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Abstract—This paper describes the conceptual framework be-
hind QUINTET, an experiential learning platform, for education
and workforce development in secure quantum communication,
quantum networks and quantum computation. The platform
enables users to generate lessons using QUINTET engine while
specifying learning objectives and constraints. The engine com-
poses the required learning objects using fractional knapsack
problem to generate best possible lesson(s) that satisfy the
given constraints. This paper primarily describes the working
of QUINTET and generation of lessons.

Index Terms—Experiential learning, Quantum networking and
computation, Quantum education, Learning platform, Automatic
generation of lessons

I. INTRODUCTION

Educators and students in the fields of secure quantum
communications and quantum networking face distinctive
challenges. Proficiency in these areas demands expertise across
a wide range of disciplines, such as quantum mechanics, quan-
tum computing, cybersecurity, computer science, computer
networks, algorithms, mathematics, physics, digital communi-
cations, and cryptography. The interdisciplinary and emerging
nature of these fields introduces significant structural and ped-
agogical difficulties. Due to the limited availability of special-
ized educational resources and curricula, educators often need
to manually compile and curate materials from diverse sources.
This process involves the complex tasks of reorganizing and
reformatting the materials and identifying relevant student
learning objectives (SLOs), placing a substantial burden on
educators. Furthermore, students find it challenging to learn
effectively from courses constructed from such a disparate
collection of resources.

Traditional pedagogical methods [16] are inadequate for
teaching interdisciplinary subjects [5] like secure quantum
communications and quantum networking, as they offer lim-
ited hands-on learning experiences necessary for understand-
ing the interaction among various disciplines. Experiential and
project-based learning approaches, which blend these disci-
plines, are more effective but challenging to implement due
to the need for integrating theoretical concepts from physics,
mathematics, and computing with practical quantum network
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design principles. Additionally, the scarcity of quantum com-
puting equipment and infrastructure hinders the incorporation
of hands-on experiences.

Game-based learning using serious games offers an alter-
native immersive learning experience [1], [4], [11]-[13], [18].
However, studies show that serious games have limited benefits
in improving learning outcomes in spatial network disciplines
and may hinder reflection and conceptualization due to limited
exposure and attention spans [6], [18]. Therefore, a novel ap-
proach is needed to prepare the next generation workforce for
secure quantum communications and networking effectively.

This paper presents QUINTET, an advanced experiential
learning platform designed to overcome the structural and ped-
agogical challenges in educating and developing a workforce
for secure quantum communication and quantum networking.
The QUINTET platform includes:

1) Innovative and interactive course modules on classical
and quantum networking, networking algorithms, quan-
tum internet components and routing, classical and quan-
tum cryptography, and network security. These modules
utilize various learning objects constructed with object-
oriented principles and design patterns.

2) A Learning Objects Repository (LOR) comprising mod-
ular interactive widgets, didactic materials (text, videos,
interactive widgets), exercises, quizzes, and tests. These
learning objects (LOs) can be used to automatically
synthesize lessons and courses that ensure alignment
with the specified student learning outcome (SLOs).

3) Curricular materials developed using Kolb’s experiential
learning [7], [12], supporting hands-on virtual quantum
network experimentation.

QUINTET learning objects are designed to build proficiency
in quantum communication and networking through a series
of modules. These modules range from foundational topics,
such as qubits and quantum operations, to advanced princi-
ples involving quantum networking devices, routing protocols,
network topologies, and quantum key distribution. The goal is
to enable learners to establish secure communication channels
within quantum networks. Furthermore, QUINTET provides
practical experience in network design, incorporating coding
exercises with quantum programming libraries from IBM,



Microsoft, and Amazon. These exercises allow for remote
connections to quantum computers or simulation platforms.

