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Abstract22

Long-period underside S-wave reflections have been widely used to furnish global con-23

straints on the presence and depth of mantle discontinuities, and to document evidence24

for their causes, e.g., mineral phase-transformations in the transition zone, compositional25

changes in the mid-mantle, and dehydration-induced melting above and below the transi-26

tion zone. For higher resolution imaging, it is necessary to separate the signature of the27

source wavelet (SS-arrival) from that of the distortion caused by the mantle reflectivity28

(SS precursor). This is the general deconvolution problem and classical solutions include29

frequency-domain or time-domain deconvolution. However, these algorithms do not easily30

generalize when (1) the reflectivity series is much shorter period compared to the source31

wavelet, (2) the bounce-point sampling is sparse, or (3) the source wavelet is noisy or hard32

to estimate. To address these problems, we propose a new technique called SHARP-SS:33

Sparse High-Resolution Algorithm for Reflection Profiling with SS waves. SHARP-SS is34

a Bayesian deconvolution algorithm that makes very few a-priori assumptions on the noise35

model, source signature, and reflectivity structure. We test SHARP-SS using real data36

examples beneath the No-MELT Pacific Ocean region. We recover a low-velocity discon-37

tinuity at a depth of ∼ 65 ± 5 km which marks the base of the oceanic lithosphere and is38

consistent with previous work derived from surface waves, body-wave conversions, and ScS39

reverberations.40

Plain Language Summary41

Good papers to read for deconvolution (see Bostock and Sacchi, 1997). For other42

applications,43

1 Introduction44

Seismic imaging has revealed that, primarily, the Earth’s mantle is radially stratified,45

with discontinuities in velocity and density strong enough to cause body waves to scatter off46

its internal boundaries (Shearer, 2000; Deuss, 2009; Hua et al., 2023; Fischer et al., 2010).47

The depth, sharpness, and location of these boundaries have been crucial for evaluating48

different mineral-physics and geodynamic models that seek to explain mantle heterogene-49

ity (Stixrude & Lithgow-Bertelloni, 2012; Deuss & Woodhouse, 2001; Tauzin et al., 2010;50

Waszek et al., 2018; Tian et al., 2020). For example, below the oceanic Moho, the detection51

of layering within the lithosphere asthenosphere system has been used to argue for a global52

melt layer (Schmerr, 2012; Fischer et al., 2020; Rychert et al., 2018; Hua et al., 2023).53

Similarly, mantle stratification below old and stable continents is crucial for evaluating ex-54

planatory models for observed discontinuities internal to cold lithosphere in regions that55

should be stable and long-lived (Carr & Olugboji, 2024; Karato et al., 2015; Karato & Park,56

2018; Liu et al., 2023). Deeper still, across the mantle transition zone, sporadic detections57

of thin low-velocity layers have been attributed to dehydration melting and large-scale wa-58

ter transport via whole-mantle convection (Abt et al., 2010; Gama et al., 2022; Zhang &59

Olugboji, 2024).60

When the mantle is finely stratified, that is when the discontinuities are shallow or61

closely spaced, (e.g, oceanic Gutenberg, mid-lithosphere or the 520-km discontinuity) the62

ability to detect and resolve the discontinuity is closely related to the effective frequency63

(wavelength) of the seismic waves used as a probe. The lower the frequency of the seismic64

wave e.g., long-period S-waves, the poorer the resolution of detailed mantle stratification65

(Bock, 1994; Frazer & Park, 2024). Therefore, improvements to resolution are crucial for66

furnishing improved constraints on fine mantle stratification. In practice, however, much67

of the higher-resolution constraints are obtained using short-period receiver-side body-wave68

conversions with or without deconvolution (Langston, 1979; Shearer & Buehler, 2019; Liu &69

Shearer, 2021), with wide application in various settings, e.g., continents, (Abt et al., 2010;70
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Reeves et al., 2015; Y. Li et al., 2021)) ocean islands (e.g., (Rychert et al., 2014; Kang et al.,71

2021), and seafloor stations (Zhang & Olugboji, 2021; Olugboji et al., 2016). While receiver-72

side body-wave imaging is suitable for locations with good station coverage, it is unsuitable73

in regions with sparse station coverage, e.g. across large regions of the oceans or poorly74

instrumented parts of continents (Olugboji & Xue, 2022; Olugboji et al., 2024). As a result,75

long-period mid-point reflected body-waves (e.g, SS precursors) have been widely used to76

furnish global constraints on the presence and depth of mantle discontinuities (Shearer, 1991;77

