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Abstract. Long-form video understanding represents a significant chal-
lenge within computer vision, demanding a model capable of reasoning
over long multi-modal sequences. Motivated by the human cognitive pro-
cess for long-form video understanding, we emphasize interactive reason-
ing and planning over the ability to process lengthy visual inputs. We
introduce a novel agent-based system, VideoAgent, that employs a large
language model as a central agent to iteratively identify and compile
crucial information to answer a question, with vision-language founda-
tion models serving as tools to translate and retrieve visual information.
Evaluated on the challenging EgoSchema and NExT-QA benchmarks,
VideoAgent achieves 54.1% and 71.3% zero-shot accuracy with only 8.4
and 8.2 frames used on average. These results demonstrate superior ef-
fectiveness and efficiency of our method over the current state-of-the-art
methods, highlighting the potential of agent-based approaches in advanc-
ing long-form video understanding.

Keywords: Long-form Video Understanding · Large Language Model
Agent · Vision-Language Foundation Models

1 Introduction

Understanding long-form videos, which range from minutes to hours, poses a
significant challenge in the field of computer vision. This task demands a model
capable of processing multi-modal information, handling exceedingly long se-
quences, and reasoning over these sequences effectively.

Despite numerous attempts [10,12,15,28,31,43,45,52,55,61] to address this
challenge by enhancing these capabilities, existing models struggle to excel in
all three areas simultaneously. Current large language models (LLMs) excel in
reasoning and handling long contexts [14, 49, 54, 64], yet they lack the capabil-
ity to process visual information. Conversely, visual language models (VLMs)
struggle to model lengthy visual inputs [9,18,19,22,24]. Early efforts have been
made to enable VLMs’ long context modeling capability, but these adaptations
underperform in video understanding benchmarks and are inefficient in dealing
with long-form video content [23].
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something in a room.”

Fig. 1: Overview of VideoAgent. Given a long-form video, VideoAgent iteratively
searches and aggregates key information to answer the question. The process is con-
trolled by a large language model (LLM) as the agent, with the visual language model
(VLM) and contrastive language-image model (CLIP) serving as tools.

Do we really need to feed the entire long-form video directly into the model?
This diverges significantly from how humans achieve the long-form video under-
standing task. When tasked with understanding a long video, humans typically
rely on the following interactive process to formulate an answer: The process be-
gins with a quick overview of the video to understand its context. Subsequently,
guided by the specific question at hand, humans iteratively select new frames to
gather relevant information. Upon acquiring sufficient information to answer the
question, the iterative process is concluded, and the answer is provided. Through-
out this process, the reasoning capability to control this iterative process is more
critical than the capacity to directly process lengthy visual inputs.

Drawing inspiration from how humans understand long-form videos [13, 50],
we present VideoAgent, a system that simulates this process through an agent-
based system. We formulate the video understanding process as a sequence of
states, actions, and observations, with an LLM serving as the agent controlling
this process (Figure 1). Initially, the LLM familiarizes itself with the video con-
text by glancing at a set of uniformly sampled frames from the video. During
each iteration, the LLM assesses whether the current information (state) is suf-
ficient to answer the question; if not, it identifies what additional information
is required (action). Subsequently, it utilizes CLIP [37] to retrieve new frames
containing this information (observation) and VLM to caption these new frames
into textual descriptions, updating the current state. This design emphasizes the
reasoning capability and iterative processes over the direct processing of long vi-
sual inputs, where the VLM and CLIP serve as instrumental tools to enable the
LLM to have visual understanding and long-context retrieval capabilities.

Our work differs from previous works in two aspects. Compared to the works
that uniformly sample frames or select frames in a single iteration [17,58,68], our
method selects frames in a multi-round fashion, which ensures the information
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gathered to be more accurate based on the current need. Compared to the works
that retrieve frames using the original question as the query [58,68], we rewrite
the query to enable more accurate and fine-grained frame retrieval.

Our rigorous evaluation of two well-established long-form video understand-
ing benchmarks, EgoSchema [29] and NExT-QA [57], demonstrates VideoAgent ’s
exceptional effectiveness and efficiency compared to existing methods. VideoA-
gent achieves 54.1% and 71.3% accuracy on these two benchmarks, respectively,
outperforming concurrent state-of-the-art method LLoVi [69] by 3.8% and 3.6%.
Notably, VideoAgent only utilizes 8.4 frames on average to achieve such perfor-
mance, which is 20x fewer compared to LLoVi. Our ablation studies highlight the
significance of the iterative frame selection process, which adaptively searches
and aggregates relevant information based on the complexity of the videos. Addi-
tionally, our case studies demonstrate that VideoAgent generalizes to arbitrarily
long videos, including those extending to an hour or more.