The Learning Objects Repository (LOR) is enriched with
extensive metadata, facilitating the efficient retrieval and cus-
tomization of course modules for diverse learning experiences.
Expert-defined concept dependencies and learner usability pat-
terns are utilized to identify concept prerequisites and compose
cohesive lesson. Instructors and learners have the option to
customize the output generated by QUINTET, creating lessons
that vary in length from hour-long tutorials to full semester-
long courses.

Recently, the NSA developed Clark, an educational content
repository for cybersecurity [10]. However, Clark requires
instructors and learners to manually retrieve and organize
learning modules and their prerequisites, and its rigid content
structure does not allow for customization based on students’
needs and objectives. This rigidity imposes a significant burden
on instructors and learners to create tailored learning experi-
ences.

Asynchronous online courses are crucial for training the
future cybersecurity workforce, especially in quantum com-
puting and networking, due to a shortage of educators. These
courses are key for IT professionals in government and indus-
try and will likely be used to retrain the workforce in quantum
technologies. However, they lack flexibility, as students cannot
easily extract relevant content based on their preferences
or performance, nor can they access different views of the
same learning objectives. This rigidity stems from insufficient
metadata for course modules, hindering dynamic course layout
generation, lesson, and lesson plan synthesis.

Previous research has explored the automatic synthesis of
course books using rule-based frameworks tailored to specific
scenarios, learning objects, and pedagogical goals [8], [15].
Other studies [9], [14], [17], [19] have developed Learning
Object Repositories (LORs) defined by concepts and tailored
to learning preferences and educational backgrounds. How-
ever, these frameworks lack mechanisms to integrate hands-
on labs and projects, which are essential in the cybersecurity
field. Additionally, they are less agile and often do not collect
or analyze learner usability data, limiting their ability to adapt
to learner needs in real-time.

II. THE QUINTET PLATFORM

To address the challenge of developing educational content
for quantum communication and quantum networking, QUIN-
TET structures its content into three categories: foundational
knowledge units (FKUs), bridge knowledge units (BKUs),
and interdisciplinary knowledge units (IKUs). Foundational
concepts within the constituent disciplines of QUINTET are
identified and developed into FKUs. BKUs are created to
link these foundational concepts across different disciplines,
which are then used to construct interdisciplinary modules.
These modules enable learners to achieve proficiency in secure
quantum communication and quantum networking. Table I
lists the modules and corresponding learning objects related
to these areas.

The identification of foundational concepts for secure quan-
tum communication and networking in QUINTET is expert-
driven. We use established courses and texts, supplemented as
needed to cover all necessary foundational concepts. Bridge
blocks are created to link these concepts across disciplines.

In quantum computing and cryptography, bridge blocks
include topics like quantum key distribution (preparation,
measurement, entanglement-based, continuous variable, pro-
tocols). For networking and cryptography, as well as network-
ing and quantum computing, bridge blocks cover quantum
repeaters, trusted nodes, quantum routing protocols, quality
of service, denial of service, key rates, transmission distances,
qubit attenuation, multi-modal transmission, topology effects,
eavesdropping, and multi-channel quantum key distribution.

These bridge blocks help learners from varied backgrounds
achieve proficiency in constituent disciplines and understand
their interactions. They are crucial for developing interdis-
ciplinary modules, such as end-to-end quantum secure com-
munication channels, robust and fault tolerant implementation
on quantum networks, hybrid quantum-classical networking
protocols, and multi-modal communication with congestion
control.

A. QUINTET Learning Objects

The QUINTET framework encompasses didactic, experien-
tial, and assessment Learning Objects (LOs). Didactic LOs in
QUINTET resemble sections in traditional textbooks but are
parameterized by several attributes. For example, the learning
choice parameter specifies the representation used by an LO
to present its concept. Supported learning choice values for
didactic LOs include text, visual (image), symbolic example,
numerical example, widgets, interactive/non-interactive simu-
lations, code-IDE, and code-IDE with tests.

