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Interacting spin-boson models encompass a large class of physical systems, spanning models with
a single spin interacting with a bosonic bath—a paradigm of quantum impurity problems—to mod-
els with many spins interacting with a cavity mode—a paradigm of quantum optics. Such models
have emerged in various quantum simulation platforms which are further subject to noise and lossy
dynamics. As generic many-body systems, dynamics of spin-boson models constitutes a challenging
problem. In this paper, we present an exact hybrid quantum-classical stochastic approach to differ-
ent spin-boson models which are typically treated using distinct techniques. In this approach, the
solution of a classical stochastic equation (mimicking the bosonic modes) is input into a quantum
stochastic equation for the spins. Furthermore, the spins are effectively decoupled for each stochas-
tic realization, but this comes at the expense of sampling over unphysical states. Remarkably, the
dynamics remains Markovian in our approach even in the strong coupling regime. Moreover, we
utilize Markovian dissipation to make causality manifest, thus ensuring hermiticity (though not pos-
itivity) of the density matrix for each realization. Finally, in contrast with many existing methods,
we place no restriction on the initial state, and further argue that an intrinsic nonlinearity of the
bosonic modes can be tackled within this framework. We benchmark and showcase the utility of
our approach in several examples, specifically in cases where an exact numerical calculation is far

from reach.

I. INTRODUCTION

Spin-boson models where one or many spins interact
with bosonic modes encompass a large class of physi-
cal models. On one hand, the paradigmatic spin-boson
model describing a single two-level system coupled to
an (infinite) bosonic bath [1, 2] defines a paradigm of
quantum impurity problems, with applications to phys-
ical, chemical and even biological problems [1-5]. On
the other hand, the Dicke model describing many spins
coupled to a cavity mode defines a paradigm of quan-
tum optics and gives rise to a superradiant phase tran-
sition at strong coupling [6, 7]. Such models are par-
ticularly relevant in the setting of quantum simulation
platforms: the paradigmatic spin-boson model has been
recently realized in superconducting qubits [8, 9], while
the Dicke model has been implemented in multiple plat-
forms [10-14]; quantum Rabi models, describing a sin-
gle spin coupled to a boson, are also demonstrated re-
cently in trapped ions [15-17]. Furthermore, generalized
spin-boson models involving many interacting spins and
bosons can be implemented in various platforms rang-
ing from trapped ions [18-22], to cavities via cold atoms
[23-25], to superconducting qubits [26, 27], and optome-
chanics [28]. Quantum simulation platforms are further
subject to incoherent dynamics, for example, due to the
noise in lasers or the cavity loss. A full description then
accounts for dissipative dynamics, and in many settings
(specifically, those involving cavities) takes the form of a
quantum Markovian master equation. The resulting dy-
namics gives rise to driven-dissipative systems defined by
the competition between a coherent drive and incoherent
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loss [29, 30]. Driven-dissipative dynamics of interacting
spin-boson models emerges in various settings such as
trapped ions [31-33], Rydberg gases [34, 35], circuit QED
[36, 37], and cavity QED platforms [38-40].

Dynamics of many-body systems out of equilibrium
constitutes a notoriously challenging problem, as the size
of the Hilbert space is exponentially large, and traditional
Monte Carlo methods suffer from the dynamical sign
problem. Spin-boson models are further complicated due
to the unbounded local Hilbert space of bosons [41, 42].
Moreover, memory effects become important at strong
coupling, leading to non-Markovian dynamics of spins.
Distinct techniques have been devised for different types
of spin-boson models: for the paradigmatic spin-boson
model, these techniques range from perturbative analyt-
ical methods such as NIBA [1, 2], to various stochastic
methods [43-46], Monte Carlo simulations [47, 48], ma-
trix product state (MPS) based methods [49-51], and
more recently non-Gaussian variational ansatze [52, 53].
On the other hand, many-body spin systems coupled to
a cavity mode have been treated using mean field the-
ory and cumulant expansion [54, 55|, (discrete) truncated
Wigner approximation [56, 57], (Keldysh) field theory
methods [58-60], quantum trajectories [61], and tensor
networks [62, 63]. Finally, exact solutions via Bethe
ansatz [64] or alternative methods [65] are available in
special cases of these models. Simple descriptions via a
(convolutionless, or Redfield, e.g.) master equation in-
volving only the spins can be obtained in certain regimes
[66, 67]; however, they are generally unavailable specifi-
cally in the strong coupling regime, and, even when they
are, the resulting model remains challenging for a many-
body spin system.

In this work, we consider a generalized spin-boson
model and develop a hybrid stochastic quantum-classical
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approach to the evolution of the spins. In this approach,
we first solve a classical stochastic equation (mimicking
the bosonic modes) whose solution is then fed into a
quantum stochastic equation for the spins. Furthermore,
the spins are effectively decoupled for each stochastic re-
alization, but this comes at the expense of sampling over
unphysical (e.g., non-positive) states. Our work provides
a uniform approach to different spin-boson models, and
is distinct from previous stochastic approaches in several
characteristic ways: i) our hybrid quantum-classical ap-
proach remains Markovian even in the strong coupling
regime; ii) causality is made manifest (thanks to Marko-
vian loss), preserving the hermiticity of the density ma-
trix for each realization; iii) no restriction is placed on the
initial state. Interestingly, the second feature indicates
that Markovian dissipation can be used as a resource for
numerical simulation. Furthermore, we argue that our
approach can tackle intrinsic nonlinearities of the bosonic
modes. We benchmark our method and showcase its util-
ity in several examples where an exact numerical compu-
tation is far from reach.

The structure of this paper is as follows: In Section II,
we introduce the generalized spin-boson model, and fur-
ther discuss a first stochastic approach to decoupling the
spins while pointing to its limitations. In Section III, we
summarize the main results of the paper. In Section IV,
we present our main approach in application to a model
comprising a single spin coupled to a cavity mode. In
Section V, we generalize this treatment to many spins.
In Section VI, we consider a single spin coupled to many
bosonic modes, and finally in Section VII, we consider
the generalized model with many interacting spins and
bosons. We summarize and outline future directions in
Section VIII. The technical derivation of the main results
is provided in Appendices A to D.

II. MODEL

We consider a generalized model where spins are cou-
pled to one or many bosonic modes, described by the
Hamiltonian
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where the spin on site ¢ is coupled linearly to the bosonic
operators a, via the coupling g,;. The overall normal-
ization factor in front of the last term in the Hamiltonian
is included for convenience and renders the Hamiltonian
extensive in the number of spins. We shall denote the
three terms on the rhs as Hg, Hp, and Hgp, respec-
tively. A prototypical example is a cavity QED system
where atoms are placed inside a multimode cavity [25].
Additionally, we assume that the system is lossy; in the
example of cavity QED, this could be the cavity loss.
Under the Born-Markov approximation, the dynamics is
governed by a quantum Markovian master equation given

by [68, 69]
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Here, p is the density matrix of the full system and £
defines the Liouvillian comprising both the Hamiltonian
and the dissipative dynamics. The operators L, are the
so-called Lindblad operators, and characterize dissipa-
tion. We assume that the bosonic modes are subject to
loss at the rate x,, with the corresponding Lindblad oper-
ator L, = y/Kalo. Additionally, spins could be subject
to loss, for example, via atomic spontaneous emission.
We emphasize that Hy s in the above equation should
be interpreted as the Hamiltonian in the rotating frame,
and the driven nature of the model is thus disguised in
the rotating frame. We are particularly interested in the
reduced density matrix of the spins pg = Trp(p). In the
absence of the coupling to the bosonic modes, the spin
dynamics is generated by the spin-only part of the full
Liouvillian denoted by Lg. Since spins do not interact
directly, the latter is a sum of local terms, Lg =", L;.

Decoupling spins: A first approach

Many studies of the spin-boson models assume that the
initial state is factorized (i.e., spins and bosons are ini-
tially uncorrelated) and furthermore the bosonic modes
are initially thermal (hence, Gaussian). With this as-
sumption, one can exactly trace out the bosonic modes
thanks to the path-integral formulation by Feynman and
Vernon [1, 2, 70]. This approach makes use of the quan-
tum to classical mapping where quantum spin operators
o7 are mapped to classical spin variables o; = £1 with
oF|o;) = oi]o;). The path integral for the spins’ density
matrix then involves a sum over all configurations of the
ket and bra states, which we denote by o = {0;(t)} and
o' = {ol(t)}, respectively. Performing the Gaussian in-
tegral over the bosonic modes, one obtains the Feynman-
Vernon influence functional

Flo,o'] = exp [— —Z Cr(t, ) i (t)7; ()
zgtt’ (3)
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where n = (040’)/2 and 7 = (0 —0')/2 and the time and

spin indices are implicit. The kernels C" and x" denote
the real part of the correlators C and x defined as
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These expressions are given for free bosons in the ab-
sence of the coupling to spins (indicated by subscript



B), and can be explicitly computed. They have very
different interpretations though: while Cj; involves the
anticommutator and characterizes symmetrized correla-
tions, the function x;; encodes the causal response of the
bath. Moreover, CJ;(t,t'), viewed as a matrix with the
rows it and columns jt', is both positive and symmetric.
Using this fact, one can make a Hubbard-Stratonovich
transformation as

exp {szz(t)ﬁ,(t)} = exp [ N Z C(t,t")

it ijtt’
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(5)

where we have introduced a Gaussian distributed
(real-valued) field k; whose correlations are given by
ki(t)k;(t') = %C’fj(t,t’); the overline indicates an av-
erage with respect to the Gaussian distribution. k; can
be then viewed as a longitudinal, though stochastic, field
acting on spin ¢. Remarkably, the spin-spin coupling via
C;; can be traded for a stochastic sampling while cru-
cially maintaining a unitary evolution for each realization
of the stochastic field.

The causal response function however poses a signifi-
cant challenge, and is indeed the root of the dynamical
sign problem in Monte-Carlo type simulations [47, 48].
Causality implies that x;;(t,t’) is not symmetric or pos-
itive (as a matrix). A special case arises for a sin-
gle spin coupled to an Ohmic bath where x(¢,t'), ap-
proximated as a delta function, can be integrated into
the dynamics generator [45, 71-74]; however, this ap-
proach is further limited to weak coupling and a large
bath; see also related work [44, 75]. More generally, one
can take a similar approach to Eq. (5) by applying an-
other Hubbard-Stratonovich transformation to the term
involving x. With suitable correlations between the two
stochastic fields, the spins are decoupled at the expense
of stochastic sampling. But, this comes at the cost of
complex-valued fields and non-unitary dynamics. The
stochastic evolution then leads to unphysical states that
are, among other things, not hermitian. Different varia-
tions of this approach have been applied, with some suc-
cess, to models ranging from the prototypical spin-boson
model (single spin coupled to an infinite bath) [76-79],
to quantum spin chains [80-84]. Note that the latter
emerge in a limit of Eq. (1) just as the spin-motion cou-
pling gives rise to Ising interactions in trapped ions [33].
Such stochastic approaches however suffer from unstable
solutions or slow convergence although different sampling
improves their behavior [77, 78]. At a fundamental level,
it is not entirely satisfactory that the response function
Xi;(t,t') is treated in a similar fashion as Cj;(t,t’) via
a Hubbard-Stratonovich transformation, hiding the fact
that x;; is inherently a causal object. Furthermore, this
approach as well as alternative stochastic methods typi-
cally assume that the initial state is factorized and bosons
(or, the bath) are initially thermal [46].