Waszek et al., 2018; Dai et al., 2024). In this method, the imaging target is located mid-78

way between the earthquake and station making it possible to investigate mantle structure79

without the requirement of seismic stations (or sources) being located directly above this80

location (Shearer, 1991; S. Sun & Zhou, 2023).81

Applications of the SS precursor technique have been widely used for targeting various82

mantle structures, e.g, the upper mantle lithosphere-asthenosphere region (Tharimena et83

al., 2017), the mantle transition zone (MTZ) (Waszek et al., 2021), mid-mantle (Saki et84

al., 2021), and lower-mantle (Wei et al., 2020). The detection of a mantle discontinuities85

often involves identifying precursors to the S-wave reflections (at or below the free-surface)86

following waveform (slowness-)stacking using long-period band-pass filters (e.g., 15-75 s in87

Tian et al. (2020)). In most cases, no deconvolution is necessary for identifying mantle88

reflectors. However, this is unsuitable when imaging shallow structure Hua et al. (2023), or89

closely-spaced mantle discontinuities (Deuss & Woodhouse, 2001; Tian et al., 2020). The90

fundamental problem is the difficulty of deconvolving the SS precursor from the source91

wavelet following a low-pass filter.92

Popular deconvolution techniques are deterministic - either in the time (Schultz &93

Gu, 2013) or frequency-domain (Frazer & Park, 2022) - and hard to implement when the94

precursor arrives at the same time as the reference source wavelet. Alternative strategies95

solve the deconvolution problem using an exhaustive parameter search (Rychert & Shearer,96

2010; Tharimena et al., 2016; Rychert & Shearer, 2011). In this approach, a single mantle97

reflectivity (e.g., Moho, MLD) is modelled using a forward-convolution. The optimal mantle98

reflectivity is that which minimizes distortion between observed and predicted SS-waveform.99

This approach, while widely successful, retains some limitations. For example, it makes100

restricting assumptions on the source wavelet, noise model, and reflectivity structure. It can101

also become unstable when the sampling of the imaging target is sparse, or the observed102

seismograms are noisy.103

In this study, we propose a new method of S-wave deconvolution suitable for imaging104

discontinuities that generates precursors that arrive very close to the reference SS wave.105

Our approach is similar to recent advances in probabilistic deconvolution of body-wave106

conversions on Earth (Kolb & Lekić, 2014; Yildirim et al., 2010; Dettmer et al., 2015) and107

Mars (Kim, Lekić, et al., 2021). Our adaptation is geared towards scenarios with sparse or108

noisy datasets. We describe a data-processing strategy for estimating the source wavelet109

using a ‘matched-filter composite seismogram’ that requires very little assumptions about110

shallow structure below the imaging target. In what follows, we review the foundational111

assumptions in classical deconvolution of S-waves, describe how we conduct deconvolution112

with the probabilistic Bayesian approach, and demonstrate, using synthetic and real data,113

the applicability of our approach to real data from No-Melt Pacific region. Our model114

ensemble approach is able to provide high-resolution constraints on multi-layered mantle115

reflectivity with uncertainties.116

2 The Convolution Model for Long-period S-wave Reflections117

The convolution model for S-wave reflection imaging can be written as:118

Sd = wp ∗ rG + η (1)
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where Sd is the observed reflected S-wave contaminated by noise η after the incoming119

S-wavelet wp has been distorted by the reflectivity series rG at the mid-way bounce point120

(Figure 1a). In most cases, the depth, H, of mantle discontinuities is easily inferred from the121

time separation between the free surface reflection (SS) and earlier arriving reflections from122

these discontinuities (SS precursors), without directly solving the deconvolution problem for123

rG in Equation 1. The assumption here is that the dominant period, τw, of the incoming124

wavelet, wp, is much smaller than the time-separation, τr, between the SS waves and its125

precursors, i.e., τw << τr.126

This assumption does not hold for closely spaced discontinuities, e.g., thin lithospheric127

discontinuity below the free surface. In such cases, it is often impossible to detect and128

model mantle stratification without solving the deconvolution problem for rG. In what fol-129

lows, section 2.1 and 2.2, we describe the conditions under which solving for rG through130

deconvolution is necessary. We review existing approaches to solving this general deconvolu-131

tion problem, especially in situations when all but rG is known. In all these cases, especially132

frequency-domain deconvolution or least-squares iterative time-domain deconvolution, lim-133

iting assumptions are placed on the structure of rG and η. We then describe, in section 3,134

a more general Bayesian framework that makes the least assumptions on these parameters.135

