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Abstract

Given n copies of an unknown quantum state ρ ∈ C
d×d, quantum state certification is the task

of determining whether ρ = ρ0 or ∥ρ − ρ0∥1 > ε, where ρ0 is a known reference state. We

study quantum state certification using unentangled quantum measurements, namely measurements

which operate only on one copy of ρ at a time. When there is a common source of randomness

available and the unentangled measurements are chosen based on this randomness, prior work has

shown that Θ(d3/2/ε2) copies are necessary and sufficient. This holds even when the measure-

ments are allowed to be chosen adaptively. We consider deterministic measurement schemes (as

opposed to randomized) and demonstrate that Θ(d2/ε2) copies are necessary and sufficient for state

certification. This shows a separation between algorithms with and without randomness.

We develop a lower bound framework for both fixed and randomized measurements that relates

the hardness of testing to the well-established LÈuders rule. More precisely, we obtain lower bounds

for randomized and fixed schemes as a function of the eigenvalues of the LÈuders channel which

characterizes one possible post-measurement state transformation.

1. Introduction

We study the problem of quantum state certification (O’Donnell and Wright, 2015; Wright, 2016;

Badescu et al., 2019), where we are given n copies of an unknown quantum state with density ρ ∈
C
d×d, and complete description of a known state ρ0. The goal is to use quantum measurements to

test whether ρ = ρ0 or ∥ρ− ρ0∥1 > ε, where ∥·∥1 is the trace norm. A special case of this problem

is mixedness testing, which is the case when ρ0 = ρmm := Id/d is the maximally mixed state.

Quantum certification is motivated by practical applications where one wants to verify whether the

output state of a quantum algorithm is indeed the state we desire.

A related problem is of closeness testing, where we are given copies of two unknown states ρ
and ρ0 and the goal is again to test whether ρ = ρ0 or ∥ρ− ρ0∥1 > ε. The motivation to study this

problem is to test whether two quantum algorithms produce the same state.

We are interested in determining how many copies of the unknown state(s) are needed to perform

the task of testing. This task of understanding the copy complexity quantum state certification

was studied initiated in O’Donnell and Wright (2015) and later in Badescu et al. (2019). They

showed that when we are allowed to perform arbitrary entangled quantum measurements over the

n copies, then n = Θ(d/ε2) copies are necessary and sufficient for testing. However, entangled

measurements are currently infeasible to implement in practice, even for moderate values of n and d.

It is desirable to use unentangled measurements, where a quantum measurement is done on one copy

of ρ (and ρ0 if it is also unknown) at a time. Such unentangled measurements (also referred to as

incoherent and independent in previous literature) can be categorized into three different protocols:
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1. Fixed/Deterministic measurements. The set of measurements(POVMs) to be performed are

fixed ahead of time. Once the copies of the quantum states are available, we use these fixed

measurements for the task of testing. A key advantage of such protocols is that the same set of

measurements can be used for multiple repetitions of the testing problem. Moreover, there is

no latency since the measurements are not designed after the states are made available, which

is a drawback of the following protocols.

2. Randomized non-adaptive measurements. In this setting, there is common randomness

available, and the set of measurements at the different copies are all chosen simultaneously

as a function of this common randomness. Every time we want to test for a state, we need to

instantiate the common randomness and select the set of measurements using a new instance

of the common randomness. This is done after the copies of the state are made available.1

3. Randomized adaptive measurements. In this setting common randomness is available

across the measurements. Furthermore, the measurements are applied sequentially to each

copy of ρ, and the measurement on the next copy of ρ can depend on the outcome of pre-

vious measurements2. A primary drawback of this scheme is the latency and complications

associated with designing measurements one after another.

1.1. Prior Works

O’Donnell and Wright (2015) initiated the study of copy complexity of the task of quantum state

certification. They considered entangled measurements and showed that n = Θ(d/ε2) copies are

necessary and sufficient for testing. This is also the copy complexity of closeness testing (Badescu

et al., 2019).

Given the practical relevance of unentangled measurements, it has been considered in several

prior works. For the task of quantum mixedness testing, Bubeck et al. (2020) showed that when

randomized non-adaptive unentangled measurements are allowed, then n = Θ(d3/2/ε2) copies are

necessary and sufficient. Chen et al. (2022b) extended the results to the cases when ρ0 need not be

the maximally mixed state, and also when it is unknown (closeness testing).

Chen et al. (2022a) futher showed that adaptivity does not help and the number of copies nec-

essary is still n = Ω(d3/2/ε2). Yu (2023) achieved n = Θ̃(d2/ε2) using randomly sampled Pauli

measurements, which are more restrictive yet easier to implement. The drawback of all the algo-

rithms in these works is the necessity of randomization in the measurements.

Quantum tomography. In quantum tomography (O’Donnell and Wright, 2017; Flammia and

O’Donnell, 2023), the goal is to estimate the unknown state ρ to within ε in trace distance. O’Donnell

and Wright (2016, 2017); Haah et al. (2017) established the optimal copy complexity for this task

as Θ(d2/ε2) with entangled measurements. For unentangled measurements, various works Kueng

et al. (2017); Haah et al. (2017) have shown that Θ(d3/ε2) are necessary and sufficient to estimate

a full-rank ρ, even when adaptivity is allowed (Chen et al., 2023). GutËă et al. (2020) showed that

the bound is achievable up to log factors using fixed structured POVMs, e.g. SIC-POVM (Zauner,

1999; Renes et al., 2004), maximal MUB (Klappenecker and Rotteler, 2005).

1. If the set of measurements is finite, we can prepare all measurements beforehand and sample with classical random-

ness. However, this could still be difficult if the set is very large.

2. In principle, one can use the first measurement outcome as a source of randomness for all other measurements, so

adaptive measurements are essentially randomized.
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THE ROLE OF RANDOMNESS IN UNENTANGLED QUANTUM STATE CERTIFICATION

1.2. New results

We consider state certification with fixed measurements, where the POVMs are fixed ahead of time,

and can be used for multiple repetitions of the problem.

The naive solution is to apply the fixed unentangled measurements for quantum tomography

in GutËă et al. (2020) giving an upper bound of n = Õ
(

d3/ε2
)

. However, since tomography is

strictly harder than testing, we expect to do much better than d3. Indeed, Yu (2021) designed a

simple algorithm with fixed measurements that achieves O(d2/ε2) copy complexity. The lower

bound, however, was left as an outstanding open problem. Without randomness, it is unknown

whether n = O(d3/2/ε2) copies are sufficient to perform quantum state certification, or if we need

more copies due to the lack of randomness.

We establish the copy complexity of quantum state certification with fixed unentangled mea-

surements. Our main result, stated below, shows that indeed there is a cost in copy complexity that

we have to pay for having schemes that are fixed and reusable. Please see Section 2.2 for the formal

problem definition.

Theorem 1 For fixed unentangled POVMs, n = Θ(d2/ε2) copies are necessary and sufficient to

test whether ρ = ρ0 or ∥ρ− ρ0∥1 > ε with probability at least 2/3.

Table 1 places our work in the context of existing results for other types of measurements. There

is a strict Θ(
√
d)-factor separation between fixed and randomized non-adaptive schemes. We note

that the randomness source can be entirely independent of the quantum states, so it is in some sense

surprising that a piece of irrelevant random information leads to substantial improvement in copy

complexity. This demonstrates that randomness is a valuable and important resource in unentangled

quantum state certification.

Measurement type Upper bound Lower bound

Entangled d
ε2

d
ε2

Unentangled

Adaptive d3/2

ε2
d3/2

ε2

Randomized d3/2

ε2
d3/2

ε2

Fixed d2

ε2
d2

ε2
(This work)

Table 1: Existing and new worst-case copy complexity results for quantum state certification.

We develop an information-theoretic framework for non-adaptive schemes that leads to both the

lower bound of Ω(d2/ε2) for fixed measurements and the bound of Ω(d3/2ε2) of randomized ones.

Details are elaborated in Section 3.

1.3. Related works

Learning information about quantum states. Our work falls into the line of quantum state cer-

tification O’Donnell and Wright (2015); Bubeck et al. (2020); Chen et al. (2022a). In addition to

worst-case bounds that depend on d, Chen et al. (2022b,a) considered general quantum state certi-

fication where the copy complexity decreases when ρ0 is approximately low rank. Other closeness

measures such as fidelity and Bures χ2-divergence were considered in Badescu et al. (2019).
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Many works have studied other related problems such as closeness testing Badescu et al. (2019);

Yu (2021, 2023) (test whether two unknown states ρ and σ are equal or ε far), hypothesis test-

ing Ogawa and Nagaoka (2000); Brandão et al. (2020); Regula et al. (2023) (distinguish between

two known states), and hypothesis selection Badescu and O’Donnell (2021); Fawzi et al. (2023)

(determine ρ from a finite set of hypothesis sets). Shadow tomography (Aaronson, 2020; Huang

et al., 2020; Brandão et al., 2019) considers the problem of learning the statistics of the state ρ over

a finite set of observables, which is simpler than tomography. Algorithms for shadow tomography

can be applied to quantum hypothesis selection (Badescu and O’Donnell, 2021; Fawzi et al., 2023).

In addition to the four types of measurements discussed before, Pauli measurements have also

attracted significant interest (Flammia and Liu, 2011; Liu, 2011; Cai et al., 2016; Yu, 2023) due

to ease in implementation despite being less powerful. Moreover, Fawzi et al. (2023) considered

sequential strategies which allow the number of measurements to depend on previous outcomes

(e.g. one can choose to stop measuring the remaining copies if the outcomes so far yield a good

estimate), which is parallel to the adaptivity of measurements.