III. MAIN RESULTS

In this paper, we take a fundamentally different ap-
proach to decoupling the spins (both in time ¢ and
the spin index ¢) that is manifestly causal. A first
hint is that the response function contains information
about dissipation. Indeed, Markovian dissipation plays
an important role in our approach. Departing from the
Feynman-Vernon influence functional, we develop a hy-
brid quantum-classical approach to the spin-boson model
where bosonic operators are treated using functional in-
tegral methods while spins are evolved quantum mechan-
ically. Furthermore, our approach allows us to consider
a general initial state that is not necessarily factorized or
thermal. Lastly, we present a uniform approach to mod-
els that are typically treated with different techniques.

We first start with a model where N spins are coupled
to a single bosonic mode (M = 1); we denote the bosonic
parameters by w, k, and the coupling to each spin by g;.
We show that each spin can be evolved independently
while the coupling to the bosonic mode can be mimicked
by a classical stochastic field that linearly depends on
white noise. To this end, we first introduce for each spin
a complex-valued white noise &;(t) satisfying

&G()E () = kb6t —t') (6)
We further define the associated field % via

(10 —w + iKY = \ﬁzfl (7)

together with the initial value ¥ (¢t = 0) that is sampled
from the Wigner distribution function describing the ini-
tial (not necessarily thermal) state of the bosonic mode.
For simplicity, we assume that the spins and bosons are
initially uncorrelated, but it is straightforward to relax
this assumption. We now state our main result (for
M = 1): for a given realization, the evolution of each
spin is decoupled from the rest, and is governed by
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where p; describes the (un-averaged) density matrix for

spin 4, and the longitudinal field h; is defined from white
noise §; and the associated classical stochastic field v as
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Finally, summing over many realizations, one obtains the
physical density matrix of the spins as

ps(t) = ®i0i(t) (10)

where the overline indicates an average over both
noise and initial conditions. This constitutes a hybrid
quantum-classical approach where the solution of a clas-
sical stochastic equation feeds into the quantum stochas-
tic evolution of the spin. Remarkably, both classical
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FIG. 1. (Left) The schematic representation of the spin-boson model where each spin (an open circle) interacts with one
or many bosonic modes (characterized by infinite towers of states). The bosonic modes are subject to Markovian loss (wavy
arrow). The main object of interest is pg(t) representing the time-dependent reduced density matrix of the spins. (Right) In
a hybrid quantum-classical stochastic approach, the solution to a classical stochastic equation mimicking the bosonic modes
feeds into the quantum stochastic evolution of the spins. Specifically, the coupling to bosons is captured by a local longitudinal
field h;(t) that is linearly dependent on both white and colored noise (collectively represented by solid circles), and under which
each spin evolves independently. The field h;(t) is however complex valued: the real part of h; can be viewed as a physical,
though time-dependent, field comprising a term that is causally dependent on white noise via the response function y;;(¢,t")
plus colored noise whose correlations are given by the modified correlation function éij (t,t'); on the other hand, the imaginary
part of h; is directly proportional to white noise, and leads to an unphysical evolution for a given noise realization. Still, our
causal approach ensures the density matrix remains hermitian for each realization. The average over many realizations gives

the physical state of the spins and produces its nontrivial correlations. See the text for details.

and quantum stochastic equations are Markovian. This
should be contrasted with a Hubbard-Stratonovich trans-
formation similar to Eq. (5) that would introduce colored
noise. More importantly, causality is manifest through
the dependence of the classical stochastic field on noise
[09(t)/0&:(t") gives the response function]. As a result,
the density matrix remains hermitian even for a single
noise realization. Again, these features are to be con-
trasted with a naive Hubbard-Stratonovich transforma-
tion of the term involving the response function. Still,
the imaginary part of h; leads to an unphysical evolu-
tion, and thus p is not guaranteed to be trace-1 or posi-
tive for single trajectories. We also remark that Eq. (8)
comes with the multiplicative noise and is given in the 1t6
sense. Notably, the stochastic solutions to Eq. (8) always
exist unlike stochastic methods based on the positive P
representation [85].

A generalization to M bosonic modes is rather
straightforward. A first approach is to generalize our
main results above by introducing M classical fields that
satisfy linear stochastic equations with M x N noise vari-
ables. Each spin should be then evolved under a stochas-
tic longitudinal field that depends linearly on these fields
and noise variables. This approach becomes more ex-
pensive for large (or infinite) M. Instead, we can use
a trick that reduces M x N white noise variables to
just N (again denoted by &;), but we must introduce
colored noise (dubbed z;) that captures the remaining
redundancy. In essence, this is similar to the Hubbard-
Stratonovich transformation in Eq. (5), while preserving
causality explicitly. We further assume that the initial
state is factorized and bosonic modes are initially in their
vacuum state, but we later show that these assumptions
can be easily relaxed. More precisely, we evolve each spin

under a longitudinal field h; given by

N
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with the complex-valued noise variables &;(t) and x;(t):
&; is white noise with the correlations

_— 2 ;
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(03 H(x
and z; is Gaussian-distributed colored noise whose cor-
relations are given by

1.
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where the modified correlations C’Z-j (t,t') is given by

Cij(t, 1) = Ci;(t,t)
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The kernels C' and x are defined according to Eq. (4).
One can show that Cy;(t,t') is positive as a matrix (in
the basis it, jt'). Again, the longitudinal field finds an
imaginary component proportional to white noise, hence
a non-unitary evolution; however, the density matrix re-
mains hermitian for each trajectory. Finally, summing
over many realizations, one obtains the physical density
matrix. While each noise realization gives rise to decou-
pled, and possibly unphysical, states, the noise average
should yield the physical state of the spins and produce
their nontrivial correlations. For a schematic representa-
tion of the model and our stochastic approach, see Fig. 1.

(14)



IV. SPIN COUPLED TO CAVITY MODE
N=M=1

In this section, we consider the Rabi model as the sim-
plest nontrivial case of Egs. (1) and (2) with N = M = 1;
to simplify notation, we take w, — w, ko — K, and
Goi — G-

A
Hyy= 502 +wa'a + g(an—i—a)()ag’C (15)

We assume that the system is initially in a factorized
state, p(t = 0) = ps(0) ® pp(0); we shall relax this as-
sumption later. Conveniently, we can first “vectorize”
the density matrix p — |p)) such that the Liouvillian
L becomes a (non-Hermitian) matrix L acting on the
vectorized state. More explicitly, we map O|i){j|0" —

Oli) ® O'"|;) where the element |i)(j| of the density ma-
trix is mapped to the vector |i) ® |7) = |i)|j) = |ig)). In
the absence of the spin-boson coupling (g = 0) and start-
ing from the initial state |pg(0))), the spin simply evolves
under a Schrédinger-like equation as

< los) = Lslos)

where the matrix Lg denotes the spin-only dynam-
ics generator corresponding to Lg. For exam-
ple, the spin-only Hamiltonian Hg corresponds to
Ls=—i(Hs ® Is — Is ® Hg) with Is the identity ma-
trix for the spin; spin spontaneous emission can be in-
cluded in Lg as well. For a time-independent LLg, the
state at time ¢ is given by |ps(t)) = exp(Lst)|ps(0))).

More generally, the spin-boson interaction entangles
the spin and the bosonic mode, and the evolved state can
no longer be written in a factorized fashion. To tackle this
problem, we adopt a hybrid quantum-classical approach,
as explained below. The bosonic part of the dynamics,
absent the coupling, is simply that of a (damped) quan-
tum harmonic oscillator. The coupling too is linear in
the bosonic variable, although a strong coupling renders
the dynamics highly nonlinear. However, from a formal
perspective, it is straightforward to capture the bosonic
part via a functional integral formalism where bosonic
operators are mapped to classical phase-space variables
and a sum is performed over different classical configu-
rations weighted by a classical action (‘classical’ refers
to a representation of quantum operators as ¢ numbers).
In principle, this approach can be extended to the spin,
using various representations of spin in terms of coherent
states [86] or Majorana fermions [87]; however, we shall
instead treat the spin quantum mechanically. We keep
track of the spin dynamics via the reduced density matrix
ps(t) = Trp(p(t)); we stress that the density matrix is
not factorizable. Utilizing a combination of path-integral
techniques for the bosonic mode [88] together with the
quantum-to-classical mapping for the spin [60, 89], we

find
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We shall leave the details of the derivation to Ap-
pendix A, and just explain the different terms in this
expression: the fields 1, ¢ are the phase-space variables
used to map the bosonic operators to ¢ numbers, and the
corresponding action . is given by

t
5@::/(w[%m¢—ww+mw0+aa+4méﬂ (17)
0

The function #4 (1) denotes the Wigner function corre-
sponding to the initial state of the cavity mode, pp(0).
The first line of Eq. (16) then involves a (functional) in-
tegration over both v, ¢ weighted by the exponential of
the action .#5 as well as the Wigner function #4(¢y) cor-
responding to the initial state. Finally, the second line
of Eq. (16) is the time-ordered product (enforced by the
time ordering operator T;) of the evolution operator that
involves, besides the spin-only part, ILg, an interaction-
induced matrix Li,(¢) due to the coupling to the bosonic
mode. The latter matrix takes the form

Lint(t) = ig (¥ + ) S+ig (¢ +¢) T (18)

where the time dependence of the fields ¥(t), ¢(t) are
implicit, and the matrices S, T are defined as

S = —%(U$®Is—fs®0'$)

2 (19)

T = —§(Uw®fs+fs®0w)

One can see that the term proportional to S in Eq. (18)

can be interpreted as a classical, though time-dependent,

longitudinal magnetic field, while the term proportional
to T does not admit such interpretation.

It is particularly convenient to work in a basis that
diagonalizes the spin-boson interaction. To this end,
we first define |o) = |+) as eigenstates of the opera-
tor o”, that is, 0®|o) = olo). A matrix (such as Lg)
can be then represented in a basis spanned by |oo’)) €
{{++),[+-),|—+),| — =)} In this basis, the ma-
trices S, T become diagonal and take a simple form,

S = diag{0,-1,1,0}, T = diag{-1,0,0,1}  (20)

and the interaction matrix becomes

—(¢+9) 0 0 0
Lint (1) = 2ig 8 *WJw)wgi 8
0 0 0 ¢+

(21)

In short, Eq. (16) defines a hybrid approach where
the spin is still explicitly quantum mechanical while the



bosonic operators are traded in for the phase-space vari-
ables 1(t), ¢(t). The resulting functional integral is how-
ever rather formal and is of little practical use because
of the sign problem, that is, it involves complex-valued
weights and is not amenable to sampling via a Monte-
Carlo type of approach.

