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Abstract. Cryo-electron microscopy (cryo-EM) has become a crucial
method for structure determination. Despite the substantial growth in
deposited cryo-EM maps driven by advances in microscopy and image
processing, accurately constructing models from these maps remains
challenging. Extracting secondary structure information from EM maps
is valuable for cryo-EM modeling. In this context, we introduce a
novel deep learning secondary structure annotation framework specifi-
cally designed for intermediate-resolution cryo-EM maps, employing a
three-dimensional Inception architecture. Testing it on diverse datasets,
including maps with authentic intermediate resolutions, demonstrates its
accuracy and robustness in identifying secondary structures in cryo-EM
maps. We conducted a comparative analysis of our results against frame-
works that exist in the state-of-the-art, and our framework demonstrated
superior performance across nearly all secondary structure elements. We
employed the F1 accuracy metric, yielding an average F1 score of 0.657
for helix, 0.712 for coil, and 0.596 for sheet predictions. Notably, certain
helix and sheet predictions achieved an impressive F1 score of 0.881.
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1 Introduction

Progress in both microscopy tools and image processing algorithms has resulted
in a growing abundance of cryo-electron microscopy (cryo-EM) maps [1–3].
Increasing the resolution of cryo-EM has opened doors to elucidating the struc-
tures of biological systems that were once considered too challenging to tackle,
now achieving remarkable levels of detail [4,5]. It is important to note that the
ultimate objective of cryo-EM is not merely the acquisition of 3D maps but the
precise determination of atomic structure [6–8].

Constructing precise structural models for cryo-EM maps poses a significant
challenge [9]. The methods typically employed, such as rigid fitting and flexible
fitting, rely on pre-existing template structures for the accurate placement of
atomic structures into EM maps. When template structures are lacking, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Peng et al. (Eds.): ISBRA 2024, LNBI 14954, pp. 461–472, 2024.
https://doi.org/10.1007/978-981-97-5128-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5128-0_38&domain=pdf
https://doi.org/10.1007/978-981-97-5128-0_38


462 M. Bataineh et al.

necessity for de novo modeling tools arises to construct complete atomic models
within EM density maps.

Jiang et al. [10] developed Helixhunter, software for helix identification,
length, and orientation using cross-correlation search and feature extraction on
density maps. They achieved over 88% helix detection accuracy on 8 Å resolu-
tion simulated maps, with some misclassifications and missed helices. Kong and
Ma [11] introduced Sheetminer, successfully identifying Beta-sheets in protein
structures with promising results on Cryo-EM and X-ray density maps at vari-
ous resolutions. Kong et al. [12] developed two methods for Beta-sheet identifi-
cation, one relying on Sheetminer’s output and the other using deconvolution for
improved results. Despite advancements, de novo modeling tools face accuracy
limitations, leading to a gap between the quantity of cryo-EM maps and success-
fully reconstructed 3D structures [13]. Machine learning models offer potential
to enhance predictions based on their capabilities.

Li et al. [14] achieved significant progress in secondary structure prediction
using a CNN framework, testing it on 25 simulated 8 Å cryo-EM maps, achieving
an average sensitivity and specificity of 71.52% and 97.86% for Alph-helix and
Beta-sheet detection, surpassing SVM methods. Subramaniya et al. [15] intro-
duced Emap2sec, predicting secondary structure in cryo-EM maps. Their vali-
dation involved two datasets, yielding impressive results at 6 Å with an overall
F1 score of 0.798, Alph-helix at 0.848, Beta-sheet at 0.828, and other structural
elements at 0.672. At 10 Å resolution, results remained substantial, with Alph-
helix, Beta-sheet, and other elements achieving F1 accuracy scores of 0.82, 0.75,
and 0.64, respectively.

Shifting the focus to another framework, Haruspex, developed by Mostosi
et al. [16], employed U-net architecture to predict secondary structure ele-
ments. Notably, Haruspex was primarily designed for detecting and annotat-
ing RNA/DNA and protein secondary structure elements within high-resolution
cryo-EM maps. This framework showed promising results but faced challenges
in ’unassigned’ regions, resulting in an unbalanced classification that impacted
its efficiency.

Later Wang et al. [17] presented Emap2sec+, an updated version of
Emap2sec. Where deep Residual convolutional neural network architecture was
developed, ResNet. To predict the secondary structure elements, they tried to
classify each voxel into one of three elements: Alph-Helix, Beta-sheet, or others.
Emap2sec+ was trained and tested on the simulated and experimental datasets.
In the simulated dataset, 108 non-redundant maps at 6 and 10 Å were used for
training and testing. For the experimental dataset, 83 cryo-EM images were used
for training and testing as well. In addition, Emap2sec+ outperformed Haruspex
in predicting protein secondary structure in the F1 score term.