In summary, VideoAgent represents a significant stride for long-form video
understanding, which embraces the agentic system to mimic human cognitive
process and underscores the primacy of reasoning over long-context visual infor-
mation modeling. We hope our work not only sets a new benchmark in long-form
video understanding but also sheds light on future research in this direction.

2 Related Work

2.1 Long-form Video Understanding

Long-form video understanding is a particularly challenging domain in computer
vision due to the inherent complexity and high dimensionality of spatio-temporal
inputs, which leads to significant computational demands. Long-form video un-
derstanding methods need to balance computational efficiency and performance,
and can broadly be categorized into selective or compressive sparsity strategies.

Compressive sparsity methods [10, 12, 15, 31, 43, 45, 52, 55, 61, 67], attempt to
compress the video into meaningful embeddings/representations with the mini-
mum possible dimensionality. For example, MovieChat [43] employs a memory
consolidation mechanism that merges similar adjacent frame tokens based on
cosine similarity, effectively reducing token redundancy in long video sequences.
Chat-UniVi [15] utilized kNN clustering to spatio-temporally compress video to-
kens. However, the compression need not happen on the embeddings themselves,
and can be compressed into space-time graphs [10,52,61] or even text [20,39,69].
For example, Zhang et. al. [69] introduced LLoVi, and have shown that simply
captioning videos before and prompting an LLM with these captions can serve
as a strong baseline.

Meanwhile, selective-compressive methodologies attempt to sub-sample the
video into more meaningful frames, utilizing the question/text as a guide, and in
effect attempt to only sample frames relevant to the question at hand [7,21,38,
58,68]. For instance, methods such as R-VLM and R2A [8,34,58] utilize a CLIP
model to retrieve relevant frames given a text prompt, and while Q-ViD [39]
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Fig. 2: Detailed view of VideoAgent’s iterative process. Each round starts with the
state, which includes previously viewed video frames. The large language model then
determines subsequent actions by answering prediction and self-reflection. If additional
information is needed, new observations are acquired in the form of video frames.

utilizes the question to selectively caption the video. Unlike previous works, we
allow the LLM to direct the video frames to be sampled by the captioner.

2.2 LLM Agents

An agent is defined as an entity that makes decisions and takes actions in a dy-
namic, real-time environment to achieve some specific goals. Advances in large
language models (LLMs), especially their emerging reasoning and planning ca-
pabilities [54, 64, 72], has inspired recent research in natural language process-
ing to leverage them as agents in real-world scenarios [36, 65]. These models
have demonstrated great success across various scenarios, such as online search,
card game playing, and database management [26, 27, 63]. Their effectiveness
is further amplified with methods such as chain-of-thought reasoning or self-
reflection [42,54].

Simultaneously, the computer vision community has begun to explore LLM-
as-agent-based approach in diverse visual contexts, such as GUI understanding
and robot navigation [3, 5, 9, 46]. In the area of long-form video understand-
ing, several studies have made an initial attempt with an agent-like approach,
which utilize LLMs to interact with external tools or to incorporate additional
functionalities [6, 46, 62]. Unlike these approaches, our work reformulates video
understanding as a decision-making process, which is inspired by how humans
solve video interpretation methods. We view the video as an environment where
decisions involve either seeking more information or concluding the interaction.
This perspective has guided the creation of VideoAgent, a novel framework that
significantly diverges from existing methodologies by emphasizing the decision-
making aspects inherent in video understanding.

3 Method

In this section, we introduce the method of VideoAgent. VideoAgent is inspired
by the human cognitive process of understanding long-form videos. Given a video
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with the question, a human will first glance at several frames to understand its
context, then iteratively search additional frames to obtain enough information
to answer the question, and finally aggregate all the information and make the
prediction.

We formulate the process into a sequence of states, actions, and observations
{(st, at, ot)|1  t  T}, where the state is the existing information of all the
seen frames, action is whether to answer the question or continue to search new
frames, observation is the new frames seen in the current iteration, and T is the
maximum number of iterations.