Here, we take a different approach utilizing Markovian
dissipation (k # 0). As a first step, we use a standard
trick that converts stochastic Langevin equations to a
path integral and vice versa [90]. To this end, we write
the last term in the action in Eq. (17), sometimes referred
to as the “quantum noise”, in terms of a noise field £(t)
using a Hubbard-Stratonovich transformation:

e—4n [, 00 _ /@[ﬂe,

As a warm up, let us first consider g = 0, so that there
is no spin-boson interaction (specifically, Lin = 0). This
is a trivial exercise (the first line of Eq. (16) just yields
1), but it sets the stage for later. With the above trans-
formation and in the absence of the spin-boson coupling,
the field ¢ only appears linearly in the action, and its
(path) integral yields a delta function which enforces a
stochastic equation of motion,

[, 66/r—21 [, (E6+£0) (22)

ith — wip + ikp = E(t) (23)

where £(t) can be viewed as white noise with the corre-
lations

EE) = ro(t —t') (24)

and £()€(t') = 0. The above equations should be supple-
mented with the initial condition ¢(t = 0) = ¢y which
is drawn from the Wigner distribution function #4(1).
The underline emphasizes that v is not a free field, and
is completely fixed by £(t) and ).

Turning on the spin-boson interaction (g # 0), the field
¢ also appears in the time-ordered product in the second
line of Eq. (16) through L;,; which is explicitly defined
in Eq. (18). Therefore, one cannot immediately integrate
over ¢ in the same fashion as described above. The trick
is to instead write ¢ in the time-ordered product as a
(functional) derivative with respect to &,

Tyl DT+ o= $ [, T(35/05+5/56)+

acting on exp(—2i ft £p+£¢) introduced in the Hubbard-
Stratonovich transformation in Eq. (22); the dots repre-
sent the remaining terms in L + L;,; which are dropped
for ease of notation. Notice that the above operation
simply induces a shift in the noise variable { — { — §T
where the first term is now understood to be propor-
tional to the identity matrix I = diag{1,1,1,1} in the
vectorized space. An integration by parts allows us to
put the partial derivatives on the noise Gaussian distri-
bution (functional), exp(— [, ££/k), which can be then

explicitly evaluated by applying the inverse shift. The
net effect of this procedure is to replace the last term in

Eq. (18) as

. I g = g9’ 2

g0+ AT — = +HT- L 12 (25)
With this transformation, the field ¢ now appears only
in the action .5, and the path integral over this field
can be explicitly done, which in turn constrains 1 via
Eq. (23). These steps can be rigorously justified by dis-
cretizing time in the functional integral and Trotterizing
the evolution operator that appears in the time-ordered
product. We leave the details to Appendix B, and just
report the final result:

1ps(t) / Ple)e 1 &/ / o W (10) X

x Ty edo 4K g (0)))

(26)

where the matrix K(¢) is given by

2
K(t) = Ls +ig( + 9)S — 2= (€ + T - T-T>  (27)

K 4K
and depends on time implicitly through the noise £ and
the associated field ¥. Notice that the functional integral
over 1, ¢ is now replaced by an integral over noise and
the initial Wigner distribution function in Eq. (26). Most
importantly, the weight of the functional integral is now
positive (at least when the Wigner function is positive).
Next, we define [ps(t))), as the time-ordered product

in the second line of Eq. (26):

lps(t))e = Te edo 2K pg(0)) (28)

for a given noise realization &(t) and the initial value )g;
the dependence of |pgs(t))), on v is made implicit for
ease of notation. The full éensity matrix is obtained by
averaging over different realizations, which is again free
of the sign problem. It follows from Eq. (28) that the
dynamics can be written in terms of a generator, i.e., via
an equation that is local in time:

L ps)e = K(Dlps)e (29)

where K!(t) = K(t) + %TQ. Equation (29) is a stochastic
equation with multiplicative white noise, and is given
in the sense of It6. In fact, the difference between K
and K' follows from the It6 rule; a careful derivation
is provided in Appendix B. Notice that the extra term
in the definition of K! just cancels out against the last
term in Eq. (27), hence the resulting simple equation
K! = Lg + ig(¢ + ¢)S — o= (E+ €)T. Interestingly, this
equation can be identified simply by substituting ¢ —
—i&/k rather than Eq. (25). Adopting the basis defined
by Eq. (20), the dynamics generator is explicitly given

by



Calculating the state |ps(t))), for a given realization
from Egs. (29) and (30), we can then find the full time-
dependent state by averaging over all realizations,

s (8)) = lps(t))e (31)

where, in a slight abuse of notation, the overline denotes
the average over both the noise as well as the initial con-
ditions,

f*:/@mfﬁ&“/fm%a%y~ (32)

We remark in passing that the integration over the
Wigner function representing the initial state bears re-
semblance to the truncated Wigner approximation [91];
however, the stochastic approach presented here is exact.

The above equations are among the main results of this
paper. These equations feature several important, and
immediately useful, properties. Here, we shall summarize
and further highlight these points, and furthermore enlist
other important features of these equations.

e Non-factorized initial state. Our treatment can be
readily generalized to a non-factorized initial state p(0)
via the substitution

Ho(10)ps(0) = ps (o) = Trp[dw (Yo — a)p(0)]

where the Weyl-ordered delta function is defined as
2 — —

Sw(t —a) = [T exp[p(¢ — a) — ¢(¢ — al)]. For a

given vy, we should then evolve the spin starting from

the initial state given by pg(¢). Equation (32) is then

replaced by an average over 1) that is effectively sampled

by ps(t). For a factorized initial state, we recover the
Wigner function #4 (1) = Trg[ow (v¥o—a)pp(0)] [88, 91].

e Feynman-Vernon influence functional. For an
initial state where the boson is in its vacuum state,
the Wigner function is a Gaussian function, #4(vo) =
2 exp(—2[[?). In this case, one can show that Eq. (26)
directly leads to the influence functional in Eq. (3); see
Appendix C 1. The perspective afforded by the Feynman-
Vernon influence functional is particularly useful in our
treatment of N spins coupled to boson(s); see Section V.

e Sign-problem free at expense of unphysical tra-
jectories. The original path-integral formulation in
Eq. (16), or the Feynman-Vernon formalism, are exact,
but they suffer from the dynamical sign problem. On
the other hand, the stochastic formulation in Eq. (26)

0 0
+ 1) 0 0
WD) 0 .
0 &+

is sign problem free. (A negative value, if any, of the
Wigner function corresponding to the initial state is only
a mild exception.) However, this comes at the expense of
unphysical states for each trajectory where the density
matrix is not trace-1 or positive. Still, the causal struc-
ture of our approach keeps the density matrix hermitian
even for a single trajectory; see Section IV A for details.

e It6 vs Stratonovich. The stochastic differential
equation in Eq. (29) follows the It6 convention [92] and
involves multiplicative noise, dp,, = A, (p)dt+ b, (p)dW
where dWW is the Wiener increment, and A,,, b, are lin-
ear functions of the (vectorized) density matrix com-
ponents p,, with m = 1,2,3,4. Specifically, b,,(p) =
—(9/V2E)Tmpy with Ty, the diagonal element of T in
the basis defined in Eq. (20). Interestingly, one can see
that the dynamics in the Stratonovich sense [92] is gov-
erned by the matrix K that appears in the functional
integral.

e Markovian in form; non-Markovian in essence.
In our approach, we only keep track of the spin dynamics,
while we trade in the cavity mode for a classical stochas-
tic field. This approach is nonperturbative, but remark-
ably the dynamics remains purely local in time. Put
differently, an exact elimination of the bosonic operator
is possible (well beyond the domain of adiabatic elimina-
tion) while maintaining locality in time.

e Existence of stochastic solutions. Stochastic dif-
ferential equations could often lead to unstable solu-
tions (for example, in methods based on the positive
P-representation [85]). Our approach does not suffer
from this since a certain growth condition (see Ch. 6 of
Ref. [85]) is satisfied, which thus guarantees that stochas-
tic solutions exist at all times. An immediate question
though is how many trajectories are required for conver-
gence. We study this question in several examples in this
work; see for example Section IV B. In general, the con-
vergence improves for larger dissipation and/or smaller
coupling. A systematic study of convergence with the
number of trajectories is left to future work.

e Dissipation as computational resource. Here, we
have used Markovian dissipation to trade in the coupling
to the bosonic mode for a stochastic sampling that re-
spects causality and ensures hermiticy for each trajec-
tory. In principle, Markovian dissipation could be taken
infinitesimal to simulate unitary dynamics; however, the
convergence worsens with decreasing dissipation. This



is a satisfactory feature as one expects dissipation, re-
sponsible for the quantum-classical crossover, renders
the dynamics more amenable to a numerical simulation.
In contrast, MPS-based methods, for example, become
more complex when dealing with dissipation [62, 93-95].
Our approach thus provides a concrete framework where
Markovian dissipation can be used as a computational
resource; see also [96].

A. Stochastic master equation

We can gain further insight by writing the dynamics
explicitly for the density matrix, effectively undoing vec-
torization. From Eqs. (26) and (27), we find that the
dynamics in the It6 convention takes the form

& pe = K'(pe) = Ls(pe) — i [1(1)0" ¢ — h(D)pco”]

with  h(t) = g@+@ +z‘i(5+£) (33)

for a given noise realization £(¢) and an initial condition
Y(t = 0) = 1p; for brevity, we have not explicitly shown
the dependence of pe on 1y and dropped the subscript
S. Note that the generator of the full dynamics, ', im-
plicitly depends on time through its dependence on h(t).
The field h can be viewed as a complex-valued longitu-
dinal field: the real part of h mimics a physical (though
stochastic and time-dependent) longitudinal field given
by (g/2)(1) +1)). On the other hand, the imaginary part
of h is proportional to the noise and the corresponding
term in the master equation is not of a Hamiltonian form.
Still, we can interpret the corresponding dynamics as
that of a non-hermitian Hamiltonian, Hy,pe — pe H, ,];, with
Hj, = h(t)o®™. But the evolved state is no longer trace 1
or positive. The lack of positivity becomes more mani-
fest when writing the master equation in the Stratonovich
sense' by adding the term —g(axpga”” + pe) to the rhs
of the first line in Eq. (33); this term looks like dephasing
but with a wrong sign for the jump term. It is this sign
difference that could lead to negative eigenvalues of the
density matrix p¢ for a fixed noise realization.

While the density matrix for each realization is not
physical, it remains hermitian even for a single realization

1 Even with £g =0,

pe(t) # Ut)poUT (t)

which would otherwise imply
U(t) = Tiet Jg at'n(e) (which is not unitary since h is com-
plex valued). This is because, according to the Itd rule, the
evolution due to the non-hermitian Hamiltonian cannot be bro-
ken into the evolution of ket and bra states independently. The
proper exponentiated evolution matrix is then K corresponding
to the matrix K which is incidentally the dynamics generator in

the Stratonovich sense.

positivity; here,

since

(K (pe))T = K (p}) (34)

This feature is a direct consequence of our causal treat-
ment, and is particularly convenient for numerical com-
putations as it puts a strong constraint on the form of the
density matrix p¢. Finally, we note that the average over
many realizations must yield a physical density matrix
that is trace 1 and positive. In fact, averaging the mas-
ter equation in Eq. (33) over noise and using &(¢)pe(t) = 0
from the Itd convention shows that the trace is conserved,
dTr(pe)/dt = 0, on average (even before averaging over
initial conditions). The above properties can be explicitly
verified numerically, as we discuss in the next section.