This general Bayesian framework is the transdimensional and hierarchical Bayesian decon-136

volution, which has been used to solve the deconvolution problem for body wave conversions137

(Kolb & Lekić, 2014; Bodin et al., 2012; Yildirim et al., 2010; Akuhara et al., 2019). Our138

adaptations and extensions generalize the Bayesian deconvolution approach from P-to-S139

conversions to long-period S wave reflections. In section 4, we discuss a strategy for ad-140

dressing the specific data challenges where a stable reference (wp) and an observed (Sd)141

waveform needs to be reconstructed.142

2.1 Closely Spaced Discontinuities with Non-Separable Precursors143

Here, we describe the conditions for when two reflected S-waves bouncing off closely-144

spaced discontinuities are non-separable. An incident S-wave generates a precursor which145

arrives earlier than the free-surface reflection (reference SS), and is followed by a postcursor146

top-side reflection (Figure 1). These arrivals are symmetrical around the reference SS arrival147

and their travel time offset is given by:148

τr = 2H

√
1

v2s
− p2 (2)

where H, vs, and p are layer thickness, shear velocity, and ray parameter, respectively149

(Rychert & Shearer, 2010). We use a simple symmetrical Ricker wavelet with period, τw, to150

describe the band-limited nature of the observed S-wave. Following equation 1, the effects151

of convolution on this wavelet with a thin-layers response is shown in Figure 1. We assume a152

fixed and sharp value for reflection coefficient (velocity change, and velocity gradient of the153

discontinuity), and only vary the layer thickness, H, to demonstrate limits on separability154

(Shearer, 1996; Rychert & Shearer, 2010, 2011).155

When investigating deeper structures, e.g., the 410 km and 660 km discontinuities at the156

mantle transition zone, the travel time offset, τr, is usually large enough that the observed SS157

waveform Sd shows distinct precursor arrivals (Figure 1b). However, when targeting fine-158

scale or closely spaced seismic discontinuities, e.g., Moho, mid-lithospheric discontinuity159

(MLD), and lithosphere-asthenosphere boundary (LAB), the travel time offset, τr, becomes160

smaller so that the observed waveform, Sd, no longer contains distinct arrivals from the161

discontinuities, but rather, due to the band-limited nature, its shape becomes distorted162

relative to the reference wavelet, wp (Figure 1c).163
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Figure 1. (a) Ray paths of separable and non-separable SS precursors. Dark green, light green,

and pink lines indicate ray paths for SS reflections at the surface, a lithospheric discontinuity, and

mantle transition zone discontinuity, respectively. (b) Ray paths zoomed in at the bounce point.

The free surface SS reflection, SS precursor generated by a bottomside reflection, and SS reverber-

ation generated by a topside reflection are shown. (c) Synthetic seismograms showing separable SS

precursor. wp, rG, and Sd denote parent, lithospheric operator, and daughter, respectively. The

top panel shows P and G and the bottom panel shows D constructed from the convolution of P

and G. (c) Same as (b) but for non-separable precursor.
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2.2 The Case for a Probabilistic Deconvolution Approach164

The goal of S-wave reflection imaging is to solve the deconvolution problem for the165

reflectivity function, rG, in equation 1. A variety of methods have been proposed for solv-166

ing this deconvolution problem, with the majority targeting receiver functions, and can be167

broadly divided into two categories, i.e., deterministic and probabilistic (Kolb & Lekić, 2014;168

W. Sun et al., 2023; Akuhara et al., 2019). Deterministic methods can be viewed as finding169

a single optimal solution, rG, to a regularized inverse problem (Aster et al., 2018). In the170

frequency domain, this is done by spectral division with damping or water level regulariza-171

tion (Clayton & Wiggins, 1976; Langston, 1979; Ammon, 1991; Bostock & Sacchi, 1997).172

