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Abstract

Long-period underside S-wave reflections have been widely used to furnish global con-
straints on the presence and depth of mantle discontinuities, and to document evidence
for their causes, e.g., mineral phase-transformations in the transition zone, compositional
changes in the mid-mantle, and dehydration-induced melting above and below the transi-
tion zone. For higher resolution imaging, it is necessary to separate the signature of the
source wavelet (SS-arrival) from that of the distortion caused by the mantle reflectivity
(SS precursor). This is the general deconvolution problem and classical solutions include
frequency-domain or time-domain deconvolution. However, these algorithms do not easily
generalize when (1) the reflectivity series is much shorter period compared to the source
wavelet, (2) the bounce-point sampling is sparse, or (3) the source wavelet is noisy or hard
to estimate. To address these problems, we propose a new technique called SHARP-SS:
Sparse High-Resolution Algorithm for Reflection Profiling with SS waves. SHARP-SS is
a Bayesian deconvolution algorithm that makes very few a-priori assumptions on the noise
model, source signature, and reflectivity structure. We test SHARP-SS using real data
examples beneath the No-MELT Pacific Ocean region. We recover a low-velocity discon-
tinuity at a depth of ~ 65 £ 5 km which marks the base of the oceanic lithosphere and is
consistent with previous work derived from surface waves, body-wave conversions, and ScS
reverberations.

Plain Language Summary

Good papers to read for deconvolution (see Bostock and Sacchi, 1997). For other
applications,

1 Introduction

Seismic imaging has revealed that, primarily, the Earth’s mantle is radially stratified,
with discontinuities in velocity and density strong enough to cause body waves to scatter off
its internal boundaries (Shearer, 2000; Deuss, 2009; Hua et al., 2023; Fischer et al., 2010).
The depth, sharpness, and location of these boundaries have been crucial for evaluating
different mineral-physics and geodynamic models that seek to explain mantle heterogene-
ity (Stixrude & Lithgow-Bertelloni, 2012; Deuss & Woodhouse, 2001; Tauzin et al., 2010;
Waszek et al., 2018; Tian et al., 2020). For example, below the oceanic Moho, the detection
of layering within the lithosphere asthenosphere system has been used to argue for a global
melt layer (Schmerr, 2012; Fischer et al., 2020; Rychert et al., 2018; Hua et al., 2023).
Similarly, mantle stratification below old and stable continents is crucial for evaluating ex-
planatory models for observed discontinuities internal to cold lithosphere in regions that
should be stable and long-lived (Carr & Olugboji, 2024; Karato et al., 2015; Karato & Park,
2018; Liu et al., 2023). Deeper still, across the mantle transition zone, sporadic detections
of thin low-velocity layers have been attributed to dehydration melting and large-scale wa-
ter transport via whole-mantle convection (Abt et al., 2010; Gama et al., 2022; Zhang &
Olugboji, 2024).

When the mantle is finely stratified, that is when the discontinuities are shallow or
closely spaced, (e.g, oceanic Gutenberg, mid-lithosphere or the 520-km discontinuity) the
ability to detect and resolve the discontinuity is closely related to the effective frequency
(wavelength) of the seismic waves used as a probe. The lower the frequency of the seismic
wave e.g., long-period S-waves, the poorer the resolution of detailed mantle stratification
(Bock, 1994; Frazer & Park, 2024). Therefore, improvements to resolution are crucial for
furnishing improved constraints on fine mantle stratification. In practice, however, much
of the higher-resolution constraints are obtained using short-period receiver-side body-wave
conversions with or without deconvolution (Langston, 1979; Shearer & Buehler, 2019; Liu &
Shearer, 2021), with wide application in various settings, e.g., continents, (Abt et al., 2010;
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Reeves et al., 2015; Y. Li et al., 2021)) ocean islands (e.g., (Rychert et al., 2014; Kang et al.,
2021), and seafloor stations (Zhang & Olugboji, 2021; Olugboji et al., 2016). While receiver-
side body-wave imaging is suitable for locations with good station coverage, it is unsuitable
in regions with sparse station coverage, e.g. across large regions of the oceans or poorly
instrumented parts of continents (Olugboji & Xue, 2022; Olugboji et al., 2024). As a result,
long-period mid-point reflected body-waves (e.g, SS precursors) have been widely used to
furnish global constraints on the presence and depth of mantle discontinuities (Shearer, 1991;
Waszek et al., 2018; Dai et al., 2024). In this method, the imaging target is located mid-
way between the earthquake and station making it possible to investigate mantle structure
without the requirement of seismic stations (or sources) being located directly above this
location (Shearer, 1991; S. Sun & Zhou, 2023).