B. Numerical results

Here, we provide numerical results for different exam-
ples of the model considered in this section. Specifically,
we plot (o”(t)) as a function of time starting from an
initial state where the spin is fully polarized along the
positive x direction, and the boson is in its vacuum state.
As a representative example, we takew =k =1,A =04
and consider two characteristic values for the spin-boson
coupling, g = 0.6,1.2; all parameters are comparable in
order to avoid any fine tuning. To simulate the stochastic
dynamics, we have adopted the Euler method [92] pro-
viding a simple method for solving stochastic equations;
more accurate techniques will improve the convergence
properties. Finally, we choose the time step dt = 0.01.

In Fig. 2(a), we plot the dynamics up to ¢t = 40 for
g = 0.6, and observe underdamped dynamics. Even with
a moderate number of trajectories (10*), the dynamics is
captured to relatively long times. For a larger number of
trajectories (107), our results perfectly match the exact
numerical computation. Additionally, we plot the aver-
aged trace, and observe that this quantity approaches 1
with increasing the number of trajectories.

In Fig. 2(b), we plot the dynamics up to t = 20 for
g = 1.2, and rather observe overdamped dynamics. A
stronger coupling requires a larger number of trajecto-
ries for convergence in a given time interval. While a
relatively small number of trajectories (10°) capture the
main features of the dynamics, full convergence up to
t = 20 requires a larger number of trajectories (the thick
curves are obtained for 10° trajectories). Again, the trace
acts as a proxy for convergence and approaches 1 with
increasing the number of trajectories.

V. N SPINS COUPLED TO A BOSON M =1

In this section, we consider several (or many) spins
coupled to a single bosonic mode. The Hamiltonian is



FIG. 2. Stochastic evolution of (c®(t)) starting from an initial state where the spin points along the positive z direction and
the boson is in its vacuum state; here, w = k = 1, A = 0.4 while g = 0.6, 1.2 in the left/right panels, respectively. The decay of
the overall amplitude is purely due to the coupling to the bosonic mode. (a) Underdamped dynamics at g = 0.6 for #10%,107
trajectories. The stochastic dynamics with 107 trajectories is in excellent agreement with an exact numerical computation up to
t = 40. (b) Overdamped dynamics at g = 1.2 for #10°,10° trajectories. Full agreement with an exact numerical computation
up to t = 20 is achieved for 10° different trajectories. In both cases, the averaged trace (see the blue curves) approaches 1 with

increasing the number of trajectories.

now given by

VN

Again, the bosonic mode is subject to loss characterized
by the Lindblad operator L = \/ka; spins could be lossy
as well. A generalization of the main result of the pre-
vious section to many spins is straightforward. Let us
denote by [p™))) the (vectorized) reduced density matrix
of the N spins upon tracing out the bosonic mode. The
dynamics can be then written as a quantum stochastic
evolution with each trajectory evolving as

N

A 1 gi

— T = _ T il
HN’I_waa+2iE:10iZ+ (a—i—a)% 202’ (35)

d

Z1p N = KA (0)]o ™) (36)

where the dynamics generator K, now acting on N spins,
is given by

N

1 . i - Gi =
K0 = 3 (Lt o+ 808 e
(37)
Here, IL; describes the single-body dynamics of the spin
i, which more precisely should be understood as a ten-
sor product with the identity matrix for other spins,
[®---®L;®---1. Finally, the white noise £ and the asso-
ciated field ¢ are defined exactly as before via Egs. (23)
and (24).

In principle, for a given realization of noise and a given
initial state, Eq. (37) can be used directly to evolve the
vectorized density matrix of N spins, i.e., a vector of
size 4. The average over many realizations then gives
the physical density matrix. In practice however, even
for moderate values of NV, and certainly in a many-body
system, the size of the state becomes prohibitively large

for any numerical simulation. On the other hand, we
notice that K! in Eq. (37) is decoupled among different
spins. Naively, each spin could be then evolved individu-
ally (at least, if the initial state is factorized) for a given
noise realization. However, this argument is flawed! As
a first observation, note that K appearing in the time or-
dered product (also, the generator of the dynamics in the
Stratonovich sense) is given by K = K' — 72— (3, ¢;T;)?
which directly couples the spins. A resolution thus lies in
the nontrivial form of the It6 chain rule. As a simple ex-
ample, consider N = 2 spins and let us assume (to prove
the contrary) that the dynamics is decoupled:

where ¢ = 1,2 denote the spins and m = 1,2,3,4 refer
to the component of the corresponding vectorized den-
sity matrix. The resulting equation for the total density
matrix, pgﬁ% = P1mpP2n, is then obtained by applying the
It6 chain rule,

& (pln ’
A, =t ) o =k ST T2
8plm5'pzn 4K

where the dots refer to single-body terms. Notice that
the new term on the rhs couples the two spins, while
there is no such coupling in Eq. (37). More generally, for
N spins, one finds a coupling between all pairs of spins.
(Interestingly, the Stratonovich dynamics involves a term
of the same form but with an opposite sign.) Therefore,
regardless of the stochastic rules we adopt, the spins do
not seem to be decoupled.? Paradoxically, the absence of

2 In essence, this argument is the same as the previous footnote.



any coupling in Eq. (37) for the full (tensor product) state
implies that they are effectively coupled. Nonetheless, we
can bring the dynamics into a form where individual spins
are evolved independently by introducing a different noise
variable for each spin. We explain this procedure in the
following subsection.

A. Decoupling spins

In this subsection, we provide a recipe for decoupling
the spins. For convenience, we assume that the initial
state of spins is a product state (in the vectorized space),
ie., [pM(0)) = ®;|p:(0)); this assumption can be re-
laxed simply by writing the initial state of spins as a
superposition (again, in the vectorized sense) of prod-
uct states. The proof follows from a variation of the
Feynman-Vernon influence functional, which we leave to
Appendix C2. The main trick is to introduce uncorre-
lated fictitious noise variables & withi=1,--- N, i.e.,

(&0 (¢)) = rd(t —t')d (38)
and define the field ¥ (t) as

(18 — w + im)(t) = V%V Y& (39)

For a given noise realization & = {¢;} and a given initial
state, we can write the state in a factorized form at all
times,

oY () = @iL11pi()e (40)
where each spin is evolved as
d I
Z1pie = KDl (41)
and the generator of the dynamics is given by

Kj(1) = W +D)Si— L& +E)T (42)

\/>

Notice that while the same field ¥(t) is coupled to all
the spins, each spin i is subject to its own noise &;(t); of
course, the dynamics of a given spin still depends on all
the noise variables through its dependence on ¢. We thus
find that the evolution of each spin is given in a similar
fashion as that of a single spin in Eq. (30) only with the
modification ¢ — w/\/> & = &, and g — g; for spin
i together with the noise correlations and the stochastic
equation of motion in Egs. (38) and (39). Finally, the
physical state is given by the average over noise and the
initial state

1P = [pN)), (43)

which, again in a slight abuse of notation, the overline
indicates the average over all the noise variables £ as
well as the initial conditions,

—_— _ /@[5]6— >y éiﬁi/ﬁ/d2wo%(wo) . (44)
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As they evolve, the spins form nontrivial correlations
or become entangled. In our approach, the sum over dif-
ferent realizations effectively mimics the quantum (and
statistical) correlations between the spins. In principle,
this leads to an exponential reduction from a state of
size 4V to N vectors of size 4. Of course, the number of
trajectories required for convergence could limit the ap-
plicability of this method. In practice, we do not need to
keep track of the full state in Eq. (43) if we are interested
in expectation values of local operators, two-, or n—point
correlation functions. For example, the expectation value
of an operator O; acting on spin 4 is simply given by

(0i(t)) = (O |pi(t)

Ne LT (Lilpu(t) (45)

1#1

and the correlation function between two spins is given
by

(0:(1)0;(1)) = (OF 1p () (O los 0))e 1T (Lilon(t)
l#1,j
(46)
and similarly for higher n-point correlation functions.
Similarly, we can find a simple expression for the reduced
density matrix for a subset of spins. For example, the re-
duced density matrix for spin i, p; = Trl;éi(P(N)), is given

by

We [ (ilou(t) (47)

l#1

lpi(t)) = |pi(t)

Note that |p;)) # |pi)e, that is, the average over differ-
ent realizations still involves all the spins. One can find
similar expressions for any subset of spins.

Similar considerations about the quantum stochastic
evolution of a single spin also apply to our treatment
here: the stochastic quantum evolution is sign-problem
free but at the expense of sampling over unphysical tra-
jectories, yet the density matrix remains hermitian for
each trajectory; additionally, stochastic solutions exist at
all times. In practice, the efficiency of our stochastic ap-
proach depends on the number of trajectories required for
convergence. In the next subsection, we present numer-
ical simulations showcasing the utility of our approach
when an exact numerical computation is unavailable.

B. Numerical results

In this section, we consider the dynamics of the Dicke
model where all spins are coupled to a single “cavity
mode” with the same coupling ¢g; = g; a uniform coupling
is not necessary in our approach but allows a comparison
against the exact numerical simulation.

We first consider N = 3 spins and take the parameters
w=kr=1,A=04,9g =0.3. In Fig. 3, we plot the two-
point correlation function (ofc%) as a function of time up
to t = 20 starting from an initial state where the spins are
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FIG. 3. Stochastic evolution of the correlator (cfo5) for the
Dicke model with N = 3 spins starting from an initial state
where the spins are fully polarized along the z direction and
the cavity modes is in a vacuum state; here, w,x = 1, A = 0.4
and ¢ = 0.3. The stochastic average of 10% trajectories is
well in agreement with an exact numerical computation up to
t = 20. Slight deviation at longer times is likely due to the
moderate time step dt = 0.01.

along the positive z direction (no correlations at ¢ = 0)
and the cavity mode is in its vacuum state. The exact
dynamics is well captured by the stochastic average over
108 trajectories; the slight deviation at long times is likely
due to the time step dt = 0.01. As time evolves, non-
trivial correlations are formed between the spins (while
(o) = (6%) = 0), yet the decoupled stochastic dynamics
evolves the spins in a factorized form.

As a second example, we consider the dynamics of a
system of size N = 30 starting from an initial state where
the spins are fully polarized along the positive = direc-
tion and the cavity mode is in its vacuum state. We take
the parameters w = k = A = 1,9 = 0.4 and choose
a time step of dt = 0.005. In Fig. 4, we can simulate
the dynamics up to ¢ < 10 by averaging over a mod-
erate number of trajectories (10%) and find an excellent
agreement with the exact result; the latter is obtained
by taking advantage of the permutation symmetry and
working in the Dicke manifold [97]. Without the permu-
tation symmetry, a system size of N = 30 is well outside
the domain of exact diagonalization, also taking into ac-
count the coupling to the bosonic mode and the open
quantum system dynamics. Our method thus provides a
worthwhile alternative when there is no such symmetry.
Convergence with number of trajectories worsen as the
total time or the coupling to the bosonic mode increase.
Higher-order techniques for solving stochastic equations
and further numerical optimizations should improve the
convergence.

VI. SPIN COUPLED TO (co—)MANY BOSONS

In this section, we consider a single spin coupled to
several, many or possibly infinitely many, bosonic modes.
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FIG. 4. Stochastic evolution of (o7 (t)) for the Dicke model
with N = 30 spins starting from an initial state where spins
are fully polarized along the z direction and the cavity mode
is in its vacuum state; here, w = k = A =1 and g = 0.4. The
stochastic average of 10® trajectories is in good agreement
with an exact numerical computation using the permutation
symmetry of the Dicke model. The convergence at longer time
can be improved by averaging over more trajectories.