Classical distribution testing. Quantum state certification can be viewed as the quantum equiva-

lent of testing identity of discrete distributions from samples. Here the task is to decide from samples

whether a distribution is equal to a given known distribution. The problem has been well studied

starting with the works of Batu et al. (2001); Paninski (2008) which establish the sample complexity

of this task when all the samples are available. This is similar to using entangled measurements in

the quantum case. Recently there has been significant work on distributed testing of distributions,

where instead of having all samples at the same place, they are distributed across users, and we ob-

tain only limited information about each sample, e.g., a communication-constrained (Barnes et al.,

2020; Acharya et al., 2020a), or privacy-preserving information (Duchi et al., 2013; Acharya et al.,

2021; Han et al., 2015). Thinking of each sample analogous to one copy, this distributed testing is

in spirit similar to unentangled measurements, where we perform measurements on one copy at a

time. Acharya et al. (2020b, 2022) derived a unified information-theoretic framework in terms of

the channel constraints. In particular, Acharya et al. (2020b,a, 2021) showed that there is a sepa-

ration for distributed testing under communication and privacy constraints between the cases when

common randomness was available versus not. Furthermore, Acharya et al. (2022) show that adap-

tivity does not help in these problems beyond common randomness. Our results are qualitatively

similar to these classical distributed testing results. We show in this work that these ideas can be

generalized to quantum state certification and a similar separation also holds. We refer the readers

to Canonne (2022) for a comprehensive survey of the above topics.

Outline. The rest of the paper is organized as follows. In Section 3 we overview our main tech-

nical contributions. In Section 2, we give the precise problem definition and provide some mathe-

matical terminology and definitions. In Section 4 we introduce our unified lower bound framework

for non-adaptive measurements. In Appendix D we describe the algorithm that achieves the copy

complexity upper bound for fixed measurements.

2. Preliminaries

2.1. Basics of quantum computing

Quantum states The space of d-dimensional complex vectors C
d forms a Hilbert space. We

use the Dirac notation |ψ⟩ ∈ C
d to denote a vector, and ⟨ψ| is its conjugate transpose, which is a
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row vector. The Hilbert-Schmidt inner product between |ψ⟩ and |ϕ⟩ is ⟨ψ|ϕ⟩. In a d-dimensional

quantum system, the state ρ is a d × d positive semi-definite Hermitian matrix with Tr[ρ] = 1. If

the rank of ρ is 1, then ρ is a pure state and ρ = |ψ⟩⟨ψ| for some unit-norm |ψ⟩ ∈ C
d. Otherwise,

the state is a mixed state. A special case is ρmm := Id/d, which is the maximally mixed state.

Measurements All measurements can be formulated as positive operator-valued measure (POVM).

Let X be a finite set of outcomes. Then a POVM M = {Mx}x∈X , where Mx is p.s.d. and
∑

x∈X Mx = Id. Let X be the outcome when applying measurementM to ρ, then the probability

of observing x is given by the Born’s rule,

Pr[X = x ] = Tr[ρMx].

We note that the outcome set X need not be finite, in which case POVMs and Born’s rule can be

generalized. However, finite POVMs are without loss of generality. In principle, all physically

feasible measurements are finite. Moreover, our argument extends easily to infinite POVMs.

2.2. Problem setup

Given n independent copies of an unknown quantum state ρ ∈ C
d×d, the goal is to design

• n POVMsMn = (M1, . . . ,Mn) that are applied to the n copies of the state that produce

the measurement outcomes x = (x1, . . . , xn),

• a tester T such that when ρ = ρ0 it outputs YES with probability at least 2/3 and it outputs

NO with probability at least 2/3 if ∥ρ− ρ0∥1 > ε,

Pr
ρ=ρ0

(T (x) = YES) ≥ 2

3
, and inf

ρ:∥ρ−ρ0∥1>ε
Pr(T (x) = NO) ≥ 2

3
.

When ρ0 = ρmm := Id/d, the problem is called mixedness testing. The smallest value of n for

which we can design such a tester for all ρ0 is the copy complexity of quantum state certification.

We apply measurements for each copy individually. More precisely, for the i-th copy, we apply

a POVM Mi = {M i
x}kx=1 where M i

x is p.s.d. and
∑

xM
i
x = Id. Let xi be the measurement

outcome after applying Mi on the i-th copy. When the quantum state is ρ, xi follows a discrete

distribution piρ = [piρ(1), . . . ,p
i
ρ(k)] given by Born’s rule, piρ(x) = Tr[M i

xρ], x = 1, . . . , k.

According to (Chen et al., 2021, Lemma 4.8), general finite POVMs can be simulated using

rank-1 POVMs if we only consider the measurement outcomes and disregard the post-measurement

quantum state. Thus it is without loss of generality to only consider rank-1 POVMS, i.e.,

M i
x = |ψix⟩⟨ψix|,

k
∑

x=1

|ψix⟩⟨ψix| = Id (1)

Note that |ψix⟩ may not be normalized.

We can mathematically formulate the three unentangled measurement schemes as follows,

In fixed measurement schemes, eachMi is fixed before receiving the quantum state ρ. The n
outcomes x1, . . . , xn follow a product distribution

Pρ :=

n
⊗

i=1

piρ. (2)
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In randomized non-adaptive schemes, there is a common random seedR ∼ R independent of ρ,

and the measurements are then chosen based on R,Mi =Mi(R). The outcomes are independent

conditioned on the random seed R, and thus we can write Pρ(R) =
⊗n

i=1 p
i
ρ(R).

For randomized adaptive schemes, in addition to the common randomness, the ith measurement

depends on the previous outcomes, namely, Mi = Mi(x1, . . . , xi−1, R). The n outcomes are in

general not independent.

2.3. Closeness measures of distributions

Let p and q be two distributions over a finite discrete domain X . The total variation distance is

defined as, dTV(p,q) := supS⊆X (p(S)− q(S)) = 1
2

∑

x∈X |p(x)− q(x)|. The Kullback-Leibler

(KL) divergence KL(p || q) and chi-square divergence dχ2(p || q) are defined as KL(p || q) :=
∑

x∈X p(x) log p(x)
q(x) , dχ2(p || q) :=

∑

x∈X
(p(x)−q(x))2

q(x) . The three quantities can be related using

Pinsker’s inequality and concavity of logarithms respectively,

2dTV(p,q)
2 ≤ KL(p || q) ≤ dχ2(p || q).

We may also define ℓp distances between distributions, ∥p− q∥p :=
(
∑

x∈X |p(x)− q(x)|p
)1/p

.

2.4. Linear operators and superoperators

Hilbert space over complex matrices The space of complex matrices C
d×d is a Hilbert space

when equipped with the matrix inner product defined as ⟨A,B⟩ := Tr[A†B], where A,B ∈ C
d×d.

The subspace of all Hermitian matrices, denoted as Hd, is a real Hilbert space (i.e. the associated

field is R) with the same matrix inner product. Any positive semi-definite Hermitian matrix M has

a unique p.s.d. square root K such that K2 =M , and we denote K =
√
M .

A homomorphism can be defined between C
d×d and C

d2 through vectorization. On the canoni-

cal basis {|j⟩}d−1
j=0 , we define vec(|i⟩⟨j|) := |j⟩ ⊗ |i⟩. Vectorization for general matrices is defined

by linearity. Furthermore, the matrix inner product can be equivalently written as the inner product

on C
d2 , ⟨A,B⟩ = vec(A)†vec(B).

(Linear) superoperators One can define linear operators over Cd×d, N : Cd×d 7→ C
d×d. Since

each matrix itself can be viewed as an operator over Cd, we refer to them as superoperators3 to avoid

confusion. For each superoperator N , there exists a unique adjoint superoperator N † such that for

all X,Y ∈ C
d×d, ⟨Y,N (X)⟩ =

〈

N †(Y ), X
〉

. Similar to the trace of matrices, we define its trace

as Tr[N ] =
∑d

i,j=1 ⟨|i⟩⟨j|,N (|i⟩⟨j|)⟩.

Schatten norms for linear (super)operators Let λ1, . . . , λd ≥ 0 be the singular values of a

linear operator A4, then for p ≥ 1, the Schatten p-norm is defined as ∥A∥Sp :=
(

∑d
i=1 λ

p
i

)1/p
,

which can be defined for both matrices and superoperators. Some important special cases are trace

norm ∥A∥1 := ∥A∥S1 , Hilbert-Schmidt norm ∥A∥HS := ∥A∥S2 , and operator norm ∥A∥op :=

∥A∥S∞
= maxdi=1 λi.. A standard fact is that ∥A∥1 = Tr[

√
A†A] and ∥A∥HS =

√

⟨A,A⟩.

3. Indeed an operator over Cd×d i.e. superoperator need not be linear, but we only deal with linear superoperators in

this work, so we drop the word ªlinearº for brevity.

4. For Hermitian matrices, the singular values are simply the absolute values of the eigenvalues.
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3. Our techniques

Our main contribution is a unified lower bound framework for quantum state certification that works

for both randomized and fixed non-adaptive schemes. Before we introduce the technical contribu-

tions, we provide a high-level explanation of why randomness is crucial in unentangled quantum

testing and motivate with a simple example.

3.1. The disadvantage of fixed measurements through a simple example.

In randomized schemes, given the copies of the state, we then choose the measurements randomly.

However, for fixed measurements, the measurement scheme is fixed and the state is then chosen.

Thus, without randomness, nature would have the opportunity to adversarially design a quantum

state that fools the pre-defined set of measurements. When randomness is available, we can avoid

the bad effect of adversarial choice of quantum states. In principle, this qualitative gap is like the

difference between randomized algorithms and deterministic algorithms.

We use a simple example to demonstrate this idea. Suppose we choose each measurementMi

simply to be the same canonical basis measurement, i.e.Mi = {|x⟩⟨x|}d−1
x=0. Then nature can set ρ

to be the ª+º state where

ρ = |ϕ⟩⟨ϕ|, |ϕ⟩ = 1√
d

d−1
∑

x=0

|x⟩. (3)

Note that the trace distance ∥ρ− ρmm∥1 = 2 − 2/d ≃ 2. When the state is ρ, all measurement

outcomes xi would be independent samples from the uniform distribution over {0, . . . , d−1}. How-

ever, if the state is the maximally mixed state ρmm, the distribution of each measurement outcome

would also be the uniform distribution over {0, . . . , d − 1}. Thus, even though the trace distance

between ρ and ρmm is large, the measurement scheme is completely fooled.

On the other hand, with randomness, one can (theoretically) sample a basis uniformly from the

Haar measure as in Bubeck et al. (2020) to easily avoid this issue. No fixed ρ would be able to com-

pletely fool the randomized basis measurement sampled uniformly. In fact with high probability,

the randomly sampled basis is good in the sense that the outcome distribution would be far enough

when the two states ρ and ρmm are far (see (Chen et al., 2022b, Lemma 6.3)).