Each educational content is developed in multiple formats,
with each format available as a separate LO to support learning
through various representations. For instance, an LO with the
parameter value text describes the qubit measurement concept
textually, while another LO with the parameter value symbolic
example presents the same concept using equations. Additional
learning choice parameters are supported as needed.

The position of a Learning Object (LO) in the QUINTET
Knowledge Unit (KU) hierarchy is determined by several
parameters: KU (with values FKU, BKU, IKU), learning
objective (a sequence of Student Learning Objectives, or
SLOs), prerequisite (with values strict, conditional, waivable),
and completion (with values yes/no).

o Strict prerequisites: require all specified LOs to be
completed before attempting the current LO.

o Conditional prerequisites: require at least one of the
listed LOs to be completed.

« Waivable prerequisites: suggest background material
that can be ignored but may transition to strict or condi-
tional prerequisites based on learner usability patterns.

Successful completion of an LO is indicated by the Boolean-
valued completion parameter.



QUINTET Modules Learning Objects

Classical Networking

Basic networking principles, mathematical representations of networks, routing and optimization strategies,
network topologies — P2P, linear, ring, lattice, tree, small-world, random, and hybrid topologies

Quantum Networking

Quantum channel, quantum processes, quantum states and channel representations, optical encoding of quantum
information, quantum error correction and basic quantum routing techniques

Networking Algorithms
scheduling problems

Shortest path, minimum-cost flow, max flow, minimum spanning tree, multicommodity flow, and routing and

Components of Quantum Internet

Quantum routers, quantum switches, quantum state preparation, quantum measurements, quantum state evolution
during transmission, entanglement purification, quantum state teleportation, and quantum gate teleportation, super
dense coding and entanglement distribution

Classical Cryptography

Secret-key cryptosystems, public-key cryptosystems, digital signatures, hashing, secure communication channels,
stream ciphers, block ciphers, computational and information-theoretic security, classical cryptanalytic attacks

Quantum Cryptography
cryptographic systems

Basics of quantum cryptography, semi-quantum cryptography, quantum key distribution, and attacks on quantum

Network Security Principles
rerouting

Eavesdropping, masquerading, disruption, denial of service, integrity, availability, man-in-the-middle, and message

Quantum Network Security Principles

Eavesdropping on quantum channels, optical probing, blinding of detectors, fault injection, out-of-system attacks,
malicious entanglement, false failure reports, quantum denial of service, dishonest quantum computation, link
attacks, switching disruptions, quantum node hijacking

Secure Communication

End-to-end quantum communication protocols, robust and fault tolerant implementation on quantum networks,
hybrid quantum-classical networking protocols, multi-modal communication with congestion control

TABLE I: Secure quantum communication and networking modules and corresponding learning objects.

Assessment LOs evaluate learner performance in the spec-
ified list of LOs and set the completion parameter values
accordingly. The assessment type parameter supports various
forms of evaluations, including quizzes, homework, simula-
tions, code-IDE, code-IDE with tests, midterms, finals, reports,
and virtual labs.

Frontend: In QUINTET, learning objects (LOs) are de-
livered through Jupyter notebooks, the standard for quantum
computing and programming. These notebooks support the
integration of code, mathematics, visual objects, simulations,
widgets, and quizzes, and interface with external APIs like
IBM and Microsoft quantum simulators. Python is used for
both quantum programming and cybersecurity.

Jupyter notebooks consist of markdown and code cells, with
each LO spanning multiple cells and its Student Learning Ob-
jectives (SLOs) distributed throughout. Notebooks can contain
multiple LOs, with the notebook’s SLOs being the combined
SLOs from all cells. Figure 1 display a number of interactive
learning objects of the type quiz, simulation, and auto-graded
labs. Figure 2 displays the interactive lab for Bloch sphere
representation, self contained programmatic simulation learn-
ing object and the IBM Quantum Simulation learning object.
Finally, figure 3 shows the quantum network simulator within
QUINTET that allows for large scale simulation of networks
with different topologies, router and repeater placements and
protocols. The network simulator also supports the display
of qubit state in real-time using Bloch sphere as it traverses
through the network and the equivalent circuit constructed for
the network path chosen by the qubit.