Applications of the SS precursor technique have been widely used for targeting various
mantle structures, e.g, the upper mantle lithosphere-asthenosphere region (Tharimena et
al., 2017), the mantle transition zone (MTZ) (Waszek et al., 2021), mid-mantle (Saki et
al., 2021), and lower-mantle (Wei et al., 2020). The detection of a mantle discontinuities
often involves identifying precursors to the S-wave reflections (at or below the free-surface)
following waveform (slowness-)stacking using long-period band-pass filters (e.g., 15-75 s in
Tian et al. (2020)). In most cases, no deconvolution is necessary for identifying mantle
reflectors. However, this is unsuitable when imaging shallow structure Hua et al. (2023), or
closely-spaced mantle discontinuities (Deuss & Woodhouse, 2001; Tian et al., 2020). The
fundamental problem is the difficulty of deconvolving the SS precursor from the source
wavelet following a low-pass filter.

Popular deconvolution techniques are deterministic - either in the time (Schultz &
Gu, 2013) or frequency-domain (Frazer & Park, 2022) - and hard to implement when the
precursor arrives at the same time as the reference source wavelet. Alternative strategies
solve the deconvolution problem using an exhaustive parameter search (Rychert & Shearer,
2010; Tharimena et al., 2016; Rychert & Shearer, 2011). In this approach, a single mantle
reflectivity (e.g., Moho, MLD) is modelled using a forward-convolution. The optimal mantle
reflectivity is that which minimizes distortion between observed and predicted SS-waveform.
This approach, while widely successful, retains some limitations. For example, it makes
restricting assumptions on the source wavelet, noise model, and reflectivity structure. It can
also become unstable when the sampling of the imaging target is sparse, or the observed
seismograms are noisy.

In this study, we propose a new method of S-wave deconvolution suitable for imaging
discontinuities that generates precursors [ very close to the reference SS wave.
Our approach is similar to recent advances in probabilistic deconvolution of body-wave
conversions on Earth (Kolb & Lekié, 2014; Yildirim et al., 2010; Dettmer et al., 2015) and
Mars (Kim, Lekié, et al., 2021). Our adaptation is geared towards scenarios with sparse or
noisy datasets. We describe a data-processing strategy for estimating the source wavelet
using a ‘matched-filter composite seismogram’ that requires very little assumptions about
shallow structure below the imaging target. In what follows, we review the foundational
assumptions in classical deconvolution of S-waves, describe how we conduct deconvolution
with the probabilistic Bayesian approach, and demonstrate, using synthetic and real data,
the applicability of our approach to real data from [J Pacific region. Our model
ensemble approach is able to provide high-resolution constraints on multi-layered mantle
reflectivity with uncertainties.

2 The Convolution Model for Long-period S-wave Reflections

The convolution model for S-wave reflection imaging can be written as:

Sqg=wp*rg+n (1)
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where Sy is the observed reflected S-wave contaminated by noise n after the incoming
S-wavelet w, has been distorted by the reflectivity series r¢ at the mid-way bounce point
(Figure 1a). In most cases, the depth, H, of mantle discontinuities is easily inferred from the
time separation between the free surface reflection (SS) and earlier arriving reflections from
these discontinuities (SS precursors), without directly solving the deconvolution problem for
rg in Equation 1. The assumption here is that the dominant period, 7, of the incoming
wavelet, wp, is much smaller than the time-separation, 7., between the SS waves and its
precursors, i.e., T, << Tp.