3.2. A novel lower bound construction.

The design of hard instances has to account for the difference illustrated above when proving lower

bounds for randomized and fixed measurements. In particular, for randomized measurements, the

lower bound construction is measurement independent. However, for fixed measurements, since

the states can be chosen adversarially, the lower bound construction needs to be measurement-

dependent.

Many prior works on testing and tomography O’Donnell and Wright (2015, 2016); Haah et al.

(2017); Bubeck et al. (2020); Chen et al. (2021, 2022a) use measurement-independent distribu-

tions over states in C
d×d to prove lower bounds. In particular, Bubeck et al. (2020); Chen et al.

(2022a) show that testing within a specific class requires at least n = Ω(d3/2/ε2) when working

with randomized and adaptive unentangled measurements respectively. Unfortunately, for these

measurement-independent constructions, there must exist fixed measurement schemes whose copy

complexity is n = O(d3/2/ε2) due to standard derandomization arguments. To prove a stronger
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lower bound for fixed measurements, our task is different. We must show that for any fixed mea-

surement scheme, we can design a hard instance of the testing problem that would require at least

n = Ω(d2/ε2). We note that the lower bound construction in Yu (2023) is measurement-dependent,

but specifically tailored to Pauli measurements and not general enough for our purpose.

Our generic measurement-dependent lower bound construction is a necessary and novel contri-

bution that leads to tight lower bounds for fixed measurements.

Definition 2 Let d2

2 ≤ ℓ ≤ d2 − 1 and V = (V1, . . . , Vd2) be an orthonormal basis of Hd with

Vd2 = Id/
√
d. Define Dℓ(V) as follows. Let z = (z1, . . . , zℓ) ∈ {−1, 1}ℓ be uniformly drawn from

the {−1, 1}ℓ hypercube. Let c be a universal constant, then define

∆z =
cε√
d
· 1√

ℓ

(

ℓ
∑

i=1

ziVi

)

, ∆̄z = ∆zmin

{

1,
1

d∥∆z∥op

}

. (4)

∆̄z normalizes ∆z so that its maximum absolute eigenvalue is at most 1/d.σz = ρmm + ∆̄z . This

defines a distribution over states (induced by the randomness in z) which we denote by Dℓ(V).

In essence, we perform independent binary perturbations along ℓ different trace-0 directions.

We show with appropriate c, regardless of the basis V , σz is ε-far in trace distance from ρmm. The

proof is in Section B.

Proposition 3 Let d2/2 ≤ ℓ ≤ d2 − 1. Let z be drawn uniformly from {−1, 1}ℓ , and ∆z, σz are

as defined in Definition 2. Then, there exists a universal constant c ≤ 10
√
2, such that for ε < 1

c2
,

with probability at least 1− 2 exp(−d), ∥∆z∥op ≤ 1/d and ∥∆z∥1 ≥ ε.

The matrices Vi’s can be chosen dependent on the fixed measurement scheme that we want to

fool. In particular, we can pick directions V1, . . . , Vd2/2 about which the fixed measurement schemes

provide the least information. The matrices Vi’s can also be fixed, in which case the construction

is measurement-independent and our framework naturally leads to the lower bound for randomized

non-adaptive measurements in Bubeck et al. (2020).

The binary perturbations in our construction are mathematically easier to handle. In prior

works, Bubeck et al. (2020); Haah et al. (2017); Chen et al. (2021) designed the hard cases using

random unitary transformations around the maximally-mixed state, which requires difficult calcu-

lations using Weingarten calculus (Weingarten, 1978; Collins, 2003). In contrast, our arguments

avoid the difficult representation-theoretic tools. Chen et al. (2022a, 2023) used Gaussian orthogo-

nal ensembles, which perturbs each matrix entry with independent Gaussian distributions. Binary

perturbations share many statistical similarities with Gaussian since both are sub-gaussian distribu-

tions. However, the former is arguably simpler as the support is finite, and thus information-theoretic

tools can be more easily applied.

We note that these constructions are all in spirit motivated by lower bounds in classical discrete

distribution testing where the hard instances are constructed as perturbations around the uniform

distribution (Paninski, 2008).

3.3. Lower bound framework using LÈuders channel

For both fixed and randomized schemes, we find that perhaps very coincidentally or very naturally,

the ability of a measurement scheme to distinguish between quantum states is characterized by the
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eigenvalues of the LÈuders channel (DeBrota and Stacey, 2019)5 which describes one possible state

transformation after measurement. LetM = {Mx}kx=1 be a rank-1 POVM where Mx = |ψx⟩⟨ψx|.
WhenM acts on ρ and we obtain an outcome x, then the generalized LÈuder’s rule (LÈuders, 1950)

gives one possible form of the post-measurement state6,

ρx :=
KxρKx

Tr[Mxρ]
, Kx =

√

Mx =
|ψx⟩⟨ψx|
√

⟨ψx|ψx⟩
.

If we lack the knowledge of measurement outcomes, we can view the underlying state as an

expectation of all post-measurement states ρ 7→∑

x Pr[X = x ]ρx. We can formulate the mapping

as a quantum channel,

Definition 4 (LÈuders channel) Given a rank-1 POVMM = {Mx = |ψx⟩⟨ψx|}kx=1 where
∑

xMx =
Id and Kx =

√
Mx, the LÈuders channelHM : Cd×d 7→ C

d×d is defined as

HM(X) :=
k
∑

x=1

KxXKx =
k
∑

x=1

|ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

. (5)

Definition 4 gives its Kraus representation. It is helpful to consider the equivalent matrix form

CM ∈ C
d2×d2 which satisfies vec(HM(X)) = CMvec(X) for all matrix X ∈ C

d×d. For rank-1

POVM, CM is the Choi representation, e.g. Khatri and Wilde (2021, Eq (4.3.8)) and defined as,

CM :=

k
∑

x=1

|ψ̄x⟩⟨ψ̄x| ⊗ |ψx⟩⟨ψx|
⟨ψx|ψx⟩

. (6)

Indeed, if two quantum states ρ and σ yield the same post-measurement state, it is natural to

believe that the two states cannot be distinguished by the measurement scheme. This is in spirit

similar to the chi-squared contraction framework in Acharya et al. (2020b) which was used to de-

rive a unified lower bound for information-constrained inference of classical distributions in the

distributed setting. Depending on whether randomness is available, the copy complexity depends

on different norms of theH channel, as shown in Table 2, where ∥H∥1 and ∥H∥HS are the trace and

Hilbert-Schmidt/Frobenius norms ofH. The precise statement is stated in Theorem 11.

Fixed Randomized

Lower bound d2

ε2
· d
maxH ∥H∥1

d2

ε2 maxH ∥H∥HS

Table 2: Copy complexity lower bound of non-adaptive state certification in terms of the LÈuders

channel.

It is straightforward to prove that ∥H∥2HS ≤ ∥H∥1 ≤ d, and thus we obtain tight copy complexity

lower bounds for both fixed and randomized non-adaptive measurements.

Our lower bound results yield a very natural quantum interpretation. We believe that a sim-

ilar characterization using LÈuders channel could be applied to adaptive measurements and other

problems such as quantum tomography, similar to Acharya et al. (2020b, 2022) which developed a

unified framework for distributed learning and testing of discrete distributions.

5. This was referred to as the expected density operator in (Khatri and Wilde, 2021, Section 3.3)

6. The post-measurement states are undefined for general POVMs.
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4. Lower bound framework for non-adaptive schemes

We first state the new lower bound for mixedness testing with fixed measurements in Theorem 5.

Theorem 5 For 0 < ε < 1/200 and d ≥ 16, with fixed unentangled measurements, at least

n = Ω(d2/ε2) copies are necessary to test whether ρ = ρmm or ∥ρ− ρmm∥1 > ε where ρmm = Id/d
is the maximally mixed state.

Since mixedness testing is a special case of state certification, this theorem provides a worst-case

lower bound for the problem, both when ρ0 is known and unknown. Recall that n = O(d3/2/ε2)
copies are sufficient using randomized schemes. Thus there is a strict separation between algorithms

with and without randomness, and the gap is a factor of Θ(
√
d).

Theorem 5 is an immediate corollary of a unified theoretical framework that we establish for

both randomized and fixed non-adaptive measurements which we will describe in this section.

4.1. Le Cam’s method

The central tool to prove testing lower bounds is Le Cam’s method LeCam (1973); Yu (1997). We

first define almost-ε perturbation, which has constant probability mass over Pε.

Definition 6 A distribution D is an almost-ε perturbation if Prσ∼D[σ ∈ Pε ] > 4
5 . Denote the set

of almost-ε perturbation as Γε.

Recall in (2) that for a state ρ, the distribution of measurement outcomes x = (x1, . . . , xn) when

applying measurementsMn = (M1, . . . ,Mn) is Pρ. For the mixedness testing problem, even if ρ
is sampled from any distribution D over the Pε := {ρ : ∥ρ− ρmm∥1 > ε} (the set of states at least

ε-far from ρmm), a mixedness tester should still be able to distinguish it from the case when the state

is ρmm. When ρ ∼ D, the outcome distribution is Eρ∼D[Pρ ], and when ρ = ρmm, then x ∼ Pρmm .

Thus, to guarantee a testing accuracy of at least 2/3, we need 2
3 < dTV(Pρmm ,Eσ∼D[Pσ ]). A

similar argument also holds for D which is an almost-ε perturbation, which is stated in Lemma 7.

The proof is in Section A.1.

Lemma 7 Let D be an almost-ε perturbation. Suppose nature flips an unbiased coin Y ∈ {0, 1}.
If Y = 0 then ρ = ρmm. Otherwise nature samples ρ ∼ D. Then, using a mixedness tester

with success probability at least 2/3 for n copies of ρ, we can obtain a guess Ŷ ∈ {0, 1} with

Pr[Y = Ŷ ] ≥ 3/5. This implies

1

5
≤ dTV(Eσ∼D[Pσ ],Pρmm) ≤

√

1

2
dχ2(Eσ∼D[Pσ ] || Pρmm). (7)

Thus to prove copy complexity lower bounds, we need to design an almost-ε perturbation and then

upper bound (7) by some function of n, d, ε.