B. Experiential Learning in QUINTET
Experiential learning in QUINTET is facilitated through
experiential learning objects (LOs).

o Concrete Experimentation Phase: This includes inter-
active simulations, code-IDE with tests, and self-graded
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Fig. 1: Interactive learning objects in QUINTET.

exercises, grouped into notebooks that also function as
virtual labs.

o Reflection Phase: LOs are grouped into reflection zones
within notebooks, incorporating interactive simulations
that replicate learner actions from the concrete experi-
mentation phase. These zones allow learners to replay
actions and observe outcomes, with support for student-
initiated queries to deepen comprehension.

o Conceptualization Phase: LOs in conceptualization
zones help students generalize and abstract concepts from
concrete experiments and reflections, fostering computa-
tional thinking. These zones encourage students to apply
learned concepts to varied scenarios involving networks
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Fig. 3: Quantum Network/Internet Simulator in QUINTET

and quantum states. Interactive audio-visual scenarios
and coding tasks present applications, assisting student
queries with problem-solving hints.

o Active Experimentation Phase: Managed by assessment
LOs, enabling learners to test their understanding and
apply their knowledge.

This structured approach ensures that learners can experi-

ment, reflect, conceptualize, and actively test their knowledge
through a comprehensive set of interactive and didactic tools.

III. SYSTEM OVERVIEW

Figure 4 shows the initial interface of QUINTET. The top of
the screen presents to the learners a list of existing high level
modules and topics covered in these. A student can check
off boxes for the topics that the student already knows as
pre-requisites. Checking a box will eliminate learning objects
contributing to that topic from the generated lesson. A con-
venient search box facilitates searching of topics as the topics
list grows. The current screenshot in figure 4 shows the linear

 Launcher x| 1 Course_Generatoripynb X | +

B+ XDO»mco» v Notebook (5 &  Python 3 (ipykernel

O

Properties of Complex Numb.

Inner Product and Properties

aVector Eige

Hermitian Matrices. Unitary Matrices Implications of Unitary Transf.

Tensor Product Matrices.

» The Basics of Complex Numbers

» Properties of Complex Numbers.

» Complex Numbers on a Plane

» Complex Vector Spaces

» Complex P 3 Basis and Di

» Advanced Concepts in Complex Vector Spaces

» Overview of Tensor Analysis

Estimated Time: Estimat

Submit Clear Selection

I o s TR

Fig. 4: Entry page of QUINTET displaying linear algebra
preliminary modules, and pre-requisite selection interface.

 Launcher X | 7 Course
B +X0O0O»mcC

Notebook (7 % Python 3 (ipykernel) O

# Novigate to Modul
srun pyfiles/Course.

I (21: # Run betow cetl

Implications of Unitary Transf.

s of Complex Numbers

Concepts  Students wil be able to represent complex numbers as ordered pai
Students will know some of complex them.
able

ble 1o prove basic properties of modulus and coniu

» Complex Numbers on a Plane

» Complex

» Complex Vector

Fig. 5: Entry page of QUINTET displaying the expanded
learning outcomes of module titled ‘“Properties of Complex
Numbers”.

algebra topics that a student needs to achieve proficiency in
before embarking on the topics of quantum communications,
networking and computation.

Once the student has identified the appropriate pre-requisite
topics that the student already knows, the student can expand
various modules which will display the associated learning
outcomes with that module. A student can then select one
or more of the learning outcomes that they want to become
proficient in (figure 5).

Figures 6a and 6b display two scenarios where a student
identifies no known pre-requisites and one of the known
pre-requisites (in this case complex numbers from figure 4),
respectively. The student has not identified any estimated
learning time they are willing to spend and therefore QUIN-



(a) Without pre-requisites (b) With pre-requisites

Fig. 6: Notebook generation in QUINTET without and with
pre-requisites selected for a single learning outcome.