He and Huang [18] recently introduced EMNUSS, a robust framework utiliz-
ing advanced U-net architecture (nested U-net or U-net++) with skip connectors
to enhance predictive power in secondary structure element (SSE) prediction.
EMNUSS showcased its capabilities across diverse datasets, spanning simulated,
mid-resolution, and high-resolution maps, demonstrating significant potential in
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SSE prediction. It consistently outperformed other frameworks in various evalua-
tion metrics, such as F1 scores and Q3 accuracy, making it a notable contribution
to the field of SSE prediction.

Limitations, such as using improper grid intervals as seen in Haruspex and
relying on small input chunks in Emap2sec and Emap2sec+, result in constraints
that may not accommodate an average secondary structure element larger than
those input chunks. In order to address the limitations of current methods, we’ve
introduced an innovative deep learning framework for predicting secondary struc-
tures in authentic cryo-EM maps at intermediate resolutions. Our approach uti-
lizes a three-dimensional (3D) Inception architecture, enabling rapid and precise
prediction of protein secondary structures in cryo-EM maps of diverse dimen-
sions. Our method has demonstrated a substantial enhancement in performance,
particularly when applied to experimental maps at middle resolutions. Our app-
roach has been tested exclusively on intermediate-resolution maps, making it
specifically tailored for such data. This opens up opportunities for future research
to test our approach on low- or high-resolution maps, or to develop a new model
designed to handle these different resolutions.

2 Methods

2.1 Dataset

In order to develop and assess the performance of our framework, we compiled
a diverse and non-redundant set of intermediate-resolution electron microscopy
(EM) maps for experimentation. Our initial search was conducted within the
EMDataResource database, targeting EM maps with resolutions falling within
the 4 to 10 Angstrom range, while also ensuring the availability of associated
PDB files. However, these criteria alone did not suffice to create a depend-
able dataset. To prevent the inclusion of identical or highly similar EM maps,
we implemented additional selection constraints. Specifically, we excluded any
chains displaying the following characteristics: 1. Presence of missing residues.
2. Absence of secondary structure information. 3. A sequence identity similarity
exceeding 25% with any chain already present in the dataset.

Following the application of these aforementioned selection conditions, we
successfully curated a collection of 487 unique chain maps. We divided these
maps into two distinct sets for training and testing purposes: 455 maps were
randomly selected for the training set, while the remaining 32 maps constituted
the testing set.

2.2 Network Architecture

The Inception architecture represents a significant milestone in computer vision
and deep learning. In our work, we have incorporated the Inception architecture,
creating our own custom variant of this 3D deep convolutional neural network
(CNN) architecture. Our proposed architecture, as depicted in Fig. 1, comprises
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several key elements. It commences with a Stem layer, responsible for prepro-
cessing the 3D data. This is followed by a Maxpool layer, subsequently leading
to the core Inception blocks layer. After that, an Up-sampling layer is applied,
and the network concludes with a Final layer, which reduces the neuron count
to 4 to align with the number of classes we intend to predict. A more detailed
breakdown of the Inception blocks and their sublayers can be found in Fig. 2.

Fig. 1. Our proposed 3D deep convolutional neural network (CNN) architecture, it
comprises several key elements. It commences with a Stem layer, which is responsible
for preprocessing the 3D data. This is followed by Maxpool layer, Inception blocks
layer, Up-sampling layer, and the Final layer, reducing neurons to 4 for class prediction
alignment.

2.3 Processing Training Data

To prepare our training maps for analysis, we conducted the following steps.
One of our goals was to annotate the dataset for both training and testing
stages effectively. Uniform Grid and Resolution: We started by implementing a
standardized interval grid for all maps using trilinear interpolation. This process
ensured that each interval was precisely set to 1.0 Å, creating consistency across
the dataset. Ground Truth Assignment: Subsequently, we assigned ground truth
labels to each voxel to identify secondary structure elements. For this task, we
associated each voxel with the nearest backbone atom (N, C, C-alph, or O atom)
within a 3.0 Å radius.