Further modifications of this technique involve using multi-tapers to improve frequency res-173

olution (Park & Levin, 2000; Helffrich, 2006; Shibutani et al., 2008). This technique is174

widely applied to receiver function analysis, and has recently been extended to SS precur-175

sors (Frazer & Park, 2022). However, the introduction of damping or water level can usually176

obscure low-amplitude spectrum components and generate side lobes; while MTC reduces177

spectral leakage, it decreases spectral resolution which results in low amplitudes at larger lag178

times. The choice of tapers may also affect the reliability of the deconvolution results (cite179

Hellfrich, Shibutani, Park and Levin). Time-domain iterative deconvolution solves for the180

minimum least squares solution that satisfies the forward convolution problem (Equation 1)181

by repeatedly adding the largest amplitude feature from the cross-correlated seismograms182

(Ligorŕıa & Ammon, 1999; Schultz & Gu, 2013). This approach, while popular (Caldwell et183

al., 2013; Shen & Ritzwoller, 2016; Hua et al., 2023), assumes the number and width of the184

Gaussian’s prior to deconvolution and can be trapped in local minima since these locations185

are only moderately modified in later iterations.186

The deterministic methods are straightforward and can generate relatively good esti-187

mates of rG when the convolution matrix is stable and the seismograms are not too noisy, i.e.,188

good estimates for wp can be obtained. However, in less-than-ideal conditions, these meth-189

ods suffer from severe non-uniqueness issues due to the convolution problem’s ill-conditioned190

nature. Probabilistic methods, on the other hand, treat the reflectivity function, rG, as a191

random variable defined by a probability distribution that we seek to estimate (Lavielle,192

1991; Yildirim et al., 2010; Kolb & Lekić, 2014). In the Bayesian framework, we often start193

with a prior probability distribution, P (rG), and refine that into a posterior distribution194

P (rG|Sd) conditioned with data, P (Sd|rG). The advantage over deterministic methods is195

that the posterior probability, P (rG|Sd), which can now be considered as the ‘answer’ to196

the deconvolution problem is no longer a single result but a probability on a particular197

value of rG. The posterior probability can still be investigated for a representative solution198

that corresponds either to the largest probability value (maximum a posterior solution) or199

the mean of this distribution. The Bayesian framework we adopt is the trans-dimensional200

and hierarchical framework. In the trans-dimensional Bayes, we search for a sparse repre-201

sentation for rG (k-discontinuities), while for the hierarchical Bayes, we provide a suitable202

estimate of observational noise, η, in equation 1 (cite). These extra modelling parameters203

are assigned probabilities and solved using Markov-chain sampling.204

3 SHARP-SS: Bayesian Deconvolution Workflow205

We describe the Sparse High-Resolution Algorithm for Reflection Profiling with SS206

waves (SHARP-SS), a Bayesian inversion framework for estimating a sparse reflectivity207

series rG given the reference wp and the observed SS waveform, Sd, both of which are208

contaminated by noise (Equation 1). For SS-waveforms, the reflectivity series, rG, differs209

from receiver-function deconvolution (converted waves) in that it is sparse, a-causal and210

mostly symmetric (representing first-order under-side and top-side reflections). Therefore211

we prescribe rG with an unknown number, k, of symmetrical Gaussian pairs with opposite212

polarities (i.e., the number of discontinuities). Each Gaussian, placed at location, c, is213

assigned an amplitude, a, and width, w. Following Kolb and Lekić (2014), we describe214

the correlation of the background noise, η, as a decaying sinusoidal function prescribed by215
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Figure 2. Bayesian workflow.

variance, σ , and decay rate, λ. This noise model is a good fit for the covariance matrices216

estimated from actual noise recorded on seismic stations. The parameters defining η are the217

hierarchical parameters h = σ, λ, and these, alongside a and w, are assigned uniform priors.218

We impose sparsity by assigning a prior on k that allows only a maximum of two pairs of219