4.2. Min-max vs. max-min

Recall in Section 3.1 we discussed that the main difference between randomized and fixed mea-

surements is whether nature can choose the hard state adversarially. In this section, we formalize

the discussion under a rigorous game theory framework. The testing problem can be viewed as a

10
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two-party game played between nature and the algorithm designer, where the algorithm designer

tries to design the best algorithms that can distinguish between two states, while nature tries to find

hard states to fool the algorithm.

For a fixed measurement scheme Mn, nature can choose a D ∈ Γε that minimizes the chi-

square divergence in (7). According to Lemma 7, if there exists a fixedMn that achieves at least

2/3 probability in testing maximally mixed states, we must have

2

25
≤ max

Mn fixed
min
D∈Γε

dχ2(Eσ∼D[Pσ ] || Pρmm). (8)

Thus a max-min game is played between the two parties and nature has an advantage to decide its

best action based on the choice of the algorithm designer.

With randomness, in principle, a max-min game is still played, but instead, the maximization is

over all distributions of fixed (non-entangled) measurements. Using a similar argument as (Acharya

et al., 2020b, Lemma IV.8), for the best distribution over allMn, the expected accuracy overR ∼ R
is at least 1/2 for all D ∈ Γε. Thus, for all D, there must exist an instantiation R(D) such that using

the fixed measurementMn(R(D)) the testing accuracy is at least 1/2. Therefore,

2

25
≤ min

D∈Γε

max
Mn fixed

dχ2(Eσ∼D[Pσ ] || Pρmm), (9)

which intuitively says that a min-max game is played and the algorithm designer has an advantage.

Therefore, to obtain a copy complexity lower bound for fixed measurements requires upper

bounding (8), while for randomized schemes requires upper bounding (9). We can see that random-

ness is a ªgame changerº that changes a max-min game to a min-max game. Since min-max is no

smaller than max-min, testing with randomness is easier than testing without it.

The min-max and max-min arguments in this section are similar to Acharya et al. (2020b) and

we point to Acharya et al. (2020b, Lemma IV.8, IV.10) for additional reference.

4.3. The LÈuders channel characterizes the hardness of testing

In the previous section, we give an abstract theoretical framework to prove tight lower bounds for

fixed measurements. We now make it concrete and apply it to mixedness testing.

Our central contribution is to relate the hardness of testing (i.e., the min-max and max-min

divergences) to the average LÈuders channel defined by all the POVMs. Use the shorthand Hi :=
HMi whereHMi is from Definition 4, the average LÈuders channel is defined as

H̄ :=
1

n

n
∑

i=1

Hi (Kraus), C̄ := 1

n

n
∑

i=1

Ci (Choi). (10)

We again use the example in Section 3.1 to see why this superoperator is useful. Suppose ρ is

the ª+º state defined in (3). IfMi = {|x⟩⟨x|}d−1
x=0, then H̄(·) =∑d−1

x=0 |x⟩⟨x|(·)|x⟩⟨x|. It turns out

that ρ− ρmm exactly falls into the 0-eigenspace of H̄,

H̄(ρ− ρmm) =

d−1
∑

x=0

|x⟩⟨x|(ρ− ρmm)|x⟩⟨x| =
d−1
∑

x=0

|x⟩⟨x|ϕ⟩⟨ϕ|x⟩⟨x| −
d−1
∑

x=0

|x⟩⟨x|Id
d
|x⟩⟨x|

=

d−1
∑

x=0

|x⟩⟨x|1
d
− Id

d
= 0.

11
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The third equality holds because ⟨x|ϕ⟩ = ⟨ϕ|x⟩ = 1/
√
d. This serves as an intuitive example

that the eigenvalues of H̄ superoperator characterize the ability of the measurement scheme to dis-

tinguish between quantum states. If the difference ρ−ρmm falls into the eigenspace of H̄ with small

eigenvalues, then we can expect that the two states are hard to distinguish.

To formalize the intuition, we compute the chi-square divergence (7) between the outputs of

the measurements in the cases when the input is the maximally mixed state, versus the case when

it is chosen from an ε-perturbation. In our main technical result Lemma 8, we upper bound the

divergence in terms of the average LÈuders channel H̄. Thus, choosing ∆σ from a subspace with

small eigenvalues yields a small chi-square divergence and thus leads to tight copy complexity

lower bounds.

Lemma 8 Let σ, σ′ be independently drawn from a distribution D, andMi be rank-1 POVM as

in (1) for i = 1, . . . , n. Define ∆σ = σ − ρmm. Then

dχ2(Eσ∼D[Pσ ] || Pρmm) ≤ Eσ,σ′∼D
[

exp
{

nd
〈

∆σ, H̄(∆σ′)
〉} ]

− 1 (11)

where H̄ is the average LÈuders channel defined in Eq. (10).

Proof The proof uses ideas from the decoupled chi-square fluctuations introduced in Acharya

et al. (2020b). We can directly bound the chi-square distance using the following lemma which

is from Pollard (2003).

Lemma 9 (Pollard (2003),(Acharya et al., 2020b, Lemma III.8)) Let P = p(1) ⊗ · · · ⊗ p(n) be

a fixed product distribution and Qθ = q
(1)
θ ⊗ · · · ⊗ q

(n)
θ be parameterized by a random variable θ.

Then

dχ2(Eθ[Qθ ] || P) = Eθ,θ′

[

n
∏

i=1

(1 +Hi(θ, θ
′))

]

− 1,

where θ′ is an independent copy of θ and

Hi(θ, θ
′) := Ex∼p(i)

[

δ
(i)
θ (x)δ

(i)
θ′ (x)

]

, δ
(i)
θ (x) :=

q
(i)
θ (x)− p(i)(x)

p(i)(x)
.

In our problem, P will be Pρmm , the distribution over the output of measurements across the n
copies when the underlying state is maximally mixed, and Eθ[Qθ ] will be Pσ, the mixture distri-

bution over the output of measurements when the underlying state is parameterized by a random

density matrix σ induced by the perturbation. These are defined in (2).

We first compute the necessary quantities by appropriate substitution. Recall that piρ(·) is the

output distribution of the measurement on the ith copy.

δiσ(x) =
piσ(x)− piρmm

(x)

piρmm
(x)

, x ∈ [k].

We now evaluate Hi(σ, σ
′) by expanding the probabilities using Born’s rule.

Hi(σ, σ
′) = Ex∼pi

ρmm

[

(piσ(x)− piρmm
(x))(piσ′(x)− piρmm

(x))

(piρmm
(x))2

]

12
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=
∑

x

(piσ(x)− piρmm
(x))(piσ′(x)− piρmm

(x))

piρmm
(x)

=
∑

x

⟨ψix|∆σ|ψix⟩⟨ψix|∆σ′ |ψix⟩
⟨ψix|ψix⟩/d

.

This expression can now be related to the LÈuders channel. Adding trace to the numerator does not

change the value, and from this we can apply cyclicity and linearity of trace,

Hi(σ, σ
′) = d

(

∑

x

Tr[∆σ|ψix⟩⟨ψix|∆σ′ |ψix⟩⟨ψix|]
⟨ψix|ψix⟩

)

= d · Tr
[

∑

x

∆σ|ψix⟩⟨ψix|∆σ′ |ψix⟩⟨ψix|
⟨ψix|ψix⟩

]

= d · Tr
[

∆σ

∑

x

|ψix⟩⟨ψix|∆σ′ |ψix⟩⟨ψix|
⟨ψix|ψix⟩

]

= d · Tr [∆σHi(∆σ′)] = d ⟨∆σ,Hi(∆σ′)⟩ ∈ R,

where the last step uses the fact that ∆σ is Hermitian.

Then, using Lemma 9, and the fact that 1 + x ≤ exp(x), we obtain

dχ2(Eσ∼D[Pσ ] || Pρmm) = Eσ,σ′

[

n
∏

i=1

(1 +Hi(σ, σ
′))

]

− 1

≤ Eσ,σ′

[

exp

{

n
∑

i=1

Hi(σ, σ
′)

}]

− 1

= Eσ,σ′

[

exp

{

d

n
∑

i=1

⟨∆σ,Hi(∆σ)⟩
}]

− 1.

By linearity of the Hibert-Schmidt inner product and definition of H̄,

dχ2(Eσ∼D[Pσ ] || Pρmm) ≤ Eσ,σ′

[

exp

{

nd

〈

∆σ′ ,
1

n

n
∑

i=1

Hi(∆σ)

〉}]

− 1

= Eσ,σ′

[

exp{nd
〈

∆σ, H̄(∆σ′)
〉

}
]

− 1.

Using homomorphism vec(HM(X)) = CMvec(X), we have
〈

∆σ, H̄(∆σ′)
〉

= vec(∆σ)C̄vec(∆σ′),
completing the proof.

Explaining the example in Section 3.1. We now use Lemma 8 to explain why choosing a fixed

basis measurement {|x⟩⟨x|}d−1
x=0 for all copies as in Section 3.1 would fail. Since there are only d

rank-1 projectors, the rank of C̄ is d, but C̄ has a dimension of d2 × d2 and thus there are a total

of d2 − d eigenvectors with 0 eigenvalues. From Proposition 3, we know that there must exist a

trace-0 ∆ in the 0-eigenspace such that σ = ρmm +∆ ∈ Pε. For this particular σ the upper bound

in (11) is 0, and thus it is impossible to distinguish ρmm and σ. This is consistent with the discussion

in Section 3.1.
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We can make a more general argument that to avoid the catastrophic failure similar to the dummy

example in Section 3.1, C̄ has to be nearly full-rank: rank(C̄) ≥ (1 − o(1))d2. Thus (1 − o(1))d2
linearly independent rank-1 projectors are needed in all the POVMs. Indeed if otherwise, the di-

mension of the 0-eigenspace of H̄ is Ω(d2), we can again invoke Proposition 3 (perhaps with some

different constants) to find a single fixed σ that completely fools the measurement scheme.

Remark 10 One can show that H̄ is the LÈuders channel of a POVMM := { 1nM i
x}x∈[k],i∈[n] which

is the ensemble of all measurements. One can defineM†M where we slightly abused the notation

and treated M : Hd 7→ R
k as a linear mapping from quantum states to probability vectors. H̄

and M†M are similar but slightly different superoperators7. GutËă et al. (2020) used M†M to

derive upper bounds for quantum tomography for three specific types of measurements. Our result

is orthogonal to their work in that we prove lower bounds for general rank-1 measurements.