We leverage large language model (LLM) GPT-4 [32] as an agent to perform
the above process (Figure 1). LLMs have been demonstrated to have memory,
reasoning and planning, and tool-use capability [40,47,54,72], which can be used
to model states, actions, and observations, respectively.

3.1 Obtaining the Initial State

To start the iterative process, we first familiarize the LLM with the context of
the video, which can be achieved by glancing at N frames uniformly sampled
from the video. Since the LLM has no capability for visual understanding, we
leverage vision-language models (VLMs) to convert the visual content to lan-
guage descriptions. Specifically, we caption these N frames with the prompt
“describe the image in detail” and feed the captions to the LLM. This initial
state s1 records a sketch of the content and semantics of the video.

3.2 Determining the Next Action

Given the current state st that stores the information of all the seen frames,
there are two possible options for the next action at:

– Action 1: answer the question. If the information in state st is enough
to answer the question, we should answer the questions and exit the iterative
process.

– Action 2: search new information. If the current information in st is
insufficient, we should decide what further information is required to answer
the question and continue searching for it.

To decide between actions 1 and 2, we need the LLM to reason over the ques-
tion and existing information. This is achieved by a three-step process. First, we
force the LLM to make a prediction based on the current state and question via
chain-of-thought prompting. Second, we ask the LLM to self-reflect and gener-
ate a confidence score based on the state, question, prediction and its reasoning
process generated by step 1. The confidence score has three levels: 1 (insufficient
information), 2 (partial information), and 3 (sufficient information). Finally, we
choose action 1 or 2 based on the confidence score. This process is illustrated
in Figure 2. We propose to use a three-step process over a single-step process
that directly chooses action as direct prediction always decides to search for new
information (Action 2). This self-reflection process is motivated by [42], which
has demonstrated superior effectiveness in natural language processing.
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3.3 Gathering a New Observation

Suppose the LLM determines insufficient information to answer the question
and chooses to search for new information. In that case, we further ask the LLM
to decide what extra information is needed so that we can leverage tools to
retrieve them (Figure 2). Since some piece of information could occur multiple
times within a video, we perform segment-level retrieval instead of video-level
retrieval to enhance the temporal reasoning capability. For example, suppose the
question is “What is the toy left on the sofa after the boy leaves the room?” and
that we have seen the boy leave the room at frame i. If we retrieve with the
query “a frame showing the toy on the sofa,” there may be frames before frame
i containing “toy on the sofa”, but they are irrelevant to answering the question.

To perform segment-level retrieval, we first split the video into different seg-
ments based on the seen frame indices, and ask the LLM to predict what seg-
ments to retrieve with the query texts. For example, if we have seen frames i, j,
and k of a video, one valid prediction is segment 2 (frame i to j) with the query
“a frame showing the toy on the sofa”.

We leverage CLIP [37] to obtain this additional information given the output
by the LLM. Specifically, given each query and segment, we return the image
frame with the highest cosine similarity with the text query in that segment.
These retrieved frames are served as observations to update the state.

The use of CLIP in the retrieval step is computationally efficient and neg-
ligible compared to using an LLM or VLM for several reasons. Firstly, CLIP’s
feature computation involves just a single feed-forward process. Secondly, CLIP
employs an image-text late interaction architecture, enabling the caching and
reusing of image frame features across different text queries. Lastly, our segment-
level retrieval design only requires computing features within specific segments,
further enhancing efficiency. Empirically, our experiments show that CLIP com-
putations are less than 1% of that of a VLM and LLM.

3.4 Updating the Current State

Finally, given the new observations (i.e., retrieved frames), we leverage VLMs
to generate captions for each frame, and then simply sort and concatenate the
new captions with old frame captions based on frame index, and ask the LLM
to generate next-round predictions.

A question one may posit is why we leverage the multi-round process, as
some existing works use all or uniformly sampled frames as the state in a single
step [17, 69]. There are many advantages of our approach over these baselines.
First, using too many frames introduces extensive information and noise, which
leads to performance degradation because LLMs suffer from long contexts and
can be easily distracted [25,41]. Furthermore, it is computationally inefficient and
hard to scale up to hour-long videos due to the LLM context length limit [32].
On the opposite, using too few frames may not capture relevant information.
Our adaptive selection strategy finds the most relevant information and requires
the lowest cost to answer questions at different difficulty levels.