Gaussian’s, corresponding to the Moho and a single upper mantle discontinuity. In practice220

this can be relaxed to a larger value, but should not be as large as oftenly prescribed in221

receiver functions (e.g., k = 30 in Kolb and Lekić (2014)). The posterior probabilities on the222

hierarchical parameters and those defining the reflectivity series are then estimated using a223

reversible-jump Markov-chain Monte Carlo (rj-McMC) algorithm similar to that proposed224

by Kolb and Lekić (2014).225

We initialize the reflectivity series rG with a pair of Gaussians drawn from the prior226

probabilities on location, amplitude, and width. We start the Markov chain by convolving227

rG with the reference waveform wp to obtain a predicted data, S′
d. We then compute the228

Mahalanobis distance between that and the true (observed) Sd:229

Φ(rG) = (S′
d − Sd)

TC−1
D (S′

d − Sd)

= (wp ∗ rG − Sd)
TC−1

D (wp ∗ rG − Sd)
(3)

Here CD is the data covariance matrix defined by the hierarchical noise model (σ, λ) .230

The likelihood probability of the observed waveform (Sd) given rG is:231

P (Sd|rG) =
1√

(2π)n|CD|
e−

Φ(rG)

2 (4)

where n is the number of sample points in the data vector. Note that Bayes’ theorem232

indicates that this probability is proportional to the probability of the model given data,233

i.e., P (rG|Sd) ∝ P (Sd|rG).234
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At each step of the Markov chain, a new model r′G is created by selecting three of the235

following possible actions (see Figure 2):236

(1) Add one pair of Gaussian with random location, amplitude, and width if there is cur-237

rently one pair of Gaussian in the model, or randomly remove one pair of Gaussian if238

there are currently two pairs;239

(2) Change the location of one existing pair of Gaussian slightly, no more than 0.5 s (cus-240

tomizable);241

(3) Change the location of one existing pair of Gaussian to a random location;242

(4) Change the amplitude of one existing pair of Gaussian, no more than 0.01 (customiz-243

able);244

(5) Change the width of one existing pair of Gaussian, no more than 0.2 s (customizable);245

(6) Change the hierarchical noise parameters.246

If a newly created model r′G has a pair of Gaussian overlapping with the other one or247

being too close to the edge or the center, this model is rejected. If the likelihood probability248

is higher than the previous model, i.e., P (Sd|r′G) > P (Sd|rG), the model is accepted. Note249

that in practice, this is implemented by checking if exp[P (Sd|r′G) − P (Sd|rG)] > 1 for250

improved robustness. The model will be updated for a user-defined number of iterations,251

which is set to 2× 103 in the synthetic experiments and 2× 105 in the data example shown252

below.253

We demonstrate this Bayesian inversion workflow with a synthetic test using a ricker254

wavelet as the reference waveform (wp; Figure 3a) and a reflectivity series consisting of two255

pairs of Gaussians (rG; Figure 3d). The data, waveform (Sd), is obtained by convolving256

wp with rG. We randomly initialize 100 chains of the transdimensional Bayesian inversion257

and run this for a total of 2 × 102 steps. We corrupt Sd with a random realizations of the258

covariance matrix (an example is shown in Figure 3b). The final model ensemble shows259

that the reflectivity series (rG), consisting of two pairs of Gaussians, is correctly recovered260

across all the chains, despite only running for 2,000 iterations (Figure 3c). The average261

model closely resembles the true reflectivity series (Figure 3d), and the predicted observation262

waveform (S′
d) calculated from the convolution of the final model and the input reference263

waveform also shows close resemblance with the input observation waveform (Figure 3e).264

4 Application to Data: Central Pacific Ocean265

We now apply SHARP-SS on actual SS waveforms with bounce points located in the266

central Pacific Ocean. We focus on the mature (∼70 Ma) Pacific seafloor southeast of Hawaii267

between the Clarion and Clipperton fracture zones, where broadband OBSs (ocean bottom268

seismometers) have been previously deployed from December 2011 to December 2012 during269

the NoMelt experiment (Lin et al., 2016; Ma et al., 2020; Russell et al., 2019). We use events270

with magnitudes larger than 6.0 recorded at USArray stations from 2004 to 2020. All events271

selected have focal depths of less than 75 km and source-receiver distances between 70◦ and272