This assumption does not hold for closely spaced discontinuities, e.g., thin lithospheric
discontinuity below the free surface. In such cases, it is often impossible to detect and
model mantle stratification without solving the deconvolution problem for rg. In what fol-
lows, section 2.1 and 2.2, we describe the conditions under which solving for rg through
deconvolution is necessary. We review existing approaches to solving this general deconvolu-
tion problem, especially in situations when all but r¢ is known. In all these cases, especially
frequency-domain deconvolution or least-squares iterative time-domain deconvolution, lim-
iting assumptions are placed on the structure of 7 and 1. We then describe, in section 3,
a more general Bayesian framework that makes the least assumptions on these parameters.
This general Bayesian framework is the transdimensional and hierarchical Bayesian decon-
volution, which has been used to solve the deconvolution problem for body wave conversions
[Kolb & Lekié¢, 2014; Bodin et al., 2012; Yildirim et al., 2010; Akuhara et al., 2019). Our
adaptations and extensions generalize the Bayesian deconvolution approach from P-to-S
conversions to long-period S wave reflections. In section 4, we discuss a strategy for ad-
dressing the specific data challenges where a stable reference (w,) and an observed (Sq)
waveform needs to be reconstructed.

2.1 Closely Spaced Discontinuities with Non-Separable Precursors

Here, we describe the conditions for when two reflected S-waves bouncing off closely-
spaced discontinuities are non-separable. An incident S-wave generates a precursor which
arrives earlier than the free-surface reflection (reference SS), and is followed by a postcursor
top-side reflection (Figure 1). These arrivals are [ around the reference SS arrival
and their travel time offset is given by:

T =2H,|— — p2 (2)

where H, vs, and p are layer thickness, shear velocity, and ray parameter, respectively
(Rychert & Shearer, 2010). We use a simple symmetrical Ricker wavelet with period, 7, to
describe the band-limited nature of the observed S-wave. Following equation 1, the effects
of convolution on this wavelet with a thin-layers response is shown in Figure 1. We assume a
fixed and sharp value for reflection coefficient (velocity change, and velocity gradient of the
discontinuity), and only vary the layer thickness, H, to demonstrate limits on separability
(Shearer, 1996; Rychert & Shearer, 2010, 2011).

When investigating [l structures, e.g., the 410 km and 660 km discontinuities at the
mantle transition zone, the travel time offset, 7., is usually large enough that the observed SS
waveform S, shows distinet precursor arrivals (Figure 1b). However, when targeting fine-
scale or closely spaced seismic discontinuities, e.g., Moho, mid-lithospheric discontinuity
(MLD), and lithosphere-asthenosphere boundary (LAB), the travel time offset, 7,., becomes
smaller so that the observed waveform, Sy, no longer contains distinct arrivals from the
discontinuities, but rather, due to the band-limited nature, its shape becomes distorted
relative to the reference wavelet, w, (Figure 1c).
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I B Ray paths of separable and non-separable SS precursors. Dark green, light green,
and pink lines indicate ray paths for SS reflections at the surface, a lithospheric discontinuity, and
mantle transition zone discontinuity, respectively. (b) Ray paths zoomed in at the bounce point.
The free surface SS reflection, SS precursor generated by a bottomside reflection, and SS reverber-
ation generated by a topside reflection are shown. (c¢) Synthetic seismograms showing separable SS
precursor. wp, rg, and Sq denote parent, lithospheric operator, and daughter, respectively. The
top panel shows P and G and the bottom panel shows D constructed from the convolution of P

and G. (c) Same as (b) but for non-separable precursor.
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2.2 The Case for a Probabilistic Deconvolution Approach