We summarize the VideoAgent as Algorithm 1.
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Algorithm 1 VideoAgent

Require: Video v, question q, LLM Fl, VLM Fv, CLIP Fc, max iteration T , confidence
threshold C

Ensure: Prediction ŷ, state-action-observation sequence {st, at, ot|1  t  T}
1: s1  GenerateCaptions(Fv, UniformSample(v))
2: for t = 1 to T do
3: ŷ  PredictAnswer(Fl, st, q)
4: c SelfReflect(Fl, st, q, ŷ)
5: if at  [c�C] then
6: break
7: else
8: h FindMissingInfo(Fl, st, q)
9: ot  RetrieveFrames(Fc, v, h)
10: st+1  Merge(st, GenerateCaptions(Fv, ot))
11: end if
12: end for
13: return ŷ, {st, at, ot|1  t  T}

4 Experiments

In this section, we first introduce the datasets and implementation details, and
then we present the results, analyses, ablations, and case studies of VideoAgent.

4.1 Datasets and Metrics

In our experiments, we use two distinct well-established datasets to benchmark
our model’s performance, with a particular focus on zero-shot understanding
capabilities.

EgoSchema [29]. EgoSchema is a benchmark for long-form video understanding,
featuring 5,000 multiple-choice questions derived from 5,000 egocentric videos.
These videos provide an egocentric viewpoint of humans engaged in a wide range
of activities. A distinctive feature of this dataset is the length of its videos, each
lasting 3 minutes. EgoSchema comprises only a test set, with a subset of 500
questions having publicly available labels. The full set of questions is evaluated
exclusively on the official leaderboard.

NExT-QA [57]. The NExT-QA dataset includes 5,440 natural videos that fea-
ture object interactions in daily life, accompanied by 48,000 multiple-choice
questions. The average length of video is 44 seconds. These questions fall into
three categories: Temporal, Causal, and Descriptive, providing a comprehensive
evaluation for video understanding models. In line with standard practices, our
zero-shot evaluation focused on the validation set, which contains 570 videos
and 5,000 multiple-choice questions. We additionally follow [4] to report per-
formance on the ATP-hard subset of the NExT-QA validation set. This subset



8 Wang et al.

Method Frames Subset Full

FrozenBiLM [60] [NeurIPS2022] 90 - 26.9
InternVideo [53] [arXiv2022.12] 90 - 32.1
ImageViT [35] [arXiv2023.12] 16 40.8 30.9

ShortViViTloc [35] [arXiv2023.12] 32 49.6 31.3
LongViViT [35] [arXiv2023.12] 256 56.8 33.3

SeViLA [68] [NeurIPS2023] 32 25.7 22.7
Vamos [51] [arXiv2023.11] - - 48.3
LLoVi [69] [arXiv2024.2] 180 57.6 50.3

MC-ViT-L [2] [arXiv2024.2] 128+ 62.6 44.4

VideoAgent (ours) 8.4 60.2 54.1

Table 1: Results on EgoSchema compared

to public models. Full-set results are ob-
tained from the official leaderboard.

Model Subset Full

Random Chance 20.0 20.0
Bard only (blind) [2] [2023.3] 27.0 33.2

Bard + ImageViT [35] [2023.3] 35.0 35.0
Bard + ShortViViT [35] [2023.3] 42.0 36.2

Bard + PALI [35] [2023.3] 44.8 39.2
GPT-4 Turbo (blind) [2] [2023.4] 31.0 30.8

GPT-4V [2] [2023.9] 63.5 55.6
Gemini 1.0 Pro [48] [2023.12] - 55.7

VideoAgent (ours) 60.2 54.1

Table 2: Results on EgoSchema compared

to large-scale proprietary models.

keeps the hardest QA pairs that can not be solved with one frame, focusing more
on long-term temporal reasoning.

Since each dataset features multiple-choice questions, we utilized accuracy as
our evaluation metric.

4.2 Implementation Details

We decode all the videos in our experiments at 1 fps and use EVA-CLIP-8B-
plus [44] to retrieve the most relevant frames based on the cosine similarity
between the generated descriptions and the frame features. For the experiments
on EgoSchema, we utilize LaViLa [70] as the captioner, which is a clip-based
captioning model. Following [69], to ensure zero-shot evaluation, we utilize the
LaViLa model retrained on the ego4D data, filtering out the overlapped videos
with EgoSchema. We sample the video clip for captioning based on the frame
index returned by the CLIP retrieval module. For NExT-QA, we utilize CogA-
gent [9] as the captioner. We use GPT-4 [32] as the LLM for all experiments,
the version of GPT is fixed to gpt-4-1106-preview to ensure reproducibility.