Applying Lemma 8 to our hard case construction in Definition 2, we can relate the eigenvalues

of H̄ to the max-min and min-max distances in (8) (9) in Theorem 11. The proof is in Section C.

Theorem 11 When n = O(d2/ε2), the max-min chi-square divergence can be bounded as

max
Mn fixed

min
D∈Γε

dχ2(Eσ∼D[Pσ ] || Pρmm) = O

(

n2ε4

d4
·
maxH̄

∥

∥H̄
∥

∥

2

1

d2

)

, (12)

When n = O(d3/2/ε2), the min-max chi-square divergence can be bounded as

min
D∈Γε

max
Mn fixed

dχ2(Eσ∼D[Pσ ] || Pρmm) = O

(

n2ε4

d4
max
H̄

∥

∥H̄
∥

∥

2

HS

)

. (13)

Different bounds are a result of how the basis V is chosen in Definition 2. To upper bound the

min-max divergence, we choose V to be an arbitrary fixed basis. To upper bound the max-min

divergence, we choose ℓ = d2/2 and V to be the eigenbasis of H̄, which has important properties

stated in Lemma 12. These are standard results and we state their proofs in Section A.2.1.

Lemma 12 H̄ has an orthonormal eigenbasis VH̄ = (V1, . . . , Vd2) with eigenvalues 0 ≤ λ1 ≤
. . . ≤ λd2 = 1 where Vi ∈ C

d×d is trace-0 Hermitian for i ≤ d2 − 1 and Vd2 = Id/
√
d. Further-

more, Tr[H̄] =∑d2

i=1 λi = d.

Using Lemma 12, the copy complexity lower bounds for both fixed and randomized schemes are

immediate corollaries of Theorem 11. From Lemma 12, we have
∥

∥H̄
∥

∥

1
= d. Moreover,

∥

∥H̄
∥

∥

2

HS
=

∑d2

i=1 λ
2
i ≤ (maxi λi)

∑d2

i=1 λi ≤ d (since λi ≤ 1). Thus,

maxH̄
∥

∥H̄
∥

∥

2

1

d2
= 1, max

H̄

∥

∥H̄
∥

∥

2

HS
≤ d.

Combining (8) and (12), we conclude that for fixed measurements n = Ω(d2/ε2) and prove The-

orem 5. Combining (9) and (13), we recover the n = Ω(d3/2/ε2) lower bound for randomized

non-adaptive schemes, which was shown in Bubeck et al. (2020).

7. The differ by a scalar factor if |ψi
x⟩ have equal norms, but can be very different otherwise.
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Appendix A. Proofs of technical lemmas in Section 4

A.1. Proof of Lemma 7

Proof Recall that Y = 0 and ρ = ρmm with probability 1/2 and Y = 1 and ρ ∼ D with probability

1/2. In the former case when the state is ρmm and Y = 0, then the tester outputs the correct answer

with probability at least 2/3,

Pr[Ŷ = 0|Y = 0] ≥ 2/3.

When ρ ∼ D, note that by the definition of almost-ε perturbations, the probability that ∥σz −
ρmm∥1 > ε is at least 4/5. Denote this event as E, then Pr[E|Y = 1] ≥ 4/5 . We can lower bound

the success probability as

Pr[Ŷ = 1|Y = 1] ≥ Pr[Y = 1|E, Y = 1)] Pr[E|Y = 1] ≥ 2

3
· 4
5
=

8

15
.

Combining the two parts,

Pr[Y = Ŷ ] =
1

2
Pr[Ŷ = 0|Y = 0] +

1

2
Pr[Ŷ = 1|Y = 1] ≥ 1

2

(

2

3
+

8

15

)

=
3

5
.

By standard argument on the distinguishability of two distributions (Yu, 1997, Lemma 1),

1− 3

5
≥ 1

2
(1− dTV(Ez[Pσz ],Pρmm)) =⇒ dTV(Ez[Pσz ],Pρmm) ≥

1

5
.

Finally, the inequality follows by Pinsker’s inequality and the relation between KL and chi-

square divergences.

dTV(Eσ[Pσ ],Pρmm) ≤
√

1

2
KL(Eσ∼D[Pσ ] || Pρmm) ≤

√

1

2
dχ2(Eσ∼D[Pσ ] || Pρmm).

A.2. Proof of Lemma 12

Let us recall the lemma.

Lemma 12 H̄ has an orthonormal eigenbasis VH̄ = (V1, . . . , Vd2) with eigenvalues 0 ≤ λ1 ≤
. . . ≤ λd2 = 1 where Vi ∈ C

d×d is trace-0 Hermitian for i ≤ d2 − 1 and Vd2 = Id/
√
d. Further-

more, Tr[H̄] =∑d2

i=1 λi = d.

The proof is broken into two parts. In A.2.1 we state some properties of superoperators, and

in A.2.2 we provide a proof of the lemma.
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A.2.1. IMPORTANT PROPERTIES OF HM

We start with some useful definitions.

Definition 13 Let N : Cd×d 7→ C
d×d be a superoperator.

1. N is called Hermitian if N = N †.

2. N is Hermiticity preserving if for all Hermitian X ∈ Hd, N (X) is also Hermitian.

3. N is trace-preserving if for all X ∈ C
d×d, Tr[X] = Tr[N (X)].

4. N is unital if N (Id) = Id.

We have the following fact about the LÈuders channel.

Fact 14 HM is a superoperator over Cd×d that satisfies all properties in Definition 13.

Proof The proof follows from Definition 13, Definition 4, and the definition of POVMs. Neverthe-

less, we provide the proof for completeness.

1. Hermitian:

⟨Y,HM(X)⟩ = Tr

[

Y †∑

x

|ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

]

=
∑

x

Tr

[

Y †|ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

]

=
∑

x

Tr

[ |ψx⟩⟨ψx|Y †|ψx⟩⟨ψx|X
⟨ψx|ψx⟩

]

= Tr

[

∑

x

|ψx⟩⟨ψx|Y †|ψx⟩⟨ψx|
⟨ψx|ψx⟩

X

]

= ⟨HM(Y ), X⟩

2. Hermiticity preserving: let X be Hermitian, then

HM(X)† =
∑

x

|ψx⟩⟨ψx|X†|ψx⟩⟨ψx|
⟨ψx|ψx⟩

=
∑

x

|ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

= HM(X)

3. Trace preserving:

Tr [HM(X)] = Tr

[

∑

x

|ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

]

=
∑

x

Tr

[ |ψx⟩⟨ψx|X|ψx⟩⟨ψx|
⟨ψx|ψx⟩

]

=
∑

x

⟨ψx|X|ψx⟩ =
∑

x

Tr[|ψx⟩⟨ψx|[X]]

= Tr

[

∑

x

|ψx⟩⟨ψx|X
]

= Tr[X].

4. Unital:

HM(Id) =
∑

x

|ψx⟩⟨ψx|Id|ψx⟩⟨ψx|
⟨ψx|ψx⟩

=
∑

x

|ψx⟩⟨ψx| = Id.
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A.2.2. PROOF OF THE LEMMA

Hermitian eigenvectors. By linearity, H̄ satisfies all properties in Fact 14. Since H̄ is Hermiticity

preserving, H̄ is also a linear superoperator over the subspace of all Hermitian matrices Hd.

Since H̄ is a Hermitian operator on Hd, the eigenvectors of H̄ form an orthonormal basis {Vi}d2i=1

of Hd. Note that Id is an eigenvector of H̄ with eigenvalue 1 since

H̄ (Id) =
1

n

(

n
∑

i=1

Hi(Id)
)

=
1

n

(

n
∑

i=1

Id = Id

)

.

We then set Vd2 = Id/
√
d. Thus, all other eigenvectors V1, . . . , Vd2−1 must lie in the space orthog-

onal to span{Id}, which is exactly the space of trace-0 Hermitian matrices since

⟨A, Id⟩ = 0 ⇐⇒ Tr[A†
Id] = Tr[A†] = 0 = Tr[A].

Non-negative eigenvalues. To show that all eigenvalues are non-negative, we just need to show

that H̄ is positive semi-definite, i.e. for all matrix X ∈ Cd×d,

〈

X, H̄(X)
〉

≥ 0.

Due to linearity, we just need to prove that eachHi as defined in 5 is p.s.d.,

⟨X,Hi(X)⟩ = Tr

[

X†
k
∑

x=1

|ψix⟩⟨ψix|X|ψix⟩⟨ψix|
⟨ψix|ψix⟩

]

=
k
∑

x=1

Tr[X†|ψix⟩⟨ψix|X|ψix⟩⟨ψix|]
⟨ψix|ψix⟩

(14)

=

k
∑

x=1

⟨ψix|X†|ψix⟩⟨ψix|X|ψix⟩
⟨ψix|ψix⟩

=

k
∑

x=1

|⟨ψix|X|ψix⟩|2
⟨ψix|ψix⟩

≥ 0.

The last line is due to

⟨ψix|X|ψix⟩ = ⟨ψix|X|ψix⟩† = ⟨ψix|X†|ψix⟩.
Upper bound on eigenvalues. Finally, we show that all eigenvalues are at most 1. This is equiv-

alent to
∥

∥H̄
∥

∥

op
≤ 1. By the convexity of norms, it suffices to prove that ∥Hi∥op ≤ 1. Starting

from (14),

⟨X,Hi(X)⟩ =
k
∑

x=1

Tr[X†|ψix⟩⟨ψix|X|ψix⟩⟨ψix|]
⟨ψix|ψix⟩

≤
k
∑

x=1

√

Tr[X†|ψix⟩⟨ψix|ψix⟩⟨ψix|X] Tr[|ψix⟩⟨ψix|X†X|ψix⟩⟨ψix|]
⟨ψix|ψix⟩

Cauchy-Schwarz

=

k
∑

x=1

√

Tr[X†X|ψxi ⟩⟨ψxi |] Tr[XX†|ψxi ⟩⟨ψxi |] Cyclicity of trace

22



THE ROLE OF RANDOMNESS IN UNENTANGLED QUANTUM STATE CERTIFICATION

≤
k
∑

x=1

Tr

[

X†X +XX†

2
|ψxi ⟩⟨ψxi |

]

AM-GM

= Tr

[

X†X +XX†

2

k
∑

x=1

|ψxi ⟩⟨ψxi |
]

= Tr

[

X†X +XX†

2

]

POVM

= Tr[X†X]

= ⟨X,X⟩ .

Trace. Again due to linearity, we only need to prove that Tr[Hl] = d for each l = 1, . . . , n.

Tr[Hl] =
d
∑

i,j=1

Tr

[

k
∑

x=1

|j⟩⟨i|ψlx⟩⟨ψlx|i⟩⟨j|ψlx⟩⟨ψlx|
⟨ψlx|ψlx⟩

]

=
d
∑

i,j=1

k
∑

x=1

⟨ψlx|j⟩⟨i|ψlx⟩⟨ψlx|i⟩⟨j|ψlx⟩
⟨ψlx|ψlx⟩

=
k
∑

x=1

1

⟨ψlx|ψlx⟩
d
∑

i=1

|⟨i|ψlx⟩|2
d
∑

j=1

|⟨j|ψlx⟩|2

=
k
∑

x=1

⟨ψlx|ψlx⟩2
⟨ψlx|ψlx⟩

=

k
∑

x=1

⟨ψlx|ψlx⟩ = d.

The final equality is due to
∑

x |ψlx⟩⟨ψlx| = Id and thus Tr[
∑

x |ψlx⟩⟨ψlx|] =
∑k

x=1⟨ψlx|ψlx⟩ =
Tr[Id] = d

Appendix B. Proof of Proposition 3

The central claim is Theorem 15 which states that the operator norm of a random matrix with inde-

pendently perturbed orthogonal components is O(
√
d) with high probability. The proof is in Sec-

tion B.1.

Theorem 15 Let V1, . . . , Vd2 ∈ C
d×d be an orthonormal basis of Cd×d and z1, . . . , zd2 ∈ {−1, 1}

be independent symmetric Bernoulli random variables. Let W =
∑ℓ

i=1 ziVi where ℓ ≤ d2. For all

α > 0, there exists κα, which is increasing in α such that

Pr
[

∥W∥op > κα
√
d
]

≤ 2 exp{−αd}.

Remark 16 Standard random matrix theory (e.g. Tao (2023)[Corollary 2.3.5]) states that if each

entry of W is independent and uniform from {−1, 1}, i.e. W =
∑

i,j zijEij where Eij is a matrix

with 1 at position (i, j) and 0 everywhere else, then ∥W∥op = O(
√
d) with high probability. Theo-

rem 15 generalizes this argument to arbitrary basis {Vi}d2i=1. This could be of independent interest.
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Proposition 3 is an immediate corollary of Theorem 15.

Proposition 3 Let d2/2 ≤ ℓ ≤ d2 − 1. Let z be drawn uniformly from {−1, 1}ℓ , and ∆z, σz are

as defined in Definition 2. Then, there exists a universal constant c ≤ 10
√
2, such that for ε < 1

c2
,

with probability at least 1− 2 exp(−d), ∥∆z∥op ≤ 1/d and ∥∆z∥1 ≥ ε.

Proof By HÈolder’s inequality, we have that for all matrices A,

∥A∥op∥A∥1 ≥ ∥A∥2HS.

Note that ∆z = cε√
dℓ
W and ∥∆z∥HS = cε√

d
. Thus setting α = 1 and κ = κ1 in Theorem 15, with

probability at least 1− 2 exp(−d),

∥∆z∥op ≤
cε√
dℓ
· κ
√
d =

cκε√
ℓ
.

This implies that

∥∆z∥1 ≥ ∥∆z∥2HS/∥∆z∥op ≥
cε

κ
·
√
ℓ

d
.

In the proof of Theorem 15 in Section B.1, we can show that κ = κ1 ≤ 10. Thus choosing

c =
√
2κ ≤ 10

√
2, we guarantee that ∥∆z∥1 > ε due to ℓ ≥ d2/2. As long as ε ≤ 1

200 , we

have ∥∆z∥op ≤ 1/d and thus σz = ρmm + ∆z is a valid density matrix. This completes the proof

of Proposition 3.

Different bounds for min-max and max-min divergences in Theorem 11 are due to whether or

not nature can choose V dependent on H̄, which in turn depends on the measurements Mn. For

randomized schemes, we need to upper bound the min-max divergence, and we can simply choose

a fixed V that is uniformly bad for allMn. For fixed measurements however, under the max-min

framework, nature could choose the hard distribution depending onMn. Specifically, with V = VH̄
and ℓ small, σz − ρmm completely lies in an eigenspace of H̄ with the ℓ smallest eigenvalues, thus

generalizing the intuition from the toy example in Section 3.1.

B.1. Proof of Theorem 15

Proof We first prove that for any fixed unit vector x ∈ C
d, the norm of Wx is at most O(

√
d) with

high probability. Then we use an ϵ-net argument to show that the probability is also high for all unit

vectors. We start with the following lemma.

Lemma 17 Let {zi}d2i=1, {Vi}d
2

i=1 and W be defined in Theorem 15. Then there exists a universal

constant c′ for any fixed unit vector x and all s > 0,

Pr
[

∥Wx∥2 ≥ (1 + s)
√
d
]

≤ 2 exp{−c′s2d}.

Proof Let z = (z1, . . . , zd2) ∈ R
d2 , and Πℓ ∈ R

d2×d2 be a diagonal matrix with 1 in the first ℓ
diagonal entries and 0 everywhere else. Then

Wx =
ℓ
∑

i=1

ziVix = VxΠℓz,

24



THE ROLE OF RANDOMNESS IN UNENTANGLED QUANTUM STATE CERTIFICATION

where

Vx := [V1x, . . . , Vd2x] ∈ C
d×d2

which is an isometry, i.e. VxV
†
x = Id, as stated in Claim 22 which will be proved at the end of this

section. Therefore,

∥Vx∥op = 1, ∥Vx∥2HS = Tr[VxV
†
x ] = d.

From this, we can apply concentration for linear transforms of independent sub-Gaussian random

variables.

Theorem 18 (Vershynin (2018, Theorem 6.3.2)) Let B ∈ C
m×n be a fixed m × n matrix and let

X = (X1, . . . , Xn) ∈ R
n be a random vector with independent, mean zero, unit variance, and

sub-Gaussian coordinates with Orlicz-2 norm ∥Xi∥ψ2 ≤ K. Then there exists a universal constant

C = 3
8 such that for all t > 0,

Pr
[

|∥BX∥2 − ∥B∥HS| > t
]

≤ 2 exp

{

− Ct2

K4∥B∥2op

}

.

Remark 19 The original (Vershynin, 2018, Theorem 6.3.2) was stated for real matrix B. However,

it is straightforward to extend the argument to complex B by considering B̃ =

[

Re(B)
Im(B)

]

. Then
∥

∥

∥B̃
∥

∥

∥

op
= ∥B∥op,

∥

∥

∥B̃
∥

∥

∥

HS
= ∥B∥HS, and ∥BX∥2 = ∥B̃X∥2.

Setting B = VxΠℓ, we observe that

∥B∥op ≤ ∥Vx∥op∥Πℓ∥op = 1, ∥B∥HS ≤ ∥Vx∥HS =
√
d.

Thus, plugging t = s
√
d, and noting that ∥zi∥ψ2 = 1/

√
ln 2 = K, we have

Pr
[

∥Wx∥2 > (1 + s)
√
d
]

≤ Pr
[

∥Bz∥2 > s
√
d+ ∥B∥HS

]

≤ 2 exp
{

−Cd(ln 2)2s2
}

.

Setting c′ = C(ln 2)2 = 3(ln 2)2

8 completes the proof.

We can then proceed to use the ϵ-net argument, which follows closely to (Tao, 2023, Section 2.3).

Lemma 20 ((Tao, 2023, Lemma 2.3.2)) Let Σ be a maximal 1/2-net of the unitary sphere, i.e., a

maximal set of points that are separated from each other by at least 1/2. Then for any matrix

M ∈ C
d×d and λ > 0,

Pr
[

∥M∥op > λ
]

≤
∑

y∈Σ
Pr[ ∥My∥2 > λ/2 ].

By standard volume packing argument, the size of Σ is at most exp(O(d)),

Lemma 21 ((Tao, 2023, Lemma 2.3.4)) Let ϵ ∈ (0, 1) and let Σ be an ϵ-net of the unit sphere.

Then |Σ| ≤ (C ′/ϵ)d where C ′ = 3.
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Thus with c′ defined in Lemma 17 and C ′ defined in Lemma 21 we conclude that

Pr
[

∥W∥op > 2(1 + s)
√
d
]

≤ 2(2C ′)d exp{−c′s2d} = 2 exp
{

−(c′s2 − ln(2C ′))d
}

.

Thus choosing s sufficiently large, we can guarantee that the tail probability decays exponentially

in d. Specifically, let α > 0 and s2 = α+ln(2C′)
c′ , then we have

Pr
[

∥W∥op > 2(1 + s)
√
d
]

≤ 2e−αd.

Setting κα = 2(1 + s) = 2

(

1 +

√

α+ln(2C′)
c′

)

proves the theorem. In particular, κ1 ≤ 10 when

substituting the values of c′ and C ′.

We end this section with the proof of the isometry claim.

Claim 22 Let V1, . . . , Vd2 be an orthonormal basis of Cd×d and x ∈ C
d be a unit vector. Then

Vx := [V1x, . . . , Vd2x] ∈ C
d×d2 is an isometry: VxV

†
x = Id.

Proof Let V
(k)
x be the kth row of Vx written as row vector. It suffices to prove that

V (k)
x (V (l)

x )† = δkl

Let V
(k)
i be the kth row of Vi, written as a row vector. Then the kth element of Vix is

v
(k)
i := V

(k)
i x.

Since V1, . . . , Vd2 are orthonormal, we know that

V := [vec(V1), . . . , vec(Vd2)]

is a unitary matrix in C
d2×d2 . Let V j be the jth row of V , then because V is unitary, the vector dot

product
〈

V j , V i
〉

= δij . Let

V (k) = [(V k)†, (V k+d)†, . . . (V k+d(j−1))†, . . . , (V k+d(d−1))†]†

which picks out the kth row of all V1, . . . , Vd2 . Then, we have

V (k) = [(V
(k)
1 )⊤, . . . , (V (k)

d2
)⊤].

Thus,
d2
∑

i=1

(V
(k)
i )†V (k)

i = V (k)(V (k))† = Id,

and for k ̸= l,
d2
∑

i=1

(V
(k)
i )†V (l)

i = V (k)(V (l))† = 0.

Therefore,

V (k)
x (V (l)

x )† =
d2
∑

i=1

v
(k)
i (v

(l)
i )† =

d2
∑

i=1

x†(V (l)
i )†V (k)

i x = x†δklIdx = δkl,

exactly as desired, completing the proof.
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Appendix C. Proof of Theorem 11

Let V = (V1, . . . , Vd2 = Id/
√
d) be an orthonormal basis of Hd. We now upper bound the ex-

pression (11) in Lemma 8 when D = Dℓ(V), defined in Definition 2. The result is in Theorem 23.

The central claim is that the chi-squared divergence is related to the Hilbert-Schmidt norm of the

projection of H̄ onto the subspace defined by V1, . . . , Vℓ.

Theorem 23 Let d
2

2 ≤ ℓ ≤ d2 − 1, V = (V1, . . . , Vd2 = Id/
√
d) be an orthonormal basis of Hd,

V := [vec(V1), . . . , vec(Vℓ)] and σz, σz′ ∼ Dℓ(V) defined in Definition 2. Then for n < d2

6c2ε2
,

Eσz ,σz′

[

exp
{

nd
〈

∆̄z′ , H̄(∆̄z)
〉} ]

− 1 ≤ exp

{

c2n2ε4

ℓ2

∥

∥

∥V †C̄V
∥

∥

∥

2

HS

}

− 1 +
4

ed
. (15)

We now bound
∥

∥V †C̄V
∥

∥

2

HS
, which depends on how the basis V is chosen.

Observation 24 For all orthonormal basis V , we have
∥

∥V †C̄V
∥

∥

HS
≤
∥

∥H̄
∥

∥

HS
. However when

V = VH̄ in Lemma 12, for all d2

2 ≤ ℓ ≤ d2 − 1,
∥

∥V †C̄V
∥

∥

HS
=
∥

∥H̄ℓ
∥

∥

HS
:=
√

∑ℓ
i=1 λ

2
i and

0 ≤ λ1 ≤ . . . ≤ λd2 = 1 are the eigenvalues of H̄.

The proof of Theorem 23 is in Section C.1 and the proof of Observation 24 is in Section C.2.

We can now prove Theorem 11. It is more straightforward to prove the min-max upper bound (9)

by setting V as an arbitrary fixed basis that satisfies Definition 2. For example, one can choose the

generalized Gell-Mann basis,

σ0,0 :=
Id√
d
,

σ
(+)
k,l :=

1√
2
(|k⟩⟨l|+ |l⟩⟨k|), 0 ≤ k < l ≤ d− 1,

σ
(i)
k,l :=

1√
2
(−i|k⟩⟨l|+ i|l⟩⟨k|), 0 ≤ k < l ≤ d− 1,

σk,k :=
k

k + 1



−k|k⟩⟨k|+
k−1
∑

j=0

|j⟩⟨j|



, 1 ≤ k ≤ d− 1.

We can relabel them as V1, . . . , Vd2 where Vd2 = σ0,0. This is a natural extension of Pauli matrices

for d = 2. It can be easily verified that these d2 matrices indeed form an orthonormal basis over

Hd. Using Lemma 8 and Theorem 23, setting ℓ = d2 − 1,

min
D∈Γε

max
Mn fixed

dχ2(Eσ∼D[Pσ ] || Pρmm) ≤ max
Mn fixed

dχ2

(

Eσ∼Dℓ(V)[Pσ ] || Pρmm

)

≤ O
(

n2ε4

d4
max
H̄

∥

∥H̄
∥

∥

2

HS

)

.

When upper bounding the max-min divergence (12), we would have the freedom to choose a

basis V that depends on H̄, which is determined by the measurementMn. More precisely, we can

set V = VH̄ and ℓ = d2/2, and the perturbations Dℓ(VH̄) would be along directions that are least
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sensitive for the measurement scheme, which leads to the extra d factor in the chi-square divergence

upper bound,

max
Mn fixed

min
D∈Γε

dχ2(Eσ∼D[Pσ ] || Pρmm) ≤ max
Mn fixed

dχ2

(

Eσ∼Dℓ(VH̄
)[Pσ ] || Pρmm

)

≤ O
(

n2ε4

d4
max
H̄

∥

∥H̄ℓ
∥

∥

2

HS

)

.

The square-sum of the smallest eigenvalues can be bounded in terms of Tr[H̄],

∥

∥H̄ℓ
∥

∥

2

HS
=

ℓ
∑

i=1

λ2i ≤ ℓλ2ℓ ≤ ℓ
(

Tr[H̄]
d2 − ℓ

)2

=
2
∥

∥H̄
∥

∥

2

1

d2
= 2.

The second inequality is because all eigenvalues are sorted in increasing order, and thus λℓ is no

greater than the average of λℓ+1, . . . , λd2 , which is at most Tr[H̄]/(d2 − ℓ). The proof is complete.

C.1. Proof of Theorem 23

We first recall the theorem.

Theorem 23 Let d
2

2 ≤ ℓ ≤ d2 − 1, V = (V1, . . . , Vd2 = Id/
√
d) be an orthonormal basis of Hd,

V := [vec(V1), . . . , vec(Vℓ)] and σz, σz′ ∼ Dℓ(V) defined in Definition 2. Then for n < d2

6c2ε2
,

Eσz ,σz′

[

exp
{

nd
〈

∆̄z′ , H̄(∆̄z)
〉} ]

− 1 ≤ exp

{

c2n2ε4

ℓ2

∥

∥

∥
V †C̄V

∥

∥

∥

2

HS

}

− 1 +
4

ed
. (15)

Proof First, we claim that due to the exponentially small probability of the bad event ∆z+ρmm /∈ Pε
as stated in Proposition 3, we can consider ∆z instead of the normalized perturbation ∆̄z . The claim

is proved at the end of this section.

Claim 25 Let ∆̄z and ∆z be defined in Definition 2, then

Ez,z′
[

exp
{

nd
〈

∆̄z′ , H̄(∆̄z)
〉} ]

≤ Ez,z′
[

exp
{

nd
〈

∆z′ , H̄(∆z)
〉} ]

+
4

ed
.

We then apply a standard result on the moment generating function of Radamacher chaos.

Lemma 26 (Acharya et al. (2020b, Claim IV.17)) Let θ, θ′ be two independent random vectors

distributed uniformly over {−1, 1}ℓ. Then for any positive semi-definite real matrix H ,

logEθ,θ′
[

exp{λθ⊤Hθ′}
]

≤ λ2

2

∥H∥2HS
1− 4λ2∥H∥2op

, for 0 ≤ λ < 1

2∥H∥op

.

We now evaluate the inner product. Recall the Choi representation of H̄ is C̄ = 1
n

∑n
i=1 Ci. Note

that Ci and C̄ are p.s.d. Hermitian matrices, and the eigenvalues exactly match those of Hi and H̄
due to the homomorphism between C

d2 and C
d×d.

Setting V = [vec(V1), . . . , vec(Vℓ)] ∈ C
d2×ℓ, we have vec(∆z) =

cε√
dℓ
V z. Thus,

〈

∆z, H̄(∆z′)
〉

= vec(∆z′)
†C̄vec(∆z′)
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=
c2ε2

dℓ
z†V †C̄V z′.

We now show that H := V †C̄V is a real matrix when each Vi is a Hermitian matrix. First note that

C̄V = [vec(H̄(V1)), . . . , vec(H̄(Vℓ))]. Therefore the i, j the element in H is

Hij = vec(Vi)
†vec(H̄(Vj)) =

〈

Vi, H̄(Vj)
〉

∈ R. (16)

We use the fact that H̄ is Hermiticity preserving and thus H̄(Vj) is Hermitian. Since Hd is a real

Hilbert space, the inner product is a real number.

We then set λ = c2nε2

ℓ and H = V †C̄V in Lemma 26. Then ∥H∥op ≤
∥

∥C̄
∥

∥

op
=
∥

∥H̄
∥

∥

op
≤ 1

due to Lemma 12. Thus for n < ℓ
3c2ε2

, we have

λ∥H∥op ≤ λ <
1

3
=⇒ λ2

2(1− 4λ2∥H∥2op)
≤ 9λ2

10
< λ2.

Hence, applying Lemma 26

Ez,z′

[

exp

{

c2nε2

ℓ
z⊤Hz′

}]

≤ exp{λ2∥H∥2HS} = exp

{

c4n2ε4

ℓ2
∥H∥2HS

}

.

Combining with Claim 25 proves Theorem 23.

Proof [Claim 25] Note that ∆̄z = az∆z , where

az := min

{

1,
1

d∥∆z∥op

}

∈ [0, 1].

Therefore,
〈

∆̄z′ , H̄(∆̄z)
〉

= azaz′
〈

∆z′ , H̄(∆z)
〉

.

As a short hand let f(z, z′) = nd
〈

∆z′ , H̄(∆z)
〉

. Denote event E as f(z, z′) < 0 and azaz′ < 1.

When this event occors, exp{azaz′f(z, z′)} ≤ 1. Using Proposition 3, let δ = 2 exp(−d),
Pr[ az < 1 ] ≤ δ.

Thus, by the union bound,

Pr[E ] = Pr[ azaz′ < 1 ] = Pr[ az < 1 or az′ < 1 ] ≤ 2δ.

Note that Ec denotes the event that f(z, z′) ≥ 0 or aza
′
z = 1. When this occurs, azaz′f(z, z

′) ≤
f(z, z′). Thus,

Ez,z′
[

exp
{

azaz′f(z, z
′)
} ]

= Ez,z′
[

exp
{

azaz′f(z, z
′)
} ∣

∣ Ec
]

Pr[Ec ] + Ez,z′
[

exp
{

azaz′f(z, z
′)
} ∣

∣ E
]

Pr[E ]

≤ Ez,z′
[

exp
{

f(z, z′)
} ∣

∣ Ec
]

Pr[Ec ] + 2δ

≤ Ez,z′
[

exp
{

f(z, z′)
} ]

+ 2δ,

as desired. The second-to-last inequality uses azf
′
zf(z, z

′) ≤ 0 when event E happens, and the

final inequality uses exp{f(z, z′)} > 0 and therefore

Ez,z′
[

exp
{

f(z, z′)
} ]

= Ez,z′
[

exp
{

f(z, z′)
} ∣

∣ Ec
]

Pr[Ec ] + Ez,z′
[

exp
{

f(z, z′)
} ∣

∣ E
]

Pr[E ]

≥ Ez,z′
[

exp
{

f(z, z′)
} ∣

∣ Ec
]

Pr[Ec ].

Plugging in the definition of az and f(z, z′) completes the proof.

29



LIU ACHARYA

C.2. Proof of Observation 24

Recall the statement of the observation.

Observation 24 For all orthonormal basis V , we have
∥

∥V †C̄V
∥

∥

HS
≤
∥

∥H̄
∥

∥

HS
. However when

V = VH̄ in Lemma 12, for all d2

2 ≤ ℓ ≤ d2 − 1,
∥

∥V †C̄V
∥

∥

HS
=
∥

∥H̄ℓ
∥

∥

HS
:=
√

∑ℓ
i=1 λ

2
i and

0 ≤ λ1 ≤ . . . ≤ λd2 = 1 are the eigenvalues of H̄.

Proof Since V1, . . . , Vd2 is an orthonormal basis, we have V †V = Iℓ, and thus V is an isometry and

∥V ∥op =
∥

∥V †∥
∥

op
= 1. Using ∥AB∥HS ≤ ∥A∥op∥B∥HS, we obtain

∥

∥

∥V †C̄V
∥

∥

∥

HS
≤
∥

∥C̄
∥

∥

HS
=
∥

∥H̄
∥

∥

HS
.

When V = VH̄, we note that V †C̄V = Dℓ := diag{λ1, . . . , λℓ}, and ∥Dℓ∥2HS =
∑ℓ

i=1 λ
2
i . Indeed,

as derived in (16),

Hij =
〈

Vi, H̄(Vj)
〉

= λj ⟨Vi, Vj⟩ = λjδij .

Therefore,

∥H∥2HS ≤
{

∥Dℓ∥2HS =
∑ℓ

i=1 λ
2
i , V = VH̄,

∥

∥H̄
∥

∥

2

HS
, otherwise.

Appendix D. Upper bound for fixed measurements

The algorithm we present is similar to an algorithm proposed in (Yu, 2021, Algorithm 4)8. They

specifically work with maximal mutually unbiased bases Klappenecker and Rotteler (2005), and

we work with quantum 2-designs, which are generalizations of the former. For completeness, we

present the algorithm and its copy complexity guarantee.

The algorithm is based on quantum 2-designs, a finite set of vectors that preserves the second

moment of the Haar measure and yields a rank-1 POVM with appropriate scaling. The same mea-

surement is applied to all copies. Since it preserves the statistics of the Haar measure, one can show

that when ρ and ρ0 are far, then the outcome distribution on each copy is also far in ℓ2 distance.

From this, we apply classical closeness testing to the outcomes. As long as the 2-design has size

at most O(d2), then we can achieve the desired O(d2/ε2) copy complexity. For d that are prime

powers, such 2-design exists due to maximal mutually unbiased bases Klappenecker and Rotteler

(2005). This is already general enough since the system dimension d is 2N for quantum computers

implemented in qubits. Moreover, the algorithm can be easily generalized to the problem of closed-

ness testing, where the goal is to test whether two unknown states ρ and σ are close in trace distance

given n copies from each.

8. We came across the result after writing a draft of the paper. However, given the similarity of the algorithms, it should

be attributed to Yu (2021).
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D.1. Preliminaries

Quantum t-designs. At a high level, for an integer t > 0, t-design is a finite set of unit vectors

such that the average of any polynomial f of degree at most t is the same as the expectation of f
over the Haar measure.

Definition 27 (Quantum t-design) Let t be a positive integer, we say that a finite set of normalized

vectors {|ψx⟩}kx=1 in C
d and a discrete distribution q = (q1, . . . , qk) over [k] a quantum t-design if

k
∑

x=1

qx|ψx⟩⟨ψx|⊗t =
∫

|ψ⟩⟨ψ|⊗tdµ(ψ),

where µ is the Haar measure on the unit sphere in C
d. If qx = 1/k, then the t-design is proper and

we may omit the distribution q when describing proper t-designs.

By taking the partial trace on both sides, we can easily see that a t-design is naturally a t′-design for

all t′ ≤ t. Moreover, when t = 1, the right-hand side is Id/d and thus {dqx|ψx⟩⟨ψx|} is a POVM.

An important example of spherical 2-design is based on mutually unbiased bases (MUB) (see Durt

et al. (2010) for a survey).

Theorem 28 (Klappenecker and Rotteler (2005)) Let d be a prime power, then there exists a

maximal MUB, i.e. d + 1 orthonormal bases {|ψlx⟩}dx=1, l = 1, . . . , d + 1 such that the collec-

tion of all vectors {|ψlx⟩}x,l is a proper 2-design.

Classical distribution testing We will use the classical closeness testing algorithm for discrete

distributions as a sub-routine. Given two distributions p and q and n samples from each, the goal is

to test whether p = q or ∥p− q∥2 ≥ ε. The sample complexity guarantee is given by the following

theorem.

Theorem 29 ((Diakonikolas and Kane, 2016, Lemma 2.3),(Chan et al., 2014, Proposition 3.1))

Let p,q be unknown distributions over k such that min{∥p∥2, ∥q∥2} ≤ b. There exists an algo-

rithm TestClosenessL2(x,x′, ε) that distinguishes whether p = q or ∥p− q∥2 > ε, where x and

x′ are O(b/ε2) samples from p and q respectively.

D.2. Algorithm

The algorithm applies a proper 2-design for all copies, with suitable coefficients to make the pro-

jection matrices a POVM. 2-designs preserve the statistics of the Haar measure up to order 2, and

therefore should be a good choice for fixed measurements.

Theorem 30 Let k be the size of the proper 2-design used in Algorithm 1. With n = O
(

d
√
k/ε2

)

copies from each unknown state, Algorithm 1 can test whether ρ = ρ0 or ∥ρ− ρ0∥1 > ε with

probability at least 2/3.

Proof Let ∆ = ρ − ρ0 and pρ be the distribution of a single measurement outcome forM. When

∥ρ− ρ0∥1 = ∥∆∥1 ≥ ε, we have ∥∆∥HS =
√

Tr[∆2] ≥ ε/
√
d.
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Algorithm 1: State certification/closedness testing without shared randomness

Input: n copies of unknown state ρ. If ρ0 is unknown, n copies of ρ0 as well.

Output YES if ρ = ρ0, NO if ∥ρ− ρ0∥1 > ε.
Let {|ψx⟩}kx=1 be a proper 2-design andM = { dk |ψx⟩⟨ψx|}kx=1

Apply the measurementM for all copies of ρ and obtain outcomes x = (x1, . . . , xn).
Obtain n samples x′ = (x′1, . . . , x

′
n) from pρ0 . If ρ0 is known, then x′ is obtained by measuring

each copy withM. Else, x′ is sampled using classical randomness.

return TestClosenessL2(x,x′, ε/
√

k(d+ 1)).

We can compute the ∥pρ∥2 and ∥pρ − pρ0∥2 in terms of ∆.

∥pρ∥22 =
d2

k2

k
∑

x=1

⟨ψx|ρ|ψx⟩2, ∥pρ − pρmm∥22 =
d2

k2

k
∑

x=1

⟨ψx|∆|ψx⟩2.

Note that {|ψx⟩}kx=1 is a proper 2-design, and thus by definition for all Hermitian matrices M ,

1

k

k
∑

x=1

⟨ψx|M |ψx⟩2 =
1

k

∑

x

Tr[|ψx⟩⟨ψx|M ]2 = Tr

[

1

k

∑

x

|ψx⟩⟨ψx|⊗2M⊗2

]

= Tr
[

Eψ∼µ
[

|ψ⟩⟨ψ|⊗2]M⊗2
]]

= Eψ∼µ
[

Tr[|ψ⟩⟨ψ|⊗2M⊗2]
]

= Eψ∼µ
[

Tr[|ψ⟩⟨ψ|M ]2
]

= Eψ∼µ
[

⟨ψ|M |ψ⟩2
]

,

where µ is the Haar measure. The expectation can be computed using Weingarten calculus Collins

(2003); Collins and ÂSniady (2006).

Lemma 31 For any Hermitian M ∈ C
d×d and |ψ⟩ ∼ µ the Haar measure, we have,

Eψ∼µ
[

⟨ψ|M |ψ⟩2
]

=
1

d(d+ 1)
(Tr[M ]2 +Tr[M2]).

The proof can be found in (Chen et al., 2022b, Lemma 6.4). Since Tr[ρ2] ≤ Tr[ρ] = 1 and

Tr[∆] = 0, from this lemma we conclude that

∥pρ∥22 ≤
2d

k(d+ 1)
, ∥pρ − pρmm∥22 =

d2Tr[∆2]

kd(d+ 1)
≥ ε2

k(d+ 1)
.

Therefore, we can apply Theorem 29 with domain size k, b ←
√

2d
k(d+1) , and ε ← ε√

k(d+1)
. The

number of samples n required is

n = O

(
√

2d

k(d+ 1)
· k(d+ 1)

ε2

)

= O

(

√

kd(d+ 1)

ε

)

.

The upper bound part of Theorem 1 is an immediate corollary of the above theorem.
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Corollary 32 If the size of the proper 2-design in Algorithm 1 is k = O(d2), then n = O(d2/ε2)
copies are sufficient for Algorithm 1. Specifically, when d is a prime power, such 2-design exists due

to maximal MUB which satisfies k = d(d+ 1).

This result suggests that the optimal copy complexity ofO(d2/ε2) can be generalized to dimensions

d other than prime powers. For example, SIC-POVM Zauner (1999); Renes et al. (2004) is a mini-

mal 2-design with k = d2 and is known to exist for d = 2 to 28 and as high as d = 1299 DeBrota

(2020). It has been conjectured in Zauner (1999) that SIC-POVMs exist for all d. If the conjecture

is proved, then Algorithm 1 naturally generalizes to all d.
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