v) + 4fly ln n. (10)433

434

To bound the corresponding term of the bad players we use apply Eqns. (5) and (6).435

-----
ÿ

vœB

ÿ

tœSv

Dy
t

----- Æ
ÿ

vœB

max
Ó

4
Ò

C‡2
y(v)Tv ln n, 2Cfly(v) ln n

Ô
436

Æ
ÿ

vœB

1
4
Ò

C‡2
y(v)Tv ln n + 2Cfly(v) ln n

2
437

Æ
ÿ

vœB

1
4
Ò

C‡2
y(v)T–fi(v) ln n + 2Cfly(v) ln n

2
438

Æ 4
Ô

C–T ln n

A
ÿ

vœB

Ò
‡2

y(v)fi(v)
B

+ 2Cbfly ln n439

Æ 4
Ô

C–T ln n

Û
b

ÿ

vœB
‡2

y(v)fi(v) + 2Cbfly ln n (11)440

441

where (11) follows from the Cauchy-Schwarz inequality. By Cauchy-Schwarz again,442

Ûÿ

vœG
‡2

y(v)fi(v) +
Û

b
ÿ

vœB
‡2

y(v)fi(v) Æ
Û

(1 + b)
ÿ

v

‡2
y(v)fi(v) =

Ò
Vy

fi(1 + b). (12)443

Combining (10), (11), and (12), we obtain444

-----

T ≠1ÿ

t=0

Dy
t

-----445

Æ 4
Û

C–T ln n
ÿ

vœG
‡2

y(v)fi(v) + 2Cfly ln n + 4
Û

C–Tb ln n
ÿ

vœB
‡2

y(v)fi(v) + 2Cbfly ln n446

Æ 4
Ò

C–TVy
fi(1 + b) ln n + 2Cfly(1 + b) ln n. (13)447

448
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Now, plugging Eqn. (13) back into (7), and noting that |H(v0, y) ≠ H(vT , y)| Æ Hmax(y), we449

have that for every target y,450

----T ≠ Ty

fi(y)

---- Æ |H(v1, y) ≠ H(vT +1, y)| +

-----

T ≠1ÿ

t=0

Dy
t

-----451

Æ Hmax(y) + 4
Ò

C–TVy
fi(1 + b) ln n + 2Cfly(1 + b) ln n. (14)452

453

Recall that for the stationary mode vertex vú, Tvú = –Tfi(vú), where – > 1. Dividing by T
and fixing y = vú, we have454

– ≠ 1 Æ Hmax(vú)
T

+ 4
Ú

C–Vvú
fi (1 + b) ln n

T
+ 2Cflvú(1 + b) ln n

T
455

Æ Hmax

T
+ 4

Ú
C–Vfi(1 + b) ln n

T
+ 2Cfl(1 + b) ln n

T
456

Æ 1
6 +

Ô
–

3 + 1
6 (15)457

458

where (15) follows because T Ø max{6Hmax, 144CVfi(1 + b) ln n, 12Cfl(1 + b) ln n}. Thus –459

satisfies the quadratic inequality460

– ≠
Ô

–

3 ≠ 4
3 Æ 0,461

which implies
Ô

– Æ 4/3 and hence – Æ 16/9 < 2. Substituting this back into Eqn. (5) proves462

the lemma. J463

The proof of Lemma 8 shows that for su�ciently large T we can drive – arbitrarily close464

to 1. Moreover the proof actually shows something even stronger. Let ‚fi denote the empirical465

distribution of how often each vertex is visited. By definition, for all y,466

‚fi(y) = Ty

T
.467

Using the fact that – < 2 in Eqn. (14), we see that for all y,468

----T ≠ Ty

fi(y)

---- Æ Hmax(y) + 4
Ò

2CTVy
fi(1 + b) ln n + 2Cfly(1 + b) ln n469

470

Dividing by T ,471

----1 ≠ ‚fi(y)
fi(y)

---- Æ Hmax(y)
T

+ 4
Ú

2CVy
fi(1 + b) ln n

T
+ 2Cfly(1 + b) ln n

T
.472

473

We restate this as a Corollary of Lemma 8.474

I Corollary 9. If T Ø max{6Hmax, 144CVfi(1 + b) ln n, 12Cfl(1 + b) ln n} then for every475

vertex y,476

----1 ≠ ‚fi(y)
fi(y)