We quote the Hamiltonian for completeness:
A M
Hiar = 50° + ;waagaa +o° %: %ﬂ(aa +al) (48)

Again, we assume that each bosonic mode is subject to
Markovian loss characterized by the Lindblad operator
L, = \/Eqaq. Analogously to Section IV, we trade in the
bosonic operator for stochastic fields, only now we must
include M such variables to represent all the bosonic
modes. The full stochastic evolution is then given by

d

%‘Ps»{ga} = KI(t)|P>>{ga} (49)
where
K1) =Ls + 8 iga(Y, +8,) =T 57 (Ea + &)

Again, the first term on the rhs of the above equation
denotes the single-spin terms. The noise variables &,
and the associated field ga are exactly determined in the
same fashion as Egs. (23) and (24) with the substitution
&Y — 5“’%a and w, kK — Wy, Ko. To be more concrete,
we have

t

0,0 = iGa(t)e, )+ [ dtGalt—t)e(t) (51
0

where G, (t) is the free (causal) Green’s function corre-

sponding to the bosonic mode «,

B 1
T 0 — Wy + K

Galt) = —iO(t)e~Wat=rat  (52)

The quantum stochastic evolution can be then solved for
a given realization; a single trajectory now comprises all



the noise variables £, and the initial values for the cor-
responding field P, Finally, the physical density matrix
is obtained by averaging over many trajectories.

While the above strategy is in principle feasible, it
would be rather demanding if there are many, or even
a continuum of, bosonic modes, an example of which is
the paradigmatic spin-boson model where a two-level sys-
tem is coupled to an infinite bath [1, 2]. A more efficient
route is desired in this case. To this end, we first as-
sume that the bosonic modes are initially in their vac-
uum state; later in this section, we extend our results
to a general initial state. Now, taking advantage of the
linear (stochastic) equation for the classical fields as well
as the initial Gaussian state, one can combine all the
noise variables £, into a single variable (similarly for the
associated fields ¢ _):

i)=Y g, =)= %ga (53)

«

The collective noise variable Z(t), being a sum of white
noise terms, is itself white noise with the correlations

Ga gy

E)E(H) = T

yo(t—t'), =

where we have defined the dissipation rate . Some alge-
bra shows that, for t > ¢,

U(HE() ZQC‘G t—t')
Z“%‘G t—t)

while, for t < #, we have x(t,t') = 0 and C(¢,t') =
C(',t). The functions y and C define the (causal) re-
sponse and correlation functions, respectively. Notice
that they are both translation invariant as they only de-
pend on ¢t — t'. While this is always the case for the re-
sponse function in a linear system, the correlation func-
tion becomes translation invariant as we have assumed
that the bosonic modes are initially in their vacuum state.
While ¢ is fully specified by &, together with its initial
value, the collective field W is not completely determined
by Z even for fixed initial conditions: this is because there
are many noise realizations {£,(¢)} for a given ZE(¢). This
redundancy, and consequently the uncertainty in ¥, can
be encoded into another Gaussian distributed noise vari-
able. More precisely, we can capture the correlators in
Eq. (55) by writing

x(t,t)
(55)
cCtth=y

OB / Tan R £ X0 (56)

where we have introduced the noise variable X (¢) with
the correlations

X)X (t) =C(t,t) (57)
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while all the other (self- or cross-) noise correlations are
vanishing, X ()X (') = X(t)2(t') = X (¢)Z(#') = 0, and
the function C(t,t') is defined as

C(t,t) =C(t,t) — % /0 h dt"x(t —t")x(t" —t") (58)

One can easily verify that Eq. (55) follows from the defi-
nition in Eq. (56) and the noise correlations in Eqs. (54)
and (57). Moreover, one can show that C/(t,t') consid-
ered as a matrix (in the basis ¢, ') is positive, in harmony
with an interpretation of X as Gaussian distributed col-
ored noise (contrasted with the white noise Z); see Ap-
pendix D. If the system consists of one mode only, the
function C only captures the initial conditions which al-
ternatively can be treated as before by sampling over the
initial conditions. In general, C(t,t') takes a nontriv-
ial form and is not translation invariant (i.e., not just a
function of t —t'). Utilizing the hermiticity of the C(t,t)
matrix (in the ¢,¢ basis), we can diagonalize it as

=" Caba()0a(t) (59)

where the functions 6,(t) define a complete basis and
Cq > 0 denote the diagonal elements. We can then write
X(t) = 3, VEaXaba(t)/V2 for the complex variables
X, whose real and imaginary parts are drawn from a
normal distribution. The average over the field X (¢) can
be conveniently replaced by sampling X = {X,}.

We can now write the full dynamics as

Ips>> K'(t)]p) = x (60)

where the generator now takes the simple form

K'(t) =Ls+i(¥+¥)S— (E+E)T (61)

and the function ¥ is given by Eq. (56) together with
X(t) =Y, VEaXaba(t)/V2. Again, we emphasize that
the initial conditions are captured directly via the func-
tion X and do not require additional averaging. Finally,
to obtain the physical density matrix, we should sum over
different realizations.

Before closing this section, we consider an arbitrary
initial state of bosons described by the joint Wigner func-
tion of all the bosonic variables, #4({a0}), Where ¥
denotes the initial value of the field v¢,. To account for
the initial state, we should substitute Eqgs. (56) and (58)
by

/ thtt E( +X +'ngo¢ a '(/}ao

QM

X)X (#) =C(t,t) 27 Galt) (62)

In the last equation, we have removed the contribution
of the initial state to the modified correlations C(¢,t'),



and rather capture it directly in the definition of W(t)
which now depends explicitly on the initial values {¢40}
which in turn are sampled according to the Wigner dis-
tribution function. One can also show that the rhs of the
second line of Eq. (62) is positive as a matrix; see Ap-
pendix D. For a Gaussian initial state (e.g., when bosons
are initially in their vacuum state), one can absorb the
Gaussian fluctuations due to the initial state in colored
noise correlations as before; however, the above equations
allow us to consider a general initial state. In the end,
the sampling over the original M white noise variables
{&€.(t)} is reduced to that of a single white noise Z(t)
plus sampling M initial values {¢n0}.

A. Spectral function vs Markovian dissipation

For a continuum of bosonic modes, it is convenient to
introduce the spectral function of the bath. Let us first
assume no Markovian dissipation, i.e., k, = 0. The bath
can be characterized by the spectral function defined as
J(w) =7, 926(w — wy). In the continuum limit, the
sum over modes « becomes an integral. The behavior
of the spectral function, especially at low frequencies,
determines the nature of the quantum bath [1, 2]. We
shall consider an Ohmic bath later in this section.

While Markovian dissipation is not typically consid-
ered in the discussion of spin-boson models [1, 2], quan-
tum simulation of these models often come with Marko-
vian dissipation [20, 98-100], which is the focus of this
work. We further emphasize that such models are inher-
ently driven-dissipative as they involve both a coherent
drive and incoherent loss. Now turning on Markovian
dissipation, we can still define the spectral function J(w)
as above, but we must incorporate the Markovian dissi-
pation in the correlation and response functions. Let us
first denote by k(w) the dissipation rate corresponding
to a mode with the natural frequency w (assuming that
there is at most a single mode corresponding to a given
frequency). Next, we can write the constant v as well as
the functions x(t —t') = x(¢,¢') and C(t —¢') = C(¢, 1)
in terms of the spectral function J(w) and the function
r(w) via the substitution >, — [ % k, — k(w) and
o = J(w):

We also define C(t) = C(—t) = ix(t) for ¢ > 0. The spec-
tral function J(w) together with x(w) uniquely define the
spin-boson model that is further subject to Markovian
loss.
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FIG. 5. Stochastic evolution of (o°(t)) for a spin coupled
to a lossy Ohmic bath starting from an initial state where
the spin is fully polarized along the z direction; here, r =
1/2 characterizes the ratio of loss to frequency of the bosons
in the bath, w. = 1 is the bath cutoff, A = 0.4, and o =
0.45,0.5,0.55 is the spin-bath coupling strength (see the text
for details). The numerical results are in agreement with the
TEBD simulation.

B. Numerical results: Lossy Ohmic bath

In this section, we consider the paradigmatic spin-
boson model where a spin is coupled to an Ohmic bath
whose spectral function [1, 2] is given by

J(w) = 2mawe™*/we (64)

Here, the parameter o defines the strength of the spin-
boson coupling, and w. defines a soft cutoff for the
bath. To fully characterize the bath, we must specify
the Markovian dissipation as well. To this end, we de-
fine a one-parameter family of baths characterized by the
function x(w) = rw where the dissipation rate for a given
mode is proportional to its frequency with the constant
of proportionality » > 0. A forthcoming paper will be
dedicated to this model and studying its rich behavior
[101]; here, we just take it as a testbed for our stochastic
method. The bath introduced here is identified by

aWe

= 65
= (65)
and the response function
—1aO(t)
X(t) = ——— 3 (66)
[wc + (i + r)t]

Note specifically that this function smoothly interpolates
to the standard Ohmic bath as r — 0.

Here, we choose r = 1/2 while considering the cou-
pling strengths o = 0.45,0.5,0.55 and 5x 107,108, 2 x 10%
trajectories, respectively. We take the parameters A =
0.4,w. = 1 and choose the time step dt = 0.01. We fur-
ther consider an initial state where the spin is fully po-
larized along the x direction and all the bosonic modes
are initially in their vacuum state. The numerical results



using the stochastic equation are shown in Fig. 5 and are
in very good agreement with a time-evolving block dec-
imation (TEBD) simulation [102]. For the TEBD sim-
ulation, we use the semi-infinite mapping of the spin-
boson model [103] combined with a vectorization scheme
of the density matrix [93]. Within the time window
considered in the stochastic simulation, the dynamics
for a < 0.5 appears to be qualitatively different from
a > 0.5. Indeed, the standard spin-boson model (with
no Markovian dissipation) is known to exhibit a transi-
tion from underdamped to overdamped dynamics exactly
at @« = 0.5 when A < w, [1, 42, 45, 74, 104]. Whether
or not the lossy model considered here exhibits a sim-
ilar transition is beyond the scope of this work, as it
requires a larger number of trajectories. However, our
stochastic approach, despite its simplicity, allows for an
exact simulation at intermediate coupling strengths and
time scales. In contrast, a numerical simulation of the
spin-boson model at moderate coupling strengths typi-
cally requires sophisticated computational methods such
as NRG [105], MPS-based methods [42, 104, 106, 107],
among others [108].

VII. N SPINS COUPLED TO M BOSONS

Finally, in this section, we consider a general spin-
boson model where N spins are coupled to M bosons,
described by the Hamiltonian in Eq. (1) which we quote
for completeness:

N M
A 1 Jai
Hym = —Zaf—i—z waalaa—&-—%z 0¥ (aq+al)
2 =1 a=1 N at 2

Again, we assume that each bosonic mode is subject to
Markovian loss of bosons at the rate k.