4.3 Comparison with State-of-the-arts

VideoAgent sets new benchmarks, achieving state-of-the-art (SOTA) results on
the EgoSchema and NExT-QA datasets, surpassing previous methods signifi-
cantly while requiring only a minimal number of frames for analysis.

EgoSchema. As shown in Tables 1 and 2, VideoAgent achieves an accuracy of
54.1% on the EgoSchema full dataset and 60.2% on a 500-question subset. The
full dataset’s accuracy was verified by uploading our model’s predictions to the
official leaderboard, as ground-truth labels are not publicly available. These re-
sults not only significantly outperform the previous SOTA method LLoVi [69] by
3.8%, but also achieve comparable performance to advanced proprietary models
like Gemini-1.0 [48]. Notably, our method requires an average of only 8.4 frames
per video — significantly fewer by 2x to 30x compared to existing approaches.
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Val ATP-hard subsetMethods Acc@C Acc@T Acc@D Acc@All Acc@C Acc@T Acc@All
Supervised

VFC [59] [ICCV2021] 49.6 51.5 63.2 52.3 - - -
ATP [4] [CVPR2022] 53.1 50.2 66.8 54.3 38.4 36.5 38.8
MIST [7] [CVPR2023] 54.6 56.6 66.9 57.2 - - -

GF [1] [NeurIPS2023] 56.9 57.1 70.5 58.8 48.7 50.3 49.3
CoVGT [56] [TPAMI2023] 59.7 58.0 69.9 60.7 - - -
SeViT [16] [arXiv2023.1] 54.0 54.1 71.3 56.7 43.3 46.5 -
HiTeA [66] [ICCV2023] 62.4 58.3 75.6 63.1 47.8 48.6 -

Zero-shot

VFC [30] [ICCV2023] 51.6 45.4 64.1 51.5 32.2 30.0 31.4
InternVideo [53] [arXiv2022.12] 43.4 48.0 65.1 49.1 - - -
AssistGPT [6] [arXiv2023.6] 60.0 51.4 67.3 58.4 - - -
ViperGPT [46] [ICCV2023] - - - 60.0 - - -

SeViLA [68] [NeurIPS2023] 61.3 61.5 75.6 63.6 - - -
LLoVi [69] [arXiv2024.2] 69.5 61.0 75.6 67.7 - - -

VideoAgent (ours) 72.7 64.5 81.1 71.3 57.8 58.8 58.4

Table 3: Results on NExT-QA compared to the state of the art. C, T, and D are causal,
temporal, and descriptive subsets, respectively.

NExT-QA. In Table 3, we show that VideoAgent achieves a 71.3% accuracy on
the NExT-QA full validation set, surpassing the former SOTA, LLoVi [69], by
3.6%. With an average of merely 8.2 frames used per video for zero-shot eval-
uation, VideoAgent consistently outperforms previous supervised and zero-shot
methods across all subsets by a large margin, including those testing the model’s
causal, temporal, and descriptive abilities. Importantly, VideoAgent achieves
remarkable performance improvements on the more challenging subsets, ATP-
hard [4], demonstrating its adeptness at addressing complex long-form video
queries.

These results underscore VideoAgent ’s exceptional effectiveness and efficiency
in processing and understanding complex questions from long-form videos.

4.4 Analysis of Iterative Frame Selection

One of the key components of VideoAgent is its iterative frame selection, which
dynamically searches for and aggregates more information until it is sufficient
to answer the question, mimicking the human process of understanding videos.
We conducted comprehensive analyses and ablation studies to understand this
process better.

Frame efficiency. Our first analysis focused on whether frame selection effec-
tively identifies the informative frames needed to answer a question. This can
be measured by frame efficiency: given a fixed number of frames, what model
accuracy can be achieved. The hypothesis is that the more informative frames
it identifies, the higher the frame efficiency should be. In Figure 3 (left), we plot
the accuracy of our method compared to uniform sampling baselines and other
previous methods on the EgoSchema 500-question subset. Our method signifi-
cantly outperforms uniform selection and other baselines at the same number of
frames, demonstrating its superiority in frame efficiency. Notably, our method,
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Fig. 3: (Left) Frame efficiency compared to uniform sampling and previous methods. X-
axis is in log scale. Our method achieves exceptional frame efficiency for long-form video
understanding. (Right) Number of frames for different types of NExT-QA questions.