---- Æ Hmax(y)
T

+ 4
Ú

2CVy
fi(1 + b) ln n

T
+ 2Cfly(1 + b) ln n

T
.477

Corollary 9 actually implies that it is impossible for the adversary to prolong the game478

for this many time steps without detection. If some vertex x œ V has never passed the479
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token, then ‚fi(x) = 0 and 1 ≠ ‚fi(x)/fi(x) = 1. By Corollary 9, if no accusations yet have been480

leveled, then481

1 Æ Hmax(x)
T

+ 4
Ú

2CVy
fi(1 + b) ln n

T
+ 2Cfly(1 + b) ln n

T
482

Æ 1
6 +

Ô
2

3 + 1
6483

< 1.484
485

which is a contradiction. Thus we have shown that486

I Theorem 10. If T = � (Hmax + b(Vfi + fl) log n) then the Referee of Section 3.2 wins487

with probability at least 1 ≠ 1/n5
. In other words,488

T (G, b) = O (Hmax + b(Vfi + fl) log n)489

We can simplify the expression of Theorem 10 as follows. Since for all y, fly Æ Hmax(y)490

it follows that fl Æ Hmax. Furthermore, for any y the stationary conditional variance can491

be bounded by Vy
fi Æ 2Efi H(·, y) Æ 2Hmax(y). (For completeness, these last inequalities are492

proved in Appendix A.) Thus, Vfi + fl Æ 3Hmax. Also, for any graph, Hmax = O(mn). This493

establishes the following Corollary.494

I Corollary 11. For any graph G and any number b of bad players,495

T (G, b) = O(bHmax log n) = O(bmn log n).496

The following corollary also follows directly from the above bounds and Corollary 9.497

I Corollary 12. For any graph G, any number b of bad players, and a walk that lasts for T498

steps with no accusations, if499

T = �(mnb log n)500

then, for every vertex y,501

----1 ≠ ‚fi(y)
fi(y)

---- = O

AÚ
mnb log n

T

B
.502

To relate these results back to the price of corruption, we note that the maximum expected503

cover time is clearly at least Hmax, and therefore T (G, 0) Ø Hmax. Moreover, repeatedly504

applying Markov’s inequality shows that regardless of the starting vertex, after 6Hmax log n505

steps, the probability that a particular vertex is unreached, is at most 1/n6. Taking a union506

bound over all the vertices, after 6Hmax log n steps, the probability that there is an unreached507

vertex is at most 1/n5 and therefore T (G, 0) = O(Hmax log n), and R(G, b) = O(b log n).508

This bound on R(G, b) is close to tight, as witnessed by the class of Ball & Chain graphs.509

Let BCn,b consist of an (n ≠ b)-clique attached to a b-path; we assume b Æ n/2. Starting510

from a vertex in the “ball,” the cover time is Hmax = �(n2b), thus, the zero-corruption game511

threshold is T (BCn,b, 0) = �(n2b log n). We now need to lower bound T (BCn,b, b) = �(n2b2).512

The corrupt vertices will lie only on the chain, and bias the walk slightly towards the ball,513

as in the proof of Theorem 6. Let u be the common vertex of the ball and chain. By514

Theorem 6, the walk restricted to the chain takes �(b3) time steps, with high probability.515

Vertex u sees the token at least as often as in a truly random walk, which would be at least516

�(b2) times. Each time u takes the token from the chain, it returns it to the chain after517

�(n2) steps, in expectation, walking around the ball. Hence T (BCn,b, b) = �(n2b2) and518

R(BCn,b, b) = �(b/ log n).519

Putting this all together, we have established Theorem 3.520
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4 The Clique521

In this section, we analyze the Random Walk Game on the clique Kn. Here, every starting522

vertex is equivalent, and the hitting time to any vertex is a geometric random variable with523

mean n ≠ 1. Thus Hmax = n ≠ 1. Moreover, the cover time for the clique is essentially the524

coupon collector problem, and therefore the maximum expected cover time is O(n log n),525

and the cover time is at most —n log n with probability 1 ≠ 1/n—≠1. The results of Section 3526

tell us that T (Kn, b) = O(bn log n). When b = �(n), that is an upper bound of O(n2 log n).527

In this section, we show that in fact, we can use the structure of the clique to get a much528

better bound. To get a sense of why fraud detection is faster for the clique, consider the529

game from the Adversary’s perspective, and suppose the adversary wants to select a vertex530

that will not be reached. In a graph where there are low degree vertices, the adversary can531

surround such a vertex with corrupted vertices, all of whom always pass the token to one532

of their other neighbors. But in the clique, unless the Adversary takes over n ≠ 1 vertices,533

every vertex has some good neighbors, who will pass it the token every nth time they get it,534

on average. This makes the Adversary’s task much more di�cult.535

Theorem 13 gives near-tight bounds on the fraud detection time for cliques. The Referee’s536

strategy di�ers from the strategy for the path or for a general graph, in that we take the537

entire trajectory of the walk into account when judging how a vertex v passes the token.538

