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Abstract

Given n copies of an unknown quantum state p € C%*?, quantum state certification is the task

of determining whether p = pg or ||p — poll1 > &, where pg is a known reference state. We
study quantum state certification using unentangled quantum measurements, namely measurements
which operate only on one copy of p at a time. When there is a common source of randomness
available and the unentangled measurements are chosen based on this randomness, prior work has
shown that ©(d3/? /&%) copies are necessary and sufficient. This holds even when the measure-
ments are allowed to be chosen adaptively. We consider deterministic measurement schemes (as
opposed to randomized) and demonstrate that ©(d? /?) copies are necessary and sufficient for state
certification. This shows a separation between algorithms with and without randomness.

We develop a lower bound framework for both fixed and randomized measurements that relates
the hardness of testing to the well-established Liiders rule. More precisely, we obtain lower bounds
for randomized and fixed schemes as a function of the eigenvalues of the Liiders channel which
characterizes one possible post-measurement state transformation.

1. Introduction

We study the problem of quantum state certification (O’Donnell and Wright, 2015; Wright, 2016;
Badescu et al., 2019), where we are given n copies of an unknown quantum state with density p €
C?*4_ and complete description of a known state py. The goal is to use quantum measurements to
test whether p = pg or ||p — po||; > €, where |||, is the trace norm. A special case of this problem
is mixedness testing, which is the case when pg = pmm := [g/d is the maximally mixed state.
Quantum certification is motivated by practical applications where one wants to verify whether the
output state of a quantum algorithm is indeed the state we desire.

A related problem is of closeness testing, where we are given copies of two unknown states p
and po and the goal is again to test whether p = pg or ||p — po||; > €. The motivation to study this
problem is to test whether two quantum algorithms produce the same state.

We are interested in determining how many copies of the unknown state(s) are needed to perform
the task of testing. This task of understanding the copy complexity quantum state certification
was studied initiated in O’Donnell and Wright (2015) and later in Badescu et al. (2019). They
showed that when we are allowed to perform arbitrary entangled quantum measurements over the
n copies, then n = O(d/c?) copies are necessary and sufficient for testing. However, entangled
measurements are currently infeasible to implement in practice, even for moderate values of n and d.
It is desirable to use unentangled measurements, where a quantum measurement is done on one copy
of p (and po if it is also unknown) at a time. Such unentangled measurements (also referred to as
incoherent and independent in previous literature) can be categorized into three different protocols:
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1. Fixed/Deterministic measurements. The set of measurements(POVMs) to be performed are
fixed ahead of time. Once the copies of the quantum states are available, we use these fixed
measurements for the task of testing. A key advantage of such protocols is that the same set of
measurements can be used for multiple repetitions of the testing problem. Moreover, there is
no latency since the measurements are not designed after the states are made available, which
is a drawback of the following protocols.

2. Randomized non-adaptive measurements. In this setting, there is common randomness
available, and the set of measurements at the different copies are all chosen simultaneously
as a function of this common randomness. Every time we want to test for a state, we need to
instantiate the common randomness and select the set of measurements using a new instance
of the common randomness. This is done after the copies of the state are made available.'

3. Randomized adaptive measurements. In this setting common randomness is available
across the measurements. Furthermore, the measurements are applied sequentially to each
copy of p, and the measurement on the next copy of p can depend on the outcome of pre-
vious measurements®. A primary drawback of this scheme is the latency and complications
associated with designing measurements one after another.

1.1. Prior Works

O’Donnell and Wright (2015) initiated the study of copy complexity of the task of quantum state
certification. They considered entangled measurements and showed that n = ©(d/e?) copies are
necessary and sufficient for testing. This is also the copy complexity of closeness testing (Badescu
et al., 2019).

Given the practical relevance of unentangled measurements, it has been considered in several
prior works. For the task of quantum mixedness testing, Bubeck et al. (2020) showed that when
randomized non-adaptive unentangled measurements are allowed, then n = @(d3/ 2 /&%) copies are
necessary and sufficient. Chen et al. (2022b) extended the results to the cases when pg need not be
the maximally mixed state, and also when it is unknown (closeness testing).

Chen et al. (2022a) futher showed that adaptivity does not help and the number of copies nec-
essary is still n. = Q(d®/2/e2). Yu (2023) achieved n = ©(d?/s?) using randomly sampled Pauli
measurements, which are more restrictive yet easier to implement. The drawback of all the algo-
rithms in these works is the necessity of randomization in the measurements.

Quantum tomography. In quantum tomography (O’Donnell and Wright, 2017; Flammia and
O’Donnell, 2023), the goal is to estimate the unknown state p to within ¢ in trace distance. O’ Donnell
and Wright (2016, 2017); Haah et al. (2017) established the optimal copy complexity for this task
as ©(d?/?) with entangled measurements. For unentangled measurements, various works Kueng
et al. (2017); Haah et al. (2017) have shown that @(d3 / 52) are necessary and sufficient to estimate
a full-rank p, even when adaptivity is allowed (Chen et al., 2023). Guta et al. (2020) showed that
the bound is achievable up to log factors using fixed structured POVMs, e.g. SIC-POVM (Zauner,
1999; Renes et al., 2004), maximal MUB (Klappenecker and Rotteler, 2005).

1. If the set of measurements is finite, we can prepare all measurements beforehand and sample with classical random-
ness. However, this could still be difficult if the set is very large.

2. In principle, one can use the first measurement outcome as a source of randomness for all other measurements, so
adaptive measurements are essentially randomized.
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1.2. New results

We consider state certification with fixed measurements, where the POVMs are fixed ahead of time,
and can be used for multiple repetitions of the problem.

The naive solution is to apply the fixed unentangled measurements for quantum tomography
in Guta et al. (2020) giving an upper bound of n = O(d3 / 52). However, since tomography is
strictly harder than testing, we expect to do much better than d>. Indeed, Yu (2021) designed a
simple algorithm with fixed measurements that achieves O(d?/e2) copy complexity. The lower
bound, however, was left as an outstanding open problem. Without randomness, it is unknown
whether n = O(d3/ 2 /&2) copies are sufficient to perform quantum state certification, or if we need
more copies due to the lack of randomness.

We establish the copy complexity of quantum state certification with fixed unentangled mea-
surements. Our main result, stated below, shows that indeed there is a cost in copy complexity that
we have to pay for having schemes that are fixed and reusable. Please see Section 2.2 for the formal
problem definition.

Theorem 1 For fixed unentangled POVMs, n = O(d?/?) copies are necessary and sufficient to
test whether p = pg or ||p — pol|; > € with probability at least 2/3.

Table 1 places our work in the context of existing results for other types of measurements. There
is a strict ©(v/d)-factor separation between fixed and randomized non-adaptive schemes. We note
that the randomness source can be entirely independent of the quantum states, so it is in some sense
surprising that a piece of irrelevant random information leads to substantial improvement in copy
complexity. This demonstrates that randomness is a valuable and important resource in unentangled
quantum state certification.

Measurement type Upper bound | Lower bound
Entangled E% E%
Adaptive d;f dzf
Unentangled | Randomized dzf dzf
Fixed 4 < (This work)

Table 1: Existing and new worst-case copy complexity results for quantum state certification.

We develop an information-theoretic framework for non-adaptive schemes that leads to both the
lower bound of Q(d?/<?) for fixed measurements and the bound of (d/2¢?) of randomized ones.
Details are elaborated in Section 3.

1.3. Related works

Learning information about quantum states. Our work falls into the line of quantum state cer-
tification O’Donnell and Wright (2015); Bubeck et al. (2020); Chen et al. (2022a). In addition to
worst-case bounds that depend on d, Chen et al. (2022b,a) considered general quantum state certi-
fication where the copy complexity decreases when pg is approximately low rank. Other closeness
measures such as fidelity and Bures y2-divergence were considered in Badescu et al. (2019).
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Many works have studied other related problems such as closeness testing Badescu et al. (2019);
Yu (2021, 2023) (test whether two unknown states p and o are equal or ¢ far), hypothesis test-
ing Ogawa and Nagaoka (2000); Brandao et al. (2020); Regula et al. (2023) (distinguish between
two known states), and hypothesis selection Badescu and O’Donnell (2021); Fawzi et al. (2023)
(determine p from a finite set of hypothesis sets). Shadow tomography (Aaronson, 2020; Huang
et al., 2020; Brandao et al., 2019) considers the problem of learning the statistics of the state p over
a finite set of observables, which is simpler than tomography. Algorithms for shadow tomography
can be applied to quantum hypothesis selection (Badescu and O’Donnell, 2021; Fawzi et al., 2023).

In addition to the four types of measurements discussed before, Pauli measurements have also
attracted significant interest (Flammia and Liu, 2011; Liu, 2011; Cai et al., 2016; Yu, 2023) due
to ease in implementation despite being less powerful. Moreover, Fawzi et al. (2023) considered
sequential strategies which allow the number of measurements to depend on previous outcomes
(e.g. one can choose to stop measuring the remaining copies if the outcomes so far yield a good
estimate), which is parallel to the adaptivity of measurements.

Classical distribution testing. Quantum state certification can be viewed as the quantum equiva-
lent of testing identity of discrete distributions from samples. Here the task is to decide from samples
whether a distribution is equal to a given known distribution. The problem has been well studied
starting with the works of Batu et al. (2001); Paninski (2008) which establish the sample complexity
of this task when all the samples are available. This is similar to using entangled measurements in
the quantum case. Recently there has been significant work on distributed testing of distributions,
where instead of having all samples at the same place, they are distributed across users, and we ob-
tain only limited information about each sample, e.g., a communication-constrained (Barnes et al.,
2020; Acharya et al., 2020a), or privacy-preserving information (Duchi et al., 2013; Acharya et al.,
2021; Han et al., 2015). Thinking of each sample analogous to one copy, this distributed testing is
in spirit similar to unentangled measurements, where we perform measurements on one copy at a
time. Acharya et al. (2020b, 2022) derived a unified information-theoretic framework in terms of
the channel constraints. In particular, Acharya et al. (2020b,a, 2021) showed that there is a sepa-
ration for distributed testing under communication and privacy constraints between the cases when
common randomness was available versus not. Furthermore, Acharya et al. (2022) show that adap-
tivity does not help in these problems beyond common randomness. Our results are qualitatively
similar to these classical distributed testing results. We show in this work that these ideas can be
generalized to quantum state certification and a similar separation also holds. We refer the readers
to Canonne (2022) for a comprehensive survey of the above topics.

Outline. The rest of the paper is organized as follows. In Section 3 we overview our main tech-
nical contributions. In Section 2, we give the precise problem definition and provide some mathe-
matical terminology and definitions. In Section 4 we introduce our unified lower bound framework
for non-adaptive measurements. In Appendix D we describe the algorithm that achieves the copy
complexity upper bound for fixed measurements.

2. Preliminaries
2.1. Basics of quantum computing

Quantum states The space of d-dimensional complex vectors C¢ forms a Hilbert space. We
use the Dirac notation [¢)) € C to denote a vector, and (¢)| is its conjugate transpose, which is a
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row vector. The Hilbert-Schmidt inner product between |¢) and |¢) is (¢|¢). In a d-dimensional
quantum system, the state p is a d x d positive semi-definite Hermitian matrix with Tr[p] = 1. If
the rank of p is 1, then p is a pure state and p = |1) (3| for some unit-norm |¢)) € C¢. Otherwise,
the state is a mixed state. A special case is pmm := 1z/d, which is the maximally mixed state.

Measurements All measurements can be formulated as positive operator-valued measure (POVM).
Let X be a finite set of outcomes. Then a POVM M = {M,},cx, where M, is p.s.d. and
> wex Mz = Ig. Let X be the outcome when applying measurement M to p, then the probability
of observing x is given by the Born’s rule,

Pr[ X =z ]| = Tr[pM,].

We note that the outcome set X need not be finite, in which case POVMs and Born’s rule can be
generalized. However, finite POVMs are without loss of generality. In principle, all physically
feasible measurements are finite. Moreover, our argument extends easily to infinite POVMs.

2.2. Problem setup
Given n independent copies of an unknown quantum state p € C¢*%, the goal is to design

* n POVMs M" = (My,..., M,) that are applied to the n copies of the state that produce
the measurement outcomes x = (z1,...,Ty),

* atester 7" such that when p = pg it outputs YES with probability at least 2/3 and it outputs
NO with probability at least 2/3 if ||p — pol|; > €,

Pr (T'(x) = YES) >
pP=p0

[SSRI )
[SSRI )

and inf  Pr(7T(x)=NO) >
pillo—poll,>e

When pgp = pmm := lg/d, the problem is called mixedness testing. The smallest value of n for
which we can design such a tester for all pg is the copy complexity of quantum state certification.

We apply measurements for each copy individually. More precisely, for the ¢-th copy, we apply
a POVM M; = {M:}*_, where M! is p.s.d. and Y. M! = I,. Let x; be the measurement
outcome after applying M; on the i-th copy. When the quantum state is p, x; follows a discrete
distribution p!, = [p}(1),...,p, (k)] given by Born’s rule, pl,(x) = Te[Mip], = =1,... k.

According to (Chen et al., 2021, Lemma 4.8), general finitte POVMs can be simulated using
rank-1 POVMs if we only consider the measurement outcomes and disregard the post-measurement
quantum state. Thus it is without loss of generality to only consider rank-1 POVMS, i.e.,

k
M= iy Wil Y Wi (W] =1 1)
=1

Note that [¢%) may not be normalized.

We can mathematically formulate the three unentangled measurement schemes as follows,

In fixed measurement schemes, each M; is fixed before receiving the quantum state p. The n
outcomes 1, . . . , T, follow a product distribution

P, := Qv 2)
=1
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In randomized non-adaptive schemes, there is a common random seed R ~ R independent of p,
and the measurements are then chosen based on R, M; = M;(R). The outcomes are independent
conditioned on the random seed R, and thus we can write P,(R) = @, pi,(R).

For randomized adaptive schemes, in addition to the common randomness, the ith measurement
depends on the previous outcomes, namely, M; = M,(z1,...,z;—1, R). The n outcomes are in
general not independent.

2.3. Closeness measures of distributions

Let p and q be two distributions over a finite discrete domain X. The total variation distance is
defined as, drv (p, q) := supscx(P(S) — a(S)) = 3+ 3. c v [P(z) — q(z)]. The Kullback-Leibler
(KL) divergence KL(p || q) and chi-square divergence d,»(p || q) are defined as KL(p || q) :=

Y zex P(z)log %, dePlla)=>,cx W. The three quantities can be related using

Pinsker’s inequality and concavity of logarithms respectively,

2dry (p,q)’ <KL(p || q) < d,»(p || Q).

We may also define £, distances between distributions, |[p — q|[,, := (Ysex IP(@) — a(2)[P) e,

2.4. Linear operators and superoperators

Hilbert space over complex matrices The space of complex matrices C*¢ is a Hilbert space
when equipped with the matrix inner product defined as (A, B) := Tr[AfB], where A, B € C%*¢,
The subspace of all Hermitian matrices, denoted as Hy, is a real Hilbert space (i.e. the associated
field is R) with the same matrix inner product. Any positive semi-definite Hermitian matrix M has
a unique p.s.d. square root K such that K2 = M, and we denote K = /M.

A homomorphism can be defined between C?*? and ce through vectorization. On the canoni-
cal basis {|7) ;l;(l), we define vec(|i)(j|) := |j) ® |i). Vectorization for general matrices is defined
by linearity. Furthermore, the matrix inner product can be equivalently written as the inner product
on C%, (A, B) = vec(A)Tvec(B).

(Linear) superoperators One can define linear operators over C#*¢ A : C¥*? — C%*4, Since
each matrix itself can be viewed as an operator over C?, we refer to them as superoperators® to avoid
confusion. For each superoperator AV, there exists a unique adjoint superoperator 't such that for
all X,Y € C™? (Y, N(X)) = (NT(Y), X) . Similar to the trace of matrices, we define its trace

d W N
as Tr[N] = 3255 (1) GLN (1) (1))-
Schatten norms for linear (super)operators Let \i,...,\; > 0 be the singular values of a

1/p
linear operator A*, then for p > 1, the Schatten p-norm is defined as ||A||s, = (27:1 A ) ,

which can be defined for both matrices and superoperators. Some important special cases are trace
norm [|Afl; := [lAlls,, Hilbert-Schmidt norm [[A|;s := [|A[s,, and operator norm [|A[,, :=

|Alls., = max?_; ;.. A standard fact is that ||A||, = Tr[V/ AT A] and || A||zs = /{4, A).

3. Indeed an operator over C¢*? i.e. superoperator need not be linear, but we only deal with linear superoperators in
this work, so we drop the word “linear” for brevity.
4. For Hermitian matrices, the singular values are simply the absolute values of the eigenvalues.
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3. Our techniques

Our main contribution is a unified lower bound framework for quantum state certification that works
for both randomized and fixed non-adaptive schemes. Before we introduce the technical contribu-
tions, we provide a high-level explanation of why randomness is crucial in unentangled quantum
testing and motivate with a simple example.

3.1. The disadvantage of fixed measurements through a simple example.

In randomized schemes, given the copies of the state, we then choose the measurements randomly.
However, for fixed measurements, the measurement scheme is fixed and the state is then chosen.
Thus, without randomness, nature would have the opportunity to adversarially design a quantum
state that fools the pre-defined set of measurements. When randomness is available, we can avoid
the bad effect of adversarial choice of quantum states. In principle, this qualitative gap is like the
difference between randomized algorithms and deterministic algorithms.

We use a simple example to demonstrate this idea. Suppose we choose each measurement M;
simply to be the same canonical basis measurement, i.e. M; = {|x)(z|}%Z}. Then nature can set p
to be the “+” state where

1 d—1
p=6){gl, |¢>=ﬂ§0|x>- 3)

Note that the trace distance ||p — pmml||; = 2 — 2/d ~ 2. When the state is p, all measurement
outcomes x; would be independent samples from the uniform distribution over {0, . ..,d—1}. How-
ever, if the state is the maximally mixed state ppnp,, the distribution of each measurement outcome
would also be the uniform distribution over {0, ...,d — 1}. Thus, even though the trace distance
between p and pmn, is large, the measurement scheme is completely fooled.

On the other hand, with randomness, one can (theoretically) sample a basis uniformly from the
Haar measure as in Bubeck et al. (2020) to easily avoid this issue. No fixed p would be able to com-
pletely fool the randomized basis measurement sampled uniformly. In fact with high probability,
the randomly sampled basis is good in the sense that the outcome distribution would be far enough
when the two states p and pnp, are far (see (Chen et al., 2022b, Lemma 6.3)).

3.2. A novel lower bound construction.

The design of hard instances has to account for the difference illustrated above when proving lower
bounds for randomized and fixed measurements. In particular, for randomized measurements, the
lower bound construction is measurement independent. However, for fixed measurements, since
the states can be chosen adversarially, the lower bound construction needs to be measurement-
dependent.

Many prior works on testing and tomography O’Donnell and Wright (2015, 2016); Haah et al.
(2017); Bubeck et al. (2020); Chen et al. (2021, 2022a) use measurement-independent distribu-
tions over states in C?*? to prove lower bounds. In particular, Bubeck et al. (2020); Chen et al.
(2022a) show that testing within a specific class requires at least n. = Q(d%/?/e2) when working
with randomized and adaptive unentangled measurements respectively. Unfortunately, for these
measurement-independent constructions, there must exist fixed measurement schemes whose copy
complexity is n = O(d3/ 2 /&2) due to standard derandomization arguments. To prove a stronger
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lower bound for fixed measurements, our task is different. We must show that for any fixed mea-
surement scheme, we can design a hard instance of the testing problem that would require at least
n = Q(d?/?). We note that the lower bound construction in Yu (2023) is measurement-dependent,
but specifically tailored to Pauli measurements and not general enough for our purpose.

Our generic measurement-dependent lower bound construction is a necessary and novel contri-
bution that leads to tight lower bounds for fixed measurements.

Definition 2 Let % <t <d®—1andV = (Vi,...,V2) be an orthonormal basis of Hy with
Ve = I4/Vd. Define Dy(V) as follows. Let z = (z1,. .., 2) € {—1,1} be uniformly drawn from
the {—1, 1}Z hypercube. Let c be a universal constant, then define

4
ce 1 < 1
A, =— . — E zVil, A,=A,min<{1l,——— 5. “4)
\/a \/Z (il ) { d|AZ||0p}

A, normalizes A, so that its maximum absolute eigenvalue is at most 1/d.o, = pym + A,. This
defines a distribution over states (induced by the randomness in z) which we denote by Dy(V).

In essence, we perform independent binary perturbations along ¢ different trace-0 directions.
We show with appropriate c, regardless of the basis V, o is e-far in trace distance from pyn,. The
proof is in Section B.

Proposition 3 Let d?/2 < ¢ < d? — 1. Let z be drawn uniformly from {—1,1}*, and A, o, are
as defined in Definition 2. Then, there exists a universal constant ¢ < 10V/2, such that fore < C%

with probability at least 1 — 2 exp(—d), AZHOP <1/dand|A.]1 > e

The matrices V;’s can be chosen dependent on the fixed measurement scheme that we want to
Jool. In particular, we can pick directions V1, . .., Vi /5 about which the fixed measurement schemes
provide the least information. The matrices V;’s can also be fixed, in which case the construction
is measurement-independent and our framework naturally leads to the lower bound for randomized
non-adaptive measurements in Bubeck et al. (2020).

The binary perturbations in our construction are mathematically easier to handle. In prior
works, Bubeck et al. (2020); Haah et al. (2017); Chen et al. (2021) designed the hard cases using
random unitary transformations around the maximally-mixed state, which requires difficult calcu-
lations using Weingarten calculus (Weingarten, 1978; Collins, 2003). In contrast, our arguments
avoid the difficult representation-theoretic tools. Chen et al. (2022a, 2023) used Gaussian orthogo-
nal ensembles, which perturbs each matrix entry with independent Gaussian distributions. Binary
perturbations share many statistical similarities with Gaussian since both are sub-gaussian distribu-
tions. However, the former is arguably simpler as the support is finite, and thus information-theoretic
tools can be more easily applied.

We note that these constructions are all in spirit motivated by lower bounds in classical discrete
distribution testing where the hard instances are constructed as perturbations around the uniform
distribution (Paninski, 2008).

3.3. Lower bound framework using Liiders channel

For both fixed and randomized schemes, we find that perhaps very coincidentally or very naturally,
the ability of a measurement scheme to distinguish between quantum states is characterized by the
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eigenvalues of the Liiders channel (DeBrota and Stacey, 2019)° which describes one possible state
transformation after measurement. Let M = {M,}*_, be a rank-1 POVM where M, = [t);.) (1) ].
When M acts on p and we obtain an outcome x, then the generalized Liider’s rule (Liiders, 1950)
gives one possible form of the post-measurement state®,

= 2T g = M, = R
’ TI‘[Mxp] <w:r|¢x>

If we lack the knowledge of measurement outcomes, we can view the underlying state as an
expectation of all post-measurement states p — » . Pr[ X = x|p®. We can formulate the mapping
as a quantum channel,

Definition 4 (Liiders channel) Given a rank-1 POVM M = {M, = [t} (¥, |}*_, where 3" M, =
Iy and K, = /M, the Liiders channel Hp : C**? — C¥4 s defined as

k k
z=1 =1

(2|te)

Definition 4 gives its Kraus representation. It is helpful to consider the equivalent matrix form
Caq € CT*% which satisfies vec(Haq (X)) = Cpqvec(X) for all matrix X € C?*?. For rank-1
POVM, C,, is the Choi representation, e.g. Khatri and Wilde (2021, Eq (4.3.8)) and defined as,

k — —
CM — Z ’¢x><¢w’ ® |¢r><¢r| (6)
r=1

(Valtha)

Indeed, if two quantum states p and o yield the same post-measurement state, it is natural to
believe that the two states cannot be distinguished by the measurement scheme. This is in spirit
similar to the chi-squared contraction framework in Acharya et al. (2020b) which was used to de-
rive a unified lower bound for information-constrained inference of classical distributions in the
distributed setting. Depending on whether randomness is available, the copy complexity depends
on different norms of the # channel, as shown in Table 2, where |||, and ||| 45 are the trace and
Hilbert-Schmidt/Frobenius norms of . The precise statement is stated in Theorem 11.

Fixed Randomized

d? d d?

Lower bound

&2 " maxy [H], | e2maxy [Hlus

Table 2: Copy complexity lower bound of non-adaptive state certification in terms of the Liiders
channel.

It is straightforward to prove that | H | < [|H||, < d, and thus we obtain tight copy complexity
lower bounds for both fixed and randomized non-adaptive measurements.

Our lower bound results yield a very natural quantum interpretation. We believe that a sim-
ilar characterization using Liiders channel could be applied to adaptive measurements and other
problems such as quantum tomography, similar to Acharya et al. (2020b, 2022) which developed a
unified framework for distributed learning and testing of discrete distributions.

5. This was referred to as the expected density operator in (Khatri and Wilde, 2021, Section 3.3)
6. The post-measurement states are undefined for general POVMs.
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4. Lower bound framework for non-adaptive schemes

We first state the new lower bound for mixedness testing with fixed measurements in Theorem 5.

Theorem 5 For 0 < ¢ < 1/200 and d > 16, with fixed unentangled measurements, at least
n = Q(d?/e?) copies are necessary to test whether p = pym or ||p — pmml|l; > € where ppm = 14/d
is the maximally mixed state.

Since mixedness testing is a special case of state certification, this theorem provides a worst-case
lower bound for the problem, both when pg is known and unknown. Recall that n = O(d3/ 2/e2)
copies are sufficient using randomized schemes. Thus there is a strict separation between algorithms
with and without randomness, and the gap is a factor of ©(\/d).

Theorem 5 is an immediate corollary of a unified theoretical framework that we establish for
both randomized and fixed non-adaptive measurements which we will describe in this section.

4.1. Le Cam’s method

The central tool to prove testing lower bounds is Le Cam’s method LeCam (1973); Yu (1997). We
first define almost-¢ perturbation, which has constant probability mass over P..

Definition 6 A distribution D is an almost-¢ perturbation if Pr,.p[o € P-| > %. Denote the set
of almost-¢ perturbation as I'.

Recall in (2) that for a state p, the distribution of measurement outcomes x = (x1, ..., x,) when
applying measurements M" = (M, ..., M,) is P,. For the mixedness testing problem, even if p
is sampled from any distribution D over the P. := {p : ||p — pmm||; > €} (the set of states at least
e-far from pny), a mixedness tester should still be able to distinguish it from the case when the state
iS pmm. When p ~ D, the outcome distribution is EpND[Pp |, and when p = ppyp, then x ~ P,
Thus, to guarantee a testing accuracy of at least 2/3, we need 2 < drv (Ppu: Eoon[Po]). A
similar argument also holds for D which is an almost-c perturbation, which is stated in Lemma 7.
The proof is in Section A.1.

Lemma 7 Let D be an almost-¢ perturbation. Suppose nature flips an unbiased coin’ Y € {0,1}.
If Y = 0 then p = pum. Otherwise nature samples p ~ D. Then, using a mixedness tester
with success probability at least 2/3 for n copies of p, we can obtain a guess Y e {0,1} with
Pr[Y = Y] > 3/5. This implies

1
S dTV (EUND [ PU ]’ Ppmm) S \/2dx2 (EUND[ PU ] ’ | Ppmm ) . (7)

ot =

Thus to prove copy complexity lower bounds, we need to design an almost-¢ perturbation and then
upper bound (7) by some function of n, d, .

4.2. Min-max vs. max-min

Recall in Section 3.1 we discussed that the main difference between randomized and fixed mea-
surements is whether nature can choose the hard state adversarially. In this section, we formalize
the discussion under a rigorous game theory framework. The testing problem can be viewed as a
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two-party game played between nature and the algorithm designer, where the algorithm designer
tries to design the best algorithms that can distinguish between two states, while nature tries to find
hard states to fool the algorithm.

For a fixed measurement scheme M, nature can choose a D € I'. that minimizes the chi-
square divergence in (7). According to Lemma 7, if there exists a fixed M" that achieves at least
2/3 probability in testing maximally mixed states, we must have

95 = Jmax min o (Eewp[Po | [| Po,)- (®)

Thus a max-min game is played between the two parties and nature has an advantage to decide its
best action based on the choice of the algorithm designer.

With randomness, in principle, a max-min game is still played, but instead, the maximization is
over all distributions of fixed (non-entangled) measurements. Using a similar argument as (Acharya
et al., 2020b, Lemma IV.8), for the best distribution over all M™, the expected accuracy over R ~ R
is at least 1/2 for all D € T'.. Thus, for all D, there must exist an instantiation R(D) such that using
the fixed measurement M"™(R(D)) the testing accuracy is at least 1/2. Therefore,

2
=< p_y P
o5 = in max 4y Eonn[Po] || Pow), ®

which intuitively says that a min-max game is played and the algorithm designer has an advantage.
Therefore, to obtain a copy complexity lower bound for fixed measurements requires upper
bounding (8), while for randomized schemes requires upper bounding (9). We can see that random-
ness is a “game changer” that changes a max-min game to a min-max game. Since min-max is no
smaller than max-min, testing with randomness is easier than testing without it.
The min-max and max-min arguments in this section are similar to Acharya et al. (2020b) and
we point to Acharya et al. (2020b, Lemma IV.8, IV.10) for additional reference.

4.3. The Liiders channel characterizes the hardness of testing

In the previous section, we give an abstract theoretical framework to prove tight lower bounds for
fixed measurements. We now make it concrete and apply it to mixedness testing.

Our central contribution is to relate the hardness of testing (i.e., the min-max and max-min
divergences) to the average Liiders channel defined by all the POVMs. Use the shorthand H; :=
H am; where H vq, is from Definition 4, the average Liiders channel is defined as

1 — S
= —) H; (Kraus), C:=— Y C; (Choi). (10)
n =1 n =1

We again use the example in Section 3.1 to see why this superoperator is useful. Suppose p is
the “+” state defined in (3). If M; = {|z)(x|}¢Z}, then H() = Zg;é |x) (x| (-)|z)(x|. It turns out
that p — pmm exactly falls into the 0-eigenspace of H,

H(p — pam) = Z!x (@|(p = pm)|z) (2] = Zyg; x| p)(¢la) (x Z\fﬂ (x|
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The third equality holds because (x|¢) = (¢|z) = 1/+/d. This serves as an intuitive example
that the eigenvalues of H superoperator characterize the ability of the measurement scheme to dis-
tinguish between quantum states. If the difference p — pym falls into the eigenspace of H with small
eigenvalues, then we can expect that the two states are hard to distinguish.

To formalize the intuition, we compute the chi-square divergence (7) between the outputs of
the measurements in the cases when the input is the maximally mixed state, versus the case when
it is chosen from an e-perturbation. In our main technical result Lemma 8, we upper bound the
divergence in terms of the average Liiders channel 7. Thus, choosing A, from a subspace with
small eigenvalues yields a small chi-square divergence and thus leads to tight copy complexity
lower bounds.

Lemma 8 Let 0,0’ be independently drawn from a distribution D, and M; be rank-1 POVM as
in(1) fori =1,...,n. Define Ay = 0 — pym. Then

d,2(Eon[Ps] || Pp,,) < Eoorp[exp {nd (As, H(As))} ] —1 (11)

where H is the average Liiders channel defined in Eq. (10).

Proof The proof uses ideas from the decoupled chi-square fluctuations introduced in Acharya
et al. (2020b). We can directly bound the chi-square distance using the following lemma which
is from Pollard (2003).

Lemma 9 (Pollard (2003),(Acharya et al., 2020b, Lemma IIL.8)) LetP = p) @ --- @ p™ be
a fixed product distribution and Qg = qél) QX ® qén) be parameterized by a random variable 0.

Then
d2(Eg[ Qo] [| P) = Eg

ﬁ(l + Hi(e,e’))] -1,

=1

where 0' is an independent copy of 0 and

i (z) — p(x)
p(¥)(z)

In our problem, P will be P, the distribution over the output of measurements across the n
copies when the underlying state is maximally mixed, and Ey[ Qg | will be P, the mixture distri-
bution over the output of measurements when the underlying state is parameterized by a random
density matrix o induced by the perturbation. These are defined in (2).

We first compute the necessary quantities by appropriate substitution. Recall that pﬁ)(-) is the
output distribution of the measurement on the ith copy.

Hi(6,0") =E 59 (2)6) () } 59 (x) =

2~p (D)

P; (%) = Pp,, ()
Py (7)

5 (z) = .z € [k].

We now evaluate H; (o, o’) by expanding the probabilities using Born’s rule.

(P5 (%) = P (2)) (P () — P (7))

/
Hi(0,0") = Eyropi (P} (2))?

12
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_ Z (P5 (%) = P () (P () — P (7))

Phon (T)
(V3 Ag|95) (Vi Agr [90})
B Z (Wilyi)/d '

This expression can now be related to the Liiders channel. Adding trace to the numerator does not
change the value, and from this we can apply cyclicity and linearity of trace,

Hi(o,0") = d(g Tr[AU\w;><¢;\AUI\w;><w;])

. ALY
_ . A, ‘wx><wx’AU'W}x 1/193
—en Z (WilvL) ]
[¥8) (Wi | Ao 1) (5|
—d-Tr |A,
D D A ]
=d-Tr [AUHi(AU’)] = d A07H Ao’)

where the last step uses the fact that A, is Hermitian.
Then, using Lemma 9, and the fact that 1 + = < exp(x), we obtain

dXQ( UND[ ] H pmm) = o'o" H(l +Hi(0,0'/))] _1

=1

< E,o | exp { H;(o, a’)}
L i=1

=Eq o | exp {dz (A, Hz(Aa»}

i=1

-1

By linearity of the Hibert-Schmidt inner product and definition of 7,

exp {nd <A0/, % i%i(Ag)> }] -1

=E; [exp{nd <AU,7:[(AU/)>}] —1.

dy2(Eonp[Po ] [| P

X ) < EU,O’/

Pmm

Using homomorphism vec(H (X)) = Caqvec(X), we have (A,, H(Ay)) = vec(Ay)Cvec(Ay),
completing the proof. |

Explaining the example in Sectlon 3.1. We now use Lemma 8 to explain why choosing a fixed
basis measurement {|x)(z|}%Z} for all copies as in Section 3.1 would fail. Since there are only d
rank-1 projectors, the rank of C is d, but C has a dimension of d?> x d? and thus there are a total
of d?> — d eigenvectors with 0 eigenvalues. From Proposition 3, we know that there must exist a
trace-0 A in the O-eigenspace such that ¢ = pym + A € Pe. For this particular o the upper bound
in (11) is 0, and thus it is impossible to distinguish pym and o. This is consistent with the discussion
in Section 3.1.

13
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We can make a more general argument that to avoid the catastrophic failure similar to the dummy
example in Section 3.1, C has to be nearly full-rank: rank(C) > (1 — o(1))d?. Thus (1 — o(1))d?
linearly independent rank-1 projectors are needed in all the POVMs. Indeed if otherwise, the di-
mension of the 0-eigenspace of 7 is 2(d?), we can again invoke Proposition 3 (perhaps with some
different constants) to find a single fixed o that completely fools the measurement scheme.

Remark 10 One can show that H is the Liiders channel of a POVM M := {%Mé}xe[k] sic[n] Which
is the ensemble of all measurements. One can define MM where we slightly abused the notation
and treated M : Hy — R* as a linear mapping from quantum states to probability vectors. H
and MTM are similar but slightly different superoperators’. Guti et al. (2020) used MM to
derive upper bounds for quantum tomography for three specific types of measurements. Our result
is orthogonal to their work in that we prove lower bounds for general rank-1 measurements.

Applying Lemma 8 to our hard case construction in Definition 2, we can relate the eigenvalues
of H to the max-min and min-max distances in (8) (9) in Theorem 11. The proof is in Section C.

Theorem 11 When n = O(d?/e?), the max-min chi-square divergence can be bounded as

. n?et may || A}
pax | min dye(Eonp[Po ] || Pp) = O\ <5 — 5 , (12)
When n = O(d/? /&?), the min-max chi-square divergence can be bounded as
: n’e! 12
min max d(Epnp[Po ][ Pp,,) = O =5 max |[#][ys ). (13)

Different bounds are a result of how the basis V' is chosen in Definition 2. To upper bound the
min-max divergence, we choose )V to be an arbitrary fixed basis. To upper bound the max-min
divergence, we choose ¢ = d?/2 and V to be the eigenbasis of 7, which has important properties
stated in Lemma 12. These are standard results and we state their proofs in Section A.2.1.

Lemma 12 7 has an orthonormal eigenbasis Vi = Vi,..., V) with eigenvalues 0 < A\ <
.. < A2 = 1 where V; € C™% is trace-0 Hermitian for i < d*> — 1 and V2 = 14/\/d. Further-

more, Tr[H| = Zf-lil Ai = d.

Using Lemma 12, the copy complexity lower bounds for both fixed and randomized schemes are
immediate corollaries of Theorem 11. From Lemma 12, we have H”HHI = d. Moreover, 7—2“12{5 =

S A2 < (max; \) 5% A < d (since A; < 1). Thus,

mag A} e
2 =5 mgx H HHS = @

Combining (8) and (12), we conclude that for fixed measurements n = Q(d2 / 52) and prove The-

orem 5. Combining (9) and (13), we recover the n = Q(d?/?/£?) lower bound for randomized

non-adaptive schemes, which was shown in Bubeck et al. (2020).

7. The differ by a scalar factor if |1%) have equal norms, but can be very different otherwise.
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Appendix A. Proofs of technical lemmas in Section 4
A.1. Proof of Lemma 7

Proof Recall that Y = 0 and p = ppmm with probability 1/2 and Y = 1 and p ~ D with probability
1/2. In the former case when the state is pmm and Y = 0, then the tester outputs the correct answer
with probability at least 2/3,

Pr[Y =0y = 0] > 2/3.

When p ~ D, note that by the definition of almost-¢ perturbations, the probability that ||o, —
Pmml||1 > € is at least 4/5. Denote this event as F, then Pr[E|Y = 1] > 4/5 . We can lower bound
the success probability as

Pr[Y = 1|V =1] > Pr[Y = 1|E,Y = 1)| Pr[E|Y = 1] >

Combining the two parts,

1 N 1 A 1/2 8 3

By standard argument on the distinguishability of two distributions (Yu, 1997, Lemma 1),

1 2%(1—dTV(EZ[PUZ],P ) = dry (Eo[P,. ], P,.) >

[N
| =

Pmm Pmm

Finally, the inequality follows by Pinsker’s inequality and the relation between KL and chi-
square divergences.

1 1
dTV(EU[P0]7Ppmm) < \/2KL(E0~D[PU] || Ppmm) < \/de2(EU~D[PU] || Ppmm)'

[ |
A.2. Proof of Lemma 12
Let us recall the lemma.
Lemma 12 H has an orthonormal eigenbasis Vi = V1,..., V) with eigenvalues 0 < A\ <

.. < A2 = 1 where V; € C™% s trace-0 Hermitian for i < d*> — 1 and V,p = 15/\/d. Further-

more, Tr[H| = Zfil Ai =d.

The proof is broken into two parts. In A.2.1 we state some properties of superoperators, and
in A.2.2 we provide a proof of the lemma.
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A.2.1. IMPORTANT PROPERTIES OF H 4
We start with some useful definitions.
Definition 13 Let N : C¥*¢ s C¥*4 be a superoperator.
1. N is called Hermitian if N' = N1
2. N is Hermiticity preserving if for all Hermitian X € Hy, N'(X) is also Hermitian.
3. N is trace-preserving if for all X € C¥™4, Tr[X] = Tr[N(X)].
4. N isunital if N (1) = 1.

We have the following fact about the Liiders channel.

(Cdxd

Fact 14 H ¢ is a superoperator over that satisfies all properties in Definition 13.

Proof The proof follows from Definition 13, Definition 4, and the definition of POVMs. Neverthe-
less, we provide the proof for completeness.

1. Hermitian:

(YHM(X)) =Tr

wxwx <wxr¢x>

m )b [YTb,) (0| X [92) (ol Y T0) (o
—Lm { (alt) ] Z Walta) X]
:<HM( )7X>

2. Hermiticity preserving: let X be Hermitian, then

[92) (| X T[2) (80| |tha) (V| X|ha) (s
Z (ta]tha) Z (ta|tha)

=Hm(X)
3. Trace preserving:

Tr[Hm(X)] =Tr

(W |tbe)

—ZT [Iwm w;ﬁf;xw]

T wX T €T
Zw (1] w><wr]

=Tr = TI‘[X]

D e (el X

4. Unital:

X I]I xr X
m(lq) = ZW’ %Lﬁpf el Zwm (s = Ig.
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A.2.2. PROOF OF THE LEMMA

Hermitian eigenvectors. By linearity, 7 satisfies all properties in Fact 14. Since # is Hermiticity
preserving, H is also a linear superoperator over the subspace of all Hermitian matrices Hy.

Since # is a Hermitian operator on Hy, the eigenvectors of # form an orthonormal basis {V}
of Hy. Note that I; is an eigenvector of H with eigenvalue 1 since

= ;(i%(%)) = i(iﬂd = Hd)-

We then set Ve = I;/ V/d. Thus, all other eigenvectors V7, ..., V,2_; must lie in the space orthog-
onal to span{l;}, which is exactly the space of trace-0 Hermitian matrices since

(ATg) =0 <= Tr[ATl] = Tr[AT] = 0 = Tx[A].

Non-negative eigenvalues. To show that all eigenvalues are non-negative, we just need to show
that H is positive semi-definite, i.e. for all matrix X € C4*¢,

(X, H(X)) > 0.

Due to linearity, we just need to prove that each H; as defined in 5 is p.s.d.,

. Z STy

Te[X ) (45 X i) (4

= 14
1 W) (1
(U1 X Tt ) A X )
)
| X ) 2
- 1 . 0-
TR

(X, Hi(X

I
] =

8
Il

I
™=

8
Il

I
] =

x

The last line is due to ‘ ‘ . ‘
WEIXTE) = (el X 190)T = (W, XTws).
Upper bound on eigenvalues. Finally, we show that all eigenvalues are at most 1. This is equiv-

alent to Hf’qup < 1. By the convexity of norms, it suffices to prove that [[#;||,, < 1. Starting
from (14),

S TR | ) (0| X ) (4
3 DRIV (Wi X [vs) (Vs

) =2, Wil)
Z VT XT[0) <wz\wﬁ><w3€ ¢X|] Jgnwx)(waxwwaw Cauchy-Schwarz
- Z VTR X ) (o ) T X X ) (9] Cyclicity of trace
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k XX+ XX
DI [+IW>WI] AM.GM

XTX + XXxT o
mem \]

r=1

T T
:Tr[XX;XX] POVM
= Tr[XTX]
=(X,X).
Trace. Again due to linearity, we only need to prove that Tr[H;] = d foreachl =1,...,n.
d .
1) Gl ) (Wi |i) (k) (%
Tr
Tl = 2 Z WL
d & .
B (Wh19) (i) (Weld) (v
- X R
k 1 d d
= (G002 Y 1)
2 Gy 2 I 2
k
N (W)
=2 Gty
k
= (Whlv) =d

8
Il
—

The final equality is due to 32, [¢4) (4| = g and thus Te[32, [¢4) (Whl) = SO0, (vhleh) =
Tr[Hd] =d

Appendix B. Proof of Proposition 3

The central claim is Theorem 15 which states that the operator norm of a random matrix with inde-
pendently perturbed orthogonal components is O(v/d) with high probability. The proof is in Sec-
tion B.1.

Theorem 15 Let Vi, ..., Ve € C¥ be an orthonormal basis of C*™*% and 21, . . ., zp2 € {—1,1}
be independent symmetric Bernoulli random variables. Let W = Zle 2;V; where £ < d?. For all
a > 0, there exists kq, which is increasing in o such that

Pr| [[W]|,, > kaVd | < 2exp{—ad}.

Remark 16 Standard random matrix theory (e.g. Tao (2023)[Corollary 2.3.5]) states that if each
entry of W is independent and uniform from {—1,1}, i.e. W = 3, ; 2 E;; where E;j is a matrix
with 1 at position (i, j) and 0 everywhere else, then [|W |, = O(V/d) with high probability. Theo-

rem 15 generalizes this argument to arbitrary basis {Vz};i1 This could be of independent interest.
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Proposition 3 is an immediate corollary of Theorem 15.

Proposition 3 Ler d%/2 < ¢ < d?> — 1. Let z be drawn uniformly from {—1,1}¢ , and A, o, are
as defined in Definition 2. Then, there exists a universal constant ¢ < 10\/5, such that for ¢ < c%
with probability at least 1 — 2 exp(—d), [|A.l],, < 1/dand [|A.|1 > e.

Proof By Holder’s inequality, we have that for all matrices A,
2
[Allop 1Al = [[Allfs-

Note that A, = %W and || A;|lys = \C/—%. Thus setting « = 1 and k¥ = k3 in Theorem 15, with

probability at least 1 — 2 exp(—d),

ce CRE
Al < 2 wvd = 2.
I8:ly < 2 ﬂ

This implies that
2 ce \/E
1820 2 14 s/14x g 2 -
In the proof of Theorem 15 in Section B.1, we can show that x = k1 < 10. Thus choosing
¢ = V2rk < 10v/2, we guarantee that |Azll; > e duetol > d?/2. Aslong as ¢ < ﬁ, we
have [|A.[|,, < 1/d and thus 0 = pmm + A is a valid density matrix. This completes the proof
of Proposition 3. |

Different bounds for min-max and max-min divergences in Theorem 11 are due to whether or
not nature can choose V dependent on 7, which in turn depends on the measurements M™. For
randomized schemes, we need to upper bound the min-max divergence, and we can simply choose
a fixed V that is uniformly bad for all M™. For fixed measurements however, under the max-min
framework, nature could choose the hard distribution depending on M™. Specifically, with V = Vy
and ¢ small, 0, — pmm completely lies in an eigenspace of H with the £ smallest eigenvalues, thus
generalizing the intuition from the toy example in Section 3.1.

B.1. Proof of Theorem 15

Proof We first prove that for any fixed unit vector 2 € C?, the norm of Wz is at most O(+/d) with
high probability. Then we use an e-net argument to show that the probability is also high for all unit
vectors. We start with the following lemma.

Lemma 17 Ler {z; f-lil, {Vz}fl; and W be defined in Theorem 15. Then there exists a universal
constant ¢ for any fixed unit vector x and all s > 0,

Pr[ Wz, > (1+ 8)@} < 2exp{—c's%d}.

Proof Let z = (21,...,2p2) € R%, and I, € R¥*? be a diagonal matrix with 1 in the first £
diagonal entries and O everywhere else. Then

l
Wax = Z ziVix = Vi Ilyz,
i=1
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where
V= [Vix,..., Vx| € Cdxd

which is an isometry, i.e. VIV;r = Iy, as stated in Claim 22 which will be proved at the end of this
section. Therefore,
2
Vallop =1, [Valliis = T[VaVil] = d.

From this, we can apply concentration for linear transforms of independent sub-Gaussian random
variables.

Theorem 18 (Vershynin (2018, Theorem 6.3.2)) Let B € C™*" be a fixed m X n matrix and let
X = (Xy,...,X,) € R" be a random vector with independent, mean zero, unit variance, and
sub-Gaussian coordinates with Orlicz-2 norm || X;||y, < K. Then there exists a universal constant
C = % such that for all t > 0,

Ct?
Pr[[[|BX|ly — [|Bllys| > t] < 2exp {—} -
K"‘HBHip

Remark 19 The original (Vershynin, 2018, Theorem 6.3.2) was stated for real matrix B. However,

it is straightforward to extend the argument to complex B by considering B = [ﬁ;gg;] Then

13| =181y 8], = 1Bllns and 1811, = 181,
op HS

-
Setting B = V,11,, we observe that

1Bllop < 1ValloplMellop = 1, 1Bllgs < [[Vallys = V.
Thus, plugging ¢ = sv/d, and noting that || 2|4, = 1/vIn2 = K, we have

Pr|[Wzll, > (1+ s)\/&] < Pr[HBz|]2 > svd+ HBHHS} < 2exp {—Cd(In2)2s*} .

Setting ¢ = C(In2)? = 3(1%2)2 completes the proof. |

We can then proceed to use the e-net argument, which follows closely to (Tao, 2023, Section 2.3).

Lemma 20 ((Tao, 2023, Lemma 2.3.2)) Let . be a maximal 1/2-net of the unitary sphere, i.e., a

maximal set of points that are separated from each other by at least 1/2. Then for any matrix
M e C> gnd \ > 0,

Pr[ [0, > A] < D Pl 1My, > A2
yeEY

By standard volume packing argument, the size of X is at most exp(O(d)),

Lemma 21 ((Tao, 2023, Lemma 2.3.4)) Let ¢ € (0,1) and let X be an e-net of the unit sphere.
Then |X| < (C'/e)¢ where C' = 3.
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Thus with ¢’ defined in Lemma 17 and C” defined in Lemma 21 we conclude that
Pr| [[W]lo, > 2(1 + 5)\/&} < 2(2C") % exp{—c's%d} = 2exp {—(cs* —In(2C"))d} .

Thus choosing s sufficiently large, we can guarantee that the tail probability decays exponentially

in d. Specifically, let & > 0 and 52 = %gzc/) then we have

Pr[ [Wlly, > 2(1 +s)vd] < 2¢7.

a+In(2C")

Setting ko, = 2(1+s) = 2( 1+ = ) proves the theorem. In particular, x; < 10 when

substituting the values of ¢’ and C’. [ |

We end this section with the proof of the isometry claim.

Claim 22 Let Vi, ..., V2 be an orthonormal basis of C**% and x € C be a unit vector. Then
V= [Viz, ..., Vpr] € C*® js an isomerry: V.V =1,

Proof Let Vx(k) be the kth row of V,, written as row vector. It suffices to prove that
VI VI = 6y
Let Vi(k) be the kth row of V;, written as a row vector. Then the kth element of V;x is
vgk) = Vi(k)x.
Since V1, ..., V2 are orthonormal, we know that
V= [vec(V1),...,vec(Vy)]

is a unitary matrix in CT*d* Let VI be the jth row of V, then because V' is unitary, the vector dot
product <VJ , Vl> = ;. Let

vk — [(Vk)T, (Vk—&-d)T’ o (Vk:—i-d(j—l))T’ o (Vk+d(d—1))T]T

which picks out the kth row of all V1, ..., V2. Then, we have
VO = (VT )T,
Thus,
d2
S VIV = v ®E) =1,
i=1
and for k # [,
d2
Z(Vi(k))TVi(l) = VEVO)F = 0.
i=1
Therefore,
d2 a2
VIV =3 oP @) =3 OV e = sl = by
i=1 i=1
exactly as desired, completing the proof. |
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Appendix C. Proof of Theorem 11

Let V = (V4,...,Vp = I;/V/d) be an orthonormal basis of H;. We now upper bound the ex-
pression (11) in Lemma 8 when D = D,(V), defined in Definition 2. The result is in Theorem 23.
The central claim is that the chi-squared divergence is related to the Hilbert-Schmidt norm of the
projection of H onto the subspace defined by V7, ..., V.

Theorem 23 Let d2—2 <U<d>-1,V=(W,...,Vp =14/Vd) be an orthonormal basis of Hy,
V= [vec(V1),...,vec(Vy)] and 0,0, ~ Dy(V) defined in Definition 2. Then for n <

6c 252:

224

Eo.o, [exp {nd (B A} ] ~ 1< exp{

HVTCVH }—Hj&' (15)

We now bound H vic VHIQ{S, which depends on how the basis V is chosen.

Observation 24  For all orthonormal basis V, we have HVTC_VH Hs < H?-_[H Hs- However when

V = Vg in Lemma 12, for all d2—2 <0< d? -1, ||VT5V‘}HS = H?‘:QHHS = \/Zle /\? and
0 <A\ <... < Ag2 = 1 are the eigenvalues 0f7-_l.

The proof of Theorem 23 is in Section C.1 and the proof of Observation 24 is in Section C.2.
We can now prove Theorem 11. It is more straightforward to prove the min-max upper bound (9)
by setting V' as an arbitrary fixed basis that satisfies Definition 2. For example, one can choose the
generalized Gell-Mann basis,

Ig
00,0 := ﬁ’
oy = 7(|k><l| + 11) (K], O<k<i<d—1,
i 1 . .
7kt = 5 (iR il k), 0<k<l<d-1,
P pe—_— —k|k) (k| + > ) (il 1<k<d-—1
kk -— k+1 . WIAV) ) >N .
We can relabel them as V7, ..., V2 where V2 = 0q . This is a natural extension of Pauli matrices

for d = 2. It can be easily verified that these d* matrices indeed form an orthonormal basis over
H,. Using Lemma 8 and Theorem 23, setting £ = d? — 1,

’glelll“ls Mny}aﬁiie d (EUND[PU] H Ppmm) S Mq}aﬁifedd (EUN'Dg(V)[PO'] H Ppmm)

2.4
n°e — 12
< O( 2 m;}XHHHHs)
When upper bounding the max-min divergence (12), we would have the freedom to choose a

basis V' that depends on 7, which is determined by the measurement M". More precisely, we can
set V = Vg and £ = d?/2, and the perturbations Dy(Vz) would be along directions that are least
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sensitive for the measurement scheme, which leads to the extra d factor in the chi-square divergence
upper bound,

max wmin o (Eonp[Po] || Po,) < max do (Eonp,(vg)[Po ] Il Pou)

n2e
< 0" [l )
The square-sum of the smallest eigenvalues can be bounded in terms of Tr[H],

e (7)) _ 2l A
el = vaw(d? 1) -4 -

The second inequality is because all eigenvalues are sorted in increasing order, and thus )y is no
greater than the average of Agy1, ..., \g2, which is at most Tr[#]/(d? — ). The proof is complete.

C.1. Proof of Theorem 23

‘We first recall the theorem.

Theorem 23 Let dQ—Q <0<d*>-1,V=,...,Vp =13/Vd) be an orthonormal basis of Hy,
V= [vec(V1),...,vec(Vy)] and 0,0, ~ Dy(V ) defined in Definition 2. Then for n <

66262 ’

224

Eoo, [exp {nd (B HA))}] — 1< exp{

Hv CVH }—1+:‘d. (15)

Proof First, we claim that due to the exponentially small probability of the bad event A, + pmm ¢ Pe
as stated in Proposition 3, we can consider A, instead of the normalized perturbation A .. The claim
is proved at the end of this section.

Claim 25 Let A, and A, be defined in Definition 2, then
- _ 4
E, . [exp {nd <AZ/, ”H(Az)>} ] <E,» [exp {nd <Az/, H(Az)>} ] + =

We then apply a standard result on the moment generating function of Radamacher chaos.

Lemma 26 (Acharya et al. (2020b, Claim IV.17)) Let 0,6’ be two independent random vectors
distributed uniformly over {—1,1}*. Then for any positive semi-definite real matrix H,

_ A H]s

, for0<
-2 1—4)\2HHH f

1
log Eg ¢ | exp N HY A< =
e 2,

We now evaluate the inner product. Recall the Choi representation of H is C = % >, C;. Note
that C; and C are p.s.d. Hermitian matrices, and the eigenvalues exactly match those of H; and H
due to the homomorphism between C* and Cx4.

Setting V = [vec(V4), ..., vec(Vy)] € C¥*¢, we have vec(A,) = %Vz. Thus,

<AZ7 Q(Az’» = vec(A,/)Cvec(A,)
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2.2
= %ZTVT@V,Z'.

YVe now shovi/ that H := V1C X_/ is a real matrix when each V; is a Hermitian matrix. First note that
CV = [vec(H(V1)), ..., vec(H(V7))]. Therefore the i, j the element in H is

H;j = vec(Vy)Tvee(H(V;)) = (Vi, H(V})) € R, (16)

We use the fact that H is Hermiticity preserving and thus # (V) is Hermitian. Since Hy is a real
Hilbert space, the inner product is a real number.

We then set A = # and H = VICV in Lemma 26. Then [H ]y < HéHop = ||7:[H0p <1

due to Lemma 12. Thus for n < ﬁ, we have

1 A2 9\2
MH[g A< 5 = s < o < AR
3 2(1 —4A ”HHop) 10

Hence, applying Lemma 26
cne? ctn2et
e e { 2T} | < exp (IR} = exp { )
Combining with Claim 25 proves Theorem 23. |
Proof [Claim 25] Note that A, = a,/\,, where

1
a,:=minq 1, ———— > € [0, 1].
{ dmznop}

<AZ/,;L_[(AZ>> = QyAy <Az’77'_[(Az)> .
As a short hand let f(z,2") = nd (A, H(A.)). Denote event E as f(z,2') < 0and aza, < 1.
When this event occors, exp{a.a, f(z,z')} < 1. Using Proposition 3, let § = 2 exp(—d),

Prla, < 1] <.

Therefore,

Thus, by the union bound,
Pr[E] =Prlasay < 1] =Pr[a, <loray <1] <24
Note that E° denotes the event that f(z,z’) > 0 or a,a’, = 1. When this occurs, a,a./ f(z,2") <
f(z,2"). Thus,
E, . [exp {azazrf(z, z’)} ]

=E,» [exp {azasz(z,z’)} } EC} Pr[E°]+E, . [exp {azazzf(z,z’)} } E] Pr[ E]

<E,. [exp {f(z,z’)} ‘ EC} Pr[E°] + 25

< Ez,z’ [eXp {f(Z, Z/)} ] + 267

as desired. The second-to-last inequality uses a. f.f(z,2’) < 0 when event E happens, and the
final inequality uses exp{ f(z, z’)} > 0 and therefore

B [exp{/f(z,2)} ] = Eoo[exp {f(z,2)} | B°] Pr[E°] + B o[exp{f(z,2)} | E] Pr[E]
> Ez’zf[exp{f(z,z’)} ‘ EC] Pr[ E¢].
Plugging in the definition of a, and f(z, 2’) completes the proof. |
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C.2. Proof of Observation 24

Recall the statement of the observation.

Observation 24 For all orthonormal basis V, we have HVTC_VH HS < H'HH Hs However when

YV = Vg in Lemma 12, for all d2—2 <0< d? -1, HVTC_VHHS = H?-_[g = \/Zle /\12 and
0 <A\ <... < Ap2 = 1are the eigenvalues 0f7-_[.

s

Proof Since V1, ..., V2 is an orthonormal basis, we have VIV =1, and thus V is an isometry and
IVllgp = [[VT[|,, = 1. Using | AB|ls < [|Allop || Bllpzs. we obtain

[viev|| . <liClls = I1llus

When V = V;;, we note that VICV = Dy := diag{)\1, ..., \¢}, and ||Dg||]2,IS = Zle A2, Indeed,
as derived in (16),

Hij = (Vi, H(Vy)) = A; (Vi, Vi) = Ajij.

Therefore,

2 4
HHH2 < ||‘D_f||2HS = Zi:l )\12’ V:V’F[’
HS = HHHHS, otherwise.

Appendix D. Upper bound for fixed measurements

The algorithm we present is similar to an algorithm proposed in (Yu, 2021, Algorithm 4)%. They
specifically work with maximal mutually unbiased bases Klappenecker and Rotteler (2005), and
we work with quantum 2-designs, which are generalizations of the former. For completeness, we
present the algorithm and its copy complexity guarantee.

The algorithm is based on quantum 2-designs, a finite set of vectors that preserves the second
moment of the Haar measure and yields a rank-1 POVM with appropriate scaling. The same mea-
surement is applied to all copies. Since it preserves the statistics of the Haar measure, one can show
that when p and pg are far, then the outcome distribution on each copy is also far in ¢ distance.
From this, we apply classical closeness testing to the outcomes. As long as the 2-design has size
at most O(d?), then we can achieve the desired O(d?/c2) copy complexity. For d that are prime
powers, such 2-design exists due to maximal mutually unbiased bases Klappenecker and Rotteler
(2005). This is already general enough since the system dimension d is 2"V for quantum computers
implemented in qubits. Moreover, the algorithm can be easily generalized to the problem of closed-
ness testing, where the goal is to test whether two unknown states p and o are close in trace distance
given n copies from each.

8. We came across the result after writing a draft of the paper. However, given the similarity of the algorithms, it should
be attributed to Yu (2021).

30



THE ROLE OF RANDOMNESS IN UNENTANGLED QUANTUM STATE CERTIFICATION

D.1. Preliminaries

Quantum ¢-designs. At a high level, for an integer ¢ > 0, ¢-design is a finite set of unit vectors
such that the average of any polynomial f of degree at most ¢ is the same as the expectation of f
over the Haar measure.

Definition 27 (Quantum ¢-design) Let t be a positive integer, we say that a finite set of normalized
vectors {|1;)}r_, in C? and a discrete distribution ¢ = (qu, . . ., qi,) over [k] a quantum t-design if

k
> auluh 0l = [ 1)1 o),

where i is the Haar measure on the unit sphere in C%. If q, = 1/k, then the t-design is proper and
we may omit the distribution ¢ when describing proper t-designs.

By taking the partial trace on both sides, we can easily see that a t-design is naturally a t'-design for
all ' < t. Moreover, when ¢ = 1, the right-hand side is I;/d and thus {dq.|¢.){1.|} is a POVM.
An important example of spherical 2-design is based on mutually unbiased bases (MUB) (see Durt
et al. (2010) for a survey).

Theorem 28 (Klappenecker and Rotteler (2005)) Ler d be a prime power, then there exists a
maximal MUB, i.e. d + 1 orthonormal bases {|)\)}9_,,1 = 1,...,d + 1 such that the collec-
tion of all vectors {|1L)} .1 is a proper 2-design.

Classical distribution testing We will use the classical closeness testing algorithm for discrete
distributions as a sub-routine. Given two distributions p and q and n samples from each, the goal is
to test whether p = q or ||p — ql|; > ¢. The sample complexity guarantee is given by the following
theorem.

Theorem 29 ((Diakonikolas and Kane, 2016, Lemma 2.3),(Chan et al., 2014, Proposition 3.1))

Let p, q be unknown distributions over k such that min{||p|,, ||¢lls} < b. There exists an algo-
rithm TestClosenessL2(x,x’, €) that distinguishes whether p = q or ||p — ql|, > €, where x and
x' are O(b/e?) samples from p and q respectively.

D.2. Algorithm

The algorithm applies a proper 2-design for all copies, with suitable coefficients to make the pro-
jection matrices a POVM. 2-designs preserve the statistics of the Haar measure up to order 2, and
therefore should be a good choice for fixed measurements.

Theorem 30 Let k be the size of the proper 2-design used in Algorithm 1. Withn = O (d\/E / €2>

copies from each unknown state, Algorithm 1 can test whether p = pg or ||p — poll; > € with
probability at least 2/3.

Proof Let A = p — pg and p,, be the distribution of a single measurement outcome for M. When

lp = polly = 1Al > &, we have [|Al|ys = /Tr[A%] > ¢/Vd.
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Algorithm 1: State certification/closedness testing without shared randomness

Input: n copies of unknown state p. If pg is unknown, n copies of pg as well.
Output YES if p = po, NOif ||p — pol|; > €.

Let {Ww>}§:1 be a proper 2-design and M = {%Wﬁ(iﬂx\}g’ﬁ:l

Apply the measurement M for all copies of p and obtain outcomes x = (x1,...,Zy,).

Obtain n samples x’ = (1, .., ) from p,,. If po is known, then x’ is obtained by measuring

rr'n
each copy with M. Else, x’ is sampled using classical randomness.

return TestClosenessL2(x,x’,e/+/k(d + 1)).

We can compute the ||p,||, and |[p, — Py, ||, in terms of A.

2 & a2 &
Ip,lls = ye) > Walole)? IPs = Pounlls = o) D (Wl Ale)?.
r=1 x

=1

Note that {|1;.)}©_, is a proper 2-design, and thus by definition for all Hermitian matrices M,

e 1 1
£ D el MIa)? = 2 3 Trla) Wl M1 = Tr | £ D o) (15 20
=1 T x

= Tr [Eyp [ [90) (0¥ M2 |] = Eyepu [ TrlJ9h) (9| #2 M*?] ]
= By [ Tr[|90) ()| M]? ]
= Eynp [ (WIM[4)? ],

where 1 is the Haar measure. The expectation can be computed using Weingarten calculus Collins
(2003); Collins and Sniady (2006).

Lemma 31 For any Hermitian M € C™% and |1)) ~ p the Haar measure, we have,

By (IMI)*] = 27 (M + Te{A2)),

The proof can be found in (Chen et al., 2022b, Lemma 6.4). Since Tr[p?] < Tr[p] = 1 and
Tr[A] = 0, from this lemma we conclude that

e P P L
Polla = F@v 1y e Peanll2 = 30 71y “ k(d+ 1)
Therefore, we can apply Theorem 29 with domain size k, b k(sij-l)’ and € < \/k(iT)' The
number of samples n required is
2d kE(d+1) VEkd(d+1)
n=0 : =0 ——.
k(d+1) g2 £
|

The upper bound part of Theorem 1 is an immediate corollary of the above theorem.
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Corollary 32 If the size of the proper 2-design in Algorithm 1 is k = O(d?), then n = O(d?/£?)
copies are sufficient for Algorithm 1. Specifically, when d is a prime power, such 2-design exists due
to maximal MUB which satisfies k = d(d + 1).

This result suggests that the optimal copy complexity of O(d? /e?) can be generalized to dimensions
d other than prime powers. For example, SIC-POVM Zauner (1999); Renes et al. (2004) is a mini-
mal 2-design with k = d? and is known to exist for d = 2 to 28 and as high as d = 1299 DeBrota
(2020). It has been conjectured in Zauner (1999) that SIC-POVMs exist for all d. If the conjecture
is proved, then Algorithm 1 naturally generalizes to all d.
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