The goal of S-wave reflection imaging is to solve the deconvolution problem for the
reflectivity function, rg, in equation 1. A variety of methods have been proposed for solv-
ing this deconvolution problem, with the majority targeting receiver functions, and can be
broadly divided into two categories, i.e., deterministic and probabilistic [[INEEEGEGEGNGGE
P Deterministic methods can be viewed as finding
a single optimal solution, r¢, to a regularized inverse problem (Aster et al., 2018). In the
frequency domain, this is done by spectral division with damping or water level regulariza-
tion (Clayton & Wiggins, 1976; Langston, 1979; Ammon, 1991; Bostock & Sacchi, 1997).
Further modifications of this technique involve using multi-tapers to improve frequency res-
olution (Park & Levin, 2000; Helffrich, 2006; Shibutani et al., 2008). This technique is
widely applied to receiver function analysis, and has recently been extended to SS precur-
sors (Frazer & Park, 2022). However, the introduction of damping or water level can usually
obscure low-amplitude spectrum components and generate side lobes; while MTC reduces
spectral leakage, it decreases spectral resolution which results in low amplitudes at larger lag
times. The choice of tapers may also affect the reliability of the deconvolution results (cite
Hellfrich, Shibutani, Park and Levin). Time-domain iterative deconvolution solves for the
minimum least squares solution that satisfies the forward convolution problem (Equation 1)
by repeatedly adding the largest amplitude feature from the cross-correlated seismograms
(Ligorria & Ammon, 1999; Schultz & Gu, 2013). This approach, while popular (Caldwell et
al., 2013; Shen & Ritzwoller, 2016; Hua et al., 2023), assumes the number and width of the
Gaussian’s prior to deconvolution and can be trapped in local minima since these locations
are only moderately modified in later iterations.

[ Probabilistic methods, on the other hand, treat the reflectivity function, r¢g, as a
random variable defined by a probability distribution that we seek to estimate (Lavielle,
1991; Yildirim et al., 2010; Kolb & Leki¢, 2014). In the Bayesian framework, we often start
with a prior probability distribution, P(r¢g), and refine that into a posterior distribution
P(rg|Sq) conditioned with data, P(Sg4|rg). The advantage over deterministic methods is
that the posterior probability, P(rg|Sg), which can now be considered as the ‘answer’ to
the deconvolution problem is no longer a single result but a probability on a particular
value of rg. The posterior probability can still be investigated for a representative solution
that corresponds either to the largest probability value (maximum a posterior solution) or
Pl The Bayesian framework we adopt is the trans-dimensional
and hierarchical framework. In the trans-dimensional Bayes, we search for a sparse repre-
sentation for rg (k-discontinuities), while for the hierarchical Bayes, we provide a suitable
estimate of observational noise, 7, in equation 1 (cite). These extra modelling parameters
are assigned probabilities and solved using Markov-chain sampling.

3 ———

We describe the Sparse High-Resolution Algorithm for Reflection Profiling with SS
waves (SHARP-SS), a Bayesian inversion framework for estimating a sparse reflectivity
series r¢ given the reference w, and the observed SS waveform, Sy, both of which are
contaminated by noise (Equation 1). For SS-waveforms, the reflectivity series, r¢, differs
from receiver-function deconvolution (converted waves) in that it is sparse, a-causal and
mostly symmetric (representing first-order under-side and top-side reflections). Therefore
we prescribe r¢ with an unknown number, k, of symmetrical Gaussian pairs with opposite
polarities (i.e., the number of discontinuities). Each Gaussian, placed at location, c, is
assigned an amplitude, a, and width, w. Following Kolb and Lekié¢ (2014), we describe
the correlation of the background noise, 7, as a decaying sinusoidal function prescribed by
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Figure 2. Bayesian workflow.

variance, o , and decay rate, A. This noise model is a good fit for the covariance matrices
estimated from actual noise recorded on seismic stations. The parameters defining 7 are the
hierarchical parameters h = ¢, A\, and these, alongside a and w, are assigned uniform priors.
We impose sparsity by assigning a prior on G
e
-]
A The posterior probabilities on the

hierarchical parameters and those defining the reflectivity series are then estimated using a
reversible-jump Markov-chain Monte Carlo (rj-McMC) algorithm similar to that proposed
by Kolb and Leki¢ (2014).

We initialize the reflectivity series r¢ with a pair of Gaussians drawn from the prior
probabilities on location, amplitude, and width. We start the Markov chain by convolving
r¢ with the reference waveform w, to obtain a predicted data, S/. We then compute the
Mahalanobis distance between that and the true (observed) Sy:

D(rg) = (S5 — Sa)"Cp' (S — Sa)

= (wp xrg — Sd)TCBI(wp *x1ra — Sq)

(3)

Here Cp is the data covariance matrix defined by the hierarchical noise model (o, ) .
The likelihood probability of the observed waveform (Sq) given r¢ is:

1 _2(rg)
_ ¢ 2
v (2m)"Cp|

where n is the number of sample points in the data vector. Note that Bayes’ theorem
indicates that this probability is proportional to the probability of the model given data,
i.e., P(Tg|Sd) 0,8 P(Sd|7“g).