(a) Without pre-requisites

(b) With pre-requisites

Fig. 7: Notebook generation in QUINTET without and with
pre-requisites selected for a single learning outcome.

TET simply collects and generates a lesson that includes all the
necessary learning objects to complete the identified learning
objective. This fact is shown at the bottom of the screen by
the list of learning objects included in the generated lesson.

Figures 7a, and 7b show the generation of QUINTET
lessons for different time constraints, 40 and 80 minutes
respectively, for the same learning objective identified by the
students. As seen in the figures the list of learning objects
synthesized into the lessons differ for the two. The 40 minute
lesson is subset (fraction) of the 80 minute lesson.

A. Lesson Generation

Lessons are presented to students in the form of Jupyter
notebooks. The student specifies the target learning outcome
they want to achieve and the pre-requisites they already know.
Along with this the student can also specifies a time constraint
for the lesson. QUINTET generates lessons using fractional
knapsack algorithm [3] trying to maximize the number of
learning objects that fit within the given time constraint [2].

B. Fractional Knapsack Problem

The 0-1 Knapsack Problem: The 0-1 Knapsack problem is
an example of a combinatorial optimization problem that can
be used to illustrate decision-making and resource allocation
in various contexts, including education. The 0-1 Knapsack
problem involves a knapsack or a backpack with a limited
capacity (weight limit) and a set of items, each with a specific
weight and value. The objective is to select a combination of
items to put into the knapsack so that the total weight does
not exceed the capacity while the total value is maximized.
The “0-1” part of the name indicates that each item can either
be taken or left (i.e., you cannot take a fraction of an item).
In the educational context, typically a “knapsack” is a limited
available resource — such as time, budget, or attention —
while the “items” represent educational activities, programs,
or materials, each with a “cost” (time, effort, money) and a
“value” (learning outcome, student engagement, etc.).

The Fractional Knapsack Problem: The Fractional Knap-
sack problem extends the principles of the classic 0-1 Knap-
sack problem by allowing the selection of fractions of items
instead of having to choose items in their entirety. This
variation introduces a level of flexibility that can be highly
applicable in educational contexts. In the Fractional Knapsack
problem, you are still trying to maximize the total value of
items put into a knapsack with a limited capacity.

In QUINTET, we have a number of educational modules.
Each module consists of a number of learning objects. A
student can finish a partial module, but a learning object must
be completed in its entirety. Each learning object has a time
for completion and a profit associated with it. Each module has
a module-level learning outcome associated with it. A student
provides a target learning outcome from a list of outcomes and
the maximum amount of available time they can spend on it.
To complete a target learning outcome, a number of modules
may need to be composed into a lesson. We formulate this
problem as a fractional knapsack problem to create lessons
for students with specified target learning outcome that fits
within the maximum time students specify.

Variables: Below are the variables for our fractional knap-
sack implementation:

M: Set of all modules.

L;: Set of learning objects in module .

t;;: Time required to complete learning object j in module <.
pij: Profit (educational value) associated with completing
learning object j in module <.

x;;: Binary variable where x;; = 1 if learning object j in
module ¢ is included in the plan, O otherwise.

y;: Fractional variable where y; represents the fraction of
module ¢ included in the plan based on its learning objects
included.

T: Maximum total time a student is willing to spend.

O: Target learning outcome, which is achieved by completing
a specific combination of modules.

O;: Learning outcome contribution of module ¢ when fully
completed.



C,: Set of modules required to achieve the target learning
outcome O.