I Theorem 13. Consider the Random Walk Game played on an n-clique, in which the539

adversary controls b vertices.540

1. There is a Referee strategy that enables the Referee to win with high probability after541

T (Kn, b) = O( n2
log n log(n/(n≠b))

n≠b ) steps.542

2. Moreover, there is an adversarial strategy for b corrupted players such that any accusation543

within O(n2
log n

n≠b ) steps cannot be correct with probability 1 ≠ n≠5
, so that T (G, b) =544

�( n2
log n

n≠b ).545

The remainder of this section constitutes a proof of Theorem 13.546

Let C be a su�ciently large constant and G, B be the sets of good and bad players. If547

the G-players collectively pass the token Cn ln n times then the game will end naturally with548

high probability 1 ≠ n≠C+1, regardless of what other actions are taken by B.549

Suppose the path taken by the token in T steps is P = (v1, v2, . . . , vT ). When the token550

is at vi, define Li (“low” vertices) to be the set of vertices that have passed the token less551

than 2C|G|≠1n ln n times. In the beginning |L1| = n and once |Li| Æ |G|/2 at least |G|/2552

vertices are not in L and the game has already ended, with high probability.553

We partition time into stages, where stage j œ [0, log(2n/|G|)] covers the time that554

|Li| œ (n/2j+1, n/2j ]. Fix some stage j and let Xv be the number of times v passes the token555

in stage j and Yv be the number of times v passes it to an L-vertex. Note that if v is good,556

Yv is the sum of Xv indicator variables each with mean at least 2≠(j+1) and variance less557

than 2≠j . By Bernstein’s inequality, Pr(Yv < 2≠(j+1)Xv ≠ t) < exp(≠ t2

2·2≠jXv+(2/3)t ). We558

will accuse v whenever Yv Æ 2≠(j+1)Xv ≠


C2≠(j+1)Xv ln n. Thus, with probability n≠�(C)559

no good vertex is accused. Suppose that stage j lasts for Tj = 4C|G|≠1n2 ln n steps without560
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any vertex being accused. Then:561

ÿ

vœV

Yv Ø
ÿ

vœV

1
2≠(j+1)Xv ≠


C2≠(j+1)Xv ln n

2
562

Ø 2≠(j+1)Tj ≠
Ò

2≠(j+1)Tj · Cn ln n (Cauchy-Schwarz)563

Ø 2≠(j+2)Tj (Since: Cn ln n = Tj |G|/(4n) Æ Tj2≠(j+1)/4)564

= (n/2j+1) · (2C|G|≠1n ln n).565
566

However, if this were true then the number of L-vertices would have already shrunk567

to less than n/2j+1, ending stage j. Thus, stage j cannot last for 4Cn2|G|≠1 ln n steps568

without accusing a vertex of corruption. In total the number of steps before an accusation is569

O( n2
log n log(n/|G|)

|G| ) = O( n2
log n log(n/(n≠b))

n≠b ).570

Turning to the lower bound, suppose we are aiming to make a correct accusation with571

probability 1 ≠ n≠C . Suppose the adversary picks a set B ™ V uniformly at random with572

|B| = b. Under strategy S it corrupts B and under strategy S≠j , j œ B, it corrupts B ≠ {j}.573

In either case, whenever a corrupt vertex v has the token it passes it to a neighbor in574

B uniformly at random. The adversary chooses its strategy uniformly at random from575

{S} fi {S≠j}jœB . Let E be the event that, after a walk of length T = n2 ln n/(n ≠ b), every576

vertex in B has only passed the token to others in B. Since, by Cherno� bounds, each vertex577

in B sees the token less than 3n ln n/(n ≠ b) times with probability 1 ≠ o(1), we have578