In cases where no backbone atoms were found within this radius, we assigned
a background label to the voxel. The input size for the framework was standard-
ized to 40× 40× 40, ensuring a consistent format for analysis. Density Value
Normalization: Finally, we normalized the density values for each voxel to fall
within the range of 0 to 1. This normalization process allowed us to exclude
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any chunks with all values equal to zero, preventing their participation in the
training process. This approach contributed to the effectiveness of the training
procedure.

Fig. 2. Inception blocks components and other sublayers.

2.4 Network Training

We created three distinct Inception architectures, applying identical hyper-
parameters to each. The input data consisted of chunks with dimensions
40× 40× 40. We partitioned 10% of the training maps for validation. Our frame-
work was implemented using PyTorch, with 150 epochs and a batch size of 16.
We utilized the Adam optimizer and employed the cross-entropy loss function,
setting the learning rate at 1e−3.

2.5 Evaluation and Comparison

To assess the outcomes of our study, we employed the F1 score metric, which rep-
resents the balanced combination of precision and recall when assessing assign-
ments. This metric was utilized to gauge our framework’s performance at the
voxel level. For a comprehensive evaluation against the current state of the art,
we opted to compare our results with EMNUSS, a recent and widely recog-
nized and resilient framework used for forecasting secondary structure elements
in Cryo-EM maps. We computed the F1 score for both frameworks, revitalizing
some of the results to provide a more insightful assessment of their performance.
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3 Results and Discussion

3.1 Comparison with EMNUSS

We conducted a comparative analysis of our framework and EMNUSS using
a test set comprised of 32 experimental EM maps of middle-resolution, with
resolutions spanning from 4.0 to 10.0 Å. In Fig. 3, we present a visual represen-
tation of the voxel F1 score comparisons between the two methods. The figure
clearly demonstrates that our framework outperformed EMNUSS significantly
when applied to the middle-resolution experimental maps.

Our proposed method significantly outperforms EMNUSS across all classes
in terms of voxel F1 scores, achieving an Overall F1 accuracy of 0.739 compared
to EMNUSS’s 0.277. For Helix prediction, the Proposed Method F1 scores 0.657
versus EMNUSS’s 0.14, and for Sheet prediction, it achieves 0.596 F1 score
against EMNUSS’s 0.093. In Coil prediction, the Proposed Method also leads
with a 0.712 F1 score compared to EMNUSS’s 0.598. This demonstrates the
superior reliability and effectiveness of our Proposed Method for protein struc-
ture prediction.

Fig. 3. Average voxel F1 scores, comparison of our framework, and EMNUSS for dif-
ferent secondary structure classes on the middle-resolution experimental map.

In Fig. 4, the comparison between EMD-1263H map visualizations using
both the proposed method and EMNUSS reveals significant performance dif-
ferences. Our framework achieves a notable overall F1 accuracy of 0.778, sur-
passing EMNUSS by a large margin (0.277), particularly excelling in identifying
helices and strands. Additionally, our method outperforms EMNUSS in predict-
ing secondary structure classes, including alpha helices, beta-sheets, and coils,
with higher voxel F1 scores. EMNUSS struggles with accuracy across classes,
mislabeling helical structures within sheet regions and misidentifying coil and
sheet regions consistently. While our method exhibits slightly lower F1 scores
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Fig. 4. EMD 1263-A prediction visualization.

in sheet prediction (0.59), it provides smoother and more interpretable visual-
izations compared to EMNUSS, with highly accurate predictions for helix and
coil regions, although minor misses exist. Overall, our approach demonstrates
superior performance across all structural classes.

Figure 5 showcases EMD 8169-C, a 6.56 Å map, with predictions from
both our proposed method and EMNUSS. Our method notably outperforms
EMNUSS, particularly excelling in accurately predicting sheet regions with a
high F1 score of 0.872. Similarly, our method demonstrates strong performance
in identifying coil regions, although occasional misses occur. However, helix pre-
diction regions show lower accuracy, with some expected helical regions missed
while others are incorrectly labeled as helices. In contrast, EMNUSS misclassifies
segments, labeling them predominantly as coil or background and overlooking
helix and sheet regions. Helix regions are entirely overlooked, with sheet regions
misidentified as coil or background. The predicted sheet region by EMNUSS
represents only a fraction of the actual area, located differently.

Figure 6 illustrates EMD-12221A, a 9.5 Å resolution map, lacking sheet
regions in the protein chain. Our proposed framework showcases highly satis-
factory results in predicting secondary structure elements, achieving an F1 score
of 0.88 for helix prediction, with nearly flawless visualization despite occasional
missing data. Coil prediction also demonstrates excellent visualization and an
impressive F1 score. Conversely, EMNUSS performs poorly, largely failing to
identify helix regions and misclassifying them as coil or background, while erro-
neously identifying coil regions as predominant elements. The most glaring error
in EMNUSS predictions is its incorrect labeling of sheet regions despite their
absence in this protein chain.
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Fig. 5. EMD 8169-C prediction visualization.