In order to treat the many-body problem, we combine
the approaches presented in Sections V and VI:

1. First, we consider the bosonic modes separately. For
a given mode «, we follow the steps in Section V to elim-
inate it in terms of the classical field ¢ and white noise
variables &, which satisfy

G, 1% = &a(t)
Ea(D)Ea(t) = ko d(t — 1),

with G, the corresponding (causal) Green’s function.
Again, this generates an effective coupling between all
the spins, and would be demanding for a large spin sys-
tem. To decouple the spins, we adopt the trick in Sec-
tion V A: we introduce N fictitious noise fields &,; (per
mode «) such that

(67)

N
Gl = 7= D) )

£ai(t)€5(t") = Kabapdiso(t —t'),
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The dynamics is then factorized and each spin is evolved
as (in the It6 convention)

d
2100 ey = KOl ey (69)
where

Ki(t) =TLi+ 3 2, +,)8i -

Gai
264

(fai + gm)‘]rz
(70)

The full density matrix is then obtained by averaging
over different realizations of white noise variables {£,;(¢)}
and the initial values {¢_(0)}. For simplicity, we assume
that the initial state is a factorized state of spins and
bosons, and moreover the bosons are initially in their
vacuum state; a generalization to a more general initial
state is straightforward and follows the prescription in
the previous sections.

2. In the above equations, each spin is still coupled to
M noise variables. Following the steps in Section VI, we
can make another transformation where the M x N noise
variables £,; are reduced to just N variables, one for each
spin. To this end, we first define

i) = = Y gt (1)

, (71)
E(t) = Pie,)

2Kq

The generator K! now takes a simple form as
Ki(t) = Li +i(¥; + ¥,)S; — (S +E)T;  (72)

where E;(t) are the new white variables defined by the
correlations

2
Jai (73

SZiE () =it —t i =
(OF; () =7d(t =), 7=3 g

Furthermore, the function ¥, is now determined by

U, = %Z/dt’Xij(t,t’)Ej(t’)/vj + X;(1) (74)

where the variable X;(t) is a Gaussian-distributed ran-
dom variable with the correlations

X% () = 3 Ciy(t.t) (75)

hence, colored noise.  Assuming that initially the
bosonic modes are in their vacuum state, the kernels
Xij (t, t/) = X(t - t/), Cz’j (t, t/) = Cij (t - t/) and C’ij (t, tl)
are given by

Xij (t) = % Z gaigajGa (t) (76)
Cij(t) = Cij(—t) = ixi; (1),
Cij(t,t) = Cij(t) — % > L t xa(t —t")xut —t")



Again, one can show that Cj;(¢,#') > 0 as matrix de-
fined with the rows and columns defined as it and jt/,
respectively. We can then proceed as before to decom-
pose Cy;(t,t') in terms of a complete basis and write X;
as a sum of different terms each with a complex-valued
coefficient that is drawn from a normal distribution. The
quantities of interest such as expectation values of local
operators or correlations function can be computed by
first evolving each spin for a given realization, and then
averaging over white noise {Z;(¢)} as well as colored noise
{X;(t)}. Finally, a generalization to an arbitrary initial
state follows analogously to the previous sections.

VIII. SUMMARY AND OUTLOOK

In this paper, we have considered a generalized spin-
boson model and developed a hybrid stochastic quantum-
classical approach to the evolution of the spins. To this
end, we have traded off the bosonic modes for classi-
cal stochastic variables, which are then used as an in-
put for a stochastic quantum evolution of the spins. In
this approach, the spins are effectively decoupled for each
stochastic realization, but this comes at the expense of
sampling over unphysical states. Specifically, the density
matrix is not trace 1 or positive, a fact that could hinder
convergence at late times. However, we crucially utilize
Markovian dissipation to treat the response function in a
causal fashion, and to preserve hermiticity of the density
matrix, a convenient feature for numerical simulations.
Our work thus provides an example where Markovian
dissipation can be used as a computational resource for
simulating quantum systems [96]. We have showcased
the utility of our approach in scenarios where an exact
numerical computation is not available. Our work is rel-
evant to emerging quantum simulation platforms includ-
ing trapped ions [18-22], cavities via cold atoms [23-25],
superconducting qubits [26, 27], and optomechanics [28].

Our approach extends beyond the existing methods
rooted in the Feynman-Vernon influence functional and
their stochastic variants [44, 45, 71-79], collectively re-
ferred to as the FV approach. First, as remarked above,
our approach keeps causality, and thus hermiticity, man-
ifest. Second, we do not place a restriction on the ini-
tial state while the F'V approach generically assumes a
factorized initial state and an initially thermal state of
bosons. Third, the F'V approach gives rise to non-local
kernels (which should be sampled by colored noise) while
our hybrid quantum-classical approach remains Marko-
vian (unless we lump bosonic variables into one or several
variables; see Sections VI and VII). Fourth, while the FV
approach is typically used in scenarios where the coupling
is diagonal in a given basis (e.g., the Rabi model with
Hsp ~ go®(a+a')), our approach can be easily general-
ized to non-diagonal coupling (e.g., the Jaynes-Cumming
model with Hsp ~ o%a + h.c.). Fifth, our approach in
principle works even when the bosonic modes are intrin-
sically nonlinear in which case the bosonic modes can-
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not be integrated out via a Gaussian integral and the
FV approach is no longer applicable. As an example, we
may consider dephasing for bosons, L = /@dphalfa, which
would lead to nonlinear dynamics at the level of the Li-
ouvillian; such dephasing can be mimicked by adding a
term to Hp,

Hp — Hp + k(t)a'a (77)

where k is (real-valued) white noise with the correlations
k(t)k(t") = Kaprd(t —t'). One can then carry out the
stochastic analysis presented in Section IV to obtain a
modified (It6) stochastic equation for :

(10, — w — k(t) + k] = £(t) (78)

involving both additive [£(¢)] and multiplicative [k(t)]
white noise. To obtain the physical density matrix, we
must average over both noise variables.

Spin-boson models are particularly challenging at
strong coupling where the dynamics is highly nonlinear
and the system may even undergo a phase transition. In-
deed, the paradigmatic spin-boson model (a spin coupled
to an infinite bath) exhibits a localization phase transi-
tion [1, 2] while the Rabi/Dicke models (one/many spins
coupled to a cavity mode) undergo a superradiant phase
transition at strong coupling [6, 7]. It is desirable to ap-
ply our stochastic approach to study such regimes; how-
ever, sampling over unphysical states could lead to poor
convergence with the number of trajectories at strong
coupling. Our approach provides an immediate advan-
tage by ensuring hermiticity of the density matrix which
strongly constrains single realizations. One can further
improve the convergence by making the stochastic equa-
tion trace preserving [43, 76, 77]; however, the resulting
nonlinear stochastic equation could lead to unstable so-
lutions although different routes are proposed to allevi-
ate this behavior [78]. In principle, our approach only
requires averaging over well-defined stochastic solutions
corresponding to many trajectories which can be paral-
lelized on classical machines; this should be contrasted
with the dynamics in the full Hilbert space where an
exponentially large space is required even to store the
quantum state of the system. Nevertheless, the useful-
ness of our approach in the challenging regime of strong
coupling requires a careful analysis of the scaling of the
number of trajectories with the coupling strength along
with Markovian dissipation, a direction that constitutes
an important avenue for future research.
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Appendix A: Derivation of Eq. (16)

In this section, we derive Eq. (16) for a single spin
coupled to a cavity mode. The generalization of our
approach to many spins is straightforward. We fol-
low a hybrid approach to the functional integral: we
first apply the quantum-to-classical mapping utilized in
Refs. [60, 89] to the spin operators and map them to
classical discrete variables, and then use the phase-space
approach in Ref. [88] to turn the cavity operators to ¢
numbers using the Weyl ordering [91]. To this end, we
break the Liouvillian as

L=Ls+ L+ LsB (A1)
with the first two terms on the rhs including only spin

and bosonic terms, respectively. The last term denotes
the interaction between the two and is given by

Lsp = —i[Hsp,e],  Hsp= ggr(a +adf)  (A2)

Different interactions (e.g., Jaynes-Cumming model) can
be treated in a similar fashion. In the above equation
and throughout this Appendix, we denote the action of
a superoperator (such as £) on an arbitrary operator by
the location and ordering of the symbol e. Next, we
Trotterize the evolution as

p(t) = ¢ (po) = eE(ME(TE (- (7 py)) -

n times

) (A3)

with pg the initial state at time ¢ = 0 and n = ¢/dt. Note
that the Liouvillian is a superoperator, and the above ex-
pression is not a matrix multiplication. To carry out the
quantum-to-classical mapping for the spin, we we must
insert a complete basis for spin operators at each time

J

k=0
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slice. We introduce the identity superoperator

Is= Y lo")o"le D lo')o' (A4)
ou==%1 ol==+1
where 0%|o) = o|o) with o representing either % or

o'; the notation for the superscript is inspired by the

upper/lower branches of the Keldysh contour. Inserting
the identity superoperator at each time slice in Eq. (A3),
we have

(olo(t)lo’) = { [ 1:[ (il (€ lo) k) o))
o k=0

x (og polUé)} (A5)

Here, we have introduced the complete basis UZ/ !
at the Trotter time k, and summed over all ¢ =

(Jg/l, O';L/l, e 702/711), and further identified o/! = o,0’,
respectively. We emphasize that (o’|p(t)|o) is still a ma-
trix in the Hilbert space of the bosonic operator. At this
point, we carry out the standard Trotter-Suzuki expan-

sion and write

eét[l _ eét(£3+£s)e§t£ss + (9((%2) (AG)
The treatment of the spin-boson coupling is now straight-
forward within the quantum-to-classical mapping since
this coupling is diagonal in the basis adopted in Eq. (A4):

e&tﬁgg (|O,;CL> <0_§€ |) _ |O_;€L> <U§c |e—iétgo}:(a+aT)o+i6tgaL-(a+aT)
(A7)
where the notation in the exponent should be understood
as follows: defining the exponential in a series expansion,
we find a nested product of (bosonic) superoperators, and
the location of e guides the action of subsequent super-
operators on an input operator. We can then write

(olp(t)lo’) = Z { [ 1:[<0;:+1| (23 (o) (o)) |a§€+1>} (o8ps(0)|ob) x Ty 1:[ eétEB(tk)(pB,(O))} (A8)
k=0

where T} is the time-ordering operator (in discretized
time indexed by k), and we have defined the ‘tilde’ su-
peroperator

Eslt) = L5~ 2 [of(a+a) e —ohe(ata)] (A9)

with ¢t = kdt. We have additionally assumed that the
initial state is factorized, py = ps(0) ® pp(0). At this
stage, cr;:/ ! are just numbers and their ordering in the
above expression is unimportant. Notice that the first
product on the rhs of Eq. (A8) only involves the spin

(

variables, while the information about the bosonic mode
as well as the spin-boson coupling is included in the sec-
ond product that involves the Liouvillian Lp(t).