P(Salra) = (4)
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At each step of the Markov chain, a new model ry, is created by selecting three of the
following possible actions (see Figure 2):

(1) Add one pair of Gaussian with random location, amplitude, and width if there is cur-
rently one pair of Gaussian in the model, or randomly remove one pair of Gaussian if
there are currently two pairs;

(2) Change the location of one existing pair of Gaussian slightly, no more than 0.5 s (cus-
tomizable);

(3) Change the location of one existing pair of Gaussian to a random location;

(4) Change the amplitude of one existing pair of Gaussian, no more than 0.01 (customiz-
able);

(5) Change the width of one existing pair of Gaussian, no more than 0.2 s (customizable);

(6) Change the hierarchical noise parameters.

If a newly created model r has a pair of Gaussian overlapping with the other one or
being too close to the edge or the center, this model is rejected. If the likelihood probability
is higher than the previous model, i.e., P(Sg|ry;) > P(Sq4|ra), the model is accepted. Note
that in practice, this is implemented by checking if exp[P(Sq4|ry) — P(Salrg)] > 1 for
improved robustness. The model will be updated for a user-defined number of iterations,
which is set to 2 x 102 in the synthetic experiments and 2 x 10° in the data example shown
below.

We demonstrate this Bayesian inversion workflow with a synthetic test using a ricker
wavelet as the reference waveform (w,; Figure 3a) and a reflectivity series consisting of two
pairs of Gaussians (rg; Figure 3d). The data, waveform (Sy), is obtained by convolving
wp with rg. We randomly initialize 100 chains of the transdimensional Bayesian inversion
and run this for a total of 2 x 10? steps. We corrupt Sg with a random realizations of the
covariance matrix (an example is shown in Figure 3b). The final model ensemble shows
that the reflectivity series (r¢), consisting of two pairs of Gaussians, is correctly recovered

across all the chains, despite [EE—
OO
A the input reference

waveform also shows close resemblance with the input observation waveform (Figure 3e).

4 Application to Data: Central Pacific Ocean

We now apply SHARP-SS on actual SS waveforms with bounce points located in the
central Pacific Ocean. We focus on the mature (~70 Ma) Pacific seafloor southeast of Hawaii
between the Clarion and Clipperton fracture zones, where broadband OBSs (ocean bottom
seismometers) have been previously deployed from December 2011 to December 2012 during
the F - We use events
with magnitudes larger than 6.0 recorded at USArray stations from 2004 to 2020. All events
selected have focal depths of less than 75 km and source-receiver distances between 70° and
100° to ensure detection of direct S arrivals. We obtain a total of 2,583 SS waveforms,
with the majority recorded between 2006 and 2012 (Figure 4). We rotate the horizontal
components to obtain the transverse component, and apply a low-pass filter at 0.1 Hz to
enhance the signal before further processing (Figure 5a).

4.1 Data Processing Workflow: Reconstruction with Match Filtering

Our data processing workflow uses a composite matched filtering technique for iden-
tifying w, and S4. This generalizes the convolution model presented earlier (equation 1).
The reference wavelet, wy, is the SS wave that is once-reflected at the free surface. It differs
from the direct S wave in that it touches a caustic at the bounce point (dark green in Figure
1). Therefore, it resembles the Hilbert transform of the direct S wave except for local effects
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(b) Observation waveform obtained from convolution with

Final model ensemble across 100 chains. Lighter and darker colors in-

dicate higher and lower posterior probability, respectively. (d) Final average model (red) overlaid
by the true reflectivity series (blue). (e) Predicted observation waveform (red dashed) calculated
from the convolution of the average model shown in (d) with the reference waveform shown in (a),
overlaid by the true observation waveform (black) shown in (b). [ ) Likelihood probability plotted

against Markov chain step count for one chain.
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(reflectivity, noise, and attenuation) at the bounce point (Choy & Richards, 1975). Here,
we use ug to represent the transverse component seismogram for a given earthquake, i,
recorded at a given station, j. The reference wavelet (w,) and observed SS waveform (Sg)
can then be obtained from the low-pass filtered seismograms after appropriate windowing:

Reference: w, = W - H(uz;) (5a)

. . o T
Observation: Sg = Wy - (0

where W5 and Wyg are windowing functions around the arrival times of the S and SS
phases, respectively, and H is the Hilbert transform. In this form, the convolution model for
the predicted waveform, S;l, can be written in terms of the unknowns, i.e., the reflectivity
series (r¢) and noise (n):

Sy =[We-H(ul)] xre+n (6)

On synthetic data, the Bayesian inversion solves for S/ = Sgq and assumes that we
can find a good reference phase (w,) using the transverse displacement seismogram (eq.
5a). In practice, however, the signal-to-noise quality is low even after the preprocessing
steps described above (i.e., rotation and low-pass filtering). This prevents us from obtaining
high-quality reference and observation waveforms for the inversion (Figure 5a). To improve
data quality, we perform matched filtering by running cross-correlation, using the current
reference waveform (the Hilbert transform of the S segment). The new reference and the
correctly matched observed SS waveforms are now the autocorrelation of w, and the cross-
correlation of w, and Sg, respectively:

Reference: wy, * w, (7a)
Observation: w,, * Sg (7b)

We describe the process of constructing this new matched filtered seismograms with
an example (Figure 6). Each filtered transverse seismogram is first divided into two parts,
separated by the midpoint of the theoretical arrival of the S and SS phases (Figure 6a). We
then perform a Hilbert transform on the first half to obtain a composite seismogram (Figure
6b). The S-segment of this composite seismogram (w,) is then extracted using a window
that is 100-sec long and centered on the theoretical S arrival (Wyg; grey panel in Figure
6b). This segment is then used as a matched filter on the composite seismogram, that is., a
running cross-correlation is calculated between segment w,,, and the composite seismogram.
Note that the resulting record is now a matched-filtered composite seismogram (Figure 6¢)
which represents, on the left half, a detected reference wavelet ( equation 7a) and, on the
right half, a correctly associated SS arrival (equation 7b).

When applied to the full dataset, the matched-filtered composite seismogram shows a
much cleaner image (Figure 5b), and the resulting stacks, after maximum amplitude align-
ment and normalization, show clear differences between the free-surface reflections and the
distortions at the bounce point (Figure 5c). Note that this treatment also eliminates the ne-
cessity for polarity corrections, as the matched-filtered composite seismogram always shows
a maximum positive amplitude at the S arrival (w, * w,) and another positive amplitude
at the SS arrival (wp, * Sq). The distortions due to r¢ can then be modeled by solving a
modified misfit function of w, * S, = w;, * S4. Note that an attenuation operator, A(t*), is
applied [ B W to the reference stack so that it has a similar width as the
stack of the match-filtered observed SS waveform (top panel of [INEGEGN).
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Figure 6. Example of the data processing workflow demonstrated using a single trace seismo-
gram. (a) Seismogram after lowpass filtering taken from one row of Figure 5a. Blue dashed line
indicates the midpoint of the theoretical arrivals of the S and SS phases. (b) Composite seismogram
constructed from the Hilbert transform of the left half and the original right half of the seismogram
shown in (a). The gray shaded area indicates the S segment used as the match filter. (c) Matched-

filtered composite seismogram.

—13—



321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Posterior Probability

Average

-40 -30 -20 -10 O 10 20 30 40
Time (s)

Figure 7. Ensemble solution at the NoMelt region combining inversion results from all chains

by binning them based on time and amplitude. [N lower and higher
posterior probability, respectively. Red dashed line represents the average model. [IIIEEG_G_u

|
A respectively.