Pr(E) Ø (1 ≠ o(1))(1 ≠ (n ≠ b)/n)3n log n/(n≠b) = �(n≠3).579

Moreover, Pr(S≠j | (S≠j fi S), E) = q = 1/2 since once we condition on E , S≠j and S behave580

identically. By Lemma 7, the probability of error is at least q2/b = 1/(4b) after conditioning581

on E , hence at least �(n≠3b≠1) with no conditioning. For C > 4 this bound does not meet582

the desired n≠C error bound.583

This concludes the proof of Theorem 13. It says that a coalition of (1 ≠ ‘)n bad vertices584

can delay the hitting time by �(‘≠1n ln n) and O(‘≠1 log ‘≠1n ln n), i.e., no asymptotic delay585

at all when ‘ is constant. This is quite di�erent than the line graph, in which a tiny minority586

of Ê(
Ô

n) bad vertices can asymptotically delay the hitting time.587

5 Applications588

5.1 Rotor Walks and Derandomization.589

Our results show that if all nodes pass the token in a way that is locally balanced across their590

neighbors, then the resulting global random walk has good cover time. The local balance591

condition can be ensured even without making any random choices. For example, in the592

rotor walk algorithm [32, 17, 20], every node passes the token to each of its neighbors in a593

round-robin fashion whenever it receives the token. A rotor walk ensures that every node594

satisfies the referee of Section 3.2.595

Thus, Corollaries 11 and 12 directly apply to rotor walks when we set b = n. They596

give results analogous to Theorems 2 and 3 of [20]. In particular, Corollary 11 bounds597

the cover time of rotor walks, and Corollary 12 bounds the occupation frequencies. Our598

results are weaker than Theorems 2 and 3 of [20] in that they only apply to walks on599

unweighted, undirected graphs. But, they are stronger in that they apply to a broader class600

of derandomization techniques: for example, any routing works that ensures token passing is601

locally balanced across neighbors as specified by the referee of Section 3.2.602
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5.2 Leader Election.603

Leader election is a fundamental problem in distributed computing [12, 11, 27, 33, 25,604

45]. Consider a simple communication model common to blockchains: there is a public605

key infrastructure (PKI) over the players, and communication occurs synchronously via606

a broadcast primitive that enables any player to send to all other players in the network607

(See [18, 15, 19]). Further, assume there is a publicly-known connected and regular graph G608

that has m edges and n nodes.609

Corollary 12 enables us to perform repeated leader elections such that after T =610

O(mn2 log n) elections, the fraction of good players elected approximates the fraction of good611

players, or else at least one bad player is caught.612

The algorithm to achieve this is simple. First, the player with the token is the leader for613

that turn. This leader chooses one of its neighbors in G to pass the token to, and broadcasts614

a cryptographically signed message giving their choice. The PKI prevents equivocation, and615

synchronous communication forces some choice to be made, or else the current leader is616

known to be bad. Since all players learn all choices of the other players, each player can617

individually enforce the referee strategy of Section 3.2.618

5.3 Sybil Defense619

Consider a graph G with n nodes and m = �(n) edges, where (1) the bad and good nodes620

are separated by a cut with only – crossing edges; and (2) the subgraph induced by the621

good nodes is an expander. We want for almost all good nodes v, that node v learns a set of622

players Sv such that (1) Sv contains almost all of the good nodes; and (2) Sv contains “few”623

bad nodes. A simple algorithm is for each node to start a random walk at each of its edges,624

and for each of these walks to continue for �(
Ô

n ln n) steps. Then, for each node v, Sv is625

the set of all nodes w such that there is some node in the intersection of the nodes visited by626

walks starting at v and the nodes visited by walks starting at w.627

This problem and algorithm is inspired by random-walk based Sybil defenses prevalent in628

the academic literature [43, 41, 4, 1], particularly the work of Yu, Kaminsky, Gibbons and629

Flaxman [43]. The graph represents a social network where the good nodes and the Sybil630

nodes are typically separated by a “small” number of crossing edges.631

We can extend our referee and Corollary 12 to handle the algorithm described here that632

creates many random walks. Each edge has probability 1/m in the stationary distribution,633

and the initial steps in the algorithm above are also distributed uniformly over the edges.634

Thus, as the number of steps increases, each edge is visited �(
Ô

n ln n) times. This is true635

no matter what choices are made by the Sybil nodes, provided none of them are caught by636

the referee.637

Thus, the total number of steps on the – crossing edges should be �(–
Ô

n ln n). Call638

a random walk bad if it crosses one of the crossing edges and good otherwise. Then, there639

are at most �(–
Ô

n ln n) bad walks. In particular, assuming – = o(


n/ log(n)), the vast640

majority of the random walks starting on good nodes visit only good nodes.641

Since the graph induced by the good nodes is an expander, with high probability, each642

pair of good random walks starting at two good nodes will intersect. Let G be the set of643

good nodes and B be the set of bad nodes. Then, by the above, there is a set GÕ ™ G such644

that |GÕ| = �(n ≠ –
Ô

n ln n) and for all v œ GÕ, GÕ ™ Sv and |Sv fl B| = O(–
Ô

n ln n).645

Thus, if – = o(


n/ ln n), and we say that node u trusts node v if v œ Su, we can say646

the following. There is a set, GÕ of all but a o(1) fraction of the good nodes such that: all647

nodes in GÕ mutually trust each other; and every node in GÕ has a o(1) fraction of Sybil nodes648
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among the nodes it trusts.649