Fig. 6. EMD 12221-A prediction visualization.
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Fig. 7. EMD 21692-A prediction visualization.

Figure 7 depicts EMD 21316-A, presenting challenges for both our frame-
work and EMNUSS in providing accurate visualizations. While our framework
showed some success in predicting helix regions, several were missed, and the
identification of sheet regions remained inadequate, resulting in a low F1 score.
Although coil regions were relatively better predicted, many were still over-
looked. Overall, our proposed method did not perform as well in predicting this
protein chain compared to previous ones, exhibiting significant shortcomings.
Despite EMNUSS achieving a higher overall F1 score, its visualization results in
Fig. 7 reveal poor predictions, with most protein regions misclassified as coils and
significant overlaps between different predicted classes. Specifically, EMNUSS
completely missed identifying helix and sheet regions within the protein.

Figure 8 illustrates EMD 21156-A, portraying a complex and tangled pro-
tein structure. Our proposed method accurately predicts approximately 50% of
the helices while struggling with sheet prediction, resulting in a low F1 score of
0.16, despite some correct identifications. However, it performs relatively well in
predicting coil regions, with a decent F1 score of 0.6. In contrast, EMNUSS
achieves higher F1 scores for both sheets and coils but produces a chaotic
visualization lacking clarity, with numerous helices misidentified as coils and
sheets appearing dislocated and misclassified. Despite the higher F1 scores, our
proposed method’s visualization offers better coherence and understandability
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Fig. 8. EMD 21156-A prediction visualization.

compared to EMNUSS, indicating its superiority in presenting predictions
despite similar struggles in accuracy.

3.2 Comparison with Different Architecture

To further scrutinize the effectiveness of our proposed framework, we’ve intro-
duced an additional pair of Inception block architectures, we named them sec-
ond and third designs. Our approach involves replacing the Inception blocks (as
shown in Fig. 2) within our network to explore alternative designs and under-
stand their impact on the results. In the following sections, we’ll outline these
two additional Inception block designs.

Table 1. Average Voxel F1 Scores for Various designs,

Class Main design Second design Third design

Overall 0.739 0.705 0.739

Helix 0.657 0.597 0.654

Sheet 0.596 0.55 0.596

Coil 0.712 0.684 0.715
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• Second design: The design includes four Conv3D branches also, each consist-
ing of a sequence: a 1× 1× 1 Conv3D layer, followed by a 3× 3× 3 Conv3D
layer, then a 5× 5× 5 Conv3D layer. After this, there’s a pool branch with a
Conv3D layer. Additionally, before each of these branches, a 1× 1× 1 kernel
Conv3D sublayer this time to transform the data without big change in the
kernel size.

• Third design: This architecture comprises four Conv3D branches: a 1× 1× 1
Conv3D layer, followed by a 3× 3× 3 Conv3D layer, then a 5× 5× 5 Conv3D
layer, and finally a pool branch with a Conv3D layer. Each branch is preceded
by a 3× 3× 3 kernel Conv3D sublayer, strategically included to prepare and
enhance the 3D data, ultimately leading to improved performance.

We conducted a comparative analysis of three Inception block designs, all
evaluated using the same test set, consisting of 32 experimental EM maps at mid-
dle resolution. Table 1 clearly illustrates that our primary design outperformed
the second design significantly. However, the third design displayed highly com-
petitive results, almost on par with the first design.

We attribute the excellent performance of the designs to the effective use of
the 3× 3× 3 kernel Conv3D sublayer, which proved to be well-suited for Cryo-
EM maps, capable of extracting meaningful information. This kernel size is par-
ticularly conducive to this type of data.

4 Conclusion

We created an advanced deep learning framework designed for the prediction
and annotation of protein secondary structures within EM density maps. This
framework underwent comprehensive testing and evaluation using a dataset of
middle-resolution experimental maps. The results clearly demonstrated that our
framework substantially enhanced the accuracy of secondary structure detec-
tion, surpassing existing methods. Furthermore, we introduced two additional
Inception block designs to investigate their influence on the results. A promising
direction for future research involves developing an improved network architec-
ture aimed at enhancing prediction accuracy.
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