100◦ to ensure detection of direct S arrivals. We obtain a total of 2,583 SS waveforms,273

with the majority recorded between 2006 and 2012 (Figure 4). We rotate the horizontal274

components to obtain the transverse component, and apply a low-pass filter at 0.1 Hz to275

enhance the signal before further processing (Figure 5a).276

4.1 Data Processing Workflow: Reconstruction with Match Filtering277

Our data processing workflow uses a composite matched filtering technique for iden-278

tifying wp and Sd. This generalizes the convolution model presented earlier (equation 1).279

The reference wavelet, wp, is the SS wave that is once-reflected at the free surface. It differs280

from the direct S wave in that it touches a caustic at the bounce point (dark green in Figure281

1). Therefore, it resembles the Hilbert transform of the direct S wave except for local effects282
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Figure 3. Synthetic experiment showing the successful recovery of reflectivity series. (a) Ref-

erence waveform from ocean stack. (b) Observation waveform obtained from convolution with

random noise added. (c) Final model ensemble across 100 chains. Lighter and darker colors in-

dicate higher and lower posterior probability, respectively. (d) Final average model (red) overlaid

by the true reflectivity series (blue). (e) Predicted observation waveform (red dashed) calculated

from the convolution of the average model shown in (d) with the reference waveform shown in (a),

overlaid by the true observation waveform (black) shown in (b). (f) Likelihood probability plotted

against Markov chain step count for one chain.
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Figure 4. Map showing the earthquake-station pairs used in the study. Red circles and triangles

indicate earthquakes and stations, respectively. Black lines are great circle paths of each earthquake-

station pair. The SS bounce points are located within the red rectangular box. The study area is

located on mature (∼ 70 Ma) Pacific seafloor as indicated by the background color contour.
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(reflectivity, noise, and attenuation) at the bounce point (Choy & Richards, 1975). Here,283

we use uT
ij to represent the transverse component seismogram for a given earthquake, i,284

recorded at a given station, j. The reference wavelet (wp) and observed SS waveform (Sd)285

can then be obtained from the low-pass filtered seismograms after appropriate windowing:286

Reference: wp = Ws · H(uT
ij) (5a)

Observation: Sd = Wss · uT
ij (5b)

where Ws and Wss are windowing functions around the arrival times of the S and SS287

phases, respectively, and H is the Hilbert transform. In this form, the convolution model for288

the predicted waveform, S
′

d, can be written in terms of the unknowns, i.e., the reflectivity289

series (rG) and noise (η):290

S
′

d = [Ws · H(uT
ij)] ∗ rG + η (6)

On synthetic data, the Bayesian inversion solves for S′
d = Sd and assumes that we291

can find a good reference phase (wp) using the transverse displacement seismogram (eq.292

5a). In practice, however, the signal-to-noise quality is low even after the preprocessing293

steps described above (i.e., rotation and low-pass filtering). This prevents us from obtaining294

high-quality reference and observation waveforms for the inversion (Figure 5a). To improve295

data quality, we perform matched filtering by running cross-correlation, using the current296

reference waveform (the Hilbert transform of the S segment). The new reference and the297

correctly matched observed SS waveforms are now the autocorrelation of wp and the cross-298

correlation of wp and Sd, respectively:299

Reference: wp ∗ wp (7a)

Observation: wp ∗ Sd (7b)

We describe the process of constructing this new matched filtered seismograms with300

an example (Figure 6). Each filtered transverse seismogram is first divided into two parts,301

separated by the midpoint of the theoretical arrival of the S and SS phases (Figure 6a). We302

then perform a Hilbert transform on the first half to obtain a composite seismogram (Figure303

6b). The S-segment of this composite seismogram (wp) is then extracted using a window304

that is 100-sec long and centered on the theoretical S arrival (Ws; grey panel in Figure305

6b). This segment is then used as a matched filter on the composite seismogram, that is., a306

running cross-correlation is calculated between segment wp, and the composite seismogram.307