6 Conclusion and Open Problems650

It is well known that real-world fraud can sometimes be discovered by looking for statistical651

anomalies in data sets or transaction records. However, these statistical tests [29, 30, 26, 28,652

35, 36, 37] work best on unsophisticated fraudsters, and may not work against adversaries653

who operate with full knowledge of the specific statistical tests.654

In this paper we advocated for an approach to fraud detection that is abstract, robust655

against sophisticated adversaries, and rigorous in its quantitative guarantees.5 We illustrated656

how rigorous fraud detection against powerful adversaries can work in a simple abstract657

setting, namely random walks on undirected graphs in which vertices can be corrupted by658

the adversary; cf. [3, 22]. There are several directions for future research.659

One of our findings is that there can be a large delay between the time to detect the660

existence of fraud, w.h.p., and the time to make an accurate accusation, w.h.p. One could661

explore less strict notions of “accurate” accusation. In some contexts it may be fine to662

accuse a set S ™ V , such that 90% of S is corrupt, w.h.p.663

Given a specific graph G, we may be interested in the gap between its cover time and664

the fraud detection time against an adversary controlling b vertices. Up to log-factors we665

understand this gap on the path and clique, and know the extremal bound for arbitrary666

graphs, which is attained by the Ball and Chain graph. However, it is an open problem667

to e�ciently compute this gap-factor for a specific G, or to bound it in terms of natural668

parameters of G, e.g., diameter.669

There are several algorithmic problems from the adversary’s perspective. Given a graph670

G and budget b, which b vertices should be corrupted to maximize the time of detection?671

To lower bound the detection time, we considered adversaries that corrupt vertices by672

simply changing the transition probabilities for their incident edges; such adversarial673

strategies are Markovian. Is there a specific graph for which all Markovian strategies are674

suboptimal? If so, it would be interesting to see what a superior non-Markovian strategy675

would look like.676

A natural direction is to consider random walks on directed, strongly connected graphs.677

In general, the fraud detection paradigm can be introduced into the analysis of essentially678

any random process where it is conceivable that some or all of the randomness is being679

controlled by an adversary to achieve an unlikely outcome.680
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A Stationary Conditional Variances802

Fix any target y and let H(v) be short for H(v, y). The stationary conditional variance Vy
fi is803

Vy
fi =

ÿ

vœV

fi(v)

Q

ca
1

deg(v)
ÿ

wœN(v)

(H(w) ≠ H(v))2 ≠

Q

a 1
deg(v)

ÿ

wœN(v)

H(w) ≠ H(v)

R

b
2
R

db .804

805

This is a centered second moment, and is therefore always less than the corresponding806

uncentered second moment, which is better known as the Dirichlet form.807

E(H, H) =
ÿ

vœV

ÿ

wœN(v)

fi(v)
deg(v) (H(v) ≠ H(w))2.808

Since what we are about to say applies to arbitrary reversible Markov chains, we will switch809

notations accordingly. Let P be the transition matrix for any reversible Markov chain on810

state space V , with stationary distribution fi. Reversible means that every pair of states v, w811

satisfies the detailed balance condition,812

fi(v)P (v, w) = fi(w)P (w, v).813

In this setting, the Dirichlet form E can be defined by either of the expressions below. Here,814

f, g : V æ R.815

E(f, g) =
ÿ

v,wœV

fi(v)P (v, w)(f(v) ≠ f(w))2 = 2 ·
ÿ

v,wœV

fi(v)P (v, w)f(v)(f(v) ≠ f(w)).816

Specializing to the case where f = g = H, where recall that H is the hitting time to a fixed817

target state y œ V , we find that818

E(H, H) = 2
ÿ

v,wœV

fi(v)P (v, w)H(v)(H(v) ≠ H(w))819

= 2
ÿ

vœV

fi(v)H(v)
3

1 ≠ 1 (v = y)
fi(y)

4
820

= 2
ÿ

vœV

fi(v)H(v) since H(y) = 0821

= 2Efi H.822
823

Hence, for any y, Vy
fi Æ 2Efi H, and so Vfi Æ 2Hmax.824
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