Next, we map the bosonic operators into classical vari-
ables in order to construct the functional integral. Specif-
ically, we utilize a quantum-optics based approach by
working in the Weyl representation where the state is rep-
resented in terms of the Wigner function (in contrast with
the Keldysh functional integral where the operators are
replaced by @ symbols). The advantage of this method
is that an unambiguous continuous-time limit emerges



naturally from a properly defined (i.e., discretized) func-
tional integral. To this end, we follow [88] to establish the
mapping to a functional integral for the bosonic mode.
We shall not repeat these steps here, and just quote the
resulting functional integral; an interested reader is re-
ferred to Appendix A of Ref. [88]. In this mapping, we
map bosonic operators to phase space variables ¢, ¥
and the superoperator to a classical action. The evolu-
tion of the bosonic mode can be written as a functional
integral over the phase-space variables weighted by the

J
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exponential of the corresponding action (similar to Feyn-
man path integral). The Liouvillian L£p describing free
bosonic mode is then mapped to the classical action

LB (11,0, do) = 2ido (1 — o) /6t — 2ido (1 — o)/t — HB (o + do) + HB (o — ¢o)

+ ik (2¢0¢0 — dotbo + Potbo)
= 2¢0[i(¢1 — o) — wio — Ktbo] + c.c. + dikgodo,

and g denotes the Weyl symbol corresponding to the
Hamiltonian Hpg. Notice that the sign difference between
the two terms involving % is due to the same sign in the
commutator [Hp,e]. In the last equality, we have used
the transformation Hp = wa'a — #5(a) = w(|al® — 3),
and have dropped the constant term. Next, we con-

J

n—1

Ip=Ip+ Z [— ga}: (Y + op +c.c.) + %02 (Y — dr +c.c.)

k=0

n—1
Tp =Y 5L (1, Yk, B (A10)
k=0
where we have defined the Lagrangian Zp
(A11)

(

sider the interaction, i.e., the expression in the bracket in
Eq. (A9). A similar treatment leads to the substitution
(a+a')e — iy +¢p+c.c. and o(a+al) — 1, —p+c.c. at
time t;, in the functional integral. Now, the action involv-
ing both the free bosonic part as well as the spin-boson
coupling takes the form

(A12)

Mapping out the bosonic operator to phase-space variables, we can now write the spin reduced density matrix

ps(t) = Tra(p(t) as

T Ay d’
(lpstt)io’) = [, T *5%e

k=0

X { [T ¢oieal (252 (oi)oil)) lokan)] x <06‘|ps(0)06>}

-1
(
k=0

n—1
Ad®prd? oy,
= /d21/)n H 771_2 €

k=0

i‘%%(%)

(A13)

B (o)

<y { [TL kol (25 (o) 0hD)) loky)] <oz;ps<o>|aé>}
o k=0

with #4 the Wigner function of the initial state; we have used the notation d>2 = dRe (2)dIm (2). In the last equality,

we have restored the free bosonic action, g — #g, and absorbed the difference in L5 — Lg(t;) where we have
defined the ‘tilde’ spin superoperator

Ls(ty) = L — % (Vg + dp + c.c.)o® o —(iby, — by, + c.c.) 8 07 (A14)

Notice that this expression does not involve the indices az/ ! explicitly, but the spin operator ¢” acting on a ket or a
bra state at time & (as prescribed by the ordering with respect to e) reproduces the expression in Eq. (A12). We can
then explicitly sum over the spin indices o as they sum to an identity superoperator at all time slices before time .
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The resulting density matrix is given by

(@lps(t)lo”) = [ Dl dle o) o] Tue i £ (0)) o) (A15)
where we have defined the shorthand
T A d? oy
_ 2
I, ¢] = /d tn k];[o —G (A16)

as the proper measure of the path integral in discretized time. Finally, vectorizing the density matrix, we obtain
. n—17
p5(0) = [ 1001674 ) T = B2 s 0) (A1)

where the matrix Eg(tk) corresponds to the superoperator Zs(tk) in the vectorized notation, and is explicitly given
by

Lg(ty) = Lg — % (Vg + dp + c.c)o™ @ I — (Y — ¢p + c.c.)] ® 07 (A18)

Taking the limit of continuous time, one recovers Eq. (16) and can explicitly verify that Lg(t) — Lg + Ling (t) where
Lint is defined in Eq. (18).

(

Appendix B: Derivation of Eq. (26) where in the first equality we have defined L;(tx) =

Ls + g(¢x + ¥x)S for notational convenience. We note

In this section, we provide the derivation of Eq. (26).  that the error is of the order of 6t3/2, and not 6¢% as one
To this end, we first use the Hubbard-Stratonovich trans- might naiv.ely expect. ’Ihis is because ¢y ~ 1/ §t'/? given
formation given by Eq. (22) but in discretized time: the Gaussian fluctuations of the field ¢ in Eq. (B1).

In fact, one should be careful when expanding the ex-

_ - ot s _oisi(E z ponential to the lowest order. Specifically, expanding
AKk0tpr P __ 2 0t&ré/k—210t(ExPpr+Erdr) _ P P

e KOk = f/d Lpe OTrer soeTeer (BL) explidt(Pg+dq) - -] = 1+1i6t(dpg+dq) - - - captures terms

KT
up to 8t'/2 but misses the term of the order 6¢. In using
where we have introduced the Gaussian distributed noise  the Suzuki-Trotter expansion, we have ensured that the

&. Ultimately, we like to trade in the field ¢ for the  error is smaller than 6t. We then have
noise {,. But, as remarked before, the field ¢ also ap-

pears in the Lg(¢;) matrix. To deal with the latter, we

use the Suzuki-Trotter expansion to write:

eOtLs (b)) — p3tLa () +igdt(x+Gi)T

5t (tr) ,ig0t(dr+or)T 3/2 (B2)
=e 1K) o9 k k)L O(5t )
— — — n_l —
lps() = /g[w,¢7§]%(wo>eiyg+zg;g —5t5k§k~/K—2i5t(fk¢k+fk¢k)Tk H eét]L1(tk)ei9(5tT(¢k+¢k)|p5<0)>> (B3)
k=0

where .7} refers to action for the free bosonic mode excluding the term 4ir¢¢ in the corresponding Lagrangian (A11).
We have also defined the shorthand

7(¢] = 1:[ O e, (B4)

R
k=0

as the measure of the functional integral over noise.
Next, we eliminate ¢, in the time-ordered product by writing it as a derivative with respect to £ as
— n_l — —
lps(t)) = /@W¢7§]%(¢0)ei=%—2k6tfkék/n T}, H eétlLl(tk)e—%T(agk+85k)e—zwt(gk¢k+§k¢k)ll|p0>>
k=0
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An integration by parts with respect to the derivatives just introduced yields

n—1

ps(1)) = / DI, 6, E)Wo (1) e’ b~ 2w 200UE o1t 0dn) ) TT et (ta) 5T +06,) o =0t6k8n/K1 o (0))

- /@[¢7¢7 5]%(¢O)ei5’é—2k 2i0t(Exdrt+Eudr) T, H eétlLl(tk)e—ét(ékH%T)(&kH%T)/n|p5(0)>>

k=0
n—1
(B5)
k=0

n—1

= / D, ¢, 5]%(¢0)eiyé*2k 218t (€ Pro+Endr) —OtErEn/ T H Ol (t1) —6t(g/2r) (€x+Ex) T—0t(g? /4K)T? lps(0))

In the second line, we used the fact that e®% is a trans-
lation operator, i.e., €% f(¢) = f(& + a) for a function
f(&). In the third line, we have used the Suzuki-Trotter
expansion again, this time to combine the exponents, and
ignored an error of the order 6¢3/2. Finally, we can inte-
grate over ¢y, for all k =0,1,--- ;n — 1 to find the delta
functions

/ 4d2¢k 62i(<i_>kf+¢kf) — 52(f)

772
with f = (g1 — ¥n) + 0t(—wipy, +ikhy, — &)

where we have defined 62(z) = §(Re 2)§(Im z). Integrat-
ing over ¢y for k = 1,--- ;n (excluding k¥ = 0) and ¢

(B6)

J

k=0

(

for k = 0,--- ,n — 1, the field ¢, completely drops out
while the field 4y (for k > 0) becomes constrained by the
equation

iy, — /00 —wib, +imt, =& (BT)

and the initial condition gy that is drawn from the
Wigner function #4(10). We have denoted the solution
to the above equation by ¢ . Together with the fact that
the Jacobian is 1, we finally find

n-l 7 & 2 2
1ps(t)) :/_@[5]/@1%%(1%)6* ok 0t&rr/m, H St (Ls+ig(d, +4,)5—(g/26) (Ex+Ex)T—(g7/40)T )|ps(0)>> (B8)

k=0

The exponent in this equation gives the kernel K(¢;) de-
fined in Eq. (27) albeit at a discrete time step k. This
completes our derivation of Eq. (26).

Next, we derive the local generator of the dynamics.
First, we define the time ordered product in the above
expression as [ps(t))), such that

ps() = / 71 / oo (o)e™ Er TG K o (1))
(B9)

It follows from this definition that

lps(te+1))e = (B10)
OtLs+ig(w, +8,)8—(9/2k) (€x+Ek)T— (9% /4r)T?] s (tk))

We then expand the exponential in powers of 6t and take
the limit 6t — 0. Specifically, we must expand the term

J

lps(tk+1))e = |ps(te))e + 0t {Ls +ig(, +9,)S = (9/2r) (& + E)T| |ps ()¢

(

proportional to noise (& + &) to the second order since

&x&, = k/0t. The term generated at this order is given
by

2 B 2
(i) 5t (& + & )°T? — stLT?

B11
2K t—0 4K ( )

1
2

The limit is obtained in the sense that 6t2£,&, = 0t while
all the higher cumulants are proportional to higher pow-
ers of dt. In essence, this statement is the same as the
proof that a Wiener process is described by dW? = dt
and dW?2TN =0 for N > 0 [92]. Next, we note that the
above expression cancels out against the last term of the
exponent in Eq. (B10) once expanded to the linear order
in 0t. It follows that

(B12)



In the continuum limit, this expression gives the dynam-
ics with the generator K defined in Eq. (30). The dis-
cretized version of this equation makes it clear that the
dynamics is given in the Itd sense. As a final remark, it
is straightforward to see that, using the transformation
between the It6 and the Stratonovich rules, the kernel
K describes the stochastic dynamics in the Stratonovich
sense.
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Appendix C: Influence functional and its variants

In this section, we show that our stochastic approach
gives rise to the expected Feynman-Vernon influence
functional when the initial state is factorized and the
bosonic mode(s) are initially in their vacuum state. Fur-
thermore, we utilize the Feynman-Vernon framework to

verify our stochastic formulation in cases where the ini-
tial state state is arbitrary.