Objective Function: We maximize the total educational
value of the selected learning objects while aiming to fulfill
the learning outcome O:

Maximize Z =} ;e D icr, Pij * Tij

Time Constraint: The total time spent on selected learning
objects must not exceed the available time,

T: Z Zt”(EWST
i€Co jEL;

Module Completion Fraction: Define the fraction of each
module completed based on the learning objects included. If
all learning objects in a module are included y; = 1; otherwise,
it is proportional to the number of learning objects included:

Z]|ELL"|”forallieCo

Learning Outcome Achievement: Ensure that the combi-
nation of modules sufficiently addresses the target learning
outcome O. This might translate to achieving a sufficient
fraction of modules in C,:

Yi =

Z O; - y; > Minimum required outcome level for O
i€C,
Binary and Fractional Variables: Ensure that xz;; are
binary (0 or 1) and y; are fractional (between 0 and 1):

xy; € {0,1} for all j € L;,i € C,
0<y;<1forallieC,

This model optimizes the selection of learning objects to
maximize educational value while ensuring that the selected
items do not exceed the student’s available time and contribute
towards achieving the specified learning outcome. This in-
volves a mix of complete inclusion for discrete learning objects
(0-1 decision) and partial completion of modules (fractional
decision) based on the percentage of learning objects included
from each module.

C. Implementation

A high-level list of steps for the algorithmic implemen-
tation of fractional knapsack problem for generating lessons
using QUINTET is given below. The steps below provide a
structured approach for constructing an educational lesson that
optimizes learning object selections within a given time frame
to meet a desired learning outcome identified by a student.

1) Initialize a dynamic programming (DP) table that stores
the maximum value achievable with a given time.

2) Fill the DP table. This step prepares each module by
sorting its learning objects based on efficiency.

3) Use sorted lists to update the DP table using a reverse
traversal to prevent reuse of the same learning object in
the current iteration.

4) Backtrack from the end of the DP table to determine
which learning objects were used to achieve the DP

1

2 "cell_details":

3 "cell_ID": "ml-imaginaryNumbers",

4 "cell_alternates": [1,

| "cell_concepts":

6 "Complex Numbers"

7 .

8 "cell_estimated_time": "3",

9 "cell_interactive": "false",

10 "cell_outcomes": [

11 "Understand the motivation behind the introduction of complex numbers",
12 "Learn the definition and properties of the imaginary unit i",

13 "Perform arithmetic operations with imaginary numbers and recognize patterns

in powers of i"

15 "cell_prereqgs":

16 "ml-background"

17 :

18 "cell_title": "Imaginary Numbers",

19 "cell_type": [

20 AN

21 :

22 "module_outcomes":

23 “"Master the concept of complex number representations",
24 "Perform basic additive and multiplicative operations on complex numbers",
25 "Implement Python programs for addition and multiplication on complex numbers"
26 ’

27 "module_preregs":

28 "Algebra",

29 "Introduction to Programming",

30 "Python Basics"

31 :

Sz "module_title":

33 "The Basics of Complex Numbers"

34

35 },

36 “editable": true,

37 "slideshow":

38 "slide_type": "slide"

39 by

40 “tags":

Fig. 8: Example metadata for learning objects.

table’s maximum value at time 7. This also helps to
determine the fraction of each module completed.

5) Calculate how much of each module is completed based
on the selected learning objects.

6) Check if the learning outcomes meet the target goal,
suggesting adjustments if necessary.

7) Output the final selections and their details.

The algorithm implementing the above procedure for gen-
eration of QUINTET lessons is given in Algorithm 1.

D. Proof of Correctness of Algorithm 1

To prove the correctness of Algorithm 1, we need to show
that it correctly finds the optimal set of learning objects that
maximize the educational value while respecting the given
time constraint 7' and ensuring the target learning outcome
is met.

1. Initialization

The algorithm initializes a dynamic programming (DP) table
dp where dp [k] represents the maximum educational value
achievable with k units of time. This initialization step ensures
that the algorithm starts with a base case where no time is used,
and no educational value is accumulated.