4.2 Results

We use the windowed stacks of the matched-filtered composite seismograms (Figure 6¢)
as inputs (reference and observed SS waveforms) to our transdimensional Bayesian decon-
volution. We randomly initialize 100 chains with each chain running for 2 x 10° iterations.
We discard the early burn-in stage and thin our model ensemble. The final model ensemble
comprises every 200th model from the [Jill IS . Since the depth of the oceanic
Moho is well known for a normal oceanic crust (R. S. White et al., 1992; W. M. White et
al., 2014; Carlson & Jay Miller, 2004), we prescribe a tight prior probability on the location
of the first pair of Gaussian (4.0£1.0 s, corresponding to 7.0£1.8 kmm Moho depth assuming
a 3.5 km/s crustal vs). The final average model ensemble across all chains recovers the
Moho at 4.0 s and reveals a negative velocity gradient (NVG) at 30.9 s (Figure 7), which is
equivalent to a discontinuity depth of ~ 69.5 km assuming an upper mantle shear velocity
of 4.5 km/s, consistent with previous studies (Lin et al., 2016; Mark et al., 2019; Russell
et al., 2019; Tan & Helmberger, 2007). The location of this upper mantle discontinuity is
consistent across all 100 chains, with an uncertainty of 0.4 s (30.6 s to 31.0 s, right inset
plot in Figure 7), corresponding to a seismic LAB depth uncertainty of 7.8 km (65.4 km to
73.2 km) assuming a £5% uncertainty on the shear velocity. This result is broadly consis-
tent with earlier studies conducted in the same region using different techniques, including
Rayleigh wave tomography (Lin et al., 2016), surface wave attenuation (Ma et al., 2020),
and Ps receiver functions with reverberation removal (Zhang & Olugboji, 2021). We recover
an amplitude of 2% at the detected NVG (left inset plot in Figure 7).

5 Discussion

The synthetic and data examples shown above both focus on a reflectivity series with
a maximum of two pairs of Gaussians, i.e., a single or double discontinuity structure is
assumed. In the Pacific, we have shown that this assumption, combined with the prior
constraints on the thickness of the oceanic Moho, leads to a stable and consistent inver-
sion result on the upper mantle low-velocity discontinuity. In continental regions, where
the Moho is significantly deeper, the Gaussian pair associated with the Moho has a delay
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time that is large enough to be modeled using such long-period waveforms, and the pro-
posed transdimensional Bayesian inversion should be able to recover the Moho structure
without prior assumptions on the Moho depth. In future work, the SHARP-SS method can
be extended by relaxing the assumption on the maximum number of Gaussian pairs (i.e.,
discontinuities), so that more complicated multi-layer discontinuities can be modeled. At
locations where seismic stations are sparsely deployed, SHARP-SS, unlike receiver functions,
holds great potential for resolving fine crustal and mantle stratification as it does not re-
quire stations above the imaging target or a large number of bounce points for stacking like
traditional SS precursor studies. For example, the African continent’s lithosphere hosts the
longest-lived cratons on our planet and records a rich and diverse tectonic history, yet its
upper mantle stratification is not well studied due to the sparse coverage of seismic stations,
especially in the West African Craton, Sahara Meta Craton, and Congo Craton.
[ An extension of SHARP-SS to these regions will complement
recent advances in upper mantle imaging using noisy and sparse P-to-S receiver functions
Olugboji et al., 2023) and could provide valuable information on the crustal and upper
mantle layering across the sparsely instrumented African continent.

—~

As discussed, the Bayesian deconvolution framework can quantify uncertainties in the
timing and amplitude of precursor phases, while simultaneously estimating parameters that
describe unknown background noise in raw seismic data. This capability extends the utility
of our method beyond Earth imaging applications, making it highly applicable for planetary
exploration scenarios with limited seismic source availability or sparse station coverage. A
notabie apphcation would be with the InSight mission’s SEIS data (Lognonne et al. 2020)

cently, Kim Lekic et al. (2021) has demonstrated the robustness of the receiver
functions and verified the crustal layering structure beneath the ght lander,
with thic s varying between 10 - 20 km (Knapmeyer-Endrun et al., 2021). However,

the spatial distribution of such intra-crustal layers away from the lander remains unclear,
and the global presence of these closely spaced crustal discontinuities may be difficult to
resolve using traditional approaches with noisy SS precursors (J. Li et al., 2022). Therefore,
SHAPR-SS may hold the potential to evaluate these structures using distant seismic events
on Mars (Horleston et al., 2022).

6 Conclusion

We described a new method for investigating closely-spaced mantle discontinuities. The
algorithm, known as SHARP-SS...
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All seismic data used in this study can be obtained from the IRIS Data Management
Center (https://ds.iris.edu/ds) under the network code TA.
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