1. Thecase N=M =1

We start by ‘integrating out’ the noise as well as the initial state from Eq. (B8). We first introduce the notation
(also see Section II)

me=(of +01)/2, k= (o} —0})/2 (C1)

Analogously to Appendix A, we can insert a complete basis to perform a quantum-to-classical mapping, albeit in

the basis defined above. The matrices S, T become diagonal in this basis with the elements (n7|S|n7)) = —7 and
{n|T|nm)) = —n. It is easy to verify that the functional integral in Eq. (B8) can be cast as

(alps(t)]o’) :Z/d%o%(wo)/9[516’Zk5t5’“5’“/“<<00’\77nﬁn>><<noﬁo|ps(0)>>X
.7
(C2)

n—1

< T €msaiinale®™ i
k=0

X . - p 2
Y09k (Y, )+ g St (€ +-Ex) — 4 Sty

where n = {no,m,- -+ ,nn}. Here, we assume that the bosonic mode is initially in the vacuum state described by the

Wigner function #4 (1) = %e*QW’OP. Now integrating over the noise {£} as well as the Wigner distribution function,
we find

{olos(lo’) =Y kool (nofiol ps (0)) %

n,7
n—1 _ _ _
<11 <<77k+177k+1|€6t]LS|nkﬁk>>e_%:6t"iezk«k' 82— 5 (B, Dy - ik —i o (8, G e-c) i+ oy (€ Fe.c)memi]
k=0
n_l 92 ~ =\ K ’ . 2 ~ ’ ’
_ Z <<O—UI|77n77n>> <<7707~70‘PS(0)>> H <<7]k+17~]k+1|€6t]LS |77kﬁk>>6_7 ft,t’ ()t )ig™ (t,t )6—15 ft‘t/ n(E)n(t")G(t,t") (03)
0,7 k=0

where the overline in the first equality indicates the Gaussian average over both the noise & as well as 1)y, and the
continuous time in the last line is a shorthand for the sum over discrete time. Notice that the term proportional to
n2 cancels out against the contribution from the noise average. Moreover, we have defined the Green’s functions

G(t,t") = %G(t —t) + c.e. = —sinfw(t — t')]e "IO(t — )
/ (C4)
iGE(t, )=k | Gt—t"G({t —t") +cc + %G(t)é(t') + c.c. = cosw(t — t')]e It
t//

These Green functions correspond to the correlation and response function of the first quadrature of the cavity
mode. While iG¥ is purely real, we have included a factor of i in harmony with the Keldysh convention. The above
expressions are consistent with the influence functional upon identifying g?G — —L; and ig?G® — Ly; see Eq. (C13).
Notice that the factor of 1/2 in front of G in the exponent of Eq. (C3) is due to the symmetrization with respect to
tt.
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2. Thecase N >1and M =1

Next, we consider N spins coupled to one bosonic mode. We shall assume a factorized initial state (an extension
thereof is straightforward), but consider a general initial state for the bosonic mode that is not necessarily Gaussian.
We can derive a similar functional integral expression similar to Eq. (B8) only with the matrix K identified as

N
. Gi -
K=S"|Li+i + )i — + ( ; ) 5
S |bbidip e 88 g e O - g (S (©)
Inserting a complete basis as the last subsection and performing a quantum-to-classical mapping, we find

@los(0)7) = [ EoHain) [ Flele 805 (3,01 T] i) (ol s 0)) x

m ’ (C6)
_ _ —istS, i, D)6t I (EntEr)— 2 (5 ginin)?
x [H <<77i,k+177i7k+1|€6tLS|77i7k77i,7€>>]e W30 ik (Y 8, )+ 300 s ik (S HEk) — 3w (325 9imi k)

ik
where we have defined & = {01,02, - ,on} and n = {n;x} with n; ; defined analogously to Eq. (Cl) with an
additional index i for each spin. We can repeat the same steps as the previous subsection to integrate over the noise

&, but this time we assume a general Wigner function %4 (1) and do not integrate over ¢y. More explicitly, we
separate out the dependence of the classical field ¥ on noise and the initial conditions as 9(t) = ¥[£](t) 4 iG(t)vo

where ¥[¢] ft, (t —t")&(t') is solely the contribution due to noise. Now integrating over noise £, we obtain
(@lps(t)]”) :/dQ%WOWO)Z (@, Hni,nﬁi,n» <<"7i,077i,olpi(0)>>H (i 177,411 |73 7 1)
7 i ik (Cn)

Y SR ACIUEGIEEIE S A MO ACOLANAS (RO R S S AR M OUMCOTI (Y
where we have used the continuous time as a shorthand for discrete time, and defined
- 1 _
IAGH (t,') = YLEJ (P[] () + c.e. = iGN (¢, 1) — [3GHEE) +c.c] (C8)

where the last equality follows by subtracting the contribution due to the initial state. We also remark that the
all-to-all coupling (albeit with different coefficients) in Eq. (C7) is simply because the same bosonic mode is coupled
to all the spins.

Next, we provide an alternative representation that yields the same functional integral as Eq. (C7), but it has the
advantage that different spins become decoupled. We first introduce the independent noise variables & = {&; 1}

Einlin 1 = 5kk’5m (C9)

We then separate out the initial conditions as ¥(t) = ¥[€](t )—HG (t)1pp where the term (€], still to be defined, is linearly
dependent on the new noise variables. We are then tasked to define 1[€] such that (¢¥[€](£)&;(¥) 4+ c.c.)/2k = G(t =)

while ¥[€](t)[€](t') +c.c. = iAGK (t,t'); if possible, this would allow us to couple the spin i only to &; and still recover
Eq. (C7). Indeed, this can be achieved by defining (in continuous time)

G () fZej o wigl) = =3 [ a-0g) (c10)

where G~! = i0; — w + ik is the inverse of the Green’s function G. We can then construct the functional integral in
discrete time as

(@ps(t)]e) = / o W5 (to) / i O L ) | EE R I R A OD R

K (C11)

X H (s 17,42 €255 [ e e~ 08 T D) BB )~ Hork

ik
where we have further assumed that the spins are initially factorized. One can explicitly check that the integral over
noise &; ;, exactly yields Eq. (C7). But in this process, we have substituted the square of the sum (Ej 9in; (t))2 with
the sum of squares j gjznj(ﬁ)2 where different spins are uncoupled. Indeed, undoing the insertion of the identity

matrices, we obtain the stochastic quantum evolution with the dynamics generator given by Eq. (37). Therefore, we
can evolve each spin independently before averaging their product over noise.
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3. Thecase N=1and M >1

Here, we consider a spin coupled to M bosons. We first consider a factorized state and assume that bosons
are initially in their ground state; we shall later relax the latter assumption. Our starting point is Eq. (B8) upon
substituting £ — Z and ¢ — ¥ whose correlations are given by Eq. (55). Following the same steps as Appendix C 1,
we find the expression in Eq. (C3) for the Feynman-Vernon influence functional, only with a different identification
of the Green’s functions as

==Y g2sinfwa(t —t)]e O — 1)

, (C12)
ZQK t,t") Zga cos|wy (t — t')]e"Falt=t]
In the absence of Markovian dissipation, the standard Feynman-Vernon influence functional is given by
~ 1 > ! ’ . / ~ 4! INS (N = (2]
Fln,al =expq—— [ dt | dt'[iLi(t = )n@)a(t") + La(t — t)7()7(t")] (C13)
0 0
where the kernels Lq o(¢,¢') are defined in terms of the bath spectral function J(w) as (at zero temperature)
o o)
Li(t) = / dwJ (w) sin(wt), Lo(t) = / dwJ(w) cos(wt) (C14)
0 0

Setting k — 0, we recover the above expressions from Eq. (C12) by identifying

Z%/d% o = J(W) (C15)

Next, we consider a general initial state for bosons. We derive Eq. (62) by combining the steps in this and the
previous subsections. As a first step, we define U[Z, X] from Eq. (62) by excluding the dependence on 1,0, that is,
(t) = V[EX](t)+ i), Ga(t)hao. With the correlations defined in Eq. (62), one can show that

VEXIDVEXIT) = 3 e [ Golt:t)Galt ) = 3 020 T D7l
(C16)

U[E, X] (O ZgaG t—t) = g2val€al(DE(t)

(e

where ¥ [€a](t ft, &a(t"). One can then follow the same steps as in Appendix C 2 to show that explicitly
integrating over the nome = ylelds the same result as the original functional integral over M different noise variables
{&x(t)}. In both cases, the initial state is represented by the integral over {¢,0} weighted by the Wigner function

#o({¥a0})-

Appendix D: ¢ matrix

In this section, we first prove that C(t,t') defined in Eq. (58), viewed as a matrix in time, is positive. We then
provide a simple scheme for diagonalizing this matrix.
To show the positivity, we first write C as

C(t, ') = Cx(t — ') + D(t, 1) (D1)

where we have defined

Cult—t)=cti-t) -2 [ T dsx(t— ¢ — $)x(s)
Y J-—x

! 1 0 1! "\ — ! 1" (Dz)

D(t,t):;/ dt’"x(t —t")x(t —t")

— 00

Notice the bounds of the integrals in these expressions. The subscript st stands for the stationary state smce c (t,¢t ) —
Cst(t,t') at long times ¢,¢ — oco. It is easy to see that D is manifestly positive: (f|D|f) = ft o D(t,t)f(t') =
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(1)) [at" | [, f()x(t— t”)|2 > 0 for an arbitrary function f(t). To prove C' > 0, it is sufficient to show that Cy; > 0.
Since the latter is time translation invariant, we can consider its Fourier transform

) = 302G @G (8) — o7 D 62Ga(w) Y ) (D3)
@ ol T, B

This quantity is positive because

10u(w) = 5 > oot [5G @)+ %\GWW - Gol@)G3(] ~ GGl

:*Zaﬂ

(D4)

2
ucye) "B Gy(w)

We therefore conclude that C/(t,t') is positive as a matrix. 5 B
In fact, a similar argument leads to the stronger result that AC' = C(t,t') — 1 3 g2Ga(t)Ga(t') is positive, that is,

Zgaﬁa [ Galt—t1Galt - ”)—%/tux(t—t”))’((t’—t”)20 (D5)

in the sense of a matrix. The proof follows by sandwiching the above equation between (f| and |f) for an arbitrary
function f(t) and following a similar argument as above. Note that AC appears in Eq. (62) as the colored noise
correlator upon excluding the contribution from the initial state.

Next, we diagonalize C(t,t') viewed as a matrix in the time domain. It is more convenient to work in the Fourier
basis. We first Fourier transform the function Cy(t — t'). Defining the maximum time ¢,,4,, the argument of Cy; is
in the range [—tmax, tmaz]; See also [45, 74]. Expanding in Fourier series, we have

st t _ t Z cn ezwn(t t') /tmaz (DG)
n=-—oo
where the coefficients ¢,, are obtained as
1 tmaz .
Cp = 5 / dse =18/ tmaz Cu(s) (D7)
max _tmaw

Next, we consider the function D(t,t’); the time variables t,t" are defined in the range [0, t4,]. However, we extend
these functions to the extended domain [—tmaz, tmaz], in order to expand these functions in the same harmonics basis
used for Cg(t — t’). There are different ways that one can define these functions in an extended domains. A first
choice is to define C (t,t') =01if t < 0 or ¢ < 0, although it may generate pronounced oscillations when we truncate
the sum over harmonics at a finite order n,,4,. Other choices may be taken where the function C’(t, t') are nonzero
for t <0 or t' < 0. We expand D(¢,t) in terms of these harmonics as

Z d zTrnt/tmal i/t [tmax (Dg)
where
tmaa /
max dsds . ;o
d’nn’ = // 76_7’7‘—('”3_" S )/tmazD S,Sl D9
Gt (s,5) (D9)

The full matrix can be then written as

é(t,t/) — Z eiﬂnt/tmacp—iﬂ'n’t//tmaz (cnén,n’ + dn,n’) (DIO)

n,n’
We can now diagonalize the matrix [Cly, v = CpOn,ns + dpns a8

C=U 'CyineU (D11)
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where Cging = diag{¢,} is a diagonal matrix with all the eigenvalues positive (¢, > 0), and U is a unitary matrix.

Finally, we can write

Ct,t') = Eaba(t)ba(t)

where the new functions 6, are now defined as

aa (t) = Z Uaneiiﬂ—nt/tmaw
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