2. Learning Object Preparation and Sorting

For each module in the set C'o (modules required to meet
the target learning outcome), the algorithm:

« Lists all learning objects.

o Sorts these learning objects by their profit-to-time ratio
P in descending order.
ij



Algorithm 1 Fractional Knapsack Based Lesson Generation
with Time Constraints

Require: Modules M, learning objects per module L;, times
15, profits p;;, maximum time 7', target learning outcome
O, required modules Cp
Ensure: Selected learning objects, their modules, total edu-
cational value, total time used
1: Initialize DP table: dp[0..T] <— 0 // DP array with size
T + 1, initialized to O
for each module 7 in Cp do
Create a list of learning objects LO with (j, psj, ti;)
for each learning object j in L; do
LO'append((jvpijvtij))
end for
Sort LO based on ’t’# ratio in descending order
end for Y
for each module 7 in Cp do
10:  for each learning object (j,p,t) in LO do

D A o

11: for k& from T down to t do

12: dplk] = max(dplk], dp[k — t] + p)
13: end for

14:  end for

15: end for

16: Backtrack to determine selected learning objects and cal-
culate module fractions:

17: Initialize selected_objects to an empty list

18: current_time < T

19: while current_time > 0 do

20:  for each module 7 in reverse order of Cp do

21: for each (j, p,t) in reverse order of LO do

22: if current_time > t and dp|current_time] ==
dp[current_time — t] + p then

23: selected_objects.append((i, 7))

24: current_time— =1t

25: break

26: end if

27: end for

28:  end for

29: end while

30: Calculate the completion fraction y; for each module:

31: Initialize completion_fraction[i] = 0 for each ¢ in Cp

32: for each (i,7) in selected_objects do

33:  completion_fraction[i|+ = T

34: end for

35: Check if the outcome O is achieved:

36: total_outcome_value = ZieCo 0O;
completion_fraction]i]

37: if total_outcome_value < required outcome level for O
then

38:  Print “Adjust learning objects or increase time 7

39: end if

40: Algorithm continued below =0

. Algorithm continued from above
: Output the results:
: Print“Selected learning objects and modules:’
. for each (4, ) in selected_objects do

Print “Module”, ¢, "Learning Object”, j
end for
: Print “Total educational value:”, dp[T]
- Print “Total time used:”, T — current_time
: for each i in Cp do
Print “Completion fraction of Module”, i,
completion_fraction]i]
: end for=0

s

O 0 N R W =

99,9

_
=4

i

—
—_

Reasoning: Sorting learning objects by their profit-to-time
ratio ensures that we consider the most efficient (in terms of
educational value per unit of time) learning objects first. This
is a greedy approach that is optimal for the fractional knapsack
problem.

3. Dynamic Programming Table Update

The algorithm iterates through each learning object and
updates the DP table. For each learning object (j,p,t) in the
sorted list, it updates the DP table backwards from 7' down to
t:

dp(k] =max(dp(k]l,dplk - t] +p)

Reasoning: This step ensures that for each possible time
k, the algorithm considers whether including the current
learning object would increase the total educational value.
The backward iteration prevents the same learning object from
being considered multiple times in the current iteration.

4. Backtracking

After filling the DP table, the algorithm backtracks to
determine which learning objects were selected:

« Starting from dp [T], it traces back through the DP table

to find the selected learning objects.

o It calculates the fractions of modules completed based on

the selected learning objects.

Reasoning: Backtracking ensures that we can reconstruct
the set of learning objects that contributed to the maximum
educational value stored in dp [T]. By tracing the updates,
we can identify which learning objects were included in the
optimal solution.

5. Outcome Verification

The algorithm verifies if the total educational value meets
the target learning outcome:

total_outcome_value = Z O; - completion_fraction][i

i€Co

If the total outcome value is less than the required level, the
algorithm suggests adjustments.

Reasoning: This step ensures that the selected learning ob-
jects not only maximize educational value but also contribute
to achieving the target learning outcome. The verification step
ensures that the solution meets the problem’s constraints.
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Fig. 9: Use case with a single learning outcome and time constraint of 30 mins.