Min, mean, max, distribution are plotted. VideoAgent selects more frames on questions
related to temporal reasoning than causal reasoning and descriptive questions.

which uses only 8.4 frames to achieve 60.2% accuracy, surpasses the baseline
that uniformly samples 180 frames to achieve 59.6% accuracy. This underscores
the effectiveness of our method in finding informative frames and reveals that
more frames do not always lead to better performance, as irrelevant and noisy
information can overwhelm the language model with long contexts and distrac-
tions [25,41].

Number of rounds. We also analyzed how the number of iterative rounds affects
model performance. In the same Figure 3 (left), we plot the performance across
1-4 rounds and the number of selected frames, achieving accuracies of 53.8%,
58.6%, 60.2%, and 59.8% with 5, 7.5, 8.4, and 9.9 frames, respectively. The per-
formance improves with additional rounds but saturates at three rounds on the
EgoSchema 500-question subset. This indicates that our approach can efficiently
find the information needed to answer the question, and beyond a certain point,
additional information does not further help in answering the question.

Different question types. Given that our frame selection process is dynamic, with
the language model agent determining whether the information is sufficient, we
hypothesized that different question types might require varying amounts of in-
formation due to their differing levels of difficulty. We tested this hypothesis on
the NExT-QA dataset, which provides annotations for each question type: de-
scriptive tasks, causal reasoning, or temporal reasoning. In Figure 3 (right), we
plot the distribution of the number of frames for each type of question. We ob-
served that the average number of frames used ranks as follows: descriptive (5.9
frames), causal (7.1 frames), and temporal (7.8 frames) questions. This aligns
with human intuition that descriptive tasks often require fewer frames as initial
uniform sampling is usually sufficient, whereas reasoning tasks, especially tem-
poral reasoning, require viewing more frames to accurately answer the question.
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Uniform Uni-7 Uni-9 Uni-11
54.6 54.8 55.8

Ours 3!6.4 5!8.4 8!11.0
58.4 60.2 57.4

Table 4: Ablation of initial number of

uniformly sampled frames.

Method Frames Acc

Ours w/o Seg. Selection 7.5 56.6
Ours w/o Self-Evaluation 11.8 59.6

Ours 8.4 60.2

Table 5: Ablation of segment selection and

self-evaluation.

Initial Number of Frames. Before initiating the iterative frame selection process,
we uniformly sample N frames to acquaint the language model with the video
context. To explore how the number of initially sampled frames influences model
performance and the average number of frames utilized, we conduct an ablation
study. Specifically, we sample 3, 5, and 8 frames initially on the EgoSchema
500-question subset and report the findings in Table 4. The results indicate ac-
curacies of 58.4%, 60.2%, and 57.4% with an average of 6.4, 8.4, and 11.0 frames
used, respectively. Starting with 5 frames leads to the highest performance. Fur-
thermore, when comparing our method against uniform sampling with a similar
or slightly higher number of frames, we observe accuracies of 54.6%, 54.8%, and
55.8% for 7, 9, and 11 frames, respectively. This comparison again highlights the
superior efficiency of our frame selection method.

Self-evaluation. During the iterative selection process, we perform a self-evaluation
to ascertain whether the available information suffices to answer the query. If
sufficient, the iteration terminates at this stage. We benchmark this against
a baseline method without self-evaluation, where every question is processed
through three rounds of iteration. As detailed in Table 5, we observe an increase
in the average number of frames from 8.4 to 11.8 and a decrease in accuracy
from 60.2% to 59.6%. These results underscore the efficacy of self-evaluation in
determining the adequacy of information, thereby curtailing unnecessary itera-
tions. Notably, gathering more information through additional rounds does not
lead to performance improvement but rather results in a marginal decline.

Segment selection. When it is determined that additional information is re-
quired, the input videos are divided into segments. The language model then
generates queries specifically tailored to retrieve information within those seg-
ments. This approach is contrasted with an alternative strategy that involves
generating queries without specifying segments. In Table 5, we observe a 3.6%
accuracy degradation when segment selection is disabled. Segment selection im-
proves the model’s temporal reasoning capabilities and mitigates the risk of
conflating information from disparate segments. This is particularly beneficial
for queries such as “what happens after...?”, where retrieval is only desired from
subsequent segments.