Note that the resulting record is now a matched-filtered composite seismogram (Figure 6c)308

which represents, on the left half, a detected reference wavelet ( equation 7a) and, on the309

right half, a correctly associated SS arrival (equation 7b).310

When applied to the full dataset, the matched-filtered composite seismogram shows a311

much cleaner image (Figure 5b), and the resulting stacks, after maximum amplitude align-312

ment and normalization, show clear differences between the free-surface reflections and the313

distortions at the bounce point (Figure 5c). Note that this treatment also eliminates the ne-314

cessity for polarity corrections, as the matched-filtered composite seismogram always shows315

a maximum positive amplitude at the S arrival (wp ∗ wp) and another positive amplitude316

at the SS arrival (wp ∗ Sd). The distortions due to rG can then be modeled by solving a317

modified misfit function of wp ∗ S′
d = wp ∗ Sd. Note that an attenuation operator, A(t∗), is318

applied using a t∗ value of 4 s to the reference stack so that it has a similar width as the319

stack of the match-filtered observed SS waveform (top panel of Figure 5c).320
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Figure 5. (a) Transverse seismogram plotted against epicentral distance after applying a lowpass

filter at 0.1 Hz. The time axis is defined with respect to the theoretical arrival of the SS phase. (b)

Match-filtered. (c) stacked.
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(a) Lowpassed Seismogram

(b) Composite Seismogram

(c) Match-�ltered Seismogram
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Figure 6. Example of the data processing workflow demonstrated using a single trace seismo-

gram. (a) Seismogram after lowpass filtering taken from one row of Figure 5a. Blue dashed line

indicates the midpoint of the theoretical arrivals of the S and SS phases. (b) Composite seismogram

constructed from the Hilbert transform of the left half and the original right half of the seismogram

shown in (a). The gray shaded area indicates the S segment used as the match filter. (c) Matched-

filtered composite seismogram.
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Figure 7. Ensemble solution at the NoMelt region combining inversion results from all chains

by binning them based on time and amplitude. Darker and lighter colors indicate lower and higher

posterior probability, respectively. Red dashed line represents the average model. The inset plots at

the top right corner show the zoomed-in posterior probability and the histogram of the amplitudes

of the Gaussian at the detected NVG, respectively.

4.2 Results321

We use the windowed stacks of the matched-filtered composite seismograms (Figure 6c)322

as inputs (reference and observed SS waveforms) to our transdimensional Bayesian decon-323

volution. We randomly initialize 100 chains with each chain running for 2× 105 iterations.324

We discard the early burn-in stage and thin our model ensemble. The final model ensemble325

comprises every 200th model from the last 2×104 iterations. Since the depth of the oceanic326

Moho is well known for a normal oceanic crust (R. S. White et al., 1992; W. M. White et327

al., 2014; Carlson & Jay Miller, 2004), we prescribe a tight prior probability on the location328

of the first pair of Gaussian (4.0±1.0 s, corresponding to 7.0±1.8 km Moho depth assuming329

a 3.5 km/s crustal vs). The final average model ensemble across all chains recovers the330

Moho at 4.0 s and reveals a negative velocity gradient (NVG) at 30.9 s (Figure 7), which is331

equivalent to a discontinuity depth of ∼ 69.5 km assuming an upper mantle shear velocity332

of 4.5 km/s, consistent with previous studies (Lin et al., 2016; Mark et al., 2019; Russell333

et al., 2019; Tan & Helmberger, 2007). The location of this upper mantle discontinuity is334

consistent across all 100 chains, with an uncertainty of 0.4 s (30.6 s to 31.0 s, right inset335

plot in Figure 7), corresponding to a seismic LAB depth uncertainty of 7.8 km (65.4 km to336

73.2 km) assuming a ±5% uncertainty on the shear velocity. This result is broadly consis-337

tent with earlier studies conducted in the same region using different techniques, including338

Rayleigh wave tomography (Lin et al., 2016), surface wave attenuation (Ma et al., 2020),339

and Ps receiver functions with reverberation removal (Zhang & Olugboji, 2021). We recover340

an amplitude of 2% at the detected NVG (left inset plot in Figure 7).341

5 Discussion342

The synthetic and data examples shown above both focus on a reflectivity series with343

a maximum of two pairs of Gaussians, i.e., a single or double discontinuity structure is344

assumed. In the Pacific, we have shown that this assumption, combined with the prior345

constraints on the thickness of the oceanic Moho, leads to a stable and consistent inver-346

sion result on the upper mantle low-velocity discontinuity. In continental regions, where347

the Moho is significantly deeper, the Gaussian pair associated with the Moho has a delay348

–14–

Doyeon Kim
Pencil

Doyeon Kim
Highlight
I would add the white box and lines to relate those insets

Doyeon Kim
Highlight
I suspect this type of colormap is missing in Figure 3c

Doyeon Kim
Highlight
This is converged right? Just curious since your synthetic log-likelihood did not seemed to show a characteristic plateuing



manuscript submitted to Geophysical Journal International

time that is large enough to be modeled using such long-period waveforms, and the pro-349

posed transdimensional Bayesian inversion should be able to recover the Moho structure350

without prior assumptions on the Moho depth. In future work, the SHARP-SS method can351

be extended by relaxing the assumption on the maximum number of Gaussian pairs (i.e.,352

discontinuities), so that more complicated multi-layer discontinuities can be modeled. At353

locations where seismic stations are sparsely deployed, SHARP-SS, unlike receiver functions,354

holds great potential for resolving fine crustal and mantle stratification as it does not re-355

quire stations above the imaging target or a large number of bounce points for stacking like356

traditional SS precursor studies. For example, the African continent’s lithosphere hosts the357

longest-lived cratons on our planet and records a rich and diverse tectonic history, yet its358

upper mantle stratification is not well studied due to the sparse coverage of seismic stations,359

especially in the West African Craton, Sahara Meta Craton, and Congo Craton. Previous360

studies have revealed xxx. An extension of SHARP-SS to these regions will complement361

recent advances in upper mantle imaging using noisy and sparse P-to-S receiver functions362

(Olugboji et al., 2023) and could provide valuable information on the crustal and upper363

mantle layering across the sparsely instrumented African continent.364

When investigating planetary structure using a single seismic station, e.g., InSight’s365

SEIS (Seismic Experiment for Interior Structure of Mars) experiment on Mars, data is much366

less available and harder to interpret due to different noise conditions (?, ?; Stutzmann et367

al., 2021). Much of the constraints on Martian crust and mantle discontinuities have focused368

on deconvolved body wave conversions, time-domain waveform stacking, and modeling of369

long-period body wave reflections and triplications (Huang et al., 2022; Kawamura et al.,370

2023; Khan et al., 2021; Kim et al., 2022; Knapmeyer-Endrun et al., 2021). With about 90371

marsquakes at teleseismic distances have been identified (Lognonné et al., 2023), our pro-372

posed SHARP-SS workflow provides an excellent opportunity to better constrain the extent373

of subsurface structures away from the InSight landing site with quantified uncertainties.374

In this circumstance, the Bayesian deconvolution needs to be performed on single event375

due to the much less available data (J. Li et al., 2022; Kim, Lekić, et al., 2021), and the376

reference waveform (wp) might need to be constructed from synthetics generated using focal377

mechanisms because of the direct S arrival being unobservable at great epicentral distances378

due to the large Martian core (Stähler et al., 2021).379

As discussed, the Bayesian deconvolution framework can quantify uncertainties in the380

timing and amplitude of precursor phases, while simultaneously estimating parameters that381

describe unknown background noise in raw seismic data. This capability extends the utility382

of our method beyond Earth imaging applications, making it highly applicable for planetary383

exploration scenarios with limited seismic source availability or sparse station coverage. A384

notable application would be with the InSight mission’s SEIS data (Lognonné et al., 2020),385

which consists of a single seismic station and is complicated by varying noise conditions386

(Stutzmann et al., 2021) and electromechanical artifacts (Kim, Davis, et al., 2021). Re-387

cently, Kim, Lekić, et al. (2021) has demonstrated the robustness of the THBD receiver388

functions for Mars and verified the crustal layering structure beneath the InSight lander,389

with thickness varying between 10 - 20 km (Knapmeyer-Endrun et al., 2021). However,390

the spatial distribution of such intra-crustal layers away from the lander remains unclear,391

and the global presence of these closely spaced crustal discontinuities may be difficult to392

resolve using traditional approaches with noisy SS precursors (J. Li et al., 2022). Therefore,393

SHAPR-SS may hold the potential to evaluate these structures using distant seismic events394

on Mars (Horleston et al., 2022).395

6 Conclusion396

We described a new method for investigating closely-spaced mantle discontinuities. The397

algorithm, known as SHARP-SS...398
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All seismic data used in this study can be obtained from the IRIS Data Management400

Center (https://ds.iris.edu/ds) under the network code TA.401
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