6. Output
The algorithm outputs:

o The selected learning objects and their respective mod-
ules.

o The total educational value.

o The total time used.

o The completion fraction of each module.

Reasoning: Providing detailed output ensures that the so-
lution is transparent and that all selected components are
clearly identified. This helps in verifying and understanding
the optimal solution.

To summarize the correctness argument follows the follow-
ing steps:

o The initialization step correctly sets up the DP table.

o Sorting learning objects by profit-to-time ratio ensures

that we consider the most valuable learning objects first.

o The DP update step ensures that we build the optimal

solution incrementally.

o Backtracking correctly reconstructs the optimal solution.

o Outcome verification ensures that the solution meets all

problem constraints.

By these steps, the algorithm ensures that the optimal
set of learning objects is selected to maximize educational
value within the given time constraint while achieving the
target learning outcome. This combination of greedy sorting,
dynamic programming, and backtracking forms a correct and
optimal solution to the problem.

IV. USE CASES

We walk through a couple of use cases to illustrate the
working of the fractional knapsack algorithm in QUINTET.
Figure 9 shows a case when the student chooses a learning
outcome Understand and apply the projection of one vector
onto another. QUINTET engine maintains a dependency graph
for various learning objects. Using this dependency graph the
QUINTET engine first identifies the learning objects that a

student needs to achieve proficiency in to meet the target
learning outcome. Each learning object is instrumented with
metadata (eg. figure 8) that contains an attribute for the
estimated time to achieve proficiency. This estimated time is
subject matter expert driven. As we can see from figure 9 that
30 minutes is not enough to meet the desired learning outcome
in its entirety. As a result, the largest possible fraction of the
learning outcome will be covered. The algorithm first finds
the longest chain of learning object dependencies to that fit
within the specified time constraint. This is denoted by green
font and adds to 25 minutes. The learning objects shown in
light brown color are common between two different paths of
dependencies. Completing the entire LO Inner Product and
the high level LO Projection leaves only 5 minutes out of 30.
At this point the algorithm can pick the next largest learning
object Modulus Conjugation and present a 29 minute lesson
consisting of LOs in green font and one additional learning
object modulus conjugation.

Another option for the algorithm is to complete the learning
objects Norm of a Vector and Orthogonal Basis consuming 21
minutes and additional learning objects of Complex Numbers,
Imaginary Numbers and Background Img. Num. leading to a
lesson of 28 minutes. Since this falls short of the 29 minute
lesson we prioritize and present the first option discussed
above.

In the case of a tie, we prioritize the lesson that covers the
most number of learning objects in a complete manner.

Figure 10 shows another dependency graph of learning
objects for the learning outcome To learn the properties of
Tensor product of matrices. The learning objects in green font
can be covered in the student specified time of 50 minutes. The
algorithm favors fully completing the longest chain of learning
object dependencies that fit within the specified amount of
time.
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Fig. 10: Use case with time constraint of 50 minutes.

V. CONCLUSIONS

QUINTET introduces a first of its kind experiential learning
platform designed to address the unique challenges in educa-
tion and workforce development for quantum communication,
quantum networking, and quantum computing. It is built
on a robust learning objects repository, featuring modular
interactive widgets, didactic materials (text, videos, interactive
widgets), exercises, quizzes, and tests. These learning objects
(LOs) are used to automatically create lessons that align with
specified student learning outcomes. Lessons are structured
using Kolb’s experiential learning model, incorporating hands-
on virtual network experimentation. The learning objects are
developed offering multiple representations of the same con-
cept.

Future work involves developing more learning objects in
QUINTET and allow for additional constraints such as learn-
ing preferences (theory driven, example driven, quiz driven,
hands-on exercise driven, etc.). It will also support generation
of multiple lessons of specified time limit or breaking up a
longer lesson into smaller chunks.
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