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Abstract—The increasing scale and complexity of deep neural
networks, coupled with heightened privacy concerns, has under-
scored the importance of developing techniques that align with
privacy regulations such as the GDPR and CCPA. These laws
mandate the “right to be forgotten”, which presents a significant
challenge in the context of Federated Learning (FL). FL models
trained collaboratively without sharing private data, necessitate
efficient unlearning methods that allow for the deletion of
specific data without retraining from scratch, which is both
computationally and communicatively demanding. This paper
introduces a novel framework named CONFUSE, designed to ad-
dress the multi-faceted challenges of machine unlearning within
FL by incorporating neuroscientific principles into a confusion-
based technique for memory degradation. This approach enables
targeted data erasure at various levels—instance, feature, and
client—without the need for knowledge distillation, thus preserv-
ing the model’s integrity and reducing the computational burden
on clients. We evaluate the effectiveness of our method using three
benchmark datasets, demonstrating its efficiency and adaptability
in FL environments, thereby ensuring compliance with privacy
laws and enhancing the model’s fairness and reliability.

Index Terms—federated learning, machine unlearning, feder-
ated unlearning, model confusion

I. INTRODUCTION

The advent of deep neural networks, with their expansive

architectures trained on vast datasets, has significantly ad-

vanced machine learning. However, as model sizes balloon and

datasets grow, privacy concerns escalate. These sophisticated

models are prone to memorizing training data details, posing

a stark privacy risk [1]. This memorization runs counter to

privacy laws like the GDPR [2] and CCPA [3], which uphold

an individual’s right to have personal data deleted — a concept

known as the “right to be forgotten”.

This tension between model performance and privacy rights

has catalyzed interest in machine unlearning, which aims to

methodically erase the imprint of specific data from mod-

els without degrading their utility [4]. Machine unlearning

emerges as a formidable task in the realm of Federated

Learning (FL), where multiple clients, including many IoT

edge devices with limited computational power, collabora-

tively train a model without sharing their private data [5].

The distributed essence of FL means techniques for machine

unlearning developed for centralized architectures cannot be

seamlessly adapted. A simplistic approach to federated un-

learning would be to retrain the model from the ground up

sans the data meant to be omitted. However, this method is

impractical in real-world FL scenarios due to the excessive

computational and communication demands it places on the

system, particularly on the edge and IoT devices. Thus, the

quest for efficient unlearning methodologies that align with the

distributed, collaborative nature of FL and the dynamic nature

of IoT data is not just a technical necessity but a pressing

compliance imperative.

Beyond compliance with the “right to be forgotten”, un-

learning in FL models serves an additional purpose: it allows

the system to adapt when training data may be compromised,

outdated, or biased over time. Given the decentralized nature

of FL and the diverse data contributions from multiple parties,

the potential for such data issues is not uncommon. Whether

it’s due to data poisoning attacks [6], [7], or the simple

progression of time rendering certain information less relevant,

the capability to selectively unlearn this information is invalu-

able. It bolsters the security, adaptability, and dependability

of FL systems. This proactive unlearning not only aligns

with privacy mandates but also underpins the fairness of the

FL system. By eliminating data that may skew the model,

unlearning ensures that decisions remain just and equitable

across all data points.

Recent studies on unlearning within Federated Learn-

ing (FL) systems have identified several limitations in the

scope and application of current unlearning methods. Existing

strategies predominantly focus on retraining-based unlearning

methods [4], [8], [9], which are often computationally in-

tensive, and model-revision-based methods [10]–[14]. Model-

revision-based methods mainly address client-level unlearn-

ing [10], [15], [16], where a client wants to withdraw com-

pletely from the federation and seeks to eliminate the impact

of all its local data on the global model. However, this

focus overlooks the more nuanced need for instance-level

unlearning, where multiple clients may only want to remove

the impact of specific data points from the global model.

Moreover, feature-level unlearning becomes essential when

addressing algorithmic biases that lead to unfair treatment of

underprivileged groups. By specifically targeting and unlearn-

ing biased features, the fairness and reliability of the FL model

can be substantially improved.

Additionally, the majority of contemporary unlearning

strategies employ knowledge distillation, where they use the

pre-unlearning model as a teacher to transfer retaining knowl-



edge to the post-unlearning model to preserve the model’s

knowledge [10]–[12], which imposes substantial computa-

tional burdens on the clients who may be an IoT device. Many

of these algorithms require access to clients’ historical model

updates or gradient information to improve efficiency — a

practice that is often not feasible within FL due to privacy

concerns. This restriction further complicates the process of

efficiently unlearning targeted data in FL scenarios.

In this paper, we address the practical challenges associ-

ated with unlearning in FL and propose a novel framework,

namely CONFUSE, for efficient unlearning at various levels

— instance, feature, and client. Our approach leverages neuro-

science theories on memory forgetting to develop a confusion-

based technique that intentionally obscures the model’s mem-

ory. This is achieved by pairing varied labels with similar

feature sets to confuse the model and diminish its recall of

the original samples. In addition, our approach avoids the

need for knowledge distillation and maintains the model’s

integrity post-unlearning by using a saliency-guided method.

This method decomposes the model into smaller components,

allowing for targeted updates that erase specific knowledge

without affecting other essential information retained by the

model. Our contributions to this work can be summarized as

follows:

• We introduce CONFUSE, a versatile framework designed

for the nuanced task of unlearning at multiple granu-

larities - individual instances, specific features, or entire

client datasets within the FL paradigm.

• Our unlearning process circumvents the traditional re-

liance on historical updates and gradients, utilizing a

confusion-induced method inspired by neuroscientific in-

sights into memory degradation, thus streamlining the

unlearning procedure.

• By employing a saliency-guided technique to decon-

struct the model into discrete segments, we ensure a

precise elimination of targeted knowledge, safeguarding

the model’s overall acuity and preventing the dilution of

unrelated, yet critical, retained information.

• We rigorously assess the efficacy of our method using

three benchmark machine learning datasets, demonstrat-

ing our approach is efficient and widely applicable within

the domain of FL.

II. RELATED WORK

Unlearning in FL is typically implemented through two

main strategies: retraining-based and model-revision-based

methods. The retraining-based approach necessitates extensive

retraining of the global model with client data, while model-

revision-based methods adjust the model using client-provided

parameter updates, sidestepping the need for retraining.

Retraining-based Unlearning: A considerable body of

research has focused on optimizing the retraining process

within federated unlearning frameworks. For instance, Liu et

al. [8] developed a rapid retraining algorithm that employs

first-order Taylor expansion and diagonal experience Fisher

Information Matrix (FIM) to reduce time overhead. Yuan et

al. [9] introduced a federated forgetting framework that enables

clients to request data deletions, prompting the server to retrain

the global model accordingly. Bourtoule et al. [4] proposed

the Sharded, Isolated, Sliced, and Aggregated (SISA) training

method, which minimizes computational costs by limiting the

scope of data points’ influence through data sharding and

slicing techniques.

Model-revision-based Unlearning: On the efficiency front,

several researchers have developed methods to enhance the

unlearning process in federated settings. Zhang et al. [17]

introduced a method to diminish client influence by using a

weighted sum of gradient residuals and Gaussian noise, main-

taining equivalence between unlearned and retrained models.

Liu et al. [13] improved unlearning speed and preserved model

accuracy by reconstructing models using server-stored param-

eter updates and a new calibration method for client updates.

Halimi et al. [15] and Wu et al. [16] employed a gradient-

based approach to forget data, using the gradient information

from the forgetting set. Additional efforts by Baumhauer et

al. [18], Thudi et al. [19], Izzo et al. [20] focused on opti-

mizing machine unlearning by developing methods that relax

effectiveness standards and improve gradient approximation.

Chourasia et al. [14] highlighted the importance of robustness

in data deletion, while Wu et al. [10] and Zhu et al. [12]

explored knowledge distillation to selectively remove data

from models, enhancing the unlearning process in federated

learning environments.

III. PRELIMINARIES

A. Federated Learning

Federated Learning (FL) is a decentralized approach to

machine learning that enables multiple edge devices, often

referred to as clients, to collaboratively train a shared global

model without sharing their individual datasets [5]. This

methodology helps maintain data privacy while reducing the

amount of data transmission required, addressing key concerns

in data-sensitive applications. Overall, FL aims to optimize the

global objective:

min
θg

f(θg) =
K
∑

k=1

pkLk(θg), Lk = E(xi,yi)∈Dk [f(θg ;xi), yi]} (1)

where K is the number of participating clients, each with a

participation probability pk, Lk is the empirical loss for client

k with global model ¹g and E is the empirical error value.

In a typical FL scenario, each client utilizes its local data to

train a global model. Rather than exchanging or centralizing

the data, only the model parameters or gradients are shared

with a central server. One of the foundational algorithms

in this space is FedAvg [21], which aggregates these local

models into a global model. The aggregation process involves

computing a weighted average of the local models, denoted by

¹t+1
g =

∑
k∈K

nk

n
¹tk, where ¹t+1

g represents the parameters of

the global model at iteration t + 1, ¹tk are the parameters of

the local model for client k, nk is the number of data points

at client k, and n is the total number of data points across

all clients. FedAvg has demonstrated its ability to effectively



converge even on non-IID (non-Independently and Identically

Distributed) data under certain conditions.

B. Federated Unlearning (FU)

Federated Unlearning (FU) has become an essential strategy

in FL, facilitating the removal of the influence of specific

knowledge (data points, data features, or broader data con-

cepts) from a pre-trained FL model without necessitating

complete retraining from scratch. This capability is particularly

crucial in federated environments where data privacy and

efficiency are paramount. The subset of knowledge designated

for removal is known as the forgetting set. The primary

goal of FU is to update a pre-trained FL model efficiently

and effectively so that its performance is comparable to that

achieved by full retraining, following the exclusion of the

forgetting set from the training set.

To illustrate, let D = {xi, yi}
n
i=1 represent the total training

dataset across all the clients comprising n data points, each

with inputs xi where xi is a collection of features gi ∈ G

and labels yi for a supervised learning scenario. Let Df ¦ D

be the designated forgetting set. Df can contain samples from

multiple clients or specific clients depending on the application

scenario. In the case of feature-level unlearning, we consider

each sample in Df contains the related feature gi and the

label yi of the corresponding sample. The complement of Df ,

denoted by Dr = D \Df , is known as the remaining dataset.

Before federated unlearning, the global model, denoted by

¹g , is trained on D using methodologies like empirical risk

minimization (ERM) in a federated manner. Retraining is

considered the gold standard in unlearning paradigm [13],

involving retraining the model parameters ¹g from scratch on

Dr. However, model retraining is computationally intensive,

presenting a significant challenge in federated settings where

resources and bandwidth are often limited. Consequently, the

central challenge in FU is to develop an unlearned model ¹u
from ¹g using Df and/or Dr that can accurately and efficiently

replace retraining.

IV. PROPOSED FRAMEWORK

To address the challenges encountered in FU, we draw

insights from cognitive neuroscience theories on memory

forgetting. Among these theories, our focus lies on the com-

petitive theory of forgetting [22], which posits that forgetting

occurs precisely because memories compete with each other

when triggered by the same retrieval cue. This competition

can lead to the suppression or inhibition of certain memories,

making it difficult to recall them when needed. This theory

highlights the dynamic nature of memory retrieval, where

multiple memories associated with a retrieval cue compete for

activation, and the strongest or most relevant memory tends

to dominate the recall process. These competitive dynamics

can manifest in two forms: proactive interference, where older

memories overshadow new ones upon cue presentation, and

retroactive interference, where new memories hinder the recall

of older ones.

A. Confusion Loss

Our proposed method, CONFUSE, aligns with the retroac-

tive interference-based competition theory. Specifically, we

leverage insights from neural processes on how memories

compete within the brain’s intricate network of neurons and

apply them to the artificial neural networks in the FL. For

client k to perform unlearning with its local dataset Dk, Dk

is divided into the forgetting set Dk
f and the remaining set Dk

r .

We implement the retroactive competing step locally on the

client. For each data sample (xi, yi) in the forgetting set Dk
f ,

we create a confusion sample set (xi, yj)|yj ̸= yi, ∀j ∈ J

for all the available labels J in the dataset. Combining all the

confusion sample sets, we create a confusion set Dk
c . We then

compute the confusion loss to optimize the global model:

Lconf =− log(σ(E
Dk

f
(θg)))−

∑

Dk
c

1

|Dk
c |

log(σ(EDk
c
(θg)))

+
∑

Dk
c

1

|Dk
c |

∥E
Dk

f
(θg)− EDk

c
(θg)∥2, (2)

where EDk(¹g) = Exi∼Dk [f(¹g;xi), yi]} and Ã(.) is the

sigmoid function. This loss function encourages the model to

“forget” its dependence on the forgetting set Dk
f . It penalizes

the model for high confidence in predictions about Dk
f while

promoting increased certainty in the confusion set Dk
c , thus

inducing a state of confusion regarding Dk
f and reducing

predictive accuracy on this subset.

This confusion loss primarily penalizes the model for cor-

rectly predicting the samples in the forgetting set, leading to

changes in weights associated with these predictions. However,

these changes are often localized to specific features and do

not necessarily eliminate all useful information the model has

learned about the dataset. As a result, the model might still re-

tain subtle knowledge associated with the data in the forgetting

set, especially if these patterns are also useful for predicting

other data points. This incomplete forgetting process can leave

traces in the model’s parameters, which can then be exploited.

To address this, a regularizer term is introduced to minimize

the prediction differences between Dk
f and Dk

c . This function

ensures that while the model is forgetting Dk
f , it does not do

so by becoming overly confident in its predictions for Dk
f as

compared to other subsets. Instead, the model’s performance

on Dk
f should gently degrade, becoming more in line with its

uncertainty about other data points.

B. Saliency-guided Federated Unlearning

After the confusion unlearning, memories of the forgetting

set are erased. However, a significant decrease in model perfor-

mance may happen. The model optimization in the confusion

unlearning is limited to specific data samples to forget, which

slightly destroys the generalization of the client model. To

mitigate this issue, most unlearning-based methods [10], [12]

use knowledge distillation to transfer knowledge of the pre-

unlearning model to the post-unlearning model. However,

this increases the computational overhead for clients who

may be an edge device in an IoT network. To mitigate this

issue, we use gradient-based weight saliency relying on the
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Fig. 1. Illustration of CONFUSE.

fact that contemporary learning models can be decomposed

into manageable subparts, each of which can be more easily

maintained and updated independently.

Building upon this fact we decompose the pre-unlearning

global model weights (¹g) into two distinct components: the

salient model weights earmarked for updating during FU and

the intact model weights that remain unchanged. We utilize

the gradient of the loss (lkf (¹g;D
k
f )) with respect to the model

weights variable (¹g) under the local forgetting dataset Dk
f of

client k. By applying a stochastic thresholding operation, we

can then obtain the desired weight saliency mask:

ms = 1

(
∣

∣

∣

∣

∇θg (l
k
f (θg ;D

k
f ))

∣

∣

∣

∣

<
1

1 + e
−γ(|∇θg

|−τ)

)

, (3)

where 1(.) is an element-wise indicator function that outputs

a value of 1 for each model weight if the absolute value

of its gradient is below a sigmoid-threshold function and 0
otherwise. The sigmoid function is modulated by a scaling

factor µ which adjusts the steepness of the curve, and a

threshold Ä which shifts the curve along the gradient mag-

nitude axis. The stochastic nature comes from the fact that the

sigmoid function introduces a probabilistic “soft” threshold,

rather than a hard cutoff. Weights with gradient magnitudes

close to Ä will have probabilities that could go either way,

making the masking process not purely deterministic but

rather probabilistic. Leveraging this mask, we articulate the

unlearning model for client k as follows:

θku = ms » (∇θg + θg) + (1−ms)» θg , (4)

where » is an element-wise product. This equation implies

that during the weight update phase, the focus is on updating

only the salient weights as identified by the mask, while the

remainder of the weights in the model are retained without

alteration. This selective focus ensures that the unlearning

process is both targeted and efficient, altering only the nec-

essary aspects of the model in response to the removal of

the forgetting dataset eliminating the need for knowledge

distillation.

C. Design of CONFUSE

Incorporating both the confusion loss and saliency-based

unlearning, we introduce CONFUSE that is both effective and

computationally efficient. Fig. 1 provides a schematic of our

proposed approach. When a client k wishes to unlearn specific

knowledge from the global model, it categorizes its dataset

into two parts: the forgetting set Dk
f and the remaining set

TABLE I
FEDERATED DATASET DESCRIPTION

Dataset Dimensions Classes Clients Model FL. Round

MNIST 28 × 28 10 20 LeNet-5 100

CIFAR-10 32 × 32 10 20 ResNet18 100

Adult Income 14 × 1 2 20 MLP 50

Dk
r . From the forgetting set, the client generates a confusion

set Dk
c .

Utilizing the global model, the client first produces a

saliency map ms for the global model weights ¹g using

Eq. 3. This saliency map highlights the model weights that

are most influenced by the forgetting set. Following this, the

client employs both the forgetting set and the confusion set to

update the identified salient weights in Eq. 4. This update is

governed by the loss function in Eq. 2, focusing on aligning

the model’s output distributions between the forgetting set and

the confusion set. The optimization task for updating the local

model is formulated as:

min
θku

Lconf =− log(σ(E
Dk

f
(θku)))−

∑

Dk
c

1

|Dk
c |

log(σ(EDk
c
(θku)))

+
∑

Dk
c

1

|Dk
c |

∥E
Dk

f
(θku)− EDk

c
(θku)∥2, (5)

where EDk(¹ku) = Exi∼Dk [ℓ(¹ku;xi), yi] represents the ex-

pected loss over the data points in the dataset Dk. This process

effectively modifies the local model to “forget” or unlearn

the features and knowledge associated with the forgetting set,

while the rest of the model remains largely unaffected.

V. EVALUATION

Evaluation Scenarios: We evaluate our proposed method

through three distinct scenarios to demonstrate its robust capa-

bilities: (i) Neutralizing the influence of backdoor triggers in-

volves client-level unlearning, which is critical for completely

removing data from a specific client, especially in situations

of data compromise or client withdrawal. (ii) Mitigating the

risks associated with membership inference attacks through

instance-level unlearning tests the method’s precision in se-

lectively forgetting particular data instances. (iii) Eliminating

biased triggering features via feature-level unlearning assesses

the granularity of our approach in removing specific features.

A successful outcome across these scenarios would manifest

as diminished model performance on the targeted forgetting

data samples, underscoring the versatility and effectiveness of

our unlearning approach.

Dataset Description: For our evaluation, we use the follow-

ing three public datasets that are commonly used in machine

learning research: MNIST [23], CIFAR-10 [24], and Adult In-

come [25]. Details of these datasets, including their attributes,

class numbers, and the distribution of data across clients in the

federated learning setup, are summarized in Table I. Data from

these datasets were uniformly distributed among all clients to

simulate a realistic federated learning environment. We set the

Ä and µ to 0.1 for all the datasets. We initiate the unlearning

process after successfully training the model for the mentioned

communication rounds in Table I.



Fig. 2. Backdoor attack success com-
parison.

Fig. 3. Non-poisoned set accuracy
comparison.

Evaluation Metrics: Our experimental framework assesses

several key performance metrics, including prediction ac-

curacy, attack success rate, true positive rate (TPR), false

positive rate (FPR), and training speed. These metrics provide

a comprehensive view of the model’s performance and the ef-

fectiveness of the unlearning process under various conditions.

Baselines: To validate the performance of CONFUSE, we

compare it against Four baseline approaches: (i) FedAvg,

vanilla FL training without any unlearning operations; (ii)

Retrain, involves retraining the model from scratch, serving

as a benchmark for maximum efficacy in removing learned

knowledge; (iii) Goldfish [11], represents a loss-based unlearn-

ing method; and (iv) PGD Unlearn [15], employs a Projected

Gradient Descent approach tailored for federated unlearning

scenarios. These comparisons help to contextualize the per-

formance and advantages of our proposed method within the

broader landscape of federated unlearning techniques.

A. Unlearning Under Backdoor Attacks (Client-level)

We use the artificial backdoor triggers [26] as an effective

way to evaluate the performance of unlearning methods.

Backdoor attacks are uniquely challenging because they do

not affect a model’s performance on standard inputs but distort

predictions when specific, pre-defined triggers are present.

This characteristic makes backdoor attacks an ideal test case

for evaluating unlearning effectiveness. A successfully un-

learned global model should maintain good performance on

standard evaluation datasets while significantly reducing the

success rate of backdoor attacks. For the experiment, we

introduced backdoor triggers into the model by selecting 10%
of clients and poisoning their data with a ‘pixel pattern’ trigger

sized 3x3. The selected clients then attempted to unlearn

their data samples locally. After three communication rounds

of unlearning, we evaluated the global model’s performance.

The comparative results on backdoor accuracy across various

unlearning baselines, including our method CONFUSE, are

shown in Fig. 2. Complete retraining sets the benchmark with

the lowest backdoor accuracy. The methods PGD Unlearn and

Goldfish lowered backdoor accuracy to 21%, 22% and 14%,

17% for CIFAR-10 and MNIST, respectively. CONFUSE

achieved higher reductions, with backdoor accuracies of 13%
and 15% on CIFAR-10 and MNIST, closely matching the

retraining results.

Beyond backdoor accuracy, maintaining high accuracy on

non-poisoned datasets is critical. Fig. 3 details post-unlearning

accuracy. While PGD Unlearn and Goldfish show some ac-

(a) CIFAR-10 (b) MNIST

Fig. 4. Membership inference attacks accuracy (efficacy) for the two attacks.

curacy losses — recording 89.5%, 91.5% for CIFAR-10 and

90.5%, 92.3% for MNIST — CONFUSE maintains higher ac-

curacies of 91.8% and 93.9% for the two datasets respectively,

demonstrating minimal performance degradation and aligning

closely with retraining results.

B. Unlearning Under MIA Attacks (Instance-level)

To further evaluate the efficacy of the method’s instance-

level unlearning, we conducted a membership inference attack

(MIA) test. Unlike the backdoor attack scenario, this setup

involved no intentional poisoning of the data samples. We

leveraged two prominent membership inference attacks for

this assessment: the Shokri attack [27], which constructs

shadow models to simulate the target model’s behavior, and

the Yeom attack [28], which differentiates between members

and non-members based on training and test loss values. For

this evaluation, we compared the performance of baseline

unlearning methods, CONFUSE, a fully retrained model, and

the original FedAvg model (the initial global model formed

through federated learning before any unlearning efforts). The

results of this comparison are illustrated in Fig. 4, which

presents the success rates of the MIA across different datasets

and attack types before and after unlearning.

The findings show that both baseline unlearning methods

significantly reduce the MIA success rate compared to the

original FedAvg model. However, these rates are still higher

than those observed with the fully retrained model. In contrast,

CONFUSE achieved MIA success rates very close to those of

the fully retrained model, underscoring the robustness of our

approach in enhancing privacy. This demonstrates not only

the capability of CONFUSE to effectively mitigate the risks

associated with membership inference but also its comparative

effectiveness close to that of complete retraining, thereby

affirming the high efficacy of our method in data unlearning.

C. Unlearning Under Bias Analysis (Feature-level)

One of the distinctive capabilities of our proposed method,

CONFUSE, is its ability to unlearn both specific features

and entire instances. While previous evaluations focused on

instance-level unlearning, we also assessed feature-level un-

learning using the Adult Income dataset. This dataset is

particularly suitable for such analysis because it exhibits an

inherent gender bias due to a higher proportion of male

samples compared to female samples. This imbalance can

lead to a model that disproportionately favors one gender.

To address this, our unlearning approach specifically targets



TABLE II
PERFORMANCE OF CONFUSE AT BIAS UNLEARNING

Method
TPR FPR

Accuracy
Male Female Male Female

FedAvg 0.88 0.97 0.33 0.46 84.9%

Retrain 0.89 0.87 0.35 0.38 83.7%

CONFUSE 0.88 0.90 0.36 0.41 83.1%

gender features within the dataset. Instead of considering the

entire data knowledge as the forgetting set, we selectively

target the gender attribute. In practical terms, this means our

forgetting set, Df , consists solely of the gender feature gi
while masking the other features using a binary mask with

the labels yi, making it possible to directly address the bias.

As conventional baseline methods lack support for feature-

level unlearning, we compared our approach, CONFUSE,

against a model retrained after removing the gender feature

from the dataset. We used TPR and FPR to evaluate fairness,

revealing that our method effectively reduced gender bias.

From Table II we can see that the FedAvg model showed

a disparity in sensitivity and specificity between genders.

However, after retraining without the gender feature, the model

achieved more balanced TPRs of 0.89 for males and 0.87 for

females, and FPRs of 0.41 and 0.44, respectively. CONFUSE

similarly mitigated gender bias, demonstrating TPRs of 0.88
for males and 0.90 for females, alongside FPRs of 0.40
and 0.45 after unlearning the gender feature. These results

affirm the effectiveness of CONFUSE in removing biases and

enhancing fairness in machine learning models.

VI. CONCLUSION

In conclusion, our proposed framework, CONFUSE, marks

a significant stride in Federated Unlearning (FU) by adeptly

addressing at multiple granularities—individual instances, spe-

cific features, and entire client datasets. Utilizing a confusion-

induced method inspired by neuroscientific insights, our ap-

proach moves away from traditional reliance on historical

updates and gradients, streamlining the unlearning process

while ensuring the precision of memory degradation. The

saliency-guided technique we employ allows for the targeted

deconstruction and removal of specific knowledge segments,

maintaining the integrity and efficacy of the model. Exten-

sive validation on three benchmark machine learning datasets

demonstrates that CONFUSE is not only effective but also

adaptable across diverse FL scenarios.
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