4.5 Ablation of Foundation Models

Given that VideoAgent integrates three foundational model types — large lan-
guage model (LLM), visual language model (VLM), and contrastive language-
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LLM Model Size Acc. (%)

Mistral-8x7B 70B 37.8
Llama2-70B 70B 45.4
GPT-3.5 N/A 48.8
GPT-4 N/A 60.2

Table 6: LLM ablation.

Captioner Type # Words Acc. (%)

BLIP-2 Frame-based 8.5 52.4
LaViLa Clip-based 7.2 60.2
CogAgent Frame-based 74.2 60.8

Table 7: VLM ablation.

CLIP Model Size Resolution Acc. (%)

OpenCLIP ViT-G 1B 224 59.2
EVA-CLIP-8B 8B 224 59.4
EVA-CLIP-8B-plus 8B 448 60.2

Table 8: CLIP ablation.

image model (CLIP) — we conduct a series of ablation studies to evaluate the
impact of each component’s design on the overall performance of the model.

LLM. We initiated our study by evaluating how different LLMs influence the
performance of our model, given the pivotal role of LLMs in our methodol-
ogy, where they function as agents orchestrating the entire process. In Table 6,
we compare several state-of-the-art public and proprietary LLMs, including
LLaMA-2-70B [49], Mixtral-8x7B [14], GPT-3.5 [33], and GPT-4 [32]. Our find-
ings indicate that GPT-4 significantly outperforms its counterparts. However,
it is primarily due to its capability in structured prediction. The iterative pro-
cess employs JSON for output, where accurate JSON parsing is crucial. GPT-4
demonstrates robust performance in generating correct JSON formats, a feat
not as consistently achieved by other models, which remains an active research
area in LLM [71].

VLM. Leveraging GPT-4, a text-only model without visual capabilities, we
translate image frames into descriptive captions through VLMs, subsequently
feeding these captions to GPT-4. To assess the impact of caption quality pro-
duced by various VLMs, we examined three state-of-the-art VLMs: frame-based
BLIP-2 [19] and CogAgent [9], along with clip-based LaViLa [70] as presented in
Table 7. Our analysis revealed that captions from CogAgent and LaViLa yield
similar performances, even though their generated captions have significantly
different lengths, while BLIP-2 generated captions are much worse.

CLIP. CLIP excels in retrieval tasks due to the late-interaction design for image
and text features, eliminating the need for recomputing image embeddings for
varying queries. We evaluated three versions of CLIP: OpenCLIP ViT-G [11],
EVA-CLIP-8B [44], and EVA-CLIP-8B-plus [44], with the results shown in Ta-
ble 8. Our findings suggest comparable performance across different models,
indicating that retrieval does not constitute a bottleneck for our methodology.

It’s important to note that the main contribution of our research is the intro-
duction of a framework emulating the human process of understanding long-form
videos, rather than the employment of any specific model. With the rapid devel-
opments of foundational models such as LLMs, VLMs, and CLIPs, our approach
can be further improved with the integration of better models, or by adopting a
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Question: Why did the man in black sweater hold up a cup of water while talking to friends?
A. take a picture    B. hand the drink to someone      C. tell the lady something      D. wants to try pouring the water     E. drink

Frame 1 Frame 18 Frame 35 Frame 52 Frame 69
The image depicts 
there's a man sitting on...

There's a person's arm…a 
man seated on a chair…

…a young woman sitting on 
a couch... a piece of paper…

… a man seated...seems to 
be in motion…gesturing…

men .. in a conversation
…and bottles and a glass

Predict Answer: Given the following descriptions of five sampled frames in the 
video: {Caption}. Please answer the following {Question}. Please think step-by-
step and write the best answer index in JSON format.

Caption

LLM
Output: The provided descriptions do not explicitly 
mention a man holding up a cup of water while 
talking to friends… {"final answer": null}

Self Reflect: Please assess the confidence level in the decision-making process. 
Criteria for Evaluation: Insufficient Information (Level-1); Partial Information 
(Level-2); Sufficient Information (Level-3).

Output: The answer indicates a lack of information 
to make a proper choice… {"confidence": "1"}

Find Missing Info: Divide the video into segments based on the initial frames. Determine which segments are likely to contain relevant 
frames. Provide a description focusing on essential visual elements for each potential frame.

Output: [{"segment":"52-69",  "description 1":"frame of the man in the black sweater reaching for a cup"},
{"segment": "52-69",  "description 2": "frame of the man in the black sweater holding a cup of water"},
{"segment": "52-69",  "description 3": "frame of the man in the black sweater gesturing with the cup 
of water towards one of his friends"}]

CLIP

LLM

LLM

Frame 56 Frame 57 Frame 58

VLM
Output: Frame 56: a man…wearing a dark-colored sweater…The man is holding a glass, and is in the act of drinking from it.

Frame 57: a man…wearing a dark-colored sweater…The man is holding a glass, and is in the act of drinking from it.
Frame 58: two men sitting…The man on the left is wearing a brown hoodie…the man on the right is dressed in a 
dark-colored sweater. The man on the right is holding a glass, seems to be in the middle of a conversation.

LLM Predict Answer: Given the following descriptions of sampled frames in the 
video: {Updated_Caption}. ... Please answer the following {Question}. …

Output:
{"final answer": "E. Drink"}

LLM Self Reflect: Please assess the confidence level in the decision-making process... Output: {"confidence": "3"} End

Fig. 4: Case study on NExT-QA. VideoAgent accurately identifies missing information
in the first round, bridges the information gap in the second round, and thereby makes
the correct prediction.

caption-free methodology by replacing GPT-4 with GPT-4V. We hope our work
sheds light on future work in this direction.

4.6 Case Studies

We present several case studies to demonstrate the capability of VideoAgent in
understanding long-form videos.

Questions from NExT-QA [57]. In Figure 4, we illustrate an instance from
NExT-QA solved in two iterations. The question is asking why the man holds up
a cup of water when talking to friends. VideoAgent accurately identify missing
information (although the cup is visible in frame 69, it does not reveal the man
is holding it). It then determines what additional information is required (frame
of the man in the black sweater holding a cup of water). Finally, it utilizes CLIP
to retrieve this detail (the man is holding a glass and is in the act of drinking
from it) and feel confident about its answer.
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… … … …

Question: What is the color of the stairs surrounding by green plants?
A. black    B. blue    C. white    D. pink    E. green

VideoAgent Selected Frames 
after 1 round

Predicted Answer {"final answer": B}
{”Confidence": 3}Confidence

Selected Frames 
after 1 round

Predicted Answer {"final answer": B}
{”Confidence": 3}Confidence

GPT-4V

Sorry, I can't provide details about these 
images as they don't contain any stairs 
surrounded by green plants.

Uniformly Sampled 48 frames
Response: I can't provide details about these images as 
they don't contain any stairs surrounded by green plants.

48 frames + Our selected frames
Response: The stairs surrounded by green 
plants are blue. The Answer is B.

The stairs surrounded by green plants are blue.

Fig. 5: Case study on hour-long videos. VideoAgent accurately identifies the key frame
during the second iteration, subsequently making an accurate prediction. Conversely,
GPT-4V, when relying on 48 uniformly sampled frames up to its maximum context
length, does not get successful prediction. However, by integrating the frame pinpointed
by VideoAgent, GPT-4V is able to correctly answer the question.

Hour-long videos. Given that both NExT-QA and EgoSchema videos span only
a few minutes, Figure 5 shows how VideoAgent can accurately solve hour-long
videos from YouTube†. The question is about figuring out the color of the stairs
surrounding by green plants, which only occupy a small portion of the video.
VideoAgent efficiently identifies the necessary information and answers questions
within only two iterations and seven frames, outperforming state-of-the-art mod-
els like GPT-4V. Notably, GPT-4V struggles with uniform sampling across its
maximum context length of 48 images. However, when GPT-4V is provided
with the frame pinpointed by VideoAgent, it can successfully answer the ques-
tion. This underscores the potential of enhancing GPT-4V’s capabilities in video
understanding by integrating our approach.

In conclusion, VideoAgent is ready to tackle real-world video understanding,
surpassing traditional methods reliant on one-round sparse or dense sampling.

5 Conclusion

In this work, we introduce VideoAgent, a system that employs a large language
model as an agent to mirror the human cognitive process for understanding long-
form videos. VideoAgent effectively searches and aggregates information through
a multi-round iterative process. It demonstrates exceptional effectiveness and
efficiency in long-form video understanding, as evidenced by both quantitative
and qualitative studies on